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ABSTRACT

Cayley graphs are graphs associated to a group and a set of generators for that
group (there is also an associated directed graph). The purpose of this study was
to examine multiple examples of Cayley graphs through group theory, graph theory,
and applications. We gave background material on groups and graphs and gave nu-
merous examples of Cayley graphs and digraphs. This helped investigate the con-
jecture that the Cayley graph of any group (except Z2) is hamiltonian. We found
the conjecture to still be open. We found Cayley graphs and hamiltonian cycles
could be applied to campanology (in particular, to the change ringing of bells).
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1. INTRODUCTION

Cayley graphs geometrically display the actions of a group. To examine this

thoroughly, we will discuss the necessary background information on group theory

and graph theory. Cayley graphs are dependent on a specific set of generators. Ex-

amples will be provided to show that the same group can have a different Cayley

graph. The related concept of a Schreier coset graph is also introduced. Cayley

graphs have undirected edges while Cayley digraphs have directed edges. We will

focus primarily on Cayley graphs.

If graphs have a path that starts from one vertex, connects all of the other

vertices, only hits every vertex once, and returns to the original vertex, then the

graph is hamiltonian. We will prove that the product of any two or more hamilto-

nian graphs is hamiltonian. There is a well-known conjecture that every connected

Cayley graph is hamiltonian. We will discuss this for certain types of Cayley graphs

and groups. The Factor Group Lemma says if we find a hamiltonian cycle in the di-

graph of a quotient group, then under certain conditions, the digraph of the group

is hamiltonian.

Lastly, an application of Cayley graphs will be shown through change-ringing.

In this specific type of bell ringing, there are certain methods and principles that

ringers use that are based off of permutations. These methods and principles corre-

spond to hamiltonian cycles on Cayley graphs. In the case of four bells, that Cay-

ley graph is a truncated octahedron with diagonals on its square faces.
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2. PRELIMINARIES

2.1 GROUP THEORY

DEFINITION 2.1: (Dummit, Foote, 2004) A group is an ordered pair (G, ∗) where

G is a set and ∗ is a binary operation on G satisfying the following axioms:

(i) (a ∗ b) ∗ c = a ∗ (b ∗ c), for all a, b, c ∈ G

(ii) ∃ e ∈ G such that for all a ∈ G we have a ∗ e = e ∗ a = a

(iii) for each a ∈ G ∃ a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e

EXAMPLE 2.2: The dihedral group of order 2n, denoted D2n, is the group of

symmetries of an n-gon. These symmetries include rotations, denoted r, and reflec-

tions, denoted s. The rotation of 0 degrees is the identity, id. Multiple rotations

give powers of r and multiple rotations are powers of s. When there are n rota-

tions, we return to the identity. Similarly, when there are 2 reflections, we return

to the identity. Thus D2n = 〈r, s | rn = s2 = 1 and srs = r−1〉.

EXAMPLE 2.3: Zn is the group of rotations on an n-gon. The elements of Zn

start with the identity and x ∈ Zn creates the rest of the elements of Zn by re-

peatedly applying the operation of x. These elements are powers of x. Hence Zn =

{1, x, x2, ..., xn−1} where xn = 1.

DEFINITION 2.4: A group is called abelian if a ∗ b = b ∗ a for all a, b ∈ G.

EXAMPLE 2.5: Zn is an abelian group.

DEFINITION 2.6: Let G be a group. The subset H of G is a subgroup of G if H

is nonempty and H is closed under products and inverses.

DEFINITION 2.7: Let S be a subset of a group G. Then the subgroup generated

by S, 〈S〉, is the smallest subgroup of G containing every element of S.
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DEFINITION 2.8: A group H is cyclic if H can be generated by a single ele-

ment. More specifically, there is some element x ∈ H such that H={xn | n ∈ Z}. In

other words, H=〈x〉.

EXAMPLE 2.9: Zn = 〈x〉 is a cyclic group.

DEFINITION 2.10: Let Ω = {1, 2, 3, ..., n} and let Sn be the set of all bijections

from Ω to itself. The symmetric group of degree n, Sn, is a group under func-

tion composition. A cycle is a string of integers which represents the elements of

Sn which cyclically permute these integers (and fixes all other integers). The cycle

(a1a2, ...am) is the permutation that sends ai to ai+1, 1 ≤ i ≤ m− 1 and sends am to

a1. Every permutation is a product of disjoint cycles.

EXAMPLE 2.11: Consider the product (246135)(123456). This product is com-

puted by starting with a number from a the right cycle. Start with 1 from the right

cycle. 1 → 2 → 4. Since 1 goes to 2 in the right cycle and 2 goes to 4 in the left

cycle, our end product says that 1 goes to 4, (14...). Let us finish the product. 4 →

5 → 2, 2 → 3 → 5, and 5 → 6 → 1. So we have (1425) thus far. Since 5 goes to 1,

this closes the cycle. Now let’s see where 3 goes. 3 → 4 → 6 and 6 → 1 → 3. Thus

we have the cycle (36). So the overall product of (246135)(123456) = (1425)(36).

DEFINITION 2.12: For any subgroup N of a group G and any g ∈ G, gN = {gn

| n ∈ N} is a left coset of N in G.

DEFINITION 2.13: A subgroup N of a group G is called normal if gNg−1 = N

for all g ∈ G.

DEFINITION 2.14: Let N be a normal subgroup of a group G. The quotient

group G/N is the set of all left cosets of N . In other words, G/N = {gN | g ∈ G}.

The multiplication of elements is gNhN = ghN for g, h ∈ G. Intuitively, G/N is

the group which essentially “collapses” N .

Now we discuss generators and relations to prepare us for Cayley’s theorem;

3



a theorem which allows groups to be represented as symmetric groups. Groups can

be represented by generators from a specific set. This allows every element of the

group to be represented as a product of powers of some of those generators.

EXAMPLE 2.15: Consider D8 = {1, r, r2, r3, s, rs, r2s, r3s}. Note that all rota-

tions are some power of r, so we see that r generates those four elements. Next, s

generates itself. However, if we combine powers of r and s together, we obtain the

remaining elements. Thus this group is generated by two elements, D8 = 〈r, s〉 and

the generating set is S = {r, s}.

THEOREM 2.16: Every group is isomorphic to a subgroup of some symmetric

group. If G is a group of order n, then G is isomorphic to a subgroup of Sn.

EXAMPLE 2.17: D8 = 〈r, s〉 = 〈r, s | r4 = s2 = 1, sr = r−1s〉. The elements are

{1, r, r2, r3, s, rs, r2s, r3s}. Assign the numbers 1, 2, ..., 8 to these elements, so that

the set is in the order 12345678. Left multiply every element in the set by r. This

permutes the elements of D8. Some of the calculations are r ∗ 1 = r, r ∗ r = r2,

and r ∗ s = rs. The resulting set is {r, r2, r3, 1, rs, r2s, r3s, s}. Compare the two sets

to see the first element of D8 is sent to r, which we identified as 2. So this cycle is

now 23416785. Compare the two orderings, 12345678 and 23416785, and their posi-

tions to find the permutation (1234)(5678). Now multiply every element of D8 by s

to obtain the set {s, sr, sr2, sr3, s2, srs, sr2s, sr3s}. Recall that D8 is non abelian, so

we cannot simply reorder the multiplication of elements. We instead use the prop-

erties above which tells us that r4 = s2 = 1, sr = r−1s. Hence, our left multiplica-

tion of s gives us the set {s, r3s, r2s, rs, 1, r3, r2, r} which is 58761432. Again com-

pare the positions of these numbers. 12345678 and 58761432 give the permutation

(15)(28)(37)(46). This shows D8 is isomorphic to a subgroup of S8, per Cayley’s

Theorem.
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2.2 GRAPH THEORY

DEFINITION 2.18: (Brualdi, 2010) A graph,G, is a pair (V,E) where V is a set

and E is a set of 2-element subsets of V . The set V is almost always finite and its

elements are called vertices. The elements of E are called edges. Hence, V is the

vertex set of G and E is the edge set of G. Edges are often written
{
x, y

}
, but we

denote them as xy. Furthermore, the edge xy ∈ E is the same edge as yx ∈ E.

Finally, neighbors are vertices that are adjacent.

DEFINITION 2.19: A sequence (x1, x2, ..., xn) of vertices in a graph G=(V,E) is

called a walk when xixi+1 is an edge for each i = 1, 2, ..., n − 1. A path is a walk

whose vertices are distinct.

DEFINITION 2.20: When n ≥ 3, a path (x1, x2, ..., xn) of n distinct vertices is

called a cycle such that x1xn is also an edge in the graph G.

DEFINITION 2.21: A graph G = (V,E) is said to be hamiltonian if there exists

a cycle (x1x2...xn) so that every vertex of G appears exactly once in the sequence.

DEFINITION 2.22: Let Γ1 and Γ2 be two graphs with respective vertex sets

V (Γ1) and V (Γ2). The vertex set of the product Γ1×Γ2 is defined as V (Γ1)×V (Γ2).

Let v1, w1 ∈ V (Γ1). Let v2, w2 ∈ V (Γ2). We connect (v1, v2) and (w1, w2) if v1 = w1

and v2, w2 are adjacent in Γ2 or if v1, w1 are adjacent in Γ1 and v2 = w2.

2.3 CAYLEY GRAPHS

Cayley graphs represent groups geometrically. We can read many of the ab-

stract group actions from these diagrams.

DEFINITION 2.23: Given a group G and a subset S of G, the Cayley graph,

Cay(G : S), is the undirected graph with vertex set G and edge set containing an

edge from g to sg and from g to s−1g whenever g ∈ G and s ∈ S. If |g| = 2, the

edge from g → sg and g → s−1g are the same. This results in one edge.
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REMARK 2.24: Cay(G : S) is connected if and only if S is a generating set of G.

The Cayley graph of a group depends on the set of generators. This will be

further discussed in later examples.

DEFINITION 2.25: The Cayley digraph, DiCay(G : S), is the Cayley graph

with directed edges. g to sg for g ∈ G and s ∈ S is two edges with direction.

For an element of order 2, the two directed edges of a Cayley graph, as seen

in Fig. 1, are shown as two curved edges. In Cayley digraphs, there are as many

directed edges as there are elements in the group. Note that in a Cayley graph, this

will also be true for edges except elements of order 2. There will be half as many

since the two edges collapse into one. Let us view some examples of Cayley graphs

on the proceeding page.

EXAMPLE 2.26: Find the Cayley graph for D8 = 〈r, s〉.

Figure 1: Cay(D8 : {r, s, }).

Fig. 1 allows us to visualize the abstract structure of the group D8. For ex-

ample, since the group action of left multiplying r by s gives us sr and then left

multiplying by s again gives us r. This means s is bi-directional. We choose to col-

lapse it as one edge and this gives us a Cayley graph. Multiplication by s is shown

in the graph as dotted lines.
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Now we note that there are different Cayley graphs depending on the gener-

ating set.

EXAMPLE 2.27: Now consider D8 = 〈s, rs〉.

We have the same properties that r4 = s2 = 1 and sr = r−1s. But the Cay-

ley graph will be different from the last example. We will still have our inner four

vertices for 1, r, r2, r3 and outer four vertices for s, sr, sr2, and sr3. However when

we left multiply rs by each vertex, we obtain a different graph than before.

Figure 2: Cay(D8, {s, rs}).

In Fig. 2, the dotted line represents left multiplication by rs and the solid

line represents left multiplication by s. Not shown on the diagram, each line is bidi-

rectional. Note that 1 times s is s. If we multiply that result by s, we get back to

1. Similarly, left multiplying s by rs, rs ∗ s, we obtain r. And again rs ∗ r →

sr−1r → s. Thus we see that every multiplication is bi-directional.

EXAMPLE 2.28: Q8 = 〈i, j〉. Assign the elements Q8 = {1,−1, i,−i, j,−j, k,−k}

7



as the numbers 12345678 per their position. Left multiply all the elements of Q8

by i so that i ∗ 1 = 1, i ∗ j = k, j ∗ k = i, and k ∗ i = j. The resulting set is i ∗

Q8 = {i,−i,−1, 1, k,−k,−j, j} or 34217865. Now we compare the two sets. Recall

the assignment of numbering for the elements. Similar to our previous example,

we obtain the permutation (1324)(5768). Left multiply all of Q8 by j so that the

resulting set is j ∗ Q8 = {j,−j,−k, k,−1, 1, i,−i} or 56872134. This permutation

is (1526)(3847). The following image is the Cayley graph representation of these

group actions via permutations.

Figure 3: Cay(Q8 : {i, j}).

Fig. 3 shows us a cube with diagonals inside as squares. If we follow the

graph according to the permutations, we see that the red lines represent left mul-

tiplication by i. Similarly, the blue lines represent left multiplication by j.

EXAMPLE 2.29: Cuboctahedron Cayley graph.

Fig. 4 is the Cayley graph of a cuboctahedron that is generated by {(123),

(1234)}.

8



Figure 4: Cay(S3 : {(123), (1234)}).

Now let’s examine the Schreier coset graph. We are collapsing the Cayley

graph into a smaller graph. We are able to view a handful of our group cosets as

one single element. However, this means we may now see mulitple edges.

DEFINITION 2.30: Let G be a finite group generated by S. Let H be a sub-

group of G. The Schreier left coset graph Sch(G/H : S) has the left cosets of

H in G as its vertices. Also, two vertices are adajacent if and only if left multiplica-

tion of x ∈ S implies one coset is taken to another coset.

The Schreier coset graph is drawn without direction.

EXAMPLE 2.31: Create the Schreier coset graph for Z4 = 〈(1234)〉. Above we

described the Schreier coset graph for quotient groups. For this example, our quo-

tient group is S4/Z4 and we are looking at the cosets of Z4. Note that before we

can try to draw this graph, we must find the cosets of Z4. These are listed in Tbl.

1. Next we need to do left multiplication of (12)(34), (12), (34), and(23) by all of

the cosets to see which coset we are taken to. Note, a = (12)(34), b = (12), c =

(34), and d = (23). This work for one coset is displayed in the Tbl. 2. The results

in Tbl. 2 and left multiplicaton on the other cosets will provide us with the graph

in Fig. 5. In Fig. 5, left multiplication by a is represented by a solid line, b is

9



Table 1: Cosets of Z4

Coset Elements of Coset

Z4 id (1234), (13)(24), (1432)}
(12)Z4 {(12), (234), (1324), (143)}
(23)Z4 {(23), (134), (1243), (142)}
(34)Z4 {(34), (124), (1423), (132)}

(12)(34)Z4 {(12)(34), (24), (14)(23), (13)}
(123)Z4 {(123), (1342), (243), (14)}

Table 2: Left multiplication of (12)Z4

Left mulitplication on a (12)Z4 Coset Result

a ∗ (12)Z4 (34)Z4

b ∗ (12)Z4 Z4

c ∗ (12)Z4 (12)(34)Z4

d ∗ (12)Z4 (34)Z4

Figure 5: Sch(Z4 : {(1234)}).

the dashed line, c is the dotted line, and d is the solid line with dashes. Notice two

cosets have a loop. This is added to show that a multiplied by the cosets produces

the same coset.

10



3. FREE GROUPS

DEFINITION 3.1: Let S be a set of elements with no relations. F (S) is the free

group generated by S.

EXAMPLE 3.2: Let S= {a, b}. The F (S) is generated by a and b which are of

the form a, aa, ab, abab, bab, a−1, b−1a−1 etc. All of these elements, called words,

are considered distinct. These words can be concatenated to create additional ele-

ments. Since there are no relations in this set, these additional elements are unique.

Figure 6: Cay(F (S) : {a, b}).

In the above Fig. 6, we see the graph of the free group on our set S with no

relations. Consider the a - axis. The powers of a are given as {..., a−2, a−1, 1, a, a2, ...}.

11



The b - axis is similar. On this image, the labels are extended for multiplications on

a. When we move one unit right on the a - axis, we obtain a. Multiplying a by a

power of b gives us our next two elements that send us up and down respectively,

ab and ab−1. The rest of the elements listed are found in the same manner. Note

that since there are no relations on this set, ab and ba are not the same element.

That means when we start to extend from a multiplying by a power of b, we are

never going to cross any line from the b - axis. Hence, the graph becomes a fractal.

A small portion of that idea is shown in the figure and you may assume the image

continues to extend.

Free Groups and Cayley graphs are used in the proof of the Banach-Tarski

paradox. This paradox shows that a solid sphere in 3-dimensions can be dissected

into a finite number of disjoint sets, then recombined to obtain two separate but

identical copies of the original sphere.

EXAMPLE 3.3: Now let’s consider a quick example of a group that is not free.

Imagine a group whose set is Z2. This gives us our normal coordinate plane for

the a and b axes. Note that this is an abelian group. Thus this set has a relation.

Hence the group generated by a and b on Z2 is not a free group. The Cayley graph

is in Fig. 7.

Figure 7: Cay(Z2 : {a, b}).

12



4. HAMILTONIAN GRAPHS

LEMMA 4.1: If Γ1 and Γ2 are hamiltonian, then Γ1 × Γ2 is hamiltonian.

Proof. We divide the proof into two cases. The first discusses when we have two

graphs that are either even and even or even and odd. The second case discusses

two graphs that are both odd.

Case 1: |Γ1| or |Γ2| is even.

Without loss of generality, suppose |Γ1| is even. Then Γ1 has an even num-

ber of vertices. Let Γ1 have the respective hamlitonian cycle (v1, v2, ..., v2n). Sim-

ilarly, let Γ2 have the hamiltonian cycle (w1, w2, ..., wm). Note that Γ2 may have

either an even number or odd number of vertices. We now construct a hamiltonian

cycle for Γ1 × Γ2 starting with (v1, w1).

Figure 8: A hamiltonian cycle when |Γ1| is even.

Now that we have shown that a hamiltonian exists, by Fig. 8, we note that

no matter |Γ2|, we are able to still find a hamiltonian cycle. That is because the el-

ements of Γ2 dictate the number of columns in the image. We see by our route that

the number of columns does not effect the result. Thus, by the above demonstra-

tion for any Γ1 with an even number of vertices and a hamiltonian cycle, and for

any Γ2, Γ1 × Γ2 has a hamiltonian cycle.

13



Case 2: Both |Γ1| and |Γ2| are odd.

Now we suppose that Γ1 has a hamiltonian cycle (v1, v2, ..., v2n+1) and that

Γ2 has a hamiltonian cycle (w1, w2, ...22m+1). We construct a hamiltonian cycle for

Γ1 × Γ2 in the following figure.

Figure 9: A hamiltonian cycle when |Γ1| and |Γ2| are odd.

By Fig. 9, Γ1 × Γ2 is hamiltonian when |Γ1| and |Γ2| are odd. Therefore,

these two cases show that for any two graphs who have hamiltonian cycles, their

cartesian product also has a hamiltonian cycle.

THEOREM 4.2: Let Γ1,Γ2, ...,Γn be hamiltonian. Then Γ1 × Γ2 × .... × Γn is

hamiltonian.

Proof. We prove this theorem by induction.

Case n = 1. This is the trivial case since we already assume that Γ1 has a hamilto-

nian cycle.
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Case n = k. Suppose that Γ1,Γ2, ...,Γk each have a hamiltonian cycle. We assume

Γ1 × Γ2 × ...× Γk has a hamiltonian cycle.

Case n = k + 1.We now desire to show that Γ1 × Γ2 × ... × Γk+1 has a hamiltonian

cycle. First note that both Γ1× Γ2× ...× Γk and Γk+1 have a hamiltonian cycle. By

the previous lemma, their product also has a hamiltonian cycle. So, Γ1 × Γ2 × ... ×

Γk+1 also has a hamiltonian cycle by induction.

Let us now consider an example applying the theorem for two graphs.

EXAMPLE 4.3: Consider the graphs Γ1 = {1, 2, 3, 4} and Γ2 = {a, b, c}. We wish

to find a hamiltonian cycle on Γ1×Γ2. First view Fig. 10 displaying Γ1 and Γ2. Fig.

11 shows the cross product of the two graphs.

Figure 10: Γ1 and Γ2.

EXAMPLE 4.4: Consider Cay(Zn : {t2, t3}). If n is odd, then t2 generates a hamil-

tonian cycle. If n is not a multiple of 3, t3 generates a hamiltonian cycle.

EXAMPLE 4.5: Find a hamiltonian path on Cay(Z12 : {t2, t3}).

Note that Z12 is isomorphic to (Z12, t), so we can consider this Cayley graph

of 12 vertices.

Fig. 12 shows multiplication by t2 through solid lines and multiplication

through t3 with dashed lines. We can see a hamiltonian path starting with the
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Figure 11: A hamiltonian cycle in Γ1 × Γ2.

north most vertex and continuing as such: 0 → 3 → 6 → 9 → 11 → 2 → 5 →

8→ 10→ 1→ 4→ 7.

EXAMPLE 4.6: Find Cay(S4 : {(123), (1234)}). To create this Cayley graph,

we begin left multiplication from the identity by (1234). The identity is denoted

“id” in the graph. These vertices are found (1234) ∗ id = (1234), (1234) ∗ (1234) =

(13)(24), (1234) ∗ (13)(24) = (1432), and (1234) ∗ (1432) = id. Since this left mul-

tiplication was done four times, we are able to create a square from the operation.

Fig. 13 displays this Cayley graph. The dotted line represents left mulitplication

by (1234). The solid line is left multiplication by (123). To obtain the other ver-

tices, we continue to left multiply each vertex by (123). In the same manner, we

obtain (123)∗id = (123), (123) ∗ (123) = (132), and (123) ∗ (132) = id. This time

three operations develops a triangle shape. The rest of the diagram is obtained in

this manner, where we make sure that every possible vertex is multiplied by both

generators. This Cayley graph is a truncated octahedron in the third dimension.

Note, there exists a hamiltonian cycle in this graph.

LEMMA 4.7: Factor Group Lemma.
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Figure 12: Cay(Z12 : {t2, t3}).

Let H be a cyclic, normal subgroup of index n in a finite group G and let S

be a generating set of G. If (siH : 1 ≤ i ≤ n) is a hamiltonian cycle in the Cayley

digraph of G/H where s1, s2, ..., sn ∈ S and s1s2...sn is a generator of H, then |H| ∗

(si : 1 ≤ i ≤ n) is hamiltonian cycle in the DiCay(G : S).

Let us demonstrate the Factor Group Lemma by the following example.

EXAMPLE 4.8: Let G = D8 = 〈s, rs〉. Let H = 〈r〉. Take G/H and by Lagrange,

we know there are two elements. G/H is isomorphic to Z2. So by the Factor Group

Lemma, we need to find a hamiltonian cycle in DiCay(Z2 : {sH}). Since we are

looking at the digraph, we will have two curved edges between two vertices. If we

go from H to sH and back by multiplying by sH, we have a hamiltonian cycle.

However, s1s2 = s2 = 1 does not generate H, so the lemma does not apply. We

note that sH = rsH and with this representation s1s2 = srs = r−1 which does gen-

erate H. By the Factor Group Lemma, we obtain a hamiltonian cycle on DiCay(D8
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Figure 13: Cay(S4 : {(123), (1234)}).

: {s, rs}) which, in fact, is the cycle in Fig. 14.

THEOREM 4.9: There is a hamiltonian path on every Cayley digraph on an

abelian group.

Proof. We prove this theorem by induction.

Let G be an abelian group. Let S be our generating set.

Case: If |S| = 1, then the group is Zn and has one generator. Hence, there

already exists a hamiltonian path.

Case: If |S| = k, we assume there exists a hamiltonian path.

Case: Suppose |S| = k + 1. Suppose S = {s0, s1, ..., sk}. Choose s0 ∈ S. G/〈s0〉

is a subgroup of G. Furthermore, it is a normal subgroup since G is abelian. Now

our generating set has one fewer elements. So our generating set was once S and is

now S̄ = {s̄1, ..., s̄k}. So, since there is one fewer generator, Cay(G/〈s0〉 : S̄) has a

hamiltonian path. But how do we find a hamiltonian path for G? Let s0 ∈ S. De-
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Figure 14: Cayley graph of Z2 generated by cosets.

fine d = |s0| - 1. Then (s0 ∗ d, s1, s0 ∗ d, ..., sk, s0 ∗ d) is a hamiltonian path in Cay(G

: S). This means, we do s0 d times, then s1 once, and so on. We are essentially al-

most finishing a cycle, but we skip the last step to close the path and move onto a

different generator of S. Then we again continue the cycle of s0 with one less step.

Eventually, we have a hamiltonian path.

CONJECTURE 4.10: (Folklore, Alspach, 1985) Any connected Cayley graph is

hamiltonian.

EXAMPLE 4.11: Consider Cay(Z4 : x). Then we have a cyclic group with ele-

ments {1, x, x2, x3}. Fig. 15 displays a hamiltonian path and a hamiltonian cycle.

Figure 15: A hamiltonian path and cycle on Cay(Z4 : x).

CONJECTURE 4.12: (Marusic, 1983) Every connected Cayley graph of an abelian

group of order at least three is hamiltonian.
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The Cayley graph of Z2 is a line, so it cannot have a hamiltonian cycle. The

proof of this conjecture invokes ideas similar to that of Lemma 4.1.

The question remains, can we find a hamiltonian cycle on every Cayley graph

of a nonabelian group?

THEOREM 4.13: Cay(D2n : {r, s}) is hamiltonian.

Proof. For any dihedral group with generator r, there will be an n-gon generated

by r. Furthermore, since our generators are 〈r, s〉, left multiplying each vertex by s

extends the vertices of the n-gon. Each of these lines connects through multiplica-

tion by r. This is displayed in Fig. 16.

Figure 16: A hamiltonian cycle on D2n.

In this image, we see for all n, D2n will have two n-gons. One on the inside

and the other on the outside. The vertices are connected respectively. A hamilto-

nian cycle, in the thick line, is constructed by starting at vertex 1, moving clock-

wise among the inner n-gon, stoping at the vertex rn−1 to left multiply by s, such
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that we now move counterclockwise on the outer n-gon until we get to vertex s,

and move back on the connecting line to 1.

Now we discuss the Cayley graphs of semi-direct products and cartesian

products.

DEFINITION 4.14: The semi-direct product between two cyclic groups is Zm ok

Zn = 〈a, b | am = bn = 1 with bab−1 = ak〉 and kn ≡ 1 mod m.

THEOREM 4.15: (Curran, Gallian, 1996) The graph Cay(Zm ok Zn : {a, b}) is

hamiltonian when mn > 2.

EXAMPLE 4.16: What is Cay(Z7 ok Z3 : {a, b})?

First we write out Z7 ok Z3 = < a, b | a7 = b3 = 1 with bab−1 = ak > and

k3 ≡ 1 mod 7. Now we find a k that satisfies the congruency. k = 2 satisfies the

congruency. Let us view the images generated by a, b, and b2.

Figure 17: The graph generated by a and b at every vertex of a.

Fig. 17 we see that the generator a creates a heptagon. At this moment, we

only have vertices with a and the property that a7 = 1. So we no longer multiply
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by a. The next step is to consider what happens to each vertex upon left multipli-

cation by b. Looking at each vertex of the heptagon, we see that left multiplication

by b creates a triangle with each vertex. Notice two vertices of the upper right most

triangle have two notations. When we left multiply a by b, we obtain ba. However,

we choose to rewrite this vertex with the property that bab−1 = a2. Hence, ba =

a2b and b2a = a4b2. All of the other vertices are written in that respective man-

ner. Notice we have 21 total vertices and these will be all of them for our result-

ing graph. However, we must consider, what happens when we multiply one of the

outer vertices of each triangle by a? Let us find out below.

Figure 18: Left multiply the vertex b by a.

As we continue to left multiply b by a in Fig. 18, we connect the vertices b,

ab, a2b, and so on until we obtain a7b which is just b. The triangles are left in the

image as a reference to the image before. Similarly, let us now examine left multi-

plication of a by b2 in the next image.

The next image, Fig. 19, left multiplying b2 by a continuously connects the
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labeled 7 vertices as displayed. Now let us conjoin the three images to see the over-

all Cayley graph for this example.

Figure 19: Left multipying vertex b2 by a.

The Cayley graph of Z7 o2 Z3 is given by the Fig. 20.

Figure 20: Cay(Z7 o2 Z3 : {a, b}.
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EXAMPLE 4.17: Find a hamiltonian cycle on Z7 o2 Z3.

Consider the following image.

Figure 21: A hamiltonian cycle in Z7 o2 Z3.

In Fig. 21, reorganize the vertices of Z7 o2 Z3 in the above manner. The

first row are the vertices of the heptagon. The second row are the vertices of the

wider star. The last row are the vertices of the thinner star. Lastly, each column

represents the respective triangle of that vertex. We are able to find a hamilto-

nian cycle quickly. If we were to examine the Cayley graph, it would be difficult

to find a hamiltonian cycle. The method in this figure was to follow the vertices

of the heptagon, do not close, move to the respective triangle, move one edge of a

star, back to the next triangle, and so on. Graphically, we see a similar image to

the proof of two graphs having a hamiltonian cycle.

THEOREM 4.18: (Cay(G : S)×Cay(H : T )) = Cay(G×H : [(S×{1})∪ ({1}×

T )]).

EXAMPLE 4.19: Consider Cay(Z3 : s)× Cay(Z4 : t).

The Cayley graph of Z3 is a triangle and is a square for Z4. Thus when mul-

tiply these graphs together, we obtain Cay(Z3 × Z4 : {st}), which is a dodecagon.
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The analogous conjecture is false for Cayley digraphs with the following ex-

ample.

EXAMPLE 4.20: (Rankin, 1948) The DiCay(A6 : {(24653), (163)(245)} is not

hamiltonian.
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5. CAMPANOLOGY AND CAYLEY GRAPHS

Campanology is the study of bell-ringing. This research focuses on change-

ringing, the act of ringing bells in a controlled and methodical manner. First, a

brief discussion of campanology is necessary.

The bells played will be numbered by 1, 2, ..., n for n bells. Bell 1 represents

the treble and bell n the tenor. The operation of ringing from row to row is cal-

culated through permutation and will be denoted as a change. For a function f :

{1, 2, ..., n} → {1, 2, ..., n}, the domain represents the position of a bell’s ring and

the range denotes the new position of a bell’s ring. Change-ringing is represented

through permutations on Sn. An extent is when a full ringing has occured. More

particularly, an extent occurs when all the possible cyles of Sn have been rung once

with the additional row of the identity. This means we expect to have n! + 1 rows.

Throughout these changes, conditions must follow to be a change-ringing:

(i) The first and last change are both the identity, which is called rounds.

(ii) No other change is repeated.

(iii) From one change to the next, no bell moves places more than one posi-

tion away from its previous spot.

These three conditions must occur in order to have a change-ringing. There

are additional conditions that are optional to the ringers. In this research, we do

not consider them. Among change-ringing, specific patterns are followed called

methods and principles. Methods are when all bells have the same work except one

bell plain hunts which means that one bell is fixed to a specific pattern in ringing.

Principles are when all bells work the same and no bell is fixed. We will examine

some of these patterns.

Before we begin, we are allowed so many position changes, called switches,

depending on our n. Switches will be represented by cycles. First consider the case
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of 3 bells. Since we have 3 positions, we may exchange the first position with the

second or the second with the third. Recall that our third condition disables us to

move from the first position to the third. Hence for 3 bells, our switch options are

(12) and (23). Similarly, for 4 bells, our options are (12), (23), (34), and switching

(12)(34) simultaneously. There is a pattern here, as described in the following re-

mark.

REMARK 5.1: (White, 1987) Let F (n) represent the nth Fibonacci number. There

exist F (n)− 1 possible switches for n bells.

As discussed before, there are only 2 switches on 3 bells. This is F (3)-1,

which is 2. For 4 bells, F (4)-1 is 4, which matches the switches described above.

Now we can find how many switches exist for 5 bells, without figuring them out.

F (5)-1 = 7 implies there are 7 possible switches for 5 bells, which are (12), (23),

(34), (45), (12)(34), (23)(45), (12)(45), (12)(23)(34)(45).

Earlier, in the definition of Schreier coset, we defined these switches via let-

ters. We will continue to use that representation: a = (12)(34), b = (12), c = (34),

and d = (23).

EXAMPLE 5.2: Start with rounds for S4 and do the following switches from left

to right: a, d, a, d, a, d. In future examples, the commas and spaces will be omitted

and repetitions will be denoted in exponential format. So we perform the switches

adadad or (ad)3. Following the designated switches, we obtain (1234) → (2143) →

(2413) → (4231) → (4321) → (3412). This happens to be the first column of a

method called Plain Bob Minimus.

Our research began with viewing the elements of S4 on a flattened truncated

octahedron and trying to find hamiltonian cycles. We only considered switches b, c,

and d. This is the diagram we studied.

In Fig. 22, we always began with the upper left vertex labeled 1234 for rounds

and tried to find as many cycles as we could. After we found a cycle, we would
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Figure 22: Cayley diagram for 4 bells, without simultaneous switches.

write down the switches accordingly. Then we compared them to the principles and

methods. Without the switch a, we missed the majority of documented change-

ringings. However in our research, we were able to match our words with Double

Court and Double Canterbury. The following figure displays the same graph in a

different perspective.

Each method and principle has a Cayley graph that lays on a truncated oc-

tahedron. The truncated octahedron is given in the Fig. 23.

THEOREM 5.3: (White, 1989) Let ∆ be the set of all switches on Sn such that

the product of cycles are disjoint. An extent on n bells can be composed if and
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Figure 23: Cayley Graph for 4 bells

only if Cay(Sn,∆) is hamiltonian.

From the theorem, we expect that for every Cayley graph of a change-ringing,

there is a hamiltonian cycle. Now for every extent, not including the last rounds,

there will be n rows. We divide the extent into n columns. The first row of each

column is called a lead and we will call it the sequence of numbers a word denoted

w. Note that w is obtained through switches from ∆ in Sn. Also, wm = e such that

w is an m-cycle and e is the identity (rounds) of Sn. Let us consider an example to

determine the words.
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EXAMPLE 5.4: Consider the Plain Bob Minimus extent listed below. Our word

1234 1342 1423
2143 3124 4132
2413 3214 4312
4231 2341 3421
4321 2431 3241
3412 4213 2314
3142 4123 2134
1324 1432 1243

for Plain Bob Minimus is w = (ad)3ac. Note here that (ab)3 is presumed to be

identified as one switch. So w is length 3. This means w3 = (1234). This makes

sense because if we expanded w, we would see that it is a total of 8 switches, or 8

changes. The order of S4 is 24 and in change ringing, we need all of the permuta-

tions. So w must occur 3 times in order to have all of our changes, called a full ex-

tent. Recall that each extent is rung with an extra change of rounds at the end. So

the actual last ringing is (1234). Since change ringing requires all of these ringings

to be different, it is easy to see a hamiltonian cycle exists. Now let us actually con-

firm that w is a 3-cycle. First, recall the definitions of a, b, c, d. Now let us compute

ad = (1243). Then (ad)3 = (1243)3 = (1342). Then calculate ac = (12). So, (ad)3ac

= (1342)(12) = (234). So w = (234). The order of a a 3-cycle is 3, so w3 = (1234).

We see that our word takes effect at the beginning of every column. A hamil-

tonian circuit on Schreier graph of left cosets gives us a word which tells us row by

row (or letter by letter) how to change. This gives us our full extent.

EXAMPLE 5.5: Recall the example about Schreier coset graph on Z4 = 〈(1234)〉.

There are 8 hamiltonian cycles that exist on that graph and they are listed below.

Fig. 24, 25 displays 8 hamiltonian cycles. The words beneath each cycle de-

scribe the switches need to create the cycle. Since this is a coset graph and all the

elements of our group have essentially ’collapsed’ into cosets, we can return to the

original Cayley graph and determine their are 8 hamiltonian cycles for Z4. Now we
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Figure 24: 4 hamiltonian cycles of Sch(Z4 : (1234)).

Figure 25: 4 hamiltonian cycles of Sch(Z4 : (1234)).

need to determine which cycles give a full extent. Each word is calculated in the

below table, Tbl. 3, and the last column determines the order.

Each word has a calculated cycle and order. The words are calculated in

order of upper most hamiltonian cycle from Figures 24 and 25. From Tbl. 3, the

order of each word tells us which words provide full extents. We are able to deter-

mine that numbers 1, 4, 6, and 7 all provide 24 changes and hence a full extent.

These four words happen to represent four of the principles. They are listed in re-
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Table 3: Coset words and their order
Word Cycle Order

1. (bd)2ba (1342) 4
2. (bd)3 id 1

3. bdcdbd (14)(23) 2
4. bdcdba (1243) 4
5. cdbdcd (14)(23) 2
6. cdbdca (1243) 4
7. (cd)2ca (1342) 4
8. (cd)3 id 1

spective order of the numbering: Erin, Stanton, Reverse Stanton, and Reverse Erin.

Aside from Plain Bob Minimus and the above principles, there exist other

patterns that change-ringers follow. In total, there are 11 methods and 4 principles.

Tbl. 4 displays the methods, principles, and their words for 4 bells.

Table 4: 11 methods and 4 principles
Name Word

Plain Bob (ad)3ac
Reverse Bob adab(ad)2

Double Bob adabadac
Canterbury adcbcdad

Reverse Canterbury bd(ad)2bc
Double Canterbury bdcbcdbc

Single Court bd(ad)2bd
Reverse Court ad(cd)2ad
Double Court bd(cd)2bd
St. Nicholas bdabadbc

Reverse St. Nicholas adcbcdac
Erin (bd)2ba

Reverse Erin (cd)2ca
Stanton bdcdba

Reverse Stanton cdbdca

The following eleven images in Fig. 26-29 show the hamiltonian cycle of all

of the methods and principles that overlay this graph (Polster, 2003).
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Figure 26: The four principles of 4 bells
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Figure 27: 5 methods of 4 bells
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Figure 28: 3 methods of 4 bells
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Figure 29: 3 methods of 4 bells
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6. CONCLUSION

Cayley graphs are very useful in explaining and visualing groups and their

actions. Depending on the generating set, there are different graphs for different

groups. The Schreier left coset graph helps visual the understanding of cosets.

We showed that for any hamiltonian graphs, their product is hamiltonian.

We applied this to an arbitrary example and then discussed results with Cayley

graphs. In addition to Schreier coset graph, the Factor Group Lemma displayed

that if a coset generated Cayley digraph (from a quotient group) has a hamiltonian

cycle, then under certain conditions so does the Cayley digraph of the group.

The conjecture that all connected Cayley graphs have hamiltonian cycles

was dissected into parts. We proved that every Cayley digraph of an abelian group

has a hamiltonian path. In fact, we discussed that all connected Cayley graphs of

abelian groups are hamiltonian, for groups of order greater than 2. We furthered

this conjecture by showing that all dihedral groups generated by {r, s} are hamilto-

nian. The question still remains if there exists a hamiltonian graph for other non-

abelian groups.

Lastly, Cayley graphs display the permutations of a bell ringing from change

to change. The Cayley graphs of each method and principle display a hamiltonian

cycle which expresses the full extent of the method or principle.
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