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ABSTRACT 

Construction sites comprise constantly moving heterogeneous resources that interact in 

close proximity of each other. The sporadic nature of such interactions creates an 

accident prone physical space surrounding workers. Despite efforts to improve site safety 

using location-aware proximity sensing techniques, major scientific gaps still remain in 

reliably forecasting impending hazardous scenarios before they occur. In the research 

documented in this thesis, spatiotemporal data of workers and site hazards are fused with 

a quantifiable model of an individual’s attitude toward risk to generate proximity-based 

safety alerts in real time. In particular, two trajectory prediction models, namely 

polynomial regression (PR) and hidden Markov model (HMM) are investigated and their 

effectiveness in predicting a worker’s position given his or her past movement trajectory 

is evaluated. Next, HMM prediction is further improved and calibrated by factoring in a 

worker’s risk profile, a measure of his affinity for or aversion to risky behavior near 

hazards. Finally, a mobile application is designed and tested in a series of field 

experiments involving trajectories of different shape and complexity to verify the 

applicability and value of the designed methodology in addressing construction safety-

related problems. Results demonstrate that the developed risk-calibrated HMM-based 

motion trajectory prediction can reliably detect unsafe movements and impending 

collision events. 
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INTRODUCTION 

 

Thesis Problem Statement 

The construction industry is considered one of the most hazardous industries 

worldwide in terms of fatalities, serious injuries, lost work time, hospitalization and 

disability (Spangenberg et al. 2005; Hannerz et al. 2005; Wadick 2007; Loosemore and 

Andonakis 2007). Despite ongoing research and strict enforcement of regulatory systems 

and standards in occupational safety and health, this problem still persists. In the research 

presented in this Thesis, a systematic scientific methodology is laid out to help improve 

the safety conditions in the construction industry through proper implementation of 

proactive techniques that take advantage of the vast amount of site data captured and 

processed continuously by latest data collection, analysis, and storage technologies. The 

collected data, if properly used, can provide valuable insight into spatial interaction 

patterns between construction resources, which can in turn significantly enhance our 

understanding of and ability to predict similar future events, and ultimately preempt 

hazardous incidents from occurring. The use of such modern ubiquitous data sensing and 

mining methods can therefore ensure a universal and timely deployment of effective 

safety practices on the jobsite.    

 

Research Motivation 

Injury Statistics in Construction Industry. Inherent to the construction industry 

are high accident rates and hazardous activities that have resulted the industry to rank as a 

very dangerous industry worldwide (Sacks et al. 2009). In the U.S. alone, more than 17% 
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of all work-related deaths are related to construction (Tixier et al. 2016). According to the 

Bureau of Labor Statistics (BLS), approximately 925 fatal injuries happened in 2015 in 

the construction industry, and approximately $15 billion of revenue is lost each year due 

to construction injuries and fatalities (BLS 2016). BLS reported that there were 

approximately 2.9 million nonfatal workplace injuries and illnesses in the private sector 

in 2015, which occurred at a rate of 3 cases per 100 equivalent full-time workers. Since 

its establishment in 1971, the Occupational Safety and Health Administration (OSHA 

2016) has aimed at creating safe working environments by enforcing safety regulations. 

While these regulations have resulted in an overall positive trend in workplace safety 

(Figure 1), the number of injuries and accidents is still very high. OSHA identifies fall, 

electrocution, struck by object, and caught in between as four major causes of 

construction injuries, named as “fatal four”. As shown in Figure 2, among these four 

causes, fall, struck by object, and caught in between directly or indirectly relate to 

proximity of construction resources, and contribute to almost 51% of all construction-

related fatalities.   

Figure 1: Number of fatal injuries 1992-2014 (BLS, 2016) 
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Figure 2: Four primary causes of construction worker fatalities (OSHA, 2016) 

 

Hinze and Teizer (2011) conducted a research categorizing injuries and fatalities 

caused by vision or lack of visibility. Results showed that out of 659 equipment and 

visibility related fatalities, 521 cases were due to struck by moving equipment (Figure 3). 

Other factors included hit by equipment buckets, material being dropped or lowered by 

equipment, electrocution when equipment contacted power lines, and rollovers when 

equipment were operated on a steep slope. Another issue explored in the same study was 

the direction of move of a piece of equipment at the time an incident occurred. Results 

indicated that out of 594 equipment related incidents, 72.6% cases occurred when the 

equipment was travelling in reverse direction while only 18.5% cases resulted from 

equipment traveling forward (Figure 4). This study demonstrates a strong correlation 

between workplace accidents and proximity of construction resources.  
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Figure 3: Distribution of construction fatalities due to visibility/awareness (N = 594) 

 

 

Figure 4: Equipment movement direction when accident occurs (N = 594) 
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industries (Weahrer et al. 2008). Another study showed that between 2011 and 2013, the 

annual economic cost of construction-related fatalities was approximately $270 million in 

Illinois, $150 million in Indiana, and $125 million in Iowa (ILEPI 2015). 

 Existing Safety Practices. The main difference between construction and 

manufacturing environments or assembly lines is that almost no construction project 

occurs in a stationary work setting, since resources constantly move and frequently 

interact with one another in an unstructured manner. This makes addressing safety issues 

in construction even more challenging. Existing construction safety management 

practices are traditionally carried out in a fragmented manner (Benjaorana and Bhokhab 

2010). To this end, it is worth noting that quite often the main focus of construction 

management which is productivity improvement (i.e. lower product cost and shorter 

completion time) is in clear contrast with workplace safety requirements (Benjaorana and 

Bhokhab 2010). Several researchers have proposed different approaches to integrate 

safety in construction design, planning and control (Navon and Kolton 2006; Hare et al. 

2006). Ideally, safety measures must be taken into consideration from the design phase 

where designers can play an important role by implementing safer designs and directing 

the choice of construction means and methods to avoid or reduce hazardous situations on 

the jobsite (Benjaorana and Bhokhab 2010). However, due to the unpredictable and 

dynamic nature of construction field activities, it is challenging for designers to foresee 

each and every hazardous situation before the construction process begins. Following the 

design phase, the next step in a project lifecycle where safety precautions must be 

practiced is construction. This is normally done by checking and enforcing common 

industry safety regulations such as those of OSHA (Zhang et al. 2013). Previous research 
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has indicated that although complying with OSHA regulations contributes to an overall 

safe jobsite, such rules and regulations may not be adequate to avoid all incidents 

involving physical contacts between objects (a.k.a. contact collisions) (Teizer et al. 

2010). The main underlying reason behind this is that OSHA mainly enforces the use of 

passive safety devices (e.g. hard hats, safety shoes, goggles, face shields, reflective 

clothing, hearing protection, wet weather gear, and filter masks) also known as Personal 

Protective Equipment (PPE), which are not capable of providing any kind of warning 

before a collision happens. The lack of education and experience in safety management 

has been identified as a major cause for many incidents (Le et al. 2015). Typically, 

knowledge about safety is conveyed through textbooks, specialized training, 

apprenticeship programs, and job experience (Gambatese 2003). These safety programs 

deliver information about site risks, hazards, and safe behaviors. For example, OSHA 

offers a 30-hour voluntary outreach class for personnel with supervisory authority over 

workplace safety and health, aiming to educate them about standards, procedures, 

policies with special emphasis on recognition, avoidance, abatement, and prevention of 

workplace safety hazards (Hardison et al. 2014). It has been stated that existing safety 

training programs are often not sufficiently engaging, offered within a very short period 

of time, and do not take advantage of active workers’ participation (Le et al. 2015). In 

addition, very often, construction accidents happen due to errors, negligence, omissions, 

and misunderstandings of workers (Reese and Eidson 2006).  

Technology in Construction Safety. As previously mentioned, information 

delivery methods deployed in traditional safety education may not actively engage 

workers (Le et al. 2015), and thus, researchers have tried to integrate emerging 
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technologies such as virtual reality (VR), augmented reality (AR), and mobile computing 

platforms to improve the effectiveness of safety teaching methods. Virtual environments 

have great potential both in terms of safety learning and teaching (Jamaludin 2009). A 

field safety training method based on VR for a steel erection site was presented by 

Abraham and Irizarry (2005). Also, Lin et al. (2011) used a 3D game environment to 

conduct a pilot study for construction safety education. In contrast to VR, AR enhances 

the real world with synthetic (computer-generated) data, essentially allowing real and 

virtual worlds to coexist in an augmented environment (Azuma 1997). Within the domain 

of safety training, Behzadan and Kamat (2011) developed an AR-based modeling 

environment to help students understand construction processes and operational safety. 

Le et al. (2015) presented a framework that uses mobile based-VR and AR technology 

for experiential safety education. Sampaio et al. (2010) demonstrated the importance of 

introducing computer-aided design (CAD), 3D modeling, and VR technology in 

architecture, engineering and construction (AEC) education for undergraduate students. 

Shirazi and Behzadan (2015) implemented and assessed the effectiveness of AR-based 

pedagogical tools to enhance the learning experience for construction students.  

Within the same context, information and communication technologies such as 

building information modeling (BIM), virtual design and construction (VDC), along with 

geographical information system (GIS) are emerging tools in AEC that can facilitate the 

integration of safety measures in design, planning, and monitoring of field activities. For 

example, Zhang et al. (2013) presented a rule-based BIM-enabled engine to automatically 

analyze a building model, detect fall-related safety hazards, and provide preventive 

suggestions to the user. Hadikusumo and Rowlinson (2004) created a VR-based design-
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for-safety process database which takes input from the building design phase and 

identifies safety hazards. An integrated system for construction safety management based 

on 4D CAD models and a rule-based algorithm was developed by Benjaoran and Bhokha 

(2010), which integrates safety measures at the early stages of design and planning to 

help all parties prepare for safety constraints the before actual work begins. Kang et al. 

(2011) proposed a 5D CAD system by combining 4D objects from progress schedule data 

with the risk data using analytical hierarchy process (AHP) analysis to visualize the risk 

level of each activity. Bansal (2011) developed a platform using GIS-based navigable 3D 

animation, linking information from the project schedule with the safety recommendation 

database to predict the places and activities having higher risk potentials. Video camera 

and time-lapsed photography is also used frequently to measure the overall safety 

conditions of construction sites and identify potential violations of regulations by workers 

or contractors (Bohn and Teizer 2009).  

 During the past several years, and with the invention of more robust sensing 

technologies, researchers have also studies the feasibility of real time proactive proximity 

safety warning systems for construction workers. For instance, Teizer et al. (2010) 

conducted an experiment in a realistic construction environment using a radio frequency 

(RF) system which gives audio-visual alerts to workers and equipment operators when 

they come to close proximity. Dinga et al. (2013) presented a safety management tool 

based on internet of things (IoT) which integrates fiber Bragg grating (FBG) sensors and 

a radio frequency identification (RFID) for labor tracking. The experiment was done in 

an underground tunnel construction site in China, and results indicated an improvement 

in real time monitoring, detecting, and warning of safety risks. Another research based on 
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location-aware technologies that combined wireless communication, global positioning 

system (GPS), and GIS, showed a significant potential of real time safety warning 

technology by automatically detecting the hazard, alerting drivers to avoid collision, and 

ultimately ensuring reliable navigation ofs construction equipment (Wu et al. 2013).  

Automated Construction Resource Tracking. As stated earlier, contact 

collisions are the major cause of construction injuries and fatalities. In order to assess and 

understand the underlying characteristics of this kind of incidents, obtaining context-

aware information including time-stamped positional data of construction resources is 

critical (Behzadan et al. 2008).  However, despite recent developments in construction 

measurement and sensing technologies, collecting precise and timely location data from 

construction resources still remains a rather challenging task (Saidi et al. 2003). To 

address this challenge, several studies have investigated methods of automatically 

tracking resources (personnel, equipment, materials) in construction and facilities 

projects. In particular, several technologies for indoor and outdoor location tracking and 

remote sensing have been used. For example, the feasibility of automatically measuring 

labor input by tracking their position was explored by Navon and Goldschmidt (2002 and 

2003). Using this approach, the time each worker spent on an activity was estimated with 

an accuracy of 10%-20%. The developed prototype labor control model, based on 

workers’ GPS location was further integrated with a building project model (BPM) to 

compare labor performance by calculating the expected labor inputs based on planner 

labor rates and the work quantities required to complete each task. Sacks (2003) and 

Navon (2004) used GPS technology to track earthmoving equipment in regular intervals 

and convert location data into equipment productivity and material consumption. Other 
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researchers also used GPS to track construction equipment and materials (Hildreth et al. 

2005; Caldas et al. 2005; Lu et al. 2007; Behzadan et al. 2008; Pradhananga and Teizer 

2013). RFID is another location tracking technology used for tracking construction 

resources. In an early attempt, RFID was used to track high-value material on 

construction jobsites (Jaselskis, 1995). Song (2006) used RFID to track the delivery and 

receipt of fabricated pipe spools. Goodrum et al. (2006) developed a prototype tracking 

system to monitor hand tools in a mobile environment. In another research, RFID and 

GPS technologies were integrated to track precast concrete components in a storage yard 

thus minimizing labor input for locating these components (Ergen et al. 2007). Teizer et 

al. (2007) deployed ultra-wide band (UWB) technology as a data collection tool of real 

time location sensing and resource tracking for construction work zone safety and 

material tracking. Automated tracking has been also used in a number of indoor 

applications. For instance, in an indoor environment, where global navigation satellite 

system (GNSS) data is not available, indoor positioning technologies can be used. Indoor 

GPS, wireless local area network (WLAN), inertial navigation system (INS), Bluetooth, 

infrared, and ultrasonic are other available technologies for indoor tracking, and several 

applications have been developed based on these technologies (Behzadan et al. 2008; 

Khoury and Kamat 2009; Razavi and Moselhi 2011). 

As the number of mobile phone users has been steadily growing with almost 2 

billion smartphone users in the market by late 2015 (Kissonergis 2015), researchers in 

multiple disciplines have also directed their efforts toward utilizing a host of mobile 

embedded sensors (e.g. GPS, accelerometer, gyroscope, digital compass). In an early 

study, an android-based indoor/outdoor localization system was developed, taking 
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advantage of GPS and WiFi modules, to locate personnel carrying smartphones (Pereira 

2011). Recently, the development of GPS and location-aware applications have gone 

beyond simply navigating through a route or obtaining the location of the phone. For 

instance, GPS data collected from cellular phones were used to gather large volumes of 

traffic information, process the collected data, and distribute it back to the phone users in 

real time for traffic analysis and monitoring (Handel 2014). In 2008, a traffic probing 

field campaign, known as Mobile Century field experiment, was carried out which 

involved 100 private cars carrying GPS-enabled Nokia N95 smartphones to collect real 

time measurements every third second while the vehicles repeatedly drove on 610-mile 

loops continuously for 8 hours on a freeway in the San Francisco Bay area (Herrera 

2010). Another project, Mobile Millennium, was launched in 2008 with more than 2000 

registered users, which demonstrated that infrastructure road data collection is feasible 

using cellular GPS (Jasper 2011). Bierlaire et al. (2010) proposed a model of route choice 

behavior from smartphone GPS data by developing a probabilistic path generation 

algorithm to generate a set of potential true paths. In another study, smartphone-based 

sensor fusion (accelerometer, gyroscope, magnetometer, GPS, video) was used to detect 

and record drivers’ actions in order to recognize driving patterns (Johnson and Mohan 

2011). Also, a smartphone-based navigation application was developed which alerts a 

visually-impaired pedestrian by an audible message at decision points prior to his or her 

arrival at a work zone (Chen-Fu 2014). 

The application of smartphone-based location-aware technologies in healthcare is 

also explored in several studies. For instance, a generic android-based framework was 

developed to collect field data by epidemiologists and ecologists with the help of a web 
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database and GPS data (Aanensen 2009). The potential of location-aware smartphone 

technologies to help the elderly and visually-disabled persons was also described in 

several studies (Boulos et al. 2011).   

Worker Behavior Analysis. As evidenced in the literature and described above, 

within the construction domain, extensive research has been carried out to improve the 

safety environment for field workers. In particular to the topic of this Thesis, several 

studies have focused on ways to reduce contact collisions between workers and 

equipment by developing real time automated safety alert systems. However, one area 

which is not yet fully investigated in the construction safety domain is the influence of a 

worker’s attitude toward risk in how he or she performs in the vicinity of site hazards. 

The interface of safety and human behavior has been the subject of previous studies. For 

instance, Salminen (2004) conducted a survey study that showed young workers under 

the age of 25 experience a higher injury rate than older workers. Gardner and Steinberg 

(2005) conducted an experimental study with 306 participants in three age groups – 

adolescents (13-16), youth (16-22), and adults (24 and older) to measure risk preference 

and risky decision making, and concluded that risk-taking and risky decision making 

decrease with age. Cooper (2003) stated that the risk-taking propensity of an individual 

depends on his or her perception of the situation, past experience, and personality. 

Gender differences in risk-taking attitude is also studied in several projects. For example, 

Charness and Gneezy (2012) showed that women are generally more risk averse in 

financial issues than men. Their study demonstrated that women make smaller 

investments in a risky asset than men do. 
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Technology Research and Activity Level 

GPS 

Sacks et al. (2003): labor tracking 

Navon and Goldschmidt (2003): labor tracking 

Navon et al. (2004): equipment tracking 

Navon and Shpatnitsky (2005): equipment tracking 

Caldas et al. (2005): material tracking 

Hildreth et al. (2005): equipment tracking. 

Behzadan et al. (2008):user contextual data 

Song and Eldin (2012): heavy equipment tracking 

Pradhananga and Teizer (2013): labor and equipment 

tracking 

Zhang et al. (2015): labor tracking 

 

RFID 

Jaselskis et al. (1995): concrete supply, cost coding, 

material control 

Jaselskis and El-Misalami (2003): materials tracking 

Goodrum et al. (2005): small tool tracking 

Song et al. (2006): material tracking 

Chae and Yoshida (2010): heavy equipment tracking 

Montaser and Moselhi (2014): labor and material tracking 

Hubbard et al. (2015): labor and material tracking 

 

UWB 

Teizer et al. (2007): work zone safety and materials tracking 

Khoury and Kamat (2009): project information retrieval 

Cheng et al. (2011): labor, equipment and material tracking 

Yang et al. (2011): labor tracking 

Hwang (2012): equipment tracking 

 

WLAN 
Khoury and Kamat (2009): project information retrieval 

Behzadan et al. (2008): user contextual data 

Woo et al. (2011): labor tracking 

 

Risk-taking propensity of men has been observed to be higher than women in 

other domains. For example, according to the U.S. Department of Transportation 

(USDOT 2004), male drivers in are three times more likely to be involved in fatal car 

accidents. Also, it has been reported that female drivers use seat belts substantially more 

often than men (Waldron et al. 2005). The same study showed that in the U.K., men 
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pedestrians are 80% more likely to be involved in accidents than female pedestrians, and 

men die much often from accidental poisoning or drowning than women (Waldron et al. 

2005). 

Trajectory Prediction. Trajectory prediction is a critical component of almost all 

spatial collision algorithms (Gong and McNally 2004). Researchers have studied a 

variety of trajectory prediction techniques in several fields such as robotics (Bennewitz et 

al. 2005), aerospace engineering (Gong and McNally 2004), maritime traffic 

management (Perera et al. 2012), physics and mechanics (Choi and Hebert 2006), and 

meteorology (Kim et al. 2015). Gong and McNally (2004) presented a methodology 

based on statistical analysis to improve the quality of trajectory prediction for decision 

support applications such as conflict detection and arrival metering for air traffic 

management. Perera et al. (2012) presented a methodology integrating intelligent features 

with vessel traffic monitoring and information system (VTMIS) to predict navigational 

vessel trajectory using extended Kalman filter (EKF) (Tanizaki 1996). One of the first 

attempts to collect global system for mobile communication (GSM) data was developed 

by Laasonen et al. (2004) who proposed a prediction model which took a sequence of 

recent cell transitions to find the most probable cell the user will enter next. Ashbrook 

and Starner (2003) used Markov model (Petrushin 2000) to predict a user’s next location 

from his or her significant past locations extracted from GPS data. Mathew et al. (2012) 

designed a hybrid method to predict human mobility by training a hidden Markov model 

(HMM) using historical location clusters. Vasquez and Fraichard (2004) proposed a 

technique that learns the pattern of a moving object and applies a pairwise clustering 

algorithm to clustered trajectories to predict that object’s future position. A hybrid 
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prediction model, coupling historical trajectory patterns and an object’s recent motion 

was also explored (Jeung et al. 2008) and demonstrated accurate results than existing 

prediction models at that time.  Monreale et al. (2009) proposed a trajectory pattern tree 

to predict the next location of a moving object using GPS data with a certain level of 

accuracy. Gambs et al. (2012) used the extended mobility Markov chain (MMC) theory 

to predict the next location of an individual using his previously visited locations. Kim et 

al. (2015) presented a destination prediction framework which detects a user’s location 

via k-nearest neighbor (kNN) and decision trees, and predicts his or her future destination 

using HMM. 

As will be discussed later in this Thesis, an effective and robust trajectory 

prediction method is of significant value to any construction safety alert system as it 

enables the prediction of future positions of workers and equipment given their 

immediate past movement patterns. When coupled with a reliable location tracking 

method, trajectory prediction can preempt potential contact collisions on the jobsite.  

 

Research Contribution 

As statistics show, the construction industry has one of the most hazard- and risk-

prone working environments of all industries (Tixier et al. 2016). Research has revealed 

that within this environment, one of the major underlying reasons of jobsite accidents is 

contact collision. Arguably, the most hazardous encounters occur when two or more 

construction resources come within close proximity overlooking potential safety risks. 

Existing safety measures mainly emphasize on enforcing industry standards and OSHA 

regulations, which are mostly passive techniques and do not provide advance warnings 
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prior to an accident taking place. A real time proactive safety warning approach is thus 

necessary which can track the location of construction resources and generate safety 

alerts before resources get too close to each other. As previously described, several 

technologies such as GPS, WLAN, RFID, and UWB have been used by researchers to 

collect positional data of construction resources. However, the practical advantages of 

mobile wearable sensors (e.g. smartphones) for robust position tracking and to provide 

location-aware information for safety purposes has not been yet fully investigated in the 

construction industry. Some of the benefits of the mobile technology that makes it a 

viable area of research is that smartphone sensors do not rely on any preinstalled 

infrastructure in the construction site, are ubiquitous (almost everybody owns and knows 

how to operate a smartphone) and cost effective (as no extra device needs to be 

purchased), and cause minimum (if any) distraction and discomfort to the crew. 

Although the mere position tracking of construction resources and giving timely 

proximity alerts could potentially improve current jobsite safety practices, the integration 

of trajectory prediction of moving resources can immensely benefit the same cause by 

enabling the prediction of future moving trajectory of an object based on its latest 

movement patterns. Trajectory prediction has been explored in different scientific and 

engineering disciplines. As previously stated, most trajectory prediction algorithms use 

clustering techniques, where prediction is made by analyzing the discovered historical 

motion patterns. However, cluster-based prediction models need large datasets and run 

computationally intensive data mining processes, and are generally not useful when there 

is no distinguishable motion pattern. In a construction jobsite, where resources move 
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randomly (do not follow any particular patterns) and frequently interact with each other, a 

slightly different trajectory prediction technique may yield better results. 

In addition, most of existing studies on proactive construction safety focus on the 

context-awareness problem as related to construction resources. The attitude of 

individuals toward risk and safety is another important factor that must be also explored 

and properly integrated with context-awareness to further improve the safety environment 

on construction sites. As previously described, studies in different domains show a direct 

correlation between safety incident rates and one’s risk-taking behavior with his or her 

age, gender, and experience level. 

 Considering the current state of research and practice in construction safety, and 

the abovementioned limitations in the body of knowledge, the work presented in this 

Thesis tries to investigate the value of mobile location-aware technologies to construction 

safety from a new perspective, by explaining the thought process, design, and 

implementation of a mobile safety alert framework which uses a combination of worker’s 

positional data (obtained from built-in smartphone sensors), a robust trajectory prediction 

technique, and worker’s attitude toward risk to detect imminent hazardous encounters and 

generate preemptive warnings before a contact collision occurs.  

 

Research Objectives and Project Tasks 

The overall objective of this research is to the design and implement a mobile 

safety alert system which uses a combination of worker’s positional data (obtained from 

built-in smartphone sensors), a robust trajectory prediction technique, and a worker’s risk 

profile to generate timely warning alerts before a contact collision occurs. In order to 
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achieve this objective, the following research tasks were identified and successfully 

completed: 

• Collect historical trajectory data and design trajectory prediction models. 

• Perform comparative analysis of various trajectory prediction models. 

• Formulate and incorporate risk attitude into trajectory prediction, conduct several 

pilot tests, and perform precision, recall, and accuracy analyses. 

 

• Design and develop a mobile application, conduct real time field experiments, 

and asses the feasibility of the designed system to address real-life safety 

situations. 

 

Organization of the Thesis 

The following Chapters of this Thesis are shaped around the concepts, details, and 

implementation of the research tasks listed above. This Thesis is divided into six 

Chapters. In particular: 

• Introduction – This Chapter contains the thesis problem statement, identified 

research gaps that motivated this research, the novel approach that this study 

adopts to address the identified gaps, and the overall objective and tasks defined 

and accomplished in this project. 

 

• Trajectory Prediction Models – This Chapter includes different trajectory 

prediction models, their applications and limitations, and a more in-depth analysis 

of two major prediction models adopted in this study. 

 

• Machine Learning and Trajectory Prediction – This Chapter includes the literature 

review of hidden Markov model, its applications in different fields, and 

mathematical details of the designed HMM in this research to enhance 

construction safety. 

 

• Incorporating Risk Attitude into Trajectory Prediction – This Chapter covers the 

incorporation of risk attitude in the previously developed HMM-based prediction 

model and the analysis of various pilot tests. 

 

• Preemptive Construction Site Safety (PCS2) Application – This Chapter includes 

details and technical descriptions of the software architecture, and user interface 
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design of an Android-based mobile safety application. In addition, results from 

field experiments conducted using this application are presented. 

 

• Conclusions and Future Work – This Chapter summarizes the key findings of the 

research presented in this Thesis, provides a thought provoking discussion of the 

identified gaps in knowledge and practice of construction safety, and describes 

how the developed research methodology in this research helps address these 

gaps. In addition, some potential directions of future work in this area are 

presented.  
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TRAJECTORY PREDICTION MODELS 

 

Previous Work 

Trajectory and motion prediction has been a key research topic in various fields 

such as robotics (Bennewitz et al. 2005), aerospace engineering (Gong and McNally 

2004), maritime traffic management (Perera et al. 2012), meteorology (Kim et al. 2015), 

automation in manufacturing (Mainprice and Berenson 2013), traffic engineering 

(Houenou et al. 2013), and autonomous vehicles (Glaser et al. 2010). This Section 

summarizes previous research in trajectory prediction involving human and/or human-

robot interactions. 

 In the domain of intelligent transportation systems, the development of self-

driving vehicles has led to an increasing need for automated collision avoidance systems 

(CASs) that can predict the trajectories of neighboring vehicles to detect possible 

impending collision events. Houenou et al. (2013) proposed two trajectory prediction 

models for self-driving cars. The first model is based on constant yaw rate and 

acceleration (CYRA) which takes into account the instantaneous velocity and yaw rate of 

the car and is proven to be accurate for short term prediction. The second model 

presented by Houenou et al. (2013) combines the current maneuver recognition, road 

geometry, and CYRA model in order to provide accurate long term predictions. Another 

trajectory planning model for autonomous vehicles was presented by Glaser et al. (2009) 

who generated several preliminary trajectories using 4th and 5th order polynomial 

regression. Each trajectory was then further evaluated and ranked using a number of 

performance indicators such as risk, speed, consumption, comfort, and compliance with 
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driving rules. Finally, a weighted sum of all performance indicators was used to select the 

best trajectory. Persad-Maharaj et al. (2008) proposed an algorithm based on spatially-

aware, geometric representations of user’s historical trip data from a global positioning 

system (GPS)-enabled phone to predict an individual’s real time travel path and 

destination in order to display customized advertising alerts upon entering a specific area. 

Mainprice and Berenson (2013) presented a framework allowing humans and robots to 

work simultaneously in a close proximity specifically in automated manufacturing 

settings. This framework was based on gesture recognition and workspace occupancy 

prediction by learned motion trajectories. 

In this Thesis, two trajectory prediction models are adopted, validated, and 

compared for prediction accuracy: polynomial regression (PR) and hidden Markov model 

(HMM). As later explained, the model with more robustness and better accuracy will be 

further enhanced by integrating an individual’s risk factor. The PR model is described in 

detail in the following Section. 

 

Polynomial Regression (PR) Model  

  Construction ground crews often move in random patterns, especially in the 

absences of paved surfaces or marked paths. Therefore, to formulate movement patterns, 

a heuristic PR-based trajectory prediction technique is initially developed and tested. In 

particular, positional data obtained in the past s time intervals are used to predict an 

object’s position in time s+1 (immediate future). Selecting the right value for s thus is an 

important aspect of developing this technique, as a large s may result in an unnecessarily 

complicated PR model, while a small s may yield a low-accuracy simplistic model. In 
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addition to selecting the most appropriate value for s, finding the right polynomial degree 

n is also of the essence. A high value for n can result in overfitting, while a low n value 

can lead to underfitting. 

 A hypothetical trajectory of a worker’s movement is shown in Figure 5, where by 

visually inspecting the pattern of positional data, the first portion of the worker’s past 

movements (labeled as segment 1) seems not to significantly contribute to his or her 

predicted future position. To address this and similar situations, only the last 60 seconds 

of a worker’s movement are considered to predict its future position. The last 60-second 

segment is subsequently divided into four equal time frames (T) (last 15 seconds, last 30 

seconds, last 45 seconds, and last 60 seconds) for calculating the best possible motion 

trajectory.  

 

 

Figure 5. Hypothetical motion trajectory of a construction worker 

  As stated above, the second design aspect of the regression model is choosing the 

most proper value for the polynomial degree, or n. Equation (1) is the general polynomial 

formulation used in this research. In this Equation, x is the time frame (last 15 seconds, 
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last 30 seconds, last 45 seconds, and last 60 seconds) and y is the latitude or longitude of 

the worker’s future position. In each iteration, for time stamp t, multiple polynomial 

equations are generated using combinations of T for time stamp t-1 and the polynomial 

degree, n (1, 2, 3, 4, 5), with possibility of testing higher values, as necessary. Initial 

predictions are made for time t using the generated polynomial equation.  

 

𝑦 =  𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯+ 𝑎𝑛𝑥𝑛                                                                     Eq. (1) 

 

 As shown in the process flow of Figure 6, calculated (predicted) values for 𝑦 are 

then compared to the actual (collected) values at time t, and an absolute discrepancy 

factor (∆) is calculated using Equation (2), and as illustrated in Figure 7. The combination 

of T and n that yields the minimum ∆ is ultimately selected for use in the PR model to 

predict the latitude and longitude at time t+l (l is the prediction horizon, or prediction 

time in advance). Results indicate that ∆ tends to be larger for higher values of n. This 

can be attributed to the fact that predicted latitude and longitude values are expressed as 

functions of time. So, for a higher degree polynomial, a small error in prediction results 

in a significantly large ∆. For this reason, a linear regression model (n = 1) is ultimately 

selected to minimize ∆ in the developed PR model. 

 

∆ =  |𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑|                                                                              Eq. (2) 
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Figure 6. Input-process-output diagram of PR model at time t 

 

       

Figure 7. Selecting the best combination of T and n to minimize discrepancy (∆) 

 

Preliminary Evaluation of the PR Model 

  In order to validate the developed PR model, coordinates (latitude and longitude) 

of two separate trajectories (i.e. trajectory 1 and trajectory 2) are collected using an 

android-based application (GPS Logger) launched on an LG Nexus 5X mobile device. 

The frequency of the data is set at 1Hz (one coordinate data point per second). Before 

incorporating the collected data into the model, an instrument error analysis is conducted 

to calculate the absolute global error of the device’s sensor. As shown in Figure 8, five 

benchmark locations are selected and their global coordinates (latitude and longitude) are 

captured and recorded by the device once a 3D fix is achieved (i.e. the device starts 
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communicating with at least 3 satellites). These coordinates are then compared with the 

absolute coordinates of the same points as obtained from accurate global maps (e.g. 

Google Map), and corresponding errors are calculated. 

 

 

Figure 8. Sample benchmark selected for smartphone's GPS error calculation 

   

Equation (3) (Haversine distance formula) is used to calculate error values. In this 

Equation, Ɵ1 and Ɵ2 are latitudes values of two points, ƙ1 and ƙ2 are longitudes values of 

the same two points, and RE is the Earth radius. As Table 1 shows, average, minimum, 

and maximum errors for the five selected benchmarks are 3.63m, 2.17m, and 4.73m, 

respectively. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2𝑅𝐸√𝑠𝑖𝑛2 (
Ɵ2−Ɵ1

2
) + 𝑐𝑜𝑠Ɵ1 ∗ 𝑐𝑜𝑠Ɵ2 ∗ 𝑠𝑖𝑛2(

ƙ2−ƙ1

2
)                             Eq. (3) 
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Table 1. Error calculation of Smartphone’s (LG Nexus 5X) GPS sensor 

Benchmark 

ID 

From Google Map  From Smartphone Absolute 

Error(m) Latitude Longitude  Latitude Longitude 

1 37.205550 -93.271045  37.205565 -93.271095 4.732 

2 37.204928 -93.269155  37.204944 -93.269169 2.169 

3 37.204923 -93.269637  37.20495 -93.269656 3.442 

4 37.204948 -93.262435  37.204946 -93.262471 3.196 

5 37.205407 -93.262353  37.205412 -93.262405 4.639 

    

Trajectories 1 and 2 consist of 180 and 360 coordinate data points, respectively. 

These two trajectories represent two different levels of complexity and randomness. As 

shown in Figure 9, trajectory 1 represents a simple straightforward movement with no 

sharp turns or sudden changes in direction, while trajectory 2 contains several sharp turns 

and represents a more complex motion path. The approximate entropy (ApEn) analysis is 

conducted to measure the complexity and unpredictability for each trajectory. Entropy 

can be defined as a loss of information in a time series. ApEn is a measure of regularity 

to quantify the level of complexity within a time series and has been utilized in postural 

control, physical activity measurement, and human walking data analysis (Yentes et al. 

2013). ApEn measures the “likelihood that runs of patterns that are close remain close on 

next incremental comparisons” (Pincus 1991). ApEn calculates the logarithmic likelihood 

that the next interval of the data will differ from the current interval. As a benchmark, a 

straight-line trajectory results in an ApEn value of zero. A smaller value of ApEn 

represents greater likelihood that the similar patterns of the trajectory will follow (i.e. 

simple trajectory). With the same token, a highly irregular trajectory is not likely to 
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follow similar patterns and will result a relatively high ApEn. To calculate the ApEn, the 

change of direction of every timestamp for both trajectories is initially calculated. As the 

change of velocity is not significant in human walking time series, it is safely assumed to 

be constant.  Choosing a 5-second interval, and considering the change of direction as a 

time series data, the value of ApEn for trajectories 1 and 2 are calculated as 0.12 and 

0.27, respectively. 

 

 

Figure 9. Trajectories 1 and 2 for preliminary validation of the PR model 

 

Initially, both trajectories are used to predict future positions of the moving object 

using the PR model. The prediction horizon ranges from 1 second to 10 seconds, which 

implies that predictions are made as early as 10 and as late as 1 seconds in advance. The 

prediction error is then computed by calculating the linear distance between the predicted 

location and actual location for that time frame using the Haversine formula (Equation 3). 

It must be noted that since the minimum time frame is 15 seconds (i.e. the prediction is 

made using at least 15 data points collected in the last 15 seconds), at least 15 GPS data 

Trajectory 1 (ApEn =0.12) Trajectory 2 (ApEn = 0.27)
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points is required to start the PR prediction process. Figure 10 demonstrates the 95-

percentile prediction error for both trajectories. It can be seen from this Figure that for 

both trajectories, the value of error increases with the prediction horizon. For example, 

the prediction error at 10 seconds in advance is higher than the error corresponding to a 

5-second prediction horizon for both trajectories. The error diagrams closely resemble an 

exponential shape because the predicted latitude and longitude values are expressed as a 

function of time, and a higher value of prediction horizon results in a significantly larger 

error. Figure 10 also shows that the prediction made by the PR model is more accurate 

for less complex trajectories. For example, the 95-percentile error for a 5-second 

prediction horizon is 8.75m for trajectory 1, while it is 13.55m for trajectory 2.   

 

 

Figure 10. 95-percentile prediction error for trajectories 1 and 2 
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Next, different values of n are used in both trajectories to assess how the choice of 

polynomial degree affects the accuracy of the PR model. Figure 11 shows that a linear PR 

model (n = 1) yields a higher accuracy compared to nonlinear models (n > 1). For 

example, as shown in Figure 11(a), the 95-percentile error for trajectory 1 is the highest 

when n ranges from 1 to 6, and lowest when n is equal to 1. Also, it is observed that the 

shape of the error curve changes from exponential to (almost) linear as n decreases. Since 

latitude and longitude values vary over time, small changes in predicted latitude and 

longitude result in significantly larger errors for higher value of n. For example, for a 

prediction horizon of 5 seconds, while the 95-percentile error for trajectory 1 is 37.79m 

when n varies between 1 and 6, a linear PR (n = 1) leads to an error of only 8.75m.     

 

 

(a)                                                                     (b) 

Figure 11. 95-percentile prediction error for different values of n for (a) trajectory 1 and 

(b) trajectory 2 
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Upon establishing the fact that a linear PR model results in the least error (i.e. 

highest possible accuracy), actual locations and 5-second advance predicted locations are 

plotted for both trajectories 1 and 2 using n = 1. Results are illustrated in Figure 12 and 

Figure 13. It can be seen from these Figures that the prediction error increases locally 

when there is a turn or a sudden change in direction. As an example, for trajectory 1 

(Figure 12) the two highlighted sections demonstrate significant changes in direction. 

Consequently, the 95-percentile error for these two sections of trajectory 1 is 12.88m 

while the overall 95-percentile error for trajectory 1 is only 8.75m.  

    

 

Figure 12. Actual vs. predicted trajectories (trajectory 1) 

 

Figure 13. Actual vs predicted trajectories (trajectory 2) 

Trajectory 1

Actual Trajectory

Trajectory 2

Actual Trajectory
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Summary and Conclusions  

Trajectory prediction has been an important field of research in many scientific 

areas. This Chapter explored polynomial regression (PR) as a trajectory prediction model 

to obtain the immediate future locations of construction workers on the jobsite given their 

past positional data collected by mobile sensors carried on their bodies. Prior to using the 

collected GPS data from each smartphone, an instrument error analysis was performed. 

Next, two test trajectories (one simple and one more irregular) were collected from the 

field and the developed PR model was applied to the collected data to predict future 

positions. Results indicated that a linear PR model is more accurate than nonlinear PR 

models. Also, it was observed that the prediction error increases locally when there is a 

turn or a sudden directional change in the trajectory.  
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MACHINE LEARNING AND TRJECTORY PREDICTION 

 

The Problem of Context-Aware Information Delivery 

Providing field personnel and construction crew with context-aware information 

about their surroundings can significantly improve their efficiency by saving the time 

needed to manually search for data and/or analyze work packages and tasks. To this end, 

the ability to predict the immediate future needs of a user, or foresee and preempt 

potential operational problems in advance can even further enhance this proposition. 

Among several prediction methods, those that rely on user’s position (i.e. physical 

location on the jobsite) to provide context-aware information are generally referred to as 

geospatial information prediction techniques. When effectively coupled with mobility 

features, these methods can be used to gather contextual information of mobile users, 

process that information as necessary, and apply the results to new (yet contextually 

similar) settings. The most distinctive advantage of mobile context-awareness is its 

proactivity and robustness in predicting the future state of a user. A review of literature 

reveals that predicting the physical location of a constantly moving user or object is an 

inherently interesting and challenging problem in many domains and for different 

applications (Kononenko 2001, Joachims 2002; Peters et al. 2003; Lustreck and Kauluza 

2009; Collobert et al. 2011; Nath et al. 2017). 

One of the most widely used classes of context-aware prediction techniques in 

science and engineering is machine learning (ML). In a broad sense, ML is the field of 

study of algorithms that self-improve their efficiency automatically through obtaining 

new knowledge and experience. For this reason, ML is often categorized as a self-
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adaptive method. ML algorithms have been extensively used in different fields of study 

including but not limited to search engines (Joachims 2002), medical diagnosis 

(Kononenko 2001), robotics (Peters et al. 2003), activity recognition (Lustreck and 

Kauluza 2009), ergonomics analysis (Nath et al. 2017) and natural language processing 

(Collobert et al. 2011). A precursor to ML is data mining (DM) which aims at 

discovering hidden patterns (a.k.a. features) in large datasets. ML algorithms can be 

generally grouped into supervised and unsupervised learning methods. Examples of 

supervised learning include classification and regression, while clustering, and 

association of rule discovery are examples of unsupervised learning methods.  

Anagnostopoulos et al. (2007) proposed a ML-based contextual model that used 

two classification approached (call-based and cluster-based) to exploit the user’s spatial 

and spatiotemporal data for predicting future movements. The methodology was 

validated with a 10-fold cross validation and results showed that the cluster-based 

approach was more accurate that the call-based approach. In another effort, a mixed 

Markov-chain model (MMM) was proposed to predict the future movement of pedestrian 

(Asahara et al. 2011). This model took into account the pedestrian’s personality as an 

unobservable parameter in addition to the transition probability of simple Markov chain 

(MC). The result demonstrated 74.4% accuracy for MMM over 45% for simple MC. 

Mathew et al. (2012) presented a hybrid HMM to predict human mobility by clustering 

discrete historical location data and training the model for each cluster. A real-world 

experiment was conducted and in terms of geospatial distance between the true location 

of the user and predicted geospatial coordinates, the best result showed an average 

distance of 143.5 Kilometers and a median distance of 4.9 Kilometers.  Vasquez and 



 

34 

Fraichard (2004) proposed a technique that learns the pattern of a moving object and 

applies a pairwise clustering algorithm to clustered trajectories to predict that object’s 

future position.  

This Chapter describes the design and implementation of a stochastic statistical 

trajectory prediction method based on HMM. The developed method uses classification 

and clustering of historical positional data in order to predict the future physical location 

of a mobile user (e.g. construction ground crew). The following Sections provide more 

detailed discussions about the underlying mathematical methods used in this research 

including the MC and HMM, followed by a thorough description of the developed 

trajectory prediction method.   

 

Markov Chain (MC) and Hidden Markov Model (HMM) 

A MC can be explained as a stochastic or random process with Markov property. 

If the conditional probability distribution of a future state of a stochastic process only 

depends on its present state, and not the sequence of states preceded it (a.k.a. limited 

horizon assumption), the process is called having a Markov property (Meyn and Tweedie 

2012). The concept of MC is explained below through the use of a simple example. 

Assume a large construction site with three work zones. Each day, the project 

manager visits the site and inspects one work zone randomly. In mathematical terms, this 

implies that the process of selecting and inspecting a work zone is a stochastic process 

that is not influenced by any external factor or the choice of the work zone in previous 

days. With the same token, this selection process may result in the project manager to 

visit the same work zone in consecutive days. Nevertheless, the project manager never 
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visits more than one work zone each day. Let’s assume that in the last six days (indices -1 

to -6) the sequence of work zones inspected by the project manager is {X-1 = z2, X-2 = z1, 

X-3 = z1, X-4 = z2, X-5 = z2, X-6 = z3}. Also, let’s assume that at the present day, the project 

manager is visiting work zone 2; i.e. X0 = z2. Here, z1, z2, and z3 represent work zone 

numbers, and X is a random variable describing the project manager’s daily visit. 

According to the MC’s limited horizon assumption, the probability of a work zone to be 

picked by the project manager for the tomorrow’s visit (i.e. X1 = Z) only depends on the 

project manager’s today’s choice of work zone (i.e. X0 = z2), and not on the project 

manager’s past sequence of visits (i.e. X-1 = z2, X-2 = z1, X-3 = z1, X-4 = z2, X-5 = z2, X-6 = 

z3). Equation (4) formulates this statement, 

P (X1 = Z | X0 = z2, X-1 = z2, X-2 = z1, X-3 = z1, X-4 = z2, X-5 = z2, X-6 = z3) = P (X1 = Z | X0 = 

z2)                                                                                                                                Eq. (4) 

A state diagram for this example is illustrated in Figure 14, in which a directed 

graph is used to show transitions between states. In this example, a state represents a 

work zone and therefore, is numbered 1, 2, or 3 at any given day. According to this 

Figure, zone 2 (z2) is followed by zone 1 (z1) 30% of the time, by zone 3 (z3) 20% of the 

time, and by itself (z2) 50% of the time. The transition matrix (A) for this example is 

shown in Equation (5) below, 

𝐴 =

     𝑧1 𝑧2 𝑧3
𝑧1

𝑧2

𝑧3

[
0.1 0.2 0.7
0.3 0.5 0.2
0.3 0.3 0.4

]
                                                                                             Eq. (5) 

https://en.wikipedia.org/wiki/State_diagram
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Figure 14. Directed graph representing the transition matrix 

 

Now, let’s assume that the project manager wants to determine the probability 

that she will be visiting work zone 2 in three days. This probability can be 

mathematically described by Equation (6), 

𝑃(𝑋3) = 𝑋0 ∗ 𝐴3                                                                                                         Eq. (6) 

Since the project manager has visited work zone 2 at the present day, X0 can be 

described by the vector in Equation (7), where the probabilities of visiting work zones 1, 

2, and 3 at the present day are 0%, 100%, and 0% respectively. 

𝑋0 = [0 1 0]                                                                                                          Eq. (7) 

Now, let’s slightly modify this example by installing video cameras on the jobsite 

to record site activities. This eliminates the need for a physical site visit by the project 

manager. Instead, a live video feed is transmitted to the project manager’s office and she 

can observe each work zone from her office via the streaming video feeds. The previous 
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assumption still holds for the project manager only observes one work zone per day, and 

may even observe the same work zone in multiple consecutive days. At the end of each 

day, she prints out a card for each work zone to report on work progress in that particular 

zone, and submits all report cards through the company’s online portal which is 

accessible to all employees. A report card can be blue or red. Clearly, unlike the project 

manager who can view the live video streams, other employees cannot observe the actual 

activities carried out in each work zone. The only way an employee can differentiate a 

work zone that was observed by the project manager from a work zone that was not, is by 

knowing that the color of the report card corresponding to each work zone is somehow 

correlated with whether that work zone was or was not observed by the project manager 

on a particular day. This situation can be conveniently modeled using a HMM.  

A HMM is a Markov process that follows a Markov property, has unobserved 

(hidden) states, and provides correlated (and indirect) observations of those states. In the 

project manager example described above, the hidden states are the work zones (z1, z2, 

and z3) that cannot be directly observed by employees, and the correlated outputs are the 

colors of the report cards (blue or red) that are correlated with the hidden states and are 

observable by employees. Each hidden state has a probability distribution over the 

observed outputs. Essentially, the sequence of the report card colors generated by the 

HMM gives information about the sequence of the states. Therefore, unlike MC, HMM 

has an observation probability parameter in addition to the transition probability. The 

term “hidden” in this context refers to the states of the process. Figure 15 demonstrates a 

directed graph showing the video feed observations made by the project manager as 
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hidden states, and the colors of the report cards as observed outputs together with their 

transition probabilities. 

 

 

        Figure 15. Probabilistic parameters of HMM 

 

In Figure 15, X represents the hidden states (z1, z2, and z3), O is the observations 

(red or blue), a is a transition probability (aij is the probability of transiting from state i to 

j) as formulated by Equation 8, and b is an observation probability (bjk is the probability 

of observation k from hidden state j) as formulated by (Equation 9). 

𝑎𝑖𝑗 = 𝑃(𝑠𝑡𝑎𝑡𝑒 𝑋𝑗  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + 1 | 𝑠𝑡𝑎𝑡𝑒 𝑋𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)                                              Eq. (8) 

𝑏𝑗𝑘 = 𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑂𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 | 𝑠𝑡𝑎𝑡𝑒 𝑋𝑗  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)                                       Eq. (9) 

A HMM is denoted by defined by 𝜆 (Equation 10). In this Equation, N is the 

number of hidden states, M is the number of observations, A is the transition matrix, B is 

the observation matrix, and π is the initial state distribution. Matrices A and B are laid out 



 

39 

in Equation (11) and Equation (12), respectively (Stamp, 2004). In the project manager 

example described above, N is equal to 2 (two colors), M is equal to 3 (three work zones), 

and all work zones are equally likely to be selected for observation via video stream on 

any particular day. Therefore, the elements of π (initial state distribution) are equal to 1/3 

(Equation 13). 

  𝜆 = (𝑁,𝑀, 𝐴, 𝐵, 𝜋)                                                                                                 Eq. (10) 

𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]                                                                                              Eq. (11) 

𝐵 = [

𝑏11 𝑏12

𝑏21 𝑏22

𝑏31 𝑏32

]                                                                                                        Eq. (12)  

𝜋 =  [1/3 1/3 1/3]                                                                                            Eq. (13) 

When put together, the joint distribution of a sequence of states and observations 

can be described by Equation (14) (Ghahramani, 2001). In this Equation, the first term of 

the right-hand side represents π, the second term is the transition probability A, and the 

third term is the observation probability B. The joint HMM probability can be used to 

determine (predict) whether the project manager has observed a specific work zone given 

the color of the report card. 

𝑃 (𝑋1, 𝑋2 … ,𝑋𝑁, 𝑂1, 𝑂2, … , 𝑂𝑀) = 𝑃(𝑂1)[∏ 𝑃(𝑋𝑛|𝑋𝑛−1)
𝑁
𝑛=2 ] ∏ 𝑃(𝑂𝑛|𝑋𝑛)𝑁

𝑛=1    

          Eq. (14) 

Using a similar approach, a HMM-based trajectory prediction model is designed 

and implemented in this research. The developed model can predict the future position 
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(physical location) of a construction worker who is carrying a mobile device, given his or 

her past positions. The following Sections provide more insight into the designed 

trajectory prediction methodology.  

 

Trajectory Prediction Using Hidden Markov Model (HMM) 

The major shortcoming of the PR model described in previous Chapter is that for 

n = 1 (linear regression), it does not fully capture the randomness of the worker’s 

trajectory, and for larger n values, the model shows high levels of instability in trajectory 

prediction. To overcome this problem, a trajectory prediction method based on HMM is 

designed and examined. In HMM, trajectories are treated as discrete stochastic processes 

(i.e. random walks). As shown in Figure 16, training trajectory data are first collected and 

stored in a trajectory database (DB). Next, statistical parameters are extracted from the 

dataset and a HMM it trained. New trajectory data is then collected from a target user 

(construction worker) and used as the input of the trained HMM to predict the worker’s 

immediate future position. Clearly, since HMM is a trainable prediction method, with 

time and as more trajectory data come in, the model better adapts itself to the real-world 

movement patterns of construction workers and can provide more accurate predictions.     
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Figure 16. Main steps of the developed HMM-based trajectory prediction method 

 

 To initiate the training process, a trajectory is divided into a number of short 

trajectory sections, as shown in Figure 17. A group of short sections with common 

statistical features (e.g. mean, variance, and covariance) are bundled into one cluster 

which is represented by a single average section (a.k.a. latent segment) (Choi and Hebert 

2006). 

 

 

Figure 17. Key elements of the HMM prediction model 
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Considering the limited horizon assumption, which states that the probability of a 

future location depends only on the current location and not on the path by which the 

current location is achieved (Petrushin 2000), given a sequence of latent segments S0, S1, 

S2 ,….Sn, the probability of occurrence of a future latent segment Sn+1 depends only on the 

current latent segment Sn, as stated in Equation (15). As previously stated, in HMM, these 

probabilities are termed transition probabilities and together create the transition matrix. 

Within a cluster of sections, the likelihood of a trajectory section to be generated from a 

specific latent segment is calculated from bivariate normal probability density function 

(pdf). These likelihood values are stored in the likelihood matrix. The HMM is trained to 

compute normalized trajectory sections, latent segments, and transition and likelihood 

matrices. The model first checks the likelihood matrix to find the latent segment that best 

resembles the observed trajectory section. Next, it determines the most probable future 

latent segment using the transition matrix, and finally provides the most likely trajectory 

section from the likelihood matrix. 

𝑃(𝑆𝑛+1 | 𝑆𝑛, 𝑆𝑛−1, 𝑆𝑛−2 … . . 𝑆0) = 𝑃(𝑆𝑛+1 | 𝑆𝑛)                                                       Eq. (15) 

 

Training Data Collection and Processing 

For the preliminary experiments conducted in this research, training data were 

collected from 26 participants. Each participant was asked to walk randomly for 15 

minutes in an open field and log his/her GPS positional data recorded by a GPS data 

logger application launched on his/her smartphone device. This process was repeated 

three times (in three different locations) for each participant. The frequency of the 

recorded data was set at 1 Hz (one positional data per second). Individuals were allowed 
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to freely move and make any type of turns (90 degrees, U-turns) as they wished. The goal 

was to replicate the randomness of the walking paths of workers in a typical construction 

site. Training trajectories were stored in either text (.txt) or comma separated value (.csv) 

formats. 

Figure 18 demonstrates samples of collected training data. Altogether, 78 

positional datasets were collected from 26 participants each walking randomly for 15 

minutes in 3 different locations. Before using the logged training data, the instrument 

error was checked to filter potential outliers. To this end, assuming an average human 

walking speed, the maximum possible distance between two consecutive positional data 

points is found to be 2.5m (Minetti 2000). While this value can be adjusted depending on 

the job type and work requirements, in this research, if the distance between two 

consecutive positional data points was more than 2.5m, the second data point would be 

automatically filtered out. Table 2 illustrates a portion of logged data that contains two 

adjacent data points with a distance of more than 2.5m. In this specific case, the linear 

distance between GPS coordinates collected in timestamps 20 and 21 is 5.67m, which is 

more than 2.5m. Thus, the second data point is deemed an instrument outlier and filtered 

out. 
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Figure 18. Snapshots of training data collection and logging 

 

Table 2. Filtering instrument outlier from collected GPS training data 

Time (s) Latitude Longitude Distance (m) 

… … … … 

… … … … 

19 37.208763 -93.274754 0.957 

20 37.208776 -93.274756 0.906 

21 37.20878 -93.274653 5.676 

22 37.208789 -93.274757 1.132 

23 37.208801 -93.274758 0.830 

… … … … 

… … … … 
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Learning Latent Segments 

Each training trajectory dataset is divided into 12-second short sections. As shown 

in Figure 19, since trajectories have different start positions, directions, and velocities, 

they must be first normalized by a translation to the origin (0, 0), followed by a rotation 

so that the initial direction is (1, 0), and finally scaling so that the initial velocity is unit 

velocity. This results in a total of 4,662 normalized short trajectory sections extracted 

from the training data.  

 

 

Figure 19. Normalization of trajectory sections 

 

After normalizing, each short trajectory section is represented by a 22-

dimensional vector consisting of x and y coordinates at 1 second intervals. Next, k-mean 

clustering (Choi and Hebert 2006) is applied to find statistically similar trajectory 

sections. k-mean clustering is an iterative process that groups data into k predetermined 

clusters by minimizing a cost function ζ, as shown in Equation (16). In other words, the 

goal is to minimize the sum of distance functions for each data point in a cluster relative 

to the center of that cluster. In Equation (16), Cj is the center of the jth cluster, and is the 

closest center to data point di, and n is the number of data points in the dataset. For 
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numerical datasets, a cluster center is characterized by the mean value of each attribute, 

the mean being calculated over all data points fitting to that cluster (Ahmad & Dey, 

2007).  

𝜁 =  ∑ ||𝑑𝑖 − 𝐶𝑗||
2𝑛

𝑖=1                                                                                                Eq. (16) 

For the training dataset collected in this research, eight clusters were found to best 

represent all short trajectory sections. Each cluster is described by a single latent segment 

the attributes of which are contained in a 5-by-12 characteristics matrix (M) as shown in 

Equation (17). In particular, five statistical features (means of x and y coordinates, 

variances of x and y coordinates, and covariance of x, y coordinate) are calculated for 12 

data points (times t1, t2,….,t12) of all trajectory segments in a cluster. For time steps t1, 

t2,….,t12, the characteristics matrix (M) of latent segment i is given in Equation (5). Since 

the first two time steps of the trajectory segments are used as reference in the 

normalization process, the mean of x and y coordinates for the very first time step is (
0
0
), 

and for the second tie step is (
1
0
), and the variance for both time steps is zero. Therefore, 

eventually there are eight characteristics matrices for eight latent segments representing 

eight clusters identified by K-mean clustering. 

𝑀 =

[
 
 
 
 
 

�̅�𝑖𝑡1                             �̅�𝑖𝑡2 …  …  …  …  … …   �̅�𝑖𝑡12 

�̅�𝑖𝑡1                             𝑦𝑖𝑡2 …  …  …   … … …   �̅�𝑖𝑡12 

𝑉𝑎𝑟(𝑥𝑖𝑡1)                 𝑉𝑎𝑟(𝑥𝑖𝑡2)……………  𝑉𝑎𝑟(𝑥𝑖𝑡12
)

𝐶𝑜𝑣(𝑥𝑖𝑡1 , 𝑦𝑖𝑡1)         𝐶𝑜𝑣(𝑥𝑖𝑡2 , 𝑦𝑖𝑡2)………  𝐶𝑜𝑣(𝑥𝑖𝑡12
, 𝑦𝑖𝑡12

)

𝑉𝑎𝑟(𝑦𝑖𝑡1)                  𝑉𝑎𝑟(𝑦𝑖𝑡2)……………   𝑉𝑎𝑟(𝑦𝑖𝑡12
) ]

 
 
 
 
 

                        Eq. (17) 
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Training Markov Model for Trajectory Prediction 

The overall training process of the HMM is demonstrated in Figure 20. This 

process involves calculating the transition probabilities between latent segments 

throughout all training trajectories. Transition probabilities are conditional probability 

distribution of a specific latent segment to be followed by other latent segments. As the 

sequence of short trajectory sections over the eight latent segments are known from 

training data, running all training trajectories through a HMM provides a probability 

matrix containing transition probability distribution of each latent state. 

 

 

Figure 20. Input-process-output diagram of HMM training stage 

 

As previously mentioned, these probabilities form an 8-by-8 transition matrix A. 

Equation (19) describes an element of A (i.e. aij) as a probability that a particular latent 

segment be followed by other latent segments. This process is implemented in MATLAB 

using the hmmestimate(seq,states)which returns the maximum likelihood estimate of 

transition probabilities of a HMM for sequence seq and known states (latent segments) 

states. 
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𝑎𝑖𝑗 = 𝑃(𝑙𝑎𝑡𝑒𝑛𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑆𝑗  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + 1 | 𝑙𝑎𝑡𝑒𝑛𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑆𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)        Eq. (19) 

Next, the likelihood (ℒ) of normalized sections to be generated from a latent state is 

calculated by Equation (20), in which ℕ is the bivariate normal pdf. This bivariate pdf 

can be defined using Equations (20) through (23) (Kotz et al. 2000). Here, µ is the mean, 

σ is the variance, and Σ is the covariance of the latent segments. The pdf of the bivariate 

normal distribution in MATLAB is implemented as mvnpdf(x,µ,Σ)which returns the 

density of the multivariate normal distribution with mean µ and covariance Σ. For the 

purpose of trajectory prediction, x is the vector containing latitude and longitude of a 

trajectory section, µ is the vector containing �̅� and �̅� of the characteristics matrix, and Σ 

is an identical 2-by-2 matrix containing covariance values on the diagonals and variances 

from the characteristics matrix.     

ℒ =  ∏  ℕ((
𝑥𝑡

𝑦𝑡
) |  (

�̅�𝑖𝑡𝑛 

�̅�𝑖𝑡𝑛 
) , [

𝑉𝑎𝑟(𝑥𝑖𝑡𝑛)                 𝐶𝑜𝑣(𝑥𝑖𝑡𝑛 , 𝑦𝑖𝑡𝑛)

𝐶𝑜𝑣(𝑥𝑖𝑡𝑛 , 𝑦𝑖𝑡𝑛)              𝑉𝑎𝑟(𝑦𝑖𝑡𝑛)
])

𝑡12
𝑛= 𝑡1

                Eq. (20) 

𝑃(𝑥1, 𝑥2) =
𝑒

−
𝑧

2(1−𝜌2)

2𝜋𝜎1𝜎2√1−𝜌2
                                                                                    Eq. (21) 

𝑧 =
(𝑥1−µ1)2

𝜎1
2

− 
2𝜌(𝑥1−µ1)(𝑥2−µ2)

𝜎1𝜎2
+

(𝑥2−µ2)2

𝜎2
2

                                                    Eq. (22) 

𝜌 = 𝐶𝑜𝑟(𝑥1, 𝑥2) =  
𝛴12

𝜎1𝜎2
                                                                                     Eq. (23) 

Considering the uniform prior distribution for latent states, from Bayes theorem, it 

can be said that posterior probability of a normalized trajectory section (li) generated 

from a latent state (Si) is proportional to the likelihood of that section (li) generated from 
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the latent state (Si) (Casella & Berger, 2002). So essentially, the latent state with the 

highest likelihood of generating a trajectory section is the one with the highest posterior 

probability, as mathematically described in Equation (24) and Equation (25). The 

likelihood of each trajectory section to be generated from a latent segment is calculated 

and stored in the likelihood matrix.    

P (Si | li) ∝ ℒ(li | Si) P(Si) ∝ ℒ (li | Si)                                                                          Eq. (24) 

argmaxi P (Si | li) = argmaxi ℒ( li | Si)                                                                         Eq. (25) 

Once the HMM is fully trained, the resulting transition matrix and the likelihood 

matrix are applied to future trajectory data for the purpose of trajectory prediction. In 

predicting the future location of an observed trajectory, at least 12 data points are 

required. As shown in Figure 21, the observed latest section (ln), which contains 12 data 

points is first normalized. Next, the maximum likelihood of that section to be generated 

from a specific latent segment (Sn) is computed from the likelihood matrix. The latent 

segment with maximum likelihood is then used to compute the next most probable latent 

segment (Sn+1) from the transition matrix. Finally, the likelihood matrix is used to find the 

trajectory section which has the highest likelihood to be generated from that latent 

segment (Sn+1). The trajectory section is then denormalized and used as the predicted 

future trajectory (ln+1). Since the first two points of ln+1 are patched to the existing 

trajectory, the HMM model can predict up to 10 seconds in advance.  
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Figure 21. Input-process-output diagram of HMM prediction stage 

 

Preliminary Evaluation of the HMM 

To evaluate the robustness of developed HMM, three test trajectory datasets are 

collected each representing a different level of complexity and randomness. Trajectory 1 

and trajectory 2 are the same trajectories used for evaluating the PR model in previous 

Chapter. In addition to these two trajectories, trajectory 3 is collected which contains 

more complex movement pattern and U-turns. The approximate entropy (ApEn) for 

trajectory 1 and trajectory 2 is 0.12 and 0.27, respectively, and trajectory 3 results in an 

ApEn value of 0.35. As shown in Figure 22(a), trajectory 1 represents a simple 

straightforward movement with no sharp turns or sudden changes in direction, trajectory 

2 contains several sharp turns, and trajectory 3 is the most extreme example containing 

multiple frequent U-turns. While trajectories 1 and 2 consist of 180 and 360 coordinate 

data points, trajectory 3 consists of 2408 coordinate data points. All three trajectories are 

collected at a frequency of 1 Hz (1 data positional data per second).   
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               (a)                                                                   (b) 

Figure 22. (a) Three different trajectories, (b) 95-percentile prediction errors using HMM 

 

As stated before, a minimum of 12 data points are needed to initiate the HMM 

prediction as each short section is 12 seconds long and calculating the first likelihood 

requires at least 1 trajectory section. Figure 22(b) also shows the 95-percentile prediction 

errors for all three trajectories obtained from the HMM plotted against the prediction 

horizon (seconds in advance). It can be seen that for each scenario, the prediction error 

increases with prediction horizon. For example, for any given test trajectory, the 
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prediction error at 10 seconds in advance is higher than the error corresponding to a 5-

second prediction horizon. Another observation from Figure 22(b) is that the error 

increases for more complex trajectories. For instance, the 95-percentile prediction errors 

for a 5-second prediction horizon for trajectories 1, 2 and 3 are 5.1m, 6.7m and 7.8m, 

respectively. To assess the sensitivity of HMM prediction to the presence of curves and 

sudden changes in the trajectory, the actual location and 5-second advance predicted 

location are plotted for trajectory 1, as shown in Figure 23. It is observed that the 

prediction error increases locally when there is a turn or a sudden change in direction. As 

an example, for trajectory 1 (Figure 23) the two highlighted sections demonstrate 

significant changes in direction. Consequently, the 95-percentile error for these two 

sections of trajectory 1 is 7.16m while the overall 95-percentile error for trajectory 1 is 

only 5.1m. 

 

 

Figure 23. Actual vs. predicted trajectories (trajectory 1) 

 

Trajectory 1
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Comparison of PR and HMM Trajectory Prediction Models 

To compare the robustness of the developed trajectory prediction models, the 95-

percentile error values obtained from three test trajectories (trajectories 1, 2, and 3) are 

tabulated Table 3 and plotted in Figure 24. As previously stated, trajectory 1 represents a 

simple straightforward movement with no sharp turns or sudden changes in direction, 

trajectory 2 contains several sharp turns, and trajectory 3 is the most extreme example 

containing multiple frequent U-turns. Figure 24 shows prediction errors for all three 

trajectories using the developed PR and HMM methods. The 95-percentile error is plotted 

against the prediction horizon (seconds in advance). It can be seen that for each scenario, 

the prediction error increases with prediction horizon. For example, for any given test 

trajectory, the prediction error at 10 seconds in advance is higher than the error 

corresponding to a 5-second prediction horizon for both models. Another observation 

from Figure 24 is that in both models the error increases for more complex trajectories. 

For instance, using the PR model, the 95-percentile prediction errors for a 10-second 

prediction horizon for trajectories 1 and 3 are 22.5m, and 41.2m, respectively, while the 

same values using the HMM is 14.1m, and 18.6m, respectively.  Since trajectories are 

considered random walks, it is difficult for both models to predict accurately in the 

presence of more sharp turns or sudden changes in direction. Also, as expected, the error 

lines for all three trajectories using HMM fall below the error lines using the PR model 

which means that the HMM produces more accurate predictions than PR. 
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Table 3. Side-by-side comparison of 95-percentile error (m) obtained from PR and HMM 

Seconds in 

Advance 
Trajectory 1 Trajectory 2 Trajectory 3 

  PR HMM PR HMM PR HMM 

1 1.20 0.54 2.16 0.77 3.07 0.72 

2 2.63 1.42 4.54 1.79 6.43 2.03 

3 4.42 2.55 7.18 3.31 10.17 3.74 

4 6.47 3.54 10.29 4.93 14.57 5.73 

5 8.75 5.11 13.55 6.74 19.20 7.82 

6 11.11 7.19 16.61 8.65 23.53 9.95 

7 13.66 8.80 19.68 10.58 27.88 12.08 

8 16.39 10.76 22.92 12.69 32.46 14.32 

9 19.38 12.47 26.09 15.01 36.96 16.59 

10 22.56 14.15 29.10 17.39 41.22 18.63 

 

 

Figure 24. 95-percentile prediction errors using PR and HMM 
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With the average human walking speed of 1.38 m/s, a 5-second advance 

prediction results in a collision event prediction at ~7 meters away from hazard. For the 

case of 5-second advance prediction in Figure 25, HMM results in significantly lower 

errors compared to PR. In particular, HMM reduces the error by ~42% for trajectory 1, 

~50% for trajectory 2, and ~59% for trajectory 3. 

 

 

Figure 25. Comparison of 5th second prediction error between PR and HMM 
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parameter for data representation, median can be another good representation of errors in 

this particular case. It can be seen that in all cases, the error values obtained from HMM 

prediction is less than those obtained from the PR model. As an example, for trajectory 

10, the 95-percentile error obtained from PR and HMM models are 11.1m, and 2.9m, and 

the median errors are 2.9m, and 0.6m, respectively.  

 

 

Figure 26. 95-percentile and median errors for 50 randomly selected trajectories 
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training dataset is randomly selected, and a new trajectory (trajectory 5) is collected from 

the field with similar movement patterns as in trajectory 4. HMM is then applied to both 

trajectories and prediction errors are calculated. Figure 27 shows 95-percentile errors of 

all five trajectories (including the three trajectories in Figure 24. 

 

  

 

Figure 27. 95-percentile error of HMM for 5 different trajectories 

Trajectory 4 (ApEn = 0.11) Trajectory 5 (ApEn = 0.12)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

9
5

 P
er

ce
n

ti
le

 E
rr

o
r 

(m
)

Seconds in Future

Trajectory 1 Trajectory 2 Trajectory 3

Trajectory 4 Trajectory 5



 

58 

It is observed that HMM performs best for trajectory 4, followed by trajectory 5, 

and the previously shown three trajectories. It is important to note that despite exhibiting 

similar ApEn values (0.11 for trajectory 4, 0.12 for trajectory 5, and 0.12 for trajectory 

1), which is a measure of complexity and unpredictability, trajectories 4 and 5 outperform 

trajectory 1 in terms of prediction accuracy. For instance, at 6-second prediction horizon, 

the 95-percentile errors for trajectories 4 and 5 are 3.3m, and 4.5m, respectively, while 

the 95-percentile errors for trajectory 1 is 7.2m. This can be explained by recalling that 

unlike PR, HMM is a learning method capable of predicting more accurately when input 

data has similar characteristics to training data. This offers unique opportunity to adopt 

HMM as a self-learning prediction model that automatically updates itself over time with 

new data streams. 

 

Summary and Conclusions  

Machine learning tools, specifically Markov chain (MC) and hidden Markov 

model (HMM) have been previously used in context-aware applications. In this 

research,a trajectory prediction technique based on HMM was developed to predict the 

future location of construction workers on the jobsite. In order to train the HMM, 71 

trajectories were collected. Each collected trajectorywas divided into short (12-second 

long) normalized trajectory sections and K-mean clustering was used to group all such 

sections into 8 clusters (a.k.a. latent segments). Statistical parameters such as mean, 

variance, and covariance were then extracted from these clusters. Next, bivariate normal 

pdf was used to calculate the likelihood of each section to be generated from a specific 

latent segment, and all calculated probabilities were stored in a likelihood matrix. Since 
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the sequence of sections over a latent segment is known from the training data, HMM 

was trained using all of the 71 trajectories to calculate the transition probabilities between 

states. During the prediction stage, observed sections were used to find the highest 

likelihood and transition probability, resulting in the most probable future latent segment. 

A trajectory section prediction is then made using the likelihood matrix and all previously 

stored trajectory sections. In the evaluation phase, comparative error analysis was 

conducted to compare the accuracy level of PR and HMM, and it was observed that 

HMM yielded more accurate predictions. It was also found that HMM could be used as 

an adaptive model as errors were least when the test trajectory was more similar to 

training trajectories. Therefore, HMM was ultimately selected for further improvement 

by incorporating risk attitude in trajectory prediction, as described in next Chapter.   
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INCORPORATING RISK ATTITUDE INTO TRAJECTORY PREDICTION 

 

An Individual’s Perception toward Risk 

In recent years, several researchers have conducted several studies aimed at 

improving the safety environment of construction workers. Previous studies also focused 

on real-time location-aware techniques to reduce contact collisions between workers and 

equipment. However, despite some sparse work in other fields, one area that has not yet 

been fully explored within the construction domain is how a worker’s attitude toward risk 

can influence his or her safety as well as the overall safety environment on the jobsite. 

Salminen (2004) conducted a survey study that showed that young workers under the age 

of 25 experienced a higher injury rate than older workers. Another study with 306 

participants in three different age groups – adolescents (13-16), youth (16-22), and adults 

(24 and older) measured risk preferences and results demonstrated that risky decision-

making decreases with age (Gardner and Steinberg 2005). A gender-based study showed 

that women are generally less likely to make risky decisions than men (Charness and 

Gneezy 2012). According to a USDOT (2004) report, U.S. male drivers are three times 

more likely to be involved in fatal car accidents than female drivers. Also, it has been 

reported that female drivers use seat belts substantially more often than men (Waldron et 

al. 2005). The same study showed that in the U.K., men pedestrians are 80% more likely 

to be involved in accidents than female pedestrians, and men die much often from 

accidental poisoning or drowning than women (Waldron et al. 2005).  
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Incorporating Risk-Taking Behavior into Trajectory Prediction 

This research makes an effort to incorporate the risk attitude of workers with 

previously discussed HMM prediction model. An individual’s attitude toward risk 

(represented by one’s risk profile) has an important influence on his or her movement 

trajectory in the vicinity of site hazards. Therefore, it is imperative that a trajectory 

predicted solely based on mathematical principles must be adjusted to also reflect the 

extent to which a worker is inclined to take or avoid risks. In this research, the basic 

principle applied to incorporating risk behavior in trajectory prediction is that if a worker 

is risk-taker, his or her predicted future position is moved closer to the hazard zone since 

the worker is more likely to be on a collision course. In order to make the analysis more 

conservative, no calibration is made for a risk averse worker. In other words, the 

prediction position is not moved away from the hazard. Two types of risk factors are 

considered, namely the angular risk factor (α), and the linear risk factor (m). A worker’s 

risk factor (r) is then calculated by multiplying angular and linear risk factors. In order 

for this approach to yield accurate results, it is important to properly quantify the risk 

attitude (a.k.a. the aggregate risk factor or µ in this paper) of each worker. To this end, a 

self-learning formulation is used to continuously calculate, store, and update the 

aggregate risk factor based on the history of a worker’s movements in the vicinity of 

hazards.  

The angular risk factor (α) is calculated based on the worker’s actual trajectory. In 

Figure 28(a), point 3 is on the borderline of the safe distance (R2) from a hazard center, 

H, thus initiating the trajectory prediction process. Point 4 represents the next location. It 

can be seen from this Figure that point 4 is moving with an angle of θ away from H. This 
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angle is calculated by Equation (26) in which a, b, and c are distances as marked in 

Figure 28(a) and can be calculated using the Haversine formula. Given θ, the angular risk 

factor (α) is then calculated using Equation (27). 

𝜃 =  cos−1 𝑎2+ 𝑏2−𝑐2

2𝑎𝑏
                                                                                            Eq. (26) 

𝛼 = 1 −
𝜃

180
                                                                                                           Eq. (27) 

 

(a)                                                           (b) 

Figure 28. (a) Angular risk factor based on actual locations, (b) Variation of the angular 

risk factor in different directions 

 

From Equation (26) and Equation (27), it can be seen that within a certain vicinity 

of the hazard, if a worker is moving directly towards the hazard center, α is 1 or 100%, 

which means he or she is a full risk taker. In contrast, if a worker is moving in the 

opposite direction from the hazard center, α is 0, which implies that in that specific 

instance of time, he or she is a full risk averse. In cases where the direction of workers’ 

movement is at any angle with the hazard center, α is between 0 and 1. Figure 28(b) 

demonstrates the relationship of α and the worker’s movement direction. For a better 
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understanding of polar risk factor, a hypothetical trajectory is plotted in Figure 29 with a 

static hazard zone. The value of α at each position is superimposed in form of a circle on 

the corresponding coordinate at that point. The size of the circle represents the 

significance of α (how large or small its value is) in that particular position. As shown in 

this Figure, when the worker approaches the hazard directly, the circle grows, implying 

that the value of α approaches 1 (maximum possible). In this scenario, it can be inferred 

that the worker is exhibiting a risk-taking behavior. On the other hand, as the worker is 

passing by the hazard, the circle shrinks indicating that α approaches 0 (minimum 

possible). In this case, the worker demonstrates a risk-averse attitude.     

 

 

Figure 29. Variation of polar risk factor (α) in the vicinity of hazard zone 
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The linear risk factor (m), on the other hand, is based on the predicted and actual 

positions. It represents the radial error of the predicted position relative to the actual 

position, considering the hazard zone at the center of the circle. In Figure 30, the 

predicted future position, calculated by the trajectory prediction model is shown as point 

4ʹ. The linear distance (d) between the actual position (point 4) and the hazard center H, 

as well as the linear distance (d1) between the predicted position (point 4ʹ) and the hazard 

center H are calculated using the Haversine formula. The linear risk factor (m) represents 

the difference between d and d1 as calculated by Equation (28). Knowing m, a risk factor, 

k can be calculated by Equation (29). 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑅𝑖𝑠𝑘 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑚) =  𝑑1 − d                                                                                                           Eq. (28) 

𝑅𝑖𝑠𝑘 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑘) =  𝛼𝑚                                                                                           Eq. (29) 

 

 

Figure 30. Linear risk factor and adjustment of prediction 
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At the initiation of the prediction process, a value of 0 (zero) is considered as the 

first estimate of the aggregate risk factor (µ). As a convention, all workers are initially 

assumed to be neutral (neither risk taker nor risk averse), and this will be gradually 

modified throughout time as more positional data is collected from each individual 

worker. For next iteration, point 4ʹ is shifted k linear distance units closer to H. The 

adjusted predicted location is labeled as point 4ʹʹ. Next, given k and d1, the modified 

linear distance d2 (between points H and 4ʹʹ) is calculated. This newly calculated distance 

(d2) is then compared with a predefined proximity radius (R1) which is determined based 

on the type of the hazard. Previous research has suggested values ranging from 8m to 

12m depending on the nature and severity of the hazard (Teizer et al. 2015). If d2 ≤ R1, 

the worker is deemed too close to the hazard, and thus a safety alert is generated. It is 

noted that, if in any case, d>d1 the risk factor is assumed to be zero, so no adjustment is 

made (to yield conservative results). In other words, the proposed method adjusts 

prediction towards the hazard, but not away from the hazard. At this point of the iteration 

process, µ is refined using the weighted average of individual risk factors ki calculated in 

previous steps of the iteration process. In essence, in step n of the iteration process, k 

values calculated in the previous n – 1 steps will be used as shown in Equation (30) to 

calculate µ. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑅𝑖𝑠𝑘 𝐹𝑎𝑐𝑡𝑜𝑟 (µ) =
∑ 𝑘𝑖(𝑖)

𝑛−1

𝑖=1

∑ 𝑖𝑛−1
𝑖=1

                                                               Eq. (30)                                                                        

Using this approach, the more recent risk factors receive a higher weight implying 

that an individual’s most recent movements will have a higher influence on how his or 
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her aggregate risk factor is determined. For example, in step 5 of the iteration, µ5 is 

calculated by Equation (31), 

µ5 =
4𝑘4+ 3𝑘3+2𝑘2+1𝑘1

4+3+2+1
                                                                                         Eq. (31) 

As evidenced by this Equation, µ may take on a negative value in which case, a 

decision must be made as to whether to use this negative value and adjust the predicted 

position by moving it away from the hazard. As an alternative (and to yield more 

conservative output), one can consider m to be zero, when k is negative, resulting the 

value of µ to be always higher than zero. Table 5 shows two separate set of calculation, 

one considering both positive and negative values for m (referred to as the non-

conservative design), and one with only positive values for m (referred to as the 

conservative design). Since the developed trajectory prediction method is aimed to 

improve workers’ safety, adjusting the prediction by moving it away from the hazard 

zone may sometimes result in an impending collision to be overlooked, which is not 

desirable. Table 4 shows that for conservative design, when the value of m is negative, k 

is considered as zero, eventually not affecting µ for those certain time stamps. As an 

example, for time stamps 53, 54, and 55, µ remains the same as it was for time stamp 52 

since in those three time stamps, m is negative. On the other hand, for non-conservative 

design, negative value of m is also considered and the value of µ can fall below zero (e.g. 

time stamps 54 through 60). Figure 31 illustrates the variations of µ from time stamp 51 

to 60. As shown in this Figure, µ is always higher than 0 for the conservative design, and 

can be less than 0 for non-conservative design. 

 



 

67 

 Predicting Impending Collision Events Using HMM 

To evaluate the effectiveness of the developed HMM trajectory prediction 

technique in site safety applications, several experiments are conducted with both static 

(stationary) and dynamic (moving) site hazards. Static hazard zones are defined as 

hazards which remain in a fixed location. Examples include but are not limited to 

excavated trenches or wells, tower cranes, toxic material and chemical storage sites, and    

 

Table 4. Calculation of µ by conservative and non-conservative designs 

Time 

Stamp 

(s) 

Conservative Design 

 

 Non-Conservative Design 

 

α1 m2 k3 µ4  α m k µ 

51 0.83 14.49 12.03 5.69  0.83 14.49 12.03 2.24 

52 0.76 3.26 2.48 5.44  0.76 3.26 2.48 2.25 

53 0.75 -17.78 0.00 5.44  0.75 -17.78 -13.36 1.52 

54 0.69 -81.95 0.00 5.44  0.69 -81.95 -56.91 -1.14 

55 0.63 -33.73 0.00 5.44  0.63 -33.73 -21.39 -2.04 

56 0.58 35.49 20.76 6.61  0.58 35.49 20.76 -1.05 

57 0.51 1.33 0.68 6.18  0.51 1.33 0.68 -0.98 

58 0.51 -6.20 0.00 6.18  0.51 -6.20 -3.19 -1.07 

59 0.49 -7.27 0.00 6.18  0.49 -7.27 -3.59 -1.17 

60 0.49 -2.67 0.00 6.18  0.49 -2.67 -1.31 -1.18 

                                                 
1 Angular risk factor 
2 Linear risk factor 
3 Risk factor 
4 Aggregated risk factor 
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Figure 31. Value of µ in conservative and non-conservative designs 

 

high voltage powerlines. Dynamic hazard zones, on the other hand, change position with 

time. Examples include but are not limited to heavy equipment such as excavators, 

crawler cranes, forklifts, and loaders. In the experiments conducted in this research it is 

assumed that the rough locations of all significant hazard areas are known ahead of time 

(for static site hazards), or can be determined in runtime (for dynamic site hazards). This 

is a realistic assumption considering the findings of previous work that among others, 

explored the feasibility of automatically identifying hazard zones on the site using inertial 

measurement units (IMUs) mounted on workers’ bodies to monitor the bodily response 

data in the vicinity of the hazardous areas (Kim et al. 2016). The statistical analysis 

demonstrated that the bodily response of a worker is highly correlated with the hazard 

zone. In particular, near a hazard are, data from the IMU exhibited a more irregular 

distribution than in close vicinity of nonhazardous areas.  
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In the experiments conducted as part of this study, an event is triggered when the 

worker is inside the buffer radius (R2), and every time the worker’s distance to a hazard is 

less than the hazard radius (R1) a collision event is logged. The values for R1 and R2 are 

initially selected by educated guess, and can be modified depending on the situation and 

type of hazard, equipment blind spots (Hefner and Breen 2004), or severity of a potential 

collision. For instance, Teizer et al. (2015) suggested 12m (maximum) and 8m 

(minimum) blind spots to be used for an excavator in safety applications. For experiments 

involving static hazards, worker’s GPS position is obtained from his or her mobile phone 

and recorded over 15 minutes at a frequency of 1 Hz. The layout of the experiment is 

illustrated in Figure 30(a) where the hazard zone is marked as point H. For these 

experiments, R1 and R2 are selected to be 30.5m (100ft) and 45.7m (150ft), respectively. 

For experiments involving dynamic hazards, worker’s GPS position is obtained from his 

or her mobile phone and recorded over 30 minutes at a frequency of 1 Hz. For these 

experiments, R1 and R2 are selected to be 10m (32.8ft) and 20m (65.6ft), respectively.  

Initially, a prediction is made using the trained HMM to predict future positions 

of the worker 1 to 10 seconds in advance. Next, risk attitude is factored in to adjust the 

predicted position. A precision-recall analysis is then conducted to determine the 

reliability of the prediction model. Any data point inside the buffer zone is considered as 

an event, and four indicators namely true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) are used to calculate three performance measures: 

precision, recall, and accuracy. A TP event is when the prediction correctly identifies that 

a worker is inside the hazard zone, a TN event is when the prediction correctly identifies 

that the worker is outside the hazard zone, a FP event is when the prediction falsely 
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identifies that a worker is inside the hazard zone, and a FN event is when the prediction 

falsely identifies that a worker is outside the hazard zone. Recall is the measure of the TP 

detection over all collision events, precision represents the accurateness of the TP events 

over all positive events, and finally, accuracy is the measure of overall event detection 

(inside the hazard and buffer events) for all events. Table 5 summarizes the performance 

measures and metrics used in the experiments.  Figure 32(a) shows the log of positional 

data collected from the worker in the vicinity of a static hazard. Figure 32(b), 32(c), and 

32(d) show that recall, precision, and accuracy decrease with an increase in the prediction 

horizon. This can be due to the resulting increase in the uncertainty of trajectory 

prediction. Figure 32(b) shows that recall increases when risk calibration is factored in 

the prediction. By incorporating the risk factor, the predicted position is further moved 

toward or away from the hazard. 

Due to this adjustment, more FP events are generated which can cause a slight 

decrease in precision as well as accuracy. For instance, for a risk-calibrated 5-second 

advance prediction, recall increases by 2.5% (from ~92.5% to ~95%) while accuracy 

decreases by 2% (from ~87% to ~89%).  
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Table 5: Performance measures and metrics used to evaluate the trajectory prediction 

model 

Measure 

Worker Is Inside the … 

Ground Truth HMM Prediction 

True Positive (TP) Hazard zone Hazard zone 

False Negative (FN) Hazard zone Buffer zone 

False Positive (FP) Buffer zone Hazard zone 

True Negative (TN) Buffer zone Buffer zone 

Performance Metric: 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷 + 𝑻𝑵
 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑵 + 𝑭𝑷 + 𝑻𝑵
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(a) Trajectory and Static hazard 

 

(b) Recall vs. prediction horizon  

 

(c) Precision vs. prediction horizon 

 

(d) Accuracy vs. prediction horizon 

Figure 32. Recall, precision, and accuracy analyses for static hazard experiment 

 

Figure 33(a) shows the log of positional data collected from the worker in the 

vicinity of a dynamic hazard. In this experiment, the dynamic hazard is a piece of heavy 

equipment moving between two points, while the worker is moving in the peripheral area 

occasionally crossing the equipment path. In this experiment, a total of 369 events are 

detected, with 77 potential collisions (worker inside the hazard zone). Figure 33(b), 33(c), 
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and 33(d) show that while precession, recall, and accuracy drop for farther prediction 

horizons, incorporating risk attitude results in a higher recall. For instance, for a risk-

calibrated 5-second advance prediction, recall increases by 6% (from ~88% to ~94%) 

while precision falls only by 1% (from ~89% to ~88%). 

 

 

(a) Trajectory and dynamic hazard 

 

(b) Recall of vs. prediction horizon 

 

(c) Precision vs. prediction horizon 

 

(d) Accuracy vs. prediction horizon 

Figure 33. Recall, precision, and accuracy analyses for dynamic hazard experiment 
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Calculation of the three measures (recall, precision and accuracy) was done by 

non-conservative design for both the experiment explained above. Further, for the static 

hazard experiment, same three measures were calculated based on only prediction and 

with risk factor; both conservative and unconservative to compare the results. Recall, 

precision and accuracy for five second prediction horizon is plotted in Figure 34. Figure 

shows that incorporating risk factor (both conservative and unconservative) with the 

HMM prediction increases the recall, but decreases precision and accuracy. It is 

important to mention that, in the safety realm recall is more significant measure than 

precision and accuracy as recall is the measure which represents the capability of the 

designed model to identify how many times worker is actually inside the hazard zone and 

model correctly detected it. Figure also shows that, conservative design increases the 

recall, but decreases precision and accuracy.  

 

 

Figure 34. Recall, precision and accuracy comparison based on HMM and risk factor (µ) 
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Summary and Conclusion 

Though extensive research has been done to improve the safety environment in 

construction, but one area that has not been fully researched is the effect of individuals’ 

risk attitude in worker’s safety. Researches demonstrates an existing correlation between 

individuals’ risk attitude and his/her age, gender, experience.  In this research risk, 

attitude of the worker in the vicinity of site hazards was incorporated to the HMM 

prediction model. A mathematical model was presented to calculate the risk factor of the 

worker and the HMM predictions were further adjusted based on the risk factors. Two 

field experiment were conducted, one with a static hazard zone, and another one with 

dynamic hazard zone. A precision, recall and accuracy analysis of both the experiments 

demonstrated that the recall value significantly increases after combining risk factor with 

HMM. 
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PREEMTIVE CONSTUCTION SITE SAFETY (PCS2) APPLICATION 

 

Smartphones as Disruptive Technologies 

In recent years, the development and wide adoption of smartphones has entirely 

changed the definition of mobile phone usage. Smartphones are not only used as a 

communication device, but also have become an integral part of the daily life. The 

number of mobile phone users has been steadily growing with almost 2 billion 

smartphone users in the market by late 2015 (Kissonergis 2015). In addition to its 

ordinary features and functionalities, almost all smartphones come with a rich set of 

embedded sensors such as the GPS, accelerometer, gyroscope, microphone, camera, and 

digital compass. Collectively, these sensors have inspired researchers to explore 

emerging applications of mobile phone sensing in multiple disciplines including 

healthcare (Consolvo et al. 2008), social networks (Miluzzo et al. 2008), safety and 

environmental monitoring (Mun et al. 2009), and transportation (Taigarajan et al. 

2009)Smartphones are ideal mobile devices that support disrupting sensing applications 

such as sharing real-time location on social networks, tracking personal carbon footprint, 

or monitoring personal health (Lane et al. 2010). These mobile devices are programmable 

and come with internal storage and versatile computing resources which allow third party 

application developers to implement and incorporate a wide range of programs. In 

addition to standard features, phone manufacturers also provide online application stores 

(a.k.a. app stores) which allow users to access an extensive collection of application as 

well as reach out to other users with their own applications.  Lastly, the computing cloud 

of smartphones permits programmers to store the content of their mobile services on 
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back-end severs, which facilitates large scale sensor data storage, transfer, and 

computation as well as supports analysis of big sensor data. These advances are all great 

assets for innovative research that can revolutionize a large number of existing practices, 

ultimately significantly impacting everyday lives.  Location-based services (LBS) are 

defined as network-based services that use real-time geo-location data from a mobile 

device or smartphone in order to deliver context-specific information to a user (Xu and 

Gupta 2009). The most used LBS are the navigation services where users can plan their 

routes ahead of time and follow that in real-time while driving, cycling, or walking. Some 

other examples are automatically searching bus or train timetable as the user walks 

toward a stop or a station, and tracking user’s carbon footprint as a result of using car or 

other means of transportation.  

 

The Android Developer Platform 

Android is a Linux-based operating system which uses the software stack 

architecture design pattern. As shown in Figure 35, the pattern consists of four major 

parts, Linux Kernel, Android Runtime and Libraries, Application framework and 

Applications (Zhao and Tian 2012). The Linux kernel is the foundation of Android 

platform and is created on top of Linux Kernel 2.6. For threading and low level memory 

management, the Android Runtime (ART) relies on Linux Kernel. Other Linux Kernel 

dependent features are Process Management, Driver Model, File System Management, 

Network Management, and User Account (Security). Android Runtime consists of Dalvik 

Virtual Machine (DVM). DVM is a kind of Java virtual machine specifically designed 

and optimized for Android systems. Starting from Android version 5.0 (API Level 21), 
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each application runs on its own instance of Android Runtime (ART). If an application 

runs well on ART, then it will work on Dalvik, but not necessarily the other way around. 

Android system native libraries connect Linux Kernel and Application Framework, and 

are developed by C/C++ language. Some of these libraries provide Java framework APIs 

to expose the functionality to applications through the Android platform. Key Android 

libraries include android.app, android.content, android.database, android.os, 

android.opengl, and android.text. The Android application framework layer provides 

many higher-level services to application layer through Java classes. The developers are 

allowed to access the entire API framework and make use of these services in their 

applications. This layer implements the concept that applications are constructed from 

reusable, interchangeable, and replaceable components. Applications layer is located at 

the top of the Android software stack, and consists of both native and third party apps. An 

average user would mostly interact in this layer through basic functions such as dialer, 

browser, and contact manager. 

 

 

Figure 35. Android platform architecture 
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Preemptive Construction Site Safety (PCS2) Mobile Application 

  In this research, an Android implementation of the risk-incorporated HMM 

prediction model is developed to assess the practicality of the designed methodology. This 

mobile application, Preemptive Construction Site Safety (PCS2), relies on the built-in GPS 

sensor of a smartphone to locate a worker in the open space. A sensor fusion approach is 

adopted for triangulation using satellite, Wi-Fi, and cellular networks to obtain more 

accurate positional data. The process flowchart of PCS2 is illustrated in Figure 36. Once 

launched (node “Start”), PCS2 accesses the GPS of the smartphone and continuously 

collects user’s position. If the user does not move by a minimum distance between two 

consecutive coordinates, the program considers the user stationary (i.e. not moving) and a 

null answer is generated in response to the “Walking?” decision node. On the other hand, 

if the user moves with a certain velocity, PCS2 stores his or her movements (GPS 

coordinates) in a SQLite database. If the user’s current position is inside a buffer zone (i.e. 

trigger event), then PCS2’s background service initiates the HMM algorithm. If the 

predicted coordinate is inside the hazard zone, the application generates and displays an 

alert message.  

As shown in Figure 37, in addition to the background mathematical 

implementation, PCS2 has a user friendly graphical user interface (GUI). The GUI contains 

Layout XML files which are rendered as a set of View class objects. The “initial layout” of 

the GUI allows the user to manually enter input parameters such as the number of hazard 

zones and input their global coordinates, hazard and buffer radii, and the prediction 

horizon. 
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Figure 36. High-level flowchart of the PCS2 mobile application  

 

  The “operation layout” uses Google Map in the background for real time 

visualization. In this layout, hazard and buffer zones are superimposed on Google Map 

and shown as color-coded circles. The designed GUI also plots actual, predicted, and 

adjusted (i.e. risk-incorporated) positions. Once a collision event occurs (adjusted 

position falls inside the hazard zone), the application generates an alert dialogue box with 

ringtone and vibration in the “alert layout”. Finally, to support post-analysis of data, all 

collected data and calculated variables can be exported to the internal phone memory in 

.csv format using the “export layout”. 
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Initial layout Operation layout Alert layout Export layout 

Figure 37. Screenshots of the PCS2 mobile application layouts 

 

  The PCS2 application consists of four major Android activities. The Main Activity 

initiates the application and contains the code which calls different methods from other 

activities. The Map Activity contains the bulk of the PCS2 code. Initially, it allows users 

to input prediction lag, latitude, longitude, buffer radius, and hazard radius values. 

Clicking the “Save” button saves these initial values to the application. When user clicks 

on the “Start” button, it implements a Location Manager service which allows the user 

to use both ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION. 

ACCESS_COARSE_LOCATION provides the location of the user from the cellular 

network, and ACCESS_FINE_LOCATION provides the location based on 

GPS_Provider. Combining both methods generates a more accurate detection of users’ 

geo-location. Figure 38 shows how permission to access both location managers are 

implemented inside the application code. 
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Figure 38. Accessing network and GPS provider of smartphone 

 

  After collecting 12 coordinates points, the Map Activity implements three 

methods to normalize the trajectory section. First, tranSegemnt translates the 12-second 

trajectory to an origin of (0, 0), and allignSegment alings the section’s initial velocity 

with the X direction. Finally, to complete the normalization process, scaleSegment scales 

the trajectory so that the initial velocity is (1, 0). If the current location is inside the buffer 

zone, this activity then initiates the HMM by first implementing getLikelihoodSection 

which obtains the likelihood value from the likelihood matrix, meaning it finds out to 

which latent segment does the current trajectory belong. Next, getTransitionSegment 

picks the predicted latent segment with the highest probability from the likelihood matrix. 

Then, it implements getLikelihoodSection again to identify the most likely trajectory 

section to be generated from the selected latent segment. Ultimately,  denormalization is 
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implemented which basically reverses the normalization process to calculates the 10-

second real-size predicted trajectory segment. Based on the initial user input for 

prediction lag, the Map Activity stores the latitude and longitude (e.g. if the user inputs 4 

seconds in the prediction lag box, Map Activity only stores the 4th second predicted 

latitude and longitude). After the initial prediction, this activity implements a riskFactor 

method which uses the techniques explained in previous Chapter to calculate the risk 

factor based on the hazard position, and return the adjusted prediction. If the adjusted 

prediction is inside the hazard zone, it generates an alert by implementing 

alertDialogueBuilder, which also contains a VIBRATOR_PROVIDER to generate a 

physical device vibration. Beside the background mathematical calculations, the Map 

Activity implements addMarker and addPolylines to display the current location, 

predicted location, and adjusted location using colored markers and polylines.  Figure 39 

shows the implementation of the addPolylines method. 

 

 

Figure 39. Adding polyline to coordinates 

 

  The Export Activity initiates the Export Layout shown in Figure 37. The SQLite 

database is used to store the trained HMM matrices (transition matrix, likelihood matrix), 

and real-time, predicted, and adjusted user’s positions. All variables such as the angular 
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risk factor (α), and linear risk factor (m), aggregated risk factor (µ) are also stored in the 

database to assist data analysis. The Export Activity implements a CSVwriter class to 

write and store the data in a .csv file. Figure 40 shows a section of code thatwrites the 

.csv file in PCS2. 

 

 
Figure 40. Exporting data in .csv files 

 

Field Experiment of PCS2 

A field experiment is conducted at Missouri State University (MSU) campus to 

evaluate the effectiveness of the PCS2 application. Real-time coordinates of the user are 

collected and analyzed by the application and a prediction based on HMM is made. 

Further, the prediction is adjusted using the risk factor and if there is an impending 

collision, PCS2 provides a safety alert. As shown in Figure 41, the initial inputs are the 

coordinates of the hazard, prediction horizon, and hazard and buffer radii. A forklift is 

used as a hazard and is parked in the area surrounded by the Kemper Hall and Bear Park 
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North on MSU campus. Prediction horizon (lag) is set at 5 seconds, and hazard and 

buffer radii are set to be 10m and 20m, respectively. Figure 42 shows the experiment 

setup with the user, hazard, and hazard zone. The user carries the mobile device on which 

the PCS2 application is launched. Figure 43 illustrates user’s trajectory captured during 

the field experiment.  

 

 

Figure 41. Initial inputs of PCS2 for the field experiment 
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Figure 42. Experiment setup with the forklift as a site hazard 

 

 

Figure 43. Collected user trajectory in the vicinity of the forklift 
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During the experiment, if there is any impending collision event detected by 

PCS2, the application gives an alert with vibration in advance so that the user has enough 

time to assess the surroundings and adjust his or her walking trajectory accordingly. 

Figure 44 illustrates a sample impending collision during the field experiment, where the 

user got too close to the hazard and the PCS2 application correctly predicted an imminent 

collision event, and provided a timely alert to the user.  

 

 

Figure 44. User approaching a hazard zone during the field experiment 

 

In total, 15 such alerts are generated by PCS2 during the field experiment. For 

each alert, the exact position is marked on the ground where the alerts are given. After the 

experiment, 15 distances each corresponding to an alert are measured. Considering 

average human walking speed (ranging between 0.5 m/s and 1.5 m/s), a 5-second 

advance prediction in theory should result in an alert within a distance of 12.5m to 17.5m 

from the hazard. If a generated alert is within this range, it is considered “timely”. Alerts 
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generated when the user was closer than 12.5m or farther away than 17.5m are 

considered “too late” or “too early”, respectively. Table 6 summarizes the results 

obtained from the field experiment in terms of the timeliness of the generated safety 

alerts. As seen in this Table, for this particular experiment, 10 out of the total 15 

generated alerts are “timely”, 5 are “too late”, and no “too early” alert was generated.  

 

Table 6. Results of PCS2 field test  

Alert Distance from Site Hazard 

(meter) 

Alert 

Timeliness 

1 10.14 Late 

2 12.9 Timely 

3 12.6 Timely 

4 13.72 Timely 

5 10.21 Late 

6 12.92 Timely 

7 13.1 Timely 

8 13.32 Timely 

9 8.54 Late 

10 12.98 Timely 

11 11.3 Late 

12 9.15 Late 

13 13.84 Timely 

14 14.47 Timely 

15 12.69 Timely 
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Summary and Conclusion 

The advancement of information technology has initiated an emergence of new 

mobile devices equipped with a rich set of embedded sensors capable of high level 

computing, and opened new doors for researcher in multiple domains. In the same 

context, several operating systems (e.g. Android, iOS) for mobile devices have been 

developed and introduced. These operating systems take advantage of high computational 

power and online application stores allowing developers to access a large user population 

worldwide. In this research, smartphone’s GPS location services and Android operating 

system were used to design and develop a native Android-based mobile application called 

“Preemptive Construction Site Safety” or PCS2 capable of real-time location tracking 

and predicting the future location of a user. The real advantage of PCS2 is that it 

incorporates risk attitude calculations described in previous Chapters for trajectory 

prediction in the vicinity of site hazards. In this Chapter, first the software architecture of 

PCS2 application was discussed at length. Next, a field experiment was carried out in 

which a static hazard (forklift) with buffer and hazard radii of 20m and 10m was used, 

and risk-incorporated trajectory predictions were made with a prediction horizon of 5 

seconds. Result of the experiment showed that PCS2 could detect 10 impending collision 

events out of a total of 15. Given the promising preliminary results, there are several 

aspects of this prototype (e.g. software design, user interface, background mathematical 

formulae) that will be further improved as part of the future directions of this research so 

that PCS2 can be widely adopted in large-scale real-time construction site safety 

applications. 
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CONCLUSIONS AND FUTURE WORK 

 

Conclusions 

The construction industry is considered as one of the most hazardous and risk-

prone working environments of all industries due to the presence of frequent and 

dynamic interactions between equipment, machinery and tools, personnel, and materials. 

In the past, researchers have worked to address the issue of jobsite safety from different 

perspectives including finding ways to reduce and ultimately eliminate proximity-related 

accidents in construction projects. To this end, several classes of location tracking 

technologies such as global positioning system (GPS), wireless local area network 

(WLAN), radio frequency identification (RFID), and ultra-wide band (UWB) have been 

used to collect positional data of construction resources and use the collected information 

to improve safety and health of project crews working on the jobsite. More recently, the 

explosion of mobile technologies integrated with a rich set of embedded sensors has 

opened the opportunity to explore their application to addressing long-standing problems 

within the construction domain including site safety. In particular, ubiquitous smartphone 

devices carried by almost everyone on the jobsite can be used to capture real time 

positional data of workers and equipment. A mobile position tracking framework 

equipped with this capability can be a great asset as it will allow the timely delivery of 

context-aware information such as safety alerts to workers, thus preempting potential 

hazardous encounters on the site. In this Thesis,  a mobile location-aware safety 

framework was successfully designed and implemented. In addition to its ability to track 

a user’s position in real time, the real value of the designed methodology is that it (1) uses 
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a novel hidden Markov model (HMM)-based trajectory prediction to estimate with high 

fidelity the future trajectory of a moving user from past positional data, and (2) allows the 

formulation and integration of a person’s attitude toward risk into the trajectory 

prediction model which creates a customized solution for individual users based on their 

past behavior and movement history in the vicinity of site hazards.  

In this Thesis, following an extensive literature review and identification of 

problem statement, the Chapter, “Trajectory Prediction Models”, explored the efficiency 

and accuracy of polynomial regression (PR) to predict future trajectories of construction 

workers on the jobsite given their past positional data collected by mobile sensors carried 

on their bodies. An instrumental error analysis was performed prior to using the collected 

GPS data from each smartphone. Two trajectories were collected using smartphones and 

the developed PR model was implemented to predict future locations of workers who 

carried the phones. Next, a 95-percentile error analysis was performed and results 

indicated that the linear PR model outperformed polynomial PR models for both 

trajectories. Also, the prediction error increased both with the prediction horizon (seconds 

in advance) and when there was a sharp turn or a sudden directional change in the 

collected trajectory.  

In the next Chapter, “Machine Learning and Trajectory Prediction”, a hidden 

Markov model (HMM)-based prediction model was developed, trained, and tested to 

predict a worker’s future locations given his or her past movement trajectory. In 

particular, 71 trajectories were collected, processed, and used to train the HMM which 

was then applied to find future positions given new trajectories. A comparative error 

analysis was also conducted which indicated that compared to the previously developed 
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PR model, HMM generates more accurate predictions. Another important finding was 

that errors resulted from HMM prediction were smaller when test trajectories were more 

similar to training trajectories. Therefore, HMM was ultimately selected for further 

improvement through incorporating an individual’s risk attitude into the formulation.    

Next Chapter, “Incorporating Risk Attitude into Trajectory Prediction”, described 

a mathematical formulation to enhance the previously developed HMM trajectory 

prediction technique by calculating and integrating the behavioral risk factor of a 

construction worker in the vicinity of site hazards. Two field experiments were 

conducted, one with a stationary hazard, and another one with a moving hazard to 

systematically evaluate the value of  incorporating risk attitude into the prediction model. 

In both experiments, precision, recall, and accuracy analyses were conducted and results 

demonstrated that in general, introducing risk attitude as a parameter in the prediction 

model increased recall, thus increasing the likelihood of detecting impending safety 

accidents prior to them taking place. 

Finally, in Chapter, “Preemptive Construction Site Safety (PCS2) Application”, 

the software architecture of an Android-based mobile application, PCS2, was described 

in detail. PCS2 uses a smartphone GPS location services to track real time positions of a 

worker (who is carrying the device) and accurately predict his or her future location in 

the immediate future using the developed risk-incorporated HMM-based trajectory 

prediction model. To test the efficiency and applicability of the designed mobile 

application, a field experiment was conducted with a forklift as a stationary hazard. 

Results of the experiment showed that PCS2 correctly detected 10 impending collision 

events out of a total of 15, and generated and displayed timely warnings to the user. 
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The following summarizes the main milestones of this research that have been 

successfully achieved: 

• A polynomial regression (PR)-based trajectory prediction model was developed 

and implemented to predict future locations of construction workers. 

 

• A hidden Markov model (HMM) was developed, trained, and applied for future 

location prediction of construction workers. 

 

• Risk attitude of individual workers was formulated and integrated with the HMM 

prediction model, and several field experiments were performed which yielded 

satisfactory results in terms of precision, recall, and accuracy of the risk-

incorporated prediction model. 

 

• An Android operating system-based mobile application, PCS2 was designed and 

tested in the field to evaluate the practical values of the developed methodology in 

real world scenarios.   

 

Future Work  

The findings of this research are sought to contribute to the body of knowledge by 

enhancing current understanding of how wearable technology and construction data 

analytics can be coupled in an integrated framework in support of more robust 

construction safety practices. Future steps in this research will include enabling risk-

calibrated trajectory prediction in the presence of multiple site hazards and several 

workers, as well as creating the mathematical and technological foundations to allow for 

seamless transition between GPS sensor readings and indoor triangulation to guarantee 

that safety is not compromised as workers move between outdoor and indoor locations on 

a constant basis. To facilitate widespread accreditation and adaption of the designed 

methodology, large sets of trajectory data collected from ubiquitous mobile devices can 

be stored in a database and sorted by attributes such as geometrical shape and 

complexity, type of job, as well as worker’s age, gender, and level of experience. When 
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used to train the prediction model, with time, such database of trajectories can 

significantly enhance the adaptability of the HMM to different types of projects, tasks, 

and workers, thus creating more reliable results. For example, a specific HMM trained 

using data from a large group of carpenters in multiple prefabrication shops can be used 

to predict the trajectory of a new group of carpenters on a jobsite in a different location. 

Preliminary results of PCS2 inspires future work to further improve several aspects of 

this application and the underlying scientific methodology to make it more practical in 

complex construction environments.  
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