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CHAPTER 1

INTRODUCTION

Integration has been an essential part of the theory of calculus since its beginning.

First seriously pursued by both Newton and Leibniz in the late 17th century, the concept has

always been recognized for its importance, both theoretically and in applications. However,

the rigorous background of integration was slow to develop. In the late 18th and early

19th centuries, mathematicians, in particular Cauchy and Riemann, began constructing and

refining the theory of integration. Their work established a firm theoretical background for

the sound, but often somewhat loose ideas proposed by Newton and Leibniz. Riemann’s

well-known theory of integration became the seminal work in the field for half a century,

and is still useful in many practical circumstances. In fact, throughout the second half

of the 19th century, many believed that the theory of integration had been developed as

completely as possible. However, a young French mathematician would soon change that.

At the turn of the 20th century, Henri Lebesgue was completing his doctoral studies

at the University of Nancy. His dissertation, titled Integral, Length, Area, was published in

1902 in the Annali di Matematica. This work was quickly recognized as a great advance

in the field of real analysis [H]. Rather than partitioning the x-axis to find the area under a

curve, Lebesgue proposed partitioning the y-axis, then applying measure theory to compute

the integral. As we will see, Lebesgue’s revolutionary idea greatly expanded the scope of

integrable functions, giving rise to several important results concerning integration.

In this paper, we will examine several of these theorems, providing examples where

appropriate. Many of the results studied are fairly standard, though we have endeavored to

supply our own methods and style in the proofs. Interested readers may refer to Royden

([R]) or Wheeden and Zygmund ([WZ]) for more detail.
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CHAPTER 2

BACKGROUND INFORMATION

In order to better appreciate the rich theory we will be investigating, it is necessary

to be familiar with some definitions and basic properties. These will be presented in this

chapter, with the intention of allowing the remainder of this paper to flow uninterrupted.

In particular, the concepts of measure and the convergence of sequences of functions are

essential. Accordingly, this chapter will be divided into three sections. In Section 1, we

discuss Lebesgue measure. In Section 2, we address measurable functions. In Section 3,

we study convergence of various types.

2.1 Lebesgue Measure

The theory of Lebesgue measure was developed by several mathematicians, most notably

Lebesgue and his doctoral advisor, Émile Borel, at the turn of the 20th century. Since then,

measure has become a key component and an important tool in the study of real analysis.

The work of Borel and Lebesgue essentially expands the familiar notions of length and area

to allow a real number “size” to be assigned to any suitable subset of a Euclidean space.

Here we will primarily consider important results and examples in R.

DEFINITION 2.1.1 We begin by considering closed intervals Ii = {x : ai ≤ x ≤
bi}, i = 1, 2, . . . , n and define l(Ii) = bi − ai. Then for a given set E, let X be a countable

collection of such intervals which covers E and define σ(X ) =
∑

Ii∈X l(Ii). Then the

Lebesgue outer measure of E, denoted by m∗E, is defined as

m∗E = inf σ(X ),

where the infimum is taken over all such covers of E.

This definition can easily be extended to general n-dimensional space by simply
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taking higher-dimensional “intervals” and considering their volume, rather than length, in

covering E.

Some properties of the outer measure are readily apparent, such as the fact that the

measure of an interval is simply its length, as the smallest possible covering is in fact the

interval itself. Another simple property is that if E1 ⊂ E2, then m∗E1 ≤ m∗E2. Also, if

{E1, E2, . . .} is a countable collection of sets, then

m∗(
∞⋃

n=1

En) ≤
∞∑

n=1

m∗En;

that is, countable sub-additivity holds. The following proposition shows another useful

property of outer measure concerning countable sets.

PROPOSITION 2.1.1 If E is countable, then m∗E = 0.

Proof. It suffices to show that m∗E < ε for any given ε > 0. Since E is countable, we can

write E = {a1, a2, . . .}. Consider

∞⋃
n=1

(an − ε

2n+1
, an +

ε

2n+1
).

Since each member of this union is an open interval, we have

∞∑
n=1

l(an − ε

2n+1
, an +

ε

2n+1
) =

∞∑
n=1

ε

2n

= ε

∞∑
n=1

1

2n
= ε.

Now E ⊂ ⋃∞
n=1(an − ε

2n+1 , an + ε
2n+1 ). By definition, m∗E = inf

∑∞
n=1 l(In). Thus we

have that m∗E ≤ ε. Now letting ε → 0, we have m∗E = 0.

The converse to this result is not true in general; that is, there are sets with outer

measure zero which are not countable. As an example, we consider the Cantor ternary set

on the interval [0, 1] of the real line.

EXAMPLE 2.1.1 To construct the Cantor ternary set, we first divide the interval
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[0, 1] into thirds, then remove the interior of the middle third; i.e., the open interval (1
3
, 2

3
).

We then divide the two remaining subintervals into thirds, then remove the interior of each

of these, leaving four closed subintervals. This process is repeated until, after an infinite

number of steps, we are left with the Cantor set, denoted by C; that is, if Ci denotes the

union of the intervals remaining after the ith iteration, then

C =
∞⋂
i=1

Ci.

Now clearly each Ci is closed, since we started with a closed interval and repeatedly re-

moved open subintervals. Then C is the intersection of countably many closed sets, and

thus is itself closed.

To show C is uncountable, we will define a function f : C → [0, 1]. First we

consider the above construction again in terms of its ternary, or base-3, representation. In

base-3, the first step still removes the middle third of the interval, but we now write it

as (0.1, 0.122 . . .). However, we could also express this same interval with an infinitely

repeating numeral; that is, (0.1, 0.122 . . .) is equivalent to (0.0222 . . . , 0.2). When written

in this form, it is clear that the first step in our construction removes all numbers with a 1 as

the first digit. Continuing in this manner, the second step will remove any numbers with a

1 as the second digit, and so on until finally any remaining point in C is composed entirely

of 0’s and 2’s. Now to define f , we will consider the binary representation of an arbitrary

element in [0, 1]. Clearly this numeral will be a string composed of 0’s and 1’s. Now if we

replace each instance of a 1 with a 2, then we will have a similar string composed entirely

of 0’s and 2’s. In this way, for each b ∈ [0, 1], we may produce a ternary numeral, say

a, which contains only 0’s and 2’s. Then if we let f(a) = b, we see that clearly f is a

surjective function. Then |C| ≥ |[0, 1]|, and applying Cantor’s diagonalisation argument

shows that C is uncountable.

However, C has outer measure zero. Since each step in the construction effectively

doubles the number of subintervals contained in the set, Ci contains 2i closed intervals and

contains the endpoints of each of these. Furthermore, each of these intervals has length
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3−i. Observe that m∗Ci ≤ (2i) × (3−i). Then since Ci covers C for every i, as i → ∞,

m∗C → 0. Hence we have m∗C = 0.

Outer measure can be a powerful tool, as it is defined for all sets, but is not without

flaws. In defining a generalized measuring function ϕ, we might hope to satisfy the follow-

ing four properties:

1. ϕ is well-defined for every subset of R,

2. ϕ(E + x) = ϕ(E); that is, ϕ is translation invariant,

3. if E = (a, b), then ϕ(E) = b− a, and

4. if Ei ∪ Ej = ∅ for all i 6= j, then ϕ(
⋃∞

n=1 En) =
∑∞

n=1 ϕ(En).

However, in some situations, Conditions 1 and 4 are incompatible. In order to

develop a measuring function which preserves countable additivity, the requirement that

ϕ be well-defined for all subsets must be sacrificed. In spite of this shortcoming, outer

measure provides the framework for building the Lebesgue measure, which is the key to

Lebesgue’s theory of integration. We consider the following definition.

DEFINITION 2.1.2 A set E is said to be Lebesgue measurable (henceforth, simply

measurable) if given ε > 0, there exists an open set G with E ⊂ G and m∗(G−E) < ε. If

E is measurable, its outer measure is simply called its measure, and is denoted mE.

Carathéodory gives the following theorem, which we will use in proving several re-

sults. As we will see, this is often more useful than the definition for proving measurability.

THEOREM 2.1.1 A set E is measurable if for each set A, we have

m∗A = m∗(A ∩ E) + m∗(A ∩ Ec).

Perhaps the first thing to notice about this theorem is that it provides an algebraic

thrust to the theory of measurable sets. This theorem is very useful for proving some basic

results about measurable sets. It is important to note that m∗A ≤ m∗(A∩E)+m∗(A∩Ec)

is already guaranteed by the sub-additivity of outer measure. Therefore, showing m∗A ≥
m∗(A ∩ E) + m∗(A ∩ Ec) is the key step in using this theorem. Here we will show some
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key properties of measurable sets, beginning with the following lemma.

LEMMA 2.1.1 If m∗E = 0, then E is measurable.

Proof. For any given A, m∗A ≤ m∗(A∩E)+m∗(A∩Ec), since A = (A∩E)∪ (A∩Ec)

and sub-additivity holds for outer measure. Now since m∗E = 0, and (A ∩ E) ⊂ E, we

have m∗(A ∩ E) = 0. Furthermore, since (A ∩ Ec) ⊂ A, we have m∗A ≥ m∗(A ∩ Ec).

Thus m∗A ≥ m∗(A∩E)+m∗(A∩Ec). Hence we have m∗A = m∗(A∩E)+m∗(A∩Ec),

and thus E is measurable.

We will now show that countable additivity holds, as desired. We will first require

the following lemma.

LEMMA 2.1.2 If A is any set and E1, E2, . . . are of disjoint measurable sets, then

m∗(A ∩
n⋃

k=1

Ek) =
n∑

k=1

m∗(A ∩ Ek).

Proof. We will prove this result by induction on n. We begin by letting n = 1. In this case,

the result holds by Carathéodory’s theorem. Now assume that the statement holds true for

n− 1; that is, assume

m∗(A ∩
n−1⋃

k=1

Ek) =
n−1∑

k=1

m∗(A ∩ Ei).

Since En is measurable, for any A′, we have m∗A′ = m∗(A′ ∩ En) + m∗(A′ ∩ Ec
n). Then

if we let A′ = A ∩ (
⋃n

i=1 Ei), we have

m ∗ [A ∩ (
n⋃

i=1

Ei)] = m∗[A ∩ (
n⋃

i=1

Ei) ∩ En] + m∗[A ∩ (
n⋃

i=1

Ei) ∩ Ec
n]

= m∗(A ∩ En) + m∗[A ∩ (
n−1⋃
i=1

Ei)]

= m∗(A ∩ En) +
n−1∑
i=1

m∗(A ∩ Ei)

=
n∑

i=1

m∗(A ∩ Ei).
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Note that if A =
⋃∞

i=1 Ei, then m∗(
⋃n

i=1 Ei) =
∑n

i=1 m∗(Ei); that is, this lemma

establishes finite additivity. To extend this to countable additivity, we present the following

proposition.

PROPOSITION 2.1.2 If {Ei} is a sequence of pairwise disjoint measurable sets,

then

m(
∞⋃
i=1

Ei) =
∞∑
i=1

mEi.

Proof. By the Lemma 2.1.2, we have m∗(
⋃n

i=1 Ei) =
∑n

i=1 m∗Ei. Since
⋃n

i=1 Ei ⊂
⋃∞

i=1 Ei, we have m∗(
⋃n

i=1 Ei) ≤ m∗(
⋃∞

i=1 Ei). Then

n∑
i=1

m∗Ei ≤ m∗(
∞⋃
i=1

Ei).

Now letting n →∞, we have

∞∑
i=1

m∗Ei ≤ m∗(
∞⋃
i=1

Ei).

By the sub-additivity of the outer measure, we have

m∗(
∞⋃
i=1

Ei) ≤
∞∑
i=1

m∗Ei.

Therefore we have
∞∑
i=1

m∗Ei = m∗(
∞⋃
i=1

Ei).

We now consider a final result which gives some very useful properties of mea-

surable sets. Here it is presented without proof; however, interested readers may refer to

Royden for more information.

THEOREM 2.1.2 If {E1, E2, . . .} is a countable collection of measurable sets, then

1. Ec
i is measurable,

2.
⋃∞

k=1 Ek is measurable, and
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3.
⋂∞

k=1 Ek is measurable.

That is, complements of measurable sets are measurable, as are intersections and unions

of countable collections of measurable sets.

Most of the sets we need in analysis are measurable. In particular, all open and

closed sets are measurable. However, using a cardinality argument, we can show that

“measurable sets” are only a tiny minority among all the possible subsets of the real num-

bers. That does not mean that constructing a non-measurable set is easy. As a matter of

fact, such a construction relies on the Axiom of Choice and some clever techniques. We

refer interested readers to Royden for an example of a non-measurable set.

2.2 Measurable Functions

DEFINITION 2.2.1 An extended (that is, possibly infinite) real-valued function f

is said to be Lebesgue measurable if its domain is measurable and it satisfies one of the

following (where α ∈ R):

1. the set {x : f(x) > α} is measurable,

2. the set {x : f(x) ≥ α} is measurable,

3. the set {x : f(x) < α} is measurable, or

4. the set {x : f(x) ≤ α} is measurable.

In fact, these 4 statements are equivalent. Observe that 1 ⇔ 4 and 2 ⇔ 3, since the

sets involved are complementary. We note that if E is the domain of f , then

{x : f(x) > α} = E \ {x : f(x) ≤ α}.

A similar statement shows that 2 ⇔ 3. To show that 1 ⇒ 2, we observe that

∞⋂
n=1

{x : f(x) > α− 1

n
} = {x : f(x) ≥ α}.

Now since the countable intersection of measurable sets is again measurable, we have that
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{x : f(x) ≥ α} is measurable. In order to show that 2 ⇒ 1, we consider

∞⋃
n=1

{x : f(x) > α +
1

n
} = {x : f(x) > α}.

Again, since the union of measurable sets is measurable, we have that {x : f(x) > α} is

measurable.

The following propositions will illustrate some “nice” properties of measurable

functions. First we will show that several properties of continuous functions can be carried

over to measurable functions.

PROPOSITION 2.2.1 If c is a constant and f , g are two measurable real-valued

functions defined on a measurable set E, then the functions:

1. f + c

2. cf

3. f + g

4. f − g

5. fg

are also measurable.

Proof. To prove part 1, assume f is measurable. Then {x : f(x) > α} is a measurable

set. Hence a set {x : f(x) + c > α} = {x : f(x) > α − c} is also measurable. Thus

f(x) + c is a measurable function. Part 2 can be proved similarly. To prove part 3, suppose

f(x) + g(x) > α. Then f(x) > α − g(x). Now since f and g are real-valued, there is a

q ∈ Q with f(x) > q > α− g(x). Then we can write

{x : f(x) + g(x) > α} =
⋃

q∈Q
({x : f(x) > q} ∩ {x : g(x) > α− q}).

The right-hand side is measurable, since it is a countable union of finite intersections of

measurable sets. Thus f +g is measurable. Part 4 can be proved in a similar fashion as part
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3. To prove part 5, we write

{x : f 2(x) > α} = {x : f(x) >
√

α} ∪ {x : f(x) ≤ −√α}.

The set on the right-hand side is measurable, being the union of two measurable sets. Thus

the set {x : f 2(x) > α} is measurable and hence f 2 is a measurable function. That fg is

measurable follows from the equation fg = 1
2
[(f + g)2 − f 2 − g2].

The term “almost everywhere” will have some significance in the sections to follow

Here we present the definition.

DEFINITION 2.2.2 A property is said to hold almost everywhere if its conditions

are satisfied everywhere except on a set of measure zero.

We will now apply this definition in the following proposition.

PROPOSITION 2.2.2 If f is a measurable function and f = g almost everywhere,

then g is also measurable.

Proof. Since f = g a.e., there exists a set F = {x : f(x) 6= g(x)} with mF = 0. Now we

consider the set {x : g(x) > α}. Since g = f a.e., we can write this set as

{x : g(x) > α} = ({x : f(x) > α} ∪ {x ∈ F : g(x) > α}) \ {x ∈ F : g(x) ≤ α}.

Now {x : f(x) > α} is measurable, since f is a measurable function. Furthermore,

{x ∈ F : g(x) > α} and {x ∈ F : g(x) ≤ α} are also measurable, since they are

subsets of F and mF = 0. Thus the right-hand side is a measurable set, and hence g is

measurable.

Measurable functions will be our primary concern in studying the theory of in-

tegration. As with measurable sets, many of the functions we need in analysis are indeed

measurable. However, nonmeasurable functions do exist. For example, any function whose

domain is not measurable is a nonmeasurable function.
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2.3 Convergence

Convergence is one of the most important tools available in the study of real analysis. This

is particularly true in integration theory. Virtually all of the results we will consider rely on

some type of convergence to determine which functions are to be considered “good”. Here

we will examine several types of convergence, each with an important role in building the

theory of calculus; however, in the chapters on integration we will primarily be concerned

with convergence almost everywhere and convergence in measure.

We begin with perhaps the most intuitively simple type of convergence, that of a

sequence converging pointwise.

DEFINITION 2.3.1 A sequence of functions fn is said to converge pointwise to a

function f on a set E if for every given x ∈ E and ε > 0, there exists a natural number N ,

depending on x and ε, such that for all n ≥ N we have |f(x)− fn(x)| < ε.

As an example, consider the following.

EXAMPLE 2.3.1 Consider the sequence of functions fn(x) = xn on [0,1]. It is

clear that as n →∞, fn(x) converges to f(x) given by:

f(x) =





0 : x ∈ [0, 1)

1 : x = 1

So when x ∈ [0, 1), the sequence converges to 0, but at x = 1 the limit of the sequence is 1.

Thus we say that the sequence converges pointwise. We will further examine this sequence

of functions in the context of uniform convergence.

The concept of pointwise convergence can be relaxed somewhat to convergence

almost everywhere (a.e.), allowing many of the following results to be applied to a much

broader class of functions. This type of convergence will also serve as the basis for the

convergence theorems we present in Chapter 4.

DEFINITION 2.3.2 A sequence of functions fn is said to converge almost every-

where to a function f if fn meets the requirements for pointwise convergence to f every-
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where on E except a set of measure zero.

EXAMPLE 2.3.2 We begin by observing that since the rational numbers are count-

able, they may be enumerated. Then we define

fn(x) =





1 : x = q1, q2, . . . , qn

0 : otherwise

where {q1, q2, . . .} is the set of rational numbers in the interval [0, 1], denoted by Q[0,1].

Then fn converges to 0 everywhere except when x ∈ Q[0,1]. Now since Q[0,1] ⊂ Q, and as

we have already seen, the measure of a countable set is zero, we have that fn converges to

0 everywhere except on a set of measure zero; that is, fn converges to 0 almost everywhere.

Pointwise convergence can be further extended to the concept of uniform conver-

gence.

DEFINITION 2.3.3 A sequence of functions is said to converge uniformly on E if

for any given ε > 0, there exists N ∈ N such that for all x ∈ E and for every n ≥ N , we

have |f(x)− fn(x)| < ε, or equivalently, if

lim
n→∞

sup{ |fn(x)− f(x)| : x ∈ E } = 0.

This condition is much more stringent than pointwise convergence, so it is often

the case that a sequence of functions converges in a pointwise sense without converging

uniformly.

Recalling example 2.3.2, we can see that the convergence in this case is not uniform.

In fact, for any given natural number N , we have, for m > N , that |f(qm)− fm(qm)| = 1.

Thus the criterion for uniform convergence cannot be satisfied if ε is chosen to be less than

1 beforehand.

The following result provides a useful connection between convergence almost ev-

erywhere and uniform convergence.

THEOREM 2.3.1 (Egorov’s Theorem) If fn is a sequence of measurable functions
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that converge to a real-valued function f a.e. on a measurable set E, with mE < ∞, then

given η > 0, there is a subset A ⊂ E with mA < η such that fn converges to f uniformly

on E \ A.

The proof of this result will be omitted. Interested readers may refer to Wheeden

[?]. Essentially, this shows that convergence a.e. on a set implies uniform convergence on

a slightly smaller set. Returning to our definition of convergence a.e., we see that this is

intuitively clear, since the set where the sequence does not converge has measure zero.

We now turn our attention to convergence in measure.

DEFINITION 2.3.4 A sequence fn of measurable functions is said to converge to

f in measure if for every given ε > 0, there is an N ∈ N such that for all n ≥ N we have

m{x : |f(x)− fn(x)| ≥ ε} < ε.

Our first result is almost immediate, and highlights the relationship between point-

wise convergence and convergence in measure.

THEOREM 2.3.2 Let f and fn be measurable and finite a.e. on E, with mE < ∞.

If fn converges to f almost everywhere, then fn converges to f in measure on E.

Proof. Given ε > 0. By Egorov’s Theorem, there exists a closed subset F of E and N ∈ N
such that m(E \ F ) < ε and |f(x)− fn(x)| < ε for all x ∈ F, n > N . Then if n > N , we

have that {x ∈ E : |f(x)− fn(x)| > ε} ⊂ E \ F . It then follows that

m{x ∈ E : |f(x)− fn(x)| > ε} ≤ m(E \ F ) < δ,

and thus fn converges to f in measure on E.

The following example shows that the converse of Theorem 2.3.2 is not true.

EXAMPLE 2.3.3 We begin by defining a sequence of intervals {An}, where the

Ai are subintervals of [0, 1] and are constructed by halving the previous terms; that is, we

begin with A1 = [0, 1], then generate A2 and A3 by taking the two halves of [0, 1] so that

14



A2 = [0, 1
2
] and A3 = [1

2
, 1]. Subsequent terms are generated in the same method, so

that the next terms are [0, 1
4
], [1

4
, 1

2
], . . .. Then we let {fn} be the sequence of characteristic

functions of the members of {An}; that is,

fn(x) =





1 : x ∈ An

0 : otherwise

We claim that this sequence of functions converges in measure to 0. Observe that for a

given n, the length of each interval is less than 1
n

and |fn(x) − 0| > 0 only for those x

contained in the given interval. Then given ε > 0, there is a sufficiently large N ∈ N such

that if n ≥ N , then m{x : |fn(x)− 0| > ε} < ε. Thus {fn} converges in measure to 0.

However, if we consider the same sequence of functions under pointwise conver-

gence, we see that the sequence diverges for every x ∈ [0, 1]. Thus convergence in measure

does not imply convergence almost everywhere.

Although convergence in measure does not directly imply pointwise convergence,

we do have the following result which allows us to make a connection between the two

types of convergence.

THEOREM 2.3.3 If fn → f in measure, then {fn} has a subsequence {fnk
} that

converges to f almost everywhere.

Proof. For each given k, there exists Nk such that when n ≥ Nk,

m{x : |f(x)− fn(x)| > 2−k} < 2−k.

Now let Ek = {x : |fNk
(x)− f(x)| > 2−k}. Then mEk < 2−k. Now if x /∈ ⋃∞

i=k Ei, then

x ∈ (
∞⋃

i=k

Ei)
c =

∞⋂

i=k

Ec
i .

Then we have

|fNi
(x)− f(x)| < 2−i,
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for all i ≥ k. Thus fNi
(x) → f(x). Now we define A =

⋂∞
k=1

⋃∞
i=k Ei. Then if x /∈ A,

then fNi
(x) → f(x). For any k,

mA ≤ m(
∞⋃

i=k

Ei) ≤
∞∑

i=k

2−i = 2−k+1.

Therefore mA = 0.

This theorem, while interesting in its own right, is very useful in Chapter 4, in which

we prove several convergence theorems. It will serve as the basis for developing another

interesting property.

The following result is often called the Cauchy criterion for convergence in mea-

sure.

THEOREM 2.3.4 A sequence of functions {fn}, defined and finite almost every-

where on a set E, converges in measure on E if and only if for each ε > 0,

lim
n,k→∞

m{x ∈ E : |fn(x)− fk(x)| > ε} = 0.

Proof. First, suppose that {fn} converges to f in measure. Then for a given ε > 0, there

exists an N ∈ N such that if n > N , then m{x : |f(x)− fn(x)| ≥ ε
2
} < ε

2
. Now consider

|fn(x)− fk(x)|. Applying the triangle inequality, we have

|fn(x)− fk(x)| ≤ |f(x)− fn(x)|+ |f(x)− fk(x)|.

If |fn(x) − fk(x)| ≥ ε, then at least one of |f(x) − fn(x)| and |f(x) − fk(x)| must be

greater than or equal to ε
2
. Hence we have

{x : |fn(x)− fk(x) ≥ ε} ⊂ {x : |f(x)− fn(x)| ≥ ε

2
} ∪ {x : |f(x)− fk(x)| ≥ ε

2
}.
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Then when k, n ≥ N , we have

m{x : |fn(x)− fk(x) ≥ ε} ≤ m{x : |f(x)− fn(x)| ≥ ε

2
}+ m{x : |f(x)− fk(x)| ≥ ε

2
}

≤ ε

2
+

ε

2
= ε.

Then letting n, k →∞, we have the desired result. To prove the converse, suppose that

lim
n,k→∞

m{x ∈ E : |fn(x)− fk(x)| > ε} = 0

for each ε > 0. By Theorem 2.3.3, there exists a subsequence {fnk
} that converges to a

measurable function f almost everywhere. Since {fn} is a Cauchy sequence, for the given

ε > 0, there exists an N ∈ N such that when n, nk ≥ N , we have

m{x : |fn(x)− fnk
(x)| ≥ ε} < ε.

Now since {fnk
} → f , if we fix n and let nk →∞, we obtain

m{x : |fn(x)− f(x)| ≥ ε} < ε,

and thus {fn} converges in measure to f .

We now provide an example of a sequence of functions which is convergent in

measure.

EXAMPLE 2.3.4 We consider the subsets ofR given by En = (0, 1
n
), where n ∈ N

and let fEn be the characteristic function over En. We begin by observing that each fEn

is finite and measurable. Consider the sequence {fEn}n∈N. We claim that this sequence

converges in measure to 0. In fact, if we consider the nth member of the sequence, fEn , it

is clear that fEn(x) > 0 only when x ∈ En. Then for any ε with 0 < ε < 1, we have

m{x : |fEn(x)− 0| ≥ ε} =
1

n
,
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and thus

lim
n→∞

m{x : |fEn(x)− 0| ≥ ε} = 0.

Therefore the given sequence of functions converges in measure to 0.

Convergence and measure are the fundamental elements upon which the theory of

integration is constructed, particularly in the case of Lebesgue integration. As a result, we

will often return to the results discussed in this chapter in order to study the integration

theory in the next chapter.
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CHAPTER 3

INTEGRATION

Beginning around the turn of the 19th century, several mathematicians began work-

ing on a rigorous footing for the calculus developed by Newton and Leibniz. Cauchy made

important advances in the theory and provided a groundwork for others, in particular Rie-

mann, to build upon. Later the theory of integration developed further with the work of

Lebesgue. In this chapter, we will trace the development of the integral from Riemann to

Lebesgue and provide examples to illustrate advantages and disadvantages of each.

3.1 Riemann Integrals

In 1854, Bernhard Riemann gave his definition of the integral that bears his name, building

upon the work of Cauchy and others. This provided the primary theoretical background

for integration for nearly 50 years, and is still very useful, particularly in practical settings

and applications. Many students’ first experience with integration consists of simple exer-

cises using Riemann’s method. In this section we will examine Riemann’s definition and

consider an example which is not Riemann-integrable.

DEFINITION 3.1.1 Let f be a nonnegative, real-valued function defined on the

interval [a, b] and let

P = {α0, α1, . . . , αn},

where

a = α0 < α1 < α2 < . . . < αn = b,

be a partition of [a, b]. For each such partition, define the upper and lower Riemann sums

S and s respectively, by

S =
n∑

i=1

(αi − αi−1)Mi
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and

s =
n∑

i=1

(αi − αi−1)mi,

where

Mi = sup
αi−1<x≤αi

f(x),

and

mi = inf
αi−1<x≤αi

f(x).

Then we define the upper and lower Riemann integrals by

∫ b

a

f(x)dx = inf S,

and ∫ b

a

f(x)dx = sup s,

where the infimum and supremum are taken over all possible partitions. If these two inte-

grals agree, then we say that f is Riemann integrable.

Although Riemann’s definition is not comprehensive, it is sufficient for many sit-

uations. For instance, all bounded continuous functions are integrable using Riemann’s

definition.

THEOREM 3.1.1 Every continuous function f on [a, b] is Riemann integrable.

For the proof of this result, we will use the following lemma.

LEMMA 3.1.1 (Extreme Value Theorem) A continuous real-valued function f on a

closed interval [a, b] assumes its maximum and minimum vales on [a, b]; that is, there exist

x0, y0 ∈ [a, b] such that f(x0) ≤ f(x) ≤ f(y0) for all x ∈ [a, b].

Proof of the lemma. Let M = sup{f(x) : x ∈ [a, b]}. Then M is finite. If M is not finite,

then f is not bounded on [a, b], and so for each n ∈ N there corresponds an xn ∈ [a, b] such

that |f(xn)| > n. By the Bolzano-Weierstrass theorem, {xn} has a subsequence {xnk
}
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which converges to some real number, say x0. Then since f is continuous, we have

lim
k→∞

f(xnk
) = f(x0).

However, since f is assumed to be unbounded, we also have

lim
k→∞

f(xnk
) = ∞.

This is a contradiction. Thus, f is bounded, and hence M is finite. Now for each n ∈ N
there exists yn ∈ [a, b] such that M − 1

n
< f(yn) ≤ M , and thus lim f(yn) = M . Then

there is a subsequence {ynk
} which converges to some real number in [a, b], say y0. Since f

is continuous, limk→∞ f(ynk
) = f(y0). Now since {f(ynk

)} is a subsequence of {f(yn)},

we have

lim
k→∞

f(ynk
) = lim

k→∞
f(yn) = M.

That is, f(y0) = M . Thus f assumes its maximum value at y0. It can be shown in a similar

fashion that f assumes its minimum value at x0.

Proof of the main theorem. Let ε > 0. Then since f is continuous, by definition there

exists δ > 0 such that if x, y ∈ [a, b] and |x− y| < δ, then |f(x)− f(y)| < ε
b−a

. Now

partition the x-axis as follows: let P = {a = x0 < x1 < . . . < b = xn}, where max{xk −
xk−1, k = 1, 2, . . . , n} < δ. By the preceding lemma, f assumes maximum and minimum

values on each interval [xk−1, xk]. Then we have

M(f, [xk−1, xk])−m(f, [xk−1, xk]) <
ε

b− a

for each k. Then

S(f, P )− s(f, P ) <

n∑

k=1

ε

b− a
(xk − xk−1) = ε,

and thus f is Riemann integrable.
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This theorem, along with the next, provides one of the most powerful results of

Riemann integration; namely, that any bounded, almost everywhere continuous function is

Riemann integrable. This allows Riemann’s theory to be used in a wide array of applica-

tions and practical situations.

THEOREM 3.1.2 A bounded function f on [a, b] is Riemann integrable if and only

if it is continuous almost everywhere on [a, b].

Proof. We begin by noting that the sufficiency clause is simply an extension of Theorem

3.1.1 above, and can be shown by simply modifying the proof used there to account for

continuity almost everywhere; in particular, since the set where f is not continuous has

measure zero, it also has integral zero. To show the converse, suppose f is bounded and

Riemann integrable on [a, b]. Let {Pk} be a sequence of partitions of [a, b], with the measure

of the partitions tending to zero and the partitioning points of Pk given by xk
1 < xk

2 < . . ..

Define υk(x), γk(x) on each interval [xk
i , x

k
i+1) as the upper and lower bounds of f on

that interval. Then since f is bounded on [a, b], it is clear that υk(x), γk(x) are bounded.

Furthermore, there exists a set F with mF = 0 and outside of which υ = f = γ. Now if

x 6= xk
i for any k, i and if x /∈ F , we claim that f is continuous at x. Observe that if f is

not continuous at x and if x is not a partitioning point of Pk, then there exists ε > 0 with

υk(x) − γk(x) ≥ ε. But x /∈ F ⇒ υ(x) − γ(x) < ε, hence a contradiction. Thus f is

continuous a.e. on [a, b].

EXAMPLE 3.1.1 Let us consider the characteristic function of the rational numbers

over the reals. It is clear that any attempt at partitioning the x-axis, no matter how fine the

division, will result in each partition containing both rational and irrational numbers. Then

the supremum over any partition is 1, while the infimum is 0, which in turn forces the upper

and lower Riemann sums to 1 and 0, respectively. Then since the upper and lower sums do

not agree, the Riemann integral does not exist.

We could also examine this function in light of Theorem 3.1.2. Recalling that “al-

most everywhere” means everywhere except on a set of measure zero, we see that this

function cannot be Riemann integrable, since its set of discontinuities (i.e., the irrational
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numbers in [0, 1]) has measure 1.

We will return to this example in the next section and examine the function again

in the context of Lebesgue integration.

Despite its elegance and utility in integrating continuous functions, the Riemann in-

tegral is far from being completely satisfactory. Even when extended to allow improper in-

tegrals, many important functions are not Riemann integrable. It is also difficult to develop

the kind of convergence theorems that play such a significant role in Lebesgue integration.

These shortcomings led to Lebesgue’s further refinement of the theory of integration and

the development of the Lebesgue integral.

3.2 Lebesgue Integrals

We begin our study of Lebesgue integration with some preliminary definitions, following

standard conventions [R]. If E is a measurable set, we define χE(x) as the characteristic

function of E. A linear combination of the form

φ(x) =
n∑

i=1

diχEi
(x),

is called a simple function, where Ei is measurable for all i and the di are constants. In

fact, φ(x) is simple if and only if it takes a finite number of values. It is clear the φ is

measurable. If d1, . . . , dn are the distinct non-zero values of φ, then φ(x) can be expressed

as φ =
∑

diχEi
(x), where Ei = {x : φ(x) = di}, and Ei ∩ Ej = ∅ for i 6= j.

Our definition of the Lebesgue integral will be based on the integral of such simple

functions, which we will now define. By the above, φ =
∑

diχEi
(x) and Ei is measurable

for all i. Then we define the integral of φ as

∫
φ =

n∑
i=1

dimEi.

We will now utilize the above information to define the Lebesgue integral.
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DEFINITION 3.2.1 If f is a bounded measurable function defined on a measurable

set E of finite measure and φ is a simple function with φ ≥ f , then we define the Lebesgue

integral of f over E as ∫

E

f(x)dx = inf

∫

E

φ(x)dx,

where the infimum is taken over all possible simple functions satisfying the above criteria.

Note that henceforth the term “integrable” will be understood to mean “Lebesgue

integrable”. We also will limit the term “integrable” to those functions with
∫

f < ∞.

In the general case, we use the following definition for the Lebesgue integral. Here

we denote the positive and negative components of f by f+(x) = max{f(x), 0} and

f−(x) = −min{f(x), 0}, respectively. We will also suppress x and dx in the notation.

DEFINITION 3.2.2 A measurable function f is said to be integrable over E if f+

and f− are both integrable over E. When f is integrable, we define

∫

E

f =

∫

E

f+ −
∫

E

f−.

This definition expands the class of functions considered integrable, as well as mak-

ing it much easier to handle signed functions. In addition, it allows us to develop several

useful and familiar properties of the integral, presented without proof in the following

proposition.

PROPOSITION 3.2.1 If f and g are integrable over E, then so are cf and f + g,

where c is a constant. Moreover, we have

1.
∫

E
cf = c

∫
E

f ;

2.
∫

E
f + g =

∫
E

f +
∫

E
g;

3. If f ≤ g a.e., then
∫

E
f ≤ ∫

E
g;

4. If A and B are subsets of E with A ∩B = ∅, then

∫

A∪B

f =

∫

A

f +

∫

B

f.
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The following result shows an important connection between Riemann and Lebesgue

integration; namely, any function that is Riemann integrable over an interval is also Lebesgue

integrable. Here we will denote the Riemann integral as “R ∫
” and the Lebesgue integral

with the usual notation.

THEOREM 3.2.1 If f is Riemann integrable on [a, b], then f is Lebesgue integrable

on [a, b] and ∫ b

a

f = R
∫ b

a

f.

Proof. Suppose f is Riemann integrable on [a, b]. Let L,U denote the collections of lower

and upper Riemann sums, respectively. Then we have inf U = sup L, where the infimum is

taken over U and the supremum is taken over L. Now since each step function used in the

calculation of the Riemann integral can also be considered as a simple function, we have

sup L ≤ sup

∫
ϕ ≤ inf

∫
ψ ≤ inf U,

where the supremum in the middle is taken over all the allowable simple functions ϕ ≤ f ,

and the infimum in the middle is taken over all allowable simple functions ψ ≥ f . Since

sup L = inf U , we have

sup

∫
ϕ = inf

∫
ψ.

Thus f is Lebesgue integrable.

This result shows that any function which is Riemann integrable is also Lebesgue

integrable, which is certainly to be expected. However, to understand the advantages of

Lebesgue integration, we need to find an example of a function which is Lebesgue inte-

grable but not Riemann integrable. Recall the characteristic function of the rationals over

[0, 1]. We have already seen that this function is not Riemann integrable, since the upper

and lower Riemann sums diverge for any possible partition. However, it is in fact Lebesgue

integrable. If we consider the domain of this function as two disjoint sets, defined as

E1 = Q ∩ [0, 1],
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and

E2 = [0, 1] \Q,

then we have f(x) = (χE1×1)+(χE2×0) = χE1 . Then the Lebesgue integral is given by

∫

E

χE1 = mE1 = 0,

since E1 is countable.

We will consider another interesting example related to this theorem, but will re-

quire the following theorem. The theorem provides another useful result, particularly in-

teresting for its use in determining whether a given function is integrable or not.

THEOREM 3.2.2 Let f be measurable on E. Then f is integrable over E if and

only if |f | is integrable over E.

Proof. Suppose f is integrable on E. Then by definition,
∫

E
f =

∫
E

f+ − ∫
E

f− is finite.

But then
∫

E
f+ and

∫
E

f− must both be finite. Then clearly their sum is finite; that is,

∫

E

f+ +

∫

E

f− =

∫

E

(f+ + f−).

But f+ + f− = |f |, and so we have that |f | is integrable. To show the converse, suppose

|f | is integrable on E. That is,
∫

E
|f | is finite. Then since

∫

E

|f | =
∫

E

(f+ + f−) =

∫

E

f+ +

∫

E

f−,

and ∣∣∣∣
∫

E

f

∣∣∣∣ ≤
∫

E

f+ +

∫

E

f−,

we have that
∣∣∫

E
f
∣∣ ≤ ∫

E
|f |, and thus f is integrable.

We may now demonstrate that the restriction in Theorem 3.2.1 requiring the domain

of integration to be bounded is necessary, as we will see in the following example.

EXAMPLE 3.2.1 Consider the function sin x
x

on the interval [0,∞). We claim that
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the improper Riemann integral of this function exists, but the Lebesgue integral does not.

Here we would like to note that this does not contradict Theorem 3.2.1, since the domain

of integration is not bounded above.

We begin by computing the Riemann integral. It is not hard to check that the usual

tactics for computing integrals, such as integration by parts, will not work in this case. We

will consider the following series method, proposed by Titchmarsh [T]. Consider

sin x

1
+

sin 2x

2
+

sin 3x

3
+ . . . .

We can write the sum of the first n terms of this series in the following manner.

sn(x) =

∫ x

0

(cos t + cos 2t + cos 3t + . . . + cos nt)dt.

Consider the sum
n∑

k=0

eikx =
1− ei(n+1)x

1− eix
.

Applying Euler’s Formula, we have

n∑

k=0

(cos kx + i sin kx) =
1− ei(n+1)x

1− eix
.

Multiplying the right-hand side by its conjugate yields

n∑

k=0

cos kx + i

n∑

k=0

sin kx =

(
1− ei(n+1)x

1− eix

)(
1 + eix

1 + eix

)
.

Through algebraic manipulation, we find that the real part of
∑n

k=0 eikx is

n∑

k=0

cos kx =
sin(n + 1

2
)t− sin 1

2
t

2 sin 1
2
t

.
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Hence

sn(x) =

∫ x

0

(cos t + cos 2t + cos 3t + . . . + cos nt)dt

=

∫ x

0

sin(n + 1
2
)t− sin 1

2
t

2 sin 1
2
t

dt

=

∫ x

0

(
sin(n + 1

2
)t

2 sin 1
2
t

+
sin(n + 1

2
)t

t
− sin(n + 1

2
)t

t
− sin 1

2
t

2 sin 1
2
t

)
dt

=

∫ x

0

sin(n + 1
2
)t

t
dt +

∫ x

0

[
sin(n +

1

2
)t

(
1

2 sin 1
2
t
− 1

t

)]
dt−

∫ x

0

sin 1
2
t

2 sin 1
2
t
dt

=

∫ (n+ 1
2
)x

0

sin u

u
du +

∫ x

0

[
sin(n +

1

2
)t

(
1

2 sin 1
2
t
− 1

t

)]
dt− x

2
.

A straightforward computation shows that
∫ h

0
sin u

u
du attains its absolute maximum at h =

π. We can use the periodicity of the sine function to sum the series. If we let x have some

fixed value, with 0 < x < 2π, then we have

lim
n→∞

∫ n+ 1
2

0

sin u

u
du =

∫ ∞

0

sin u

u
du.

We denote this integral by I . Now consider

∫ x

0

[
sin(n +

1

2
)t

(
1

2 sin 1
2
t
− 1

t

)]
dt.

Here we may use integration by parts to obtain

−
(

1

2 sin 1
2
x
− 1

x

)
cos(n + 1

2
)x

n + 1
2

+
1

n + 1
2

∫ x

0

[
d

dt

(
1

2 sin 1
2
t
− 1

t

)
cos(n +

1

2
)t

]
dt.(3.1)

But then as n →∞, the value of (3.4) tends to zero, as each of the summands contains an

n term in the denominator. Thus if s(x) = limn→∞ sn(x), then we have

s(x) = I + 0− x

2
.
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Evaluating at x = π, we have

I =
π

2
.

Thus the improper Riemann integral exists, with the value π
2
.

Now to show the Lebesgue integral does not exist, we refer to Theorem 3.2.2, which

states that the Lebesgue integral of a function f exists if and only if the Lebesgue integral

of |f | does. Then we can consider

∫ ∞

0

∣∣∣∣
sin x

x

∣∣∣∣ dx.

It is well known that limx→0
sin x

x
= 1 and that sin(kπ)

kπ
= 0 for all k ∈ N, so since we

are considering
∣∣ sin x

x

∣∣ we can see that on each (kπ, (k + 1)π) we will have a positive area

enclosed by the curve and the x-axis. We claim that the sum of the areas of these regions is

infinite. To illustrate this, we will construct a rectangular subset of each region and compute

its area, then compute the sum of these areas.

On the interval [0, π], we consider the subinterval [π
2
, 3π

4
] and construct a rectangle

that has base 3π
4
− π

2
= π

4
, and height given by the function value at the right end point; that

is, the function value at 3π
4

, which is
√

2
2
3π
4

= 2
√

2
3π

. Then this rectangle has area 2
√

2
3π
× π

4
=

√
2

6
.

In the same manner, we construct a similar rectangle on the interval [3π
2

, 7π
4

]. Then this

rectangle has base π
4

and height 2
√

2
7π

, and thus it has area π
4
× 2

√
2

7π
=

√
2

14
. In general, the nth

rectangle will have height given by
√

2
2
× 4

(4n−1)π
and base π

4
.

In considering the total area enclosed by the curve, we first point out that the above
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construction is merely a proper portion of the total area. Then we have

∫ ∞

0

∣∣∣∣
sin x

x

∣∣∣∣ dx ≥
∞∑

n=1

π

4
×
√

2

2
× 4

(4n− 1)π

=
∞∑

n=1

√
2

2(4n− 1)

≥
∞∑

n=1

1

2(4n− 1)

≥ 1

8

∞∑
n=1

1

n
= ∞.

Thus the integral diverges, and thus the Lebesgue integral does not exist.

Lebesgue’s theory of integration allows for a much larger class of functions to be

integrated. We are no longer restricted to bounded, almost everywhere continuous func-

tions. In the next chapter, we will explore the convergence theorems, arguably the most

powerful results to come out of Lebesgue integration.
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CHAPTER 4

CONVERGENCE THEOREMS

The convergence theorems we will discuss in this chapter provide powerful tools

for Lebesgue integration. Each of the theorems gives conditions for interchanging the oper-

ations of computing the Lebesgue integral and taking the pointwise limit. These theorems

are, in fact, one of the primary advantages of the Lebesgue integral over the Riemann inte-

gral. We will also see that they can be extended to sequences of functions which converge

in measure.

4.1 The Bounded Convergence Theorem

We begin by examining the Bounded Convergence Theorem, which provides a method of

interchanging integration and limiting for functions that are bounded by some real number.

THEOREM 4.1.1 (Bounded Convergence Theorem) Let {fn} be a sequence of

measurable functions defined on a set E of finite measure, and suppose there exists M ∈ R
such that |fn(x)| ≤ M for all n and all x. If f(x) = lim fn(x) for each x ∈ E, then

∫

E

f = lim

∫

E

fn.

Proof. Since fn converges pointwise to f on E, we may apply Egorov’s Theorem to find a

smaller set on which the convergence is uniform. That is, given ε > 0, there is an N and

a measurable set A ⊂ E with mA < ε
4M

such that for n ≥ N and x ∈ E \ A, we have
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|fn(x)− f(x)| < ε
2mE

. Thus

∣∣∣∣
∫

E

fn −
∫

E

f

∣∣∣∣ =

∣∣∣∣
∫

E

fn − f

∣∣∣∣

≤
∫

E

|fn − f |

=

∫

E\A
|fn − f |+

∫

A

|fn − f |

<
ε

2
+

ε

2
= ε.

Therefore we have ∫

E

fn →
∫

E

f.

4.2 The Monotone Convergence Theorem

We begin by introducing a powerful lemma. As its conditions are weaker than the other

theorems, the result is also somewhat weaker. However, it can also be applied to a wider

class of functions and establishes a bound for the integral.

LEMMA 4.2.1 (Fatou’s Lemma) If {fn} is a sequence of nonnegative measurable

functions and fn(x) → f(x) almost everywhere on a set E, then

∫

E

f ≤ lim inf

∫

E

fn.

Proof. First we note that since the integral over a set of measure zero is zero, we may

assume the convergence is everywhere without loss of generality. Let g be a bounded,

measurable function not greater than f defined on a set of finite measure, say E ′, and

vanishing outside E ′. Define gn = min{g(x), fn(x)}. Then since g is bounded, gn is

bounded and vanishes outside E ′. Furthermore, gn(x) → g(x) for all x ∈ E ′. Thus we

have ∫

E

h =

∫

E′
h = lim

∫

E′
hn ≤ lim inf

∫

E

fn.
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Taking the supremum over h gives

∫

E

f ≤ lim inf

∫

E

fn.

THEOREM 4.2.1 (Monotone Convergence Theorem) Let {fn} be an increasing

sequence of nonnegative measurable functions, and let f = limn→∞ fn almost everywhere.

Then we have ∫

E

f = lim
n→∞

∫

E

fn.

Proof. We begin by noting that

∫

E

f ≤ lim inf

∫

E

fn,

by Fatou’s Lemma. Now since {fn} is monotonically increasing and converges a.e. to f ,

we observe that fn ≤ f for almost all n. Then
∫

E
fn ≤

∫
E

f . Thus we have

lim sup

∫

E

fn ≤
∫

E

f,

and hence, ∫

E

f = lim

∫

E

fn.

So for any increasing convergent sequence of measurable functions, we may inter-

change integration and the limiting process.

It should be noted that the requirement in the hypothesis that {fn} be increasing is

necessary to the validity of the theorem. To demonstrate this, we consider the following

example.
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EXAMPLE 4.2.1 Consider the sequence of functions {fn}, where

fn(x) =





0 : x < n

1 : x ≥ n.

This sequence of functions converges pointwise to 0. However, each function in the

sequence has a divergent integral. Thus we have

lim
n→∞

∫

E

fn(x)dx = ∞, and
∫

E

f(x)dx = 0;

that is,

lim
n→∞

∫

E

fn 6=
∫

E

f.

4.3 The Lebesgue Dominated Convergence Theorem

Arguably the most powerful of the convergence theorems, the Dominated Convergence

Theorem also requires a strong assumption. However, it allows us to integrate any sequence

of functions that is bounded above by an integrable function. We present the theorem,

along with its proof and an example to show that one of the assumptions is critical. We will

then conclude the section by demonstrating that the convergence theorems do not hold for

Riemann integration.

THEOREM 4.3.1 (Lebesgue Dominated Convergence Theorem) Let g be inte-

grable over E and let {fn} be a sequence of measurable functions such that |fn| ≤ g

on E, and suppose that for almost all x ∈ E we have f(x) = lim fn(x). Then

∫

E

f = lim

∫

E

fn.

Proof. Consider the function g − fn. By hypothesis, |fn| ≤ g, so g − fn is nonnegative.
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Then applying Fatou’s lemma, we have

∫

E

(g − fn) ≤ lim inf

∫

E

(g − fn).

Now since g is integrable and |f | ≤ g, f is integrable as well and we have

∫

E

g −
∫

E

f ≤
∫

E

g − lim sup

∫

E

(g − fn),

and thus ∫

E

f ≥ lim sup

∫

E

fn.

Using a similar method and considering g + fn, we may obtain

∫

E

f ≤ lim inf

∫

E

fn,

and thus we have ∫

E

f = lim

∫

E

fn.

We may also observe that the Bounded Convergence Theorem introduced in Section

4.1 is simply a corollary to this result, where g is a constant function.

As mentioned previously, these convergence theorems are one of the key advan-

tages of Lebesgue’s theory over Riemann’s. To illustrate this, we will now show that the

Monotone Convergence and Dominated Convergence theorems do not hold for Riemann

integration. We consider the following counterexample.

EXAMPLE 4.3.1 Recall the sequence of functions {fn} from example 2.3.2; that

is, the sequence given by

fn(x) =





1 : x = q1, q2, . . . , qn

0 : otherwise
.
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Since each of these functions is bounded and discontinuous at a finite number of points,

we see that each member of this sequence is Riemann integrable. Now for each x ∈ [0, 1],

it is clear that the sequence {fn(x)} is monotonically increasing and is bounded above by

the constant function 1. Thus the sequence converges to the Dirichlet function (that is,

the characteristic function of the rationals) on [0, 1]. But we have seen previously that this

function is not Riemann integrable. Thus both the Monotone Convergence and Dominated

Convergence theorems can not be applied to the Riemann integral.

4.4 Convergence in Measure

In the following section, we will show that Fatou’s Lemma, the Monotone Convergence

Theorem, and Lebesgue’s Dominated Convergence Theorem remain valid under conver-

gence in measure, allowing the further extension of Lebesgue integration. In order to prove

this result, we first present a lemma which we will use to prove the main results. We will

also rely on the result shown in Theorem 2.3.3.

LEMMA 4.4.1 The sequence {fn} converges pointwise to f if and only if every

subsequence of {fn} has in turn a subsequence that converges to f .

Proof. Suppose lim fn = f and let {fnk
} be a subsequence. Then let ε > 0 and choose

N ∈ N such that n ≥ N implies |fn − f | < ε. Now since n1 < n2 < . . ., a simple

induction argument shows that nk ≥ k for any k ∈ N. Then if k ≥ N , it must be the case

that nk ≥ N , and thus |fnk
− f | < ε. Hence we have that lim fnk

= f . Now if {fnkl
}

is a subsequence of {fnk
}, then we may use the same line of reasoning to show that this

sub-subsequence converges to the same limit as the original subsequence, and thus, to f .

To show the converse, suppose that every subsequence has a sub-subsequence con-

verging to f and recall the definition of a cluster point: l is called a cluster point of {gn}
if given ε > 0 and N ∈ N, there exists n ≥ N such that |gn − l| < ε (that is, all limits

are cluster points, but cluster points are not necessarily limits). Then f is a cluster point of

every subsequence fnk
, and thus a cluster point of fn. Now we observe that if there exists
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another cluster point, say g, with f 6= g, then there would be some subsequence converging

to g. But such a subsequence could not have a sub-subsequence converging to f , since g is

its only cluster point. This contradicts the hypothesis, and thus f must be the only cluster

point of fn, and therefore lim fn = f .

We now consider the Dominated Convergence Theorem under convergence in mea-

sure.

THEOREM 4.4.1 (Dominated Convergence) Let {fn} be as above defined a.e. on

E. Suppose fn → f in measure and |fn| ≤ |g| a.e. (with g being integrable). Then

∫

E

f = lim
n→∞

∫
fn.

Proof. Consider a subsequence {fnk
} of {fn}. Clearly fnk

→ f in measure, and so there

exists a subsequence {fnkl
} of {fnk

} which converges to f pointwise a.e. Since this sub-

sequence converges almost everywhere and |fnk
| ≤ |g|, we may apply the dominated con-

vergence theorem, which gives

∫

E

f = lim
l→∞

∫

E

fnkl
.

Thus the Dominated Convergence theorem holds if we replace the assumption of

convergence almost everywhere with convergence in measure. Additionally, the Bounded

Convergence theorem can be applied since it is a corollary.

We now consider Fatou’s Lemma and the Monotone Convergence theorem.

THEOREM 4.4.2 (Fatou’s Lemma) Let {fn} be a sequence of nonnegative mea-

surable functions converging in measure to f on E. Then

∫

E

f ≤ lim inf

∫

E

fn.
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Proof. Consider {fnk
}, a subsequence of {fn} with

lim inf

∫

E

fn = lim
k→∞

∫

E

fnk
.

Recall that a sequence converges if and only if for every subsequence, there exists a sub-

subsequence which converges to the same limit. Since {fnk
} converges to f in measure,

there exists a sub-subsequence {fnkl
} which converges to f almost everywhere. Then

Fatou’s lemma (for convergence a.e.) gives

∫

E

f ≤ lim
l→∞

inf

∫

E

fnkl
.

Then since lim inf
∫

E
fn = limk→∞

∫
E

fnk
, we have

∫

E

f ≤ lim inf

∫

E

fn.

THEOREM 4.4.3 (Monotone Convergence Theorem) Let {fn} be an increasing

sequence of nonnegative measurable functions and let fn converge to f in measure. Then

∫
f = lim

n→∞

∫
fn.

Proof. Since {fn} converges to f in measure, there exists a subsequence of {fn}, say

{fnk
}, which converges to f almost everywhere. Now since {fn} is monotonically in-

creasing, {fnk
} is also monotonically increasing. Now we have an increasing sequence

which converges almost everywhere to a measurable function f , and thus we may apply

the Monotone Convergence theorem. Thus we have

lim
k→∞

∫
fnk

=

∫
f.
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Now since fnk
→ f , we have

lim
n→∞

∫
fn = lim

k→∞

∫
fnk

=

∫
f.

Now we have shown that the convergence theorems presented in this chapter may

be applied to sequences of functions which convergence pointwise, including convergence

almost everywhere, as well as to those sequences of functions which converge in measure.
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CHAPTER 5

CONCLUSION

As we have shown, a rigorous theory of integration was conceived by Cauchy, re-

fined by Riemann, and then revolutionized by Lebesgue. This rigorous footing finally al-

lowed many ideas, some dating back to Newton and Leibniz, to fully come to fruition. The

rich theory that has developed out of the definitions proposed by Riemann and Lebesgue

has provided the structure for integration theory for over a century. Lebesgue’s definition

in particular is still the most common notion of integration.

In this paper we have seen the close relationship between convergence and inte-

gration. The Convergence Theorems developed in Chapter 4 are among the strongest re-

sults found in the theory of Lebesgue integration, and one of the primary advantages of

Lebesgue’s method over the Riemann integral. These results expand the class of integrable

functions and provide a convenient method for handling sequences of functions.

It is our hope that the preceding sections may serve as an effective and interesting

introduction to the rich theory of Lebesgue measure and integration.
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