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ABSTRACT 

A recent threat to the sustainability of grape production is Grapevine vein-clearing virus 

(GVCV), the first DNA virus discovered in grapevines. Infection with GVCV leads to 

vine decline, lower quality berries, and eventual death of the grapevine. Since GVCV was 

discovered in cultivated grapevines, research has been dedicated to investigating its range 

and origin. The entire genome of the first GVCV isolate from a grape cultivar 

‘Chardonel’ has been deposited in GenBank and is used as a reference genome. More 

recently, two GVCV isolates were found in native Vitis rupestris in Missouri. In this 

thesis project, I applied polymerase chain reaction (PCR) assays to screen for GVCV in 

native Ampelopsis cordata, which is also in the Vitaceae family. I found GVCV in two 

accessions of this wild plant species. The entire genomes of the two GVCV isolates, 

GVCV-AMP1 and GVCV-AMP2, from A. cordata were sequenced. The GVCV-AMP1 

genome is composed of double-stranded DNA, 7,749 bp long, while GVCV-AMP2 is 

7,765 bp long. Genomic analysis indicated that they are new isolates with signature 9-

base pair inserts in open reading frame II. A survey of GVCV in seventeen A. cordata 

plants around the Springfield area found that five were infected with GVCV, suggesting 

high incidence of GVCV among these native plants. These results demonstrated that 

GVCV spreads among species across genera in native habitats, and yielded crucial clues 

on origin and epidemics of GVCV. These findings will aid in developing new strategies 

for the management of GVCV-associated disease. 
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INTRODUCTION 

 

“Help!” cried the farmer.  “My crop plants have symptoms of disease, and they 

are dying!” 

That sentence may sound like it is straight out of a children’s story, but for anyone 

involved in agriculture this is the stuff of nightmares.  Their crop is their livelihood, their 

passion, the representation of their collaboration with and struggle with nature, the 

product of all of their hard work, and a gift of sustenance and pleasure to humankind 

from them.  This cry for aid from any farmer in the world has almost always triggered a 

response from scientists dedicated to the field of agriculture.   The cumulative effect of 

each answer made to a farmer’s call for assistance has benefited agriculture in these 

ways; improved pest and disease management, enhanced efficiency of land and water 

use, increased plant hardiness, provided greater crop quantity and quality, and ultimately 

brought outstanding productivity to the agricultural system.  Despite all of the 

advancements in agriculture, there are always more improvements to make in order to 

feed, clothe, and house an ever-growing human population. 

According to Anderson et al. (1), the largest portion of emerging disease in 

cultivated plants is caused by viruses, and grapevines are no exception.   It is not 

surprising then, that a “Help!  My grapevines have symptoms of disease, and some are 

dying!” call from Missouri grape growers in 2004 was the impetus behind the discovery 

of the first DNA virus infecting grapevines, Grapevine vein-clearing virus (GVCV) a 

badnavirus in the family Caulimoviridae. 
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The symptoms that had alarmed vineyard owners were dramatic.  The grapevine 

leaves were chlorotic and the major veins were translucent, the leaf edges were curling, 

the plant overall looked stunted in comparison with unaffected vines; and maybe most 

importantly, the berries were deformed and of low quality.  Plant scientists from Missouri 

State University responded to the grape growers’ call for help.  After testing for all of the 

usual suspects that might cause such symptoms, they realized they were quite possibly 

dealing with a previously undescribed virus.  Using modern biotechnological techniques, 

such as deep sequencing of small interfering (si)RNAs, researchers indeed found a new 

virus in grapevines.  In 2009, the first DNA virus ever discovered to infect grapevines 

was documented.  By 2011, the entire genome of the new virus was sequenced, deposited 

in GenBank (NC_015784.2), and named Grapevine vein-clearing virus in 

acknowledgment of the most notable symptom (2).  This is the reference sequence for 

GVCV and is referred to as “GVCV-CHA” because it was isolated from a Chardonel 

grapevine. 

Since that time GVCV infected grapevines have also been reported in Arkansas, 

Illinois, and Indiana.  The virus has been detected in grape cultivars of Vitis vinifera and 

its hybrids including, Cabernet sauvignon, Chardonnay, Valvin muscat, Cabernet franc, 

Riesling, Chardonel, and Vidal blanc (3).  The symptoms of infection are visually 

noticeable.  The signature translucent veins with chlorotic streaks or mottling along the 

veins are easily seen when scouting a vineyard.  Other symptoms include shortened, 

zigzag shaped internodes, which contribute to the overall dwarfed nature of the vine, 

reduced berry set, deformed berries with a stony texture, and curling or warped leaves.  
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Infected grapevines succumb to the stress of the virus over a period of years and 

eventually die. 

When a virus threatens human populations, the most commonly asked questions 

are:  Where did the virus originate?  What is the range of the virus?  How is the virus 

spread?  These are the same questions grape growers had about GVCV.  To help 

elucidate these questions, investigations were initiated into the status of Missouri’s native 

Vitis species concerning GVCV.  Vitis rupestris, or ‘sand grape’ as it is locally known, 

was found to be infected with GVCV.  This was the first wild grapevine in which GVCV 

was detected.  The GVCV isolate from an infected V. rupestris from Taney County, 

Missouri was chosen for sequencing.  This was the second GVCV genome sequenced and 

the results were deposited in GenBank (KJ725346.1) in 2014.  This GVCV isolate is 

referred to as “GVCV-VRU-1” for V. rupestris.  Interestingly, a novel symptom of 

necrotic flecks occurs along with the vein clearing during an infection of GVCV-VRU-1.  

Something else was significant about GVCV-VRU-1; it contained a 9 base pair (bp) 

insertion in its genome.  By 2016 the second isolate found in V. rupestris had been 

sequenced and submitted to GenBank (KT907478.1), and is referred to as “GVCV-VRU-

2”.  Though this isolate was also found in a V. rupestris, the genome did not contain the 9 

bp insert that occurred in VRU-1.  Despite all the new information gathered, the three 

questions still remained.  The incidence of GVCV in native Vitis species was low, other 

areas of the country with native Vitis had not detected GVCV in their vineyards, and the 

vector had not been identified. 

Ampelopsis cordata Michx. is a perennial, woody vine that is native to the 

Midwestern and southeastern United States.  The leaves of A. cordata are heart-shaped, 
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alternate, and serrated, and can be mistaken for grape leaves.  The flowers, unlike grapes, 

are in cymes rather than panicles, and the colorful fruit is edible only for birds.  A. 

cordata is in the Vitaceae family, just as cultivated and native Vitis species.  When mild 

GVCV-associated symptoms were noticed on A. cordata near Linn Creek, Missouri, 

samples were collected for testing.  The hypothesis was that these symptoms were GVCV 

related.  To determine if this were the case, total DNA would be extracted from the plant 

and tested in the laboratory.  If indeed a second genus of native plants were infected with 

GVCV the objectives and hypothesis would broaden.  This native plant could be a 

reservoir population for GVCV, perhaps even the source.  If A. cordata populations were 

the origin of GVCV, this would help delineate the range of the virus, and would 

hopefully help narrow the search for the vector of transmission.  If GVCV were detected 

in this plant, the viral DNA would need to be purified and sequenced so that it might be 

compared to the previously described isolates.  Phylogenomic analysis could then be 

conducted to get a clearer picture of the evolution of GVCV and help to clarify whether 

native plants or cultivated grapes first hosted the virus.  The implications of discovering 

this devastating virus in another native plant population would be critical for grape 

growers.  This information could affect pest and disease management and vineyard 

location planning.  Providing support for farmers to grow healthier crops is the ultimate 

goal of this work.  To this end, we conducted this project and investigation of GVCV 

status in wild A. cordata.  
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LITERATURE REVIEW 

 

Viruses in Wild Plants 

 Viruses are ubiquitous in the plant kingdom; from algae to flowering plants, from 

moss to trees, all can play host to plant viruses (4-6).  Knowledge and research 

concerning viruses in wild plant populations is limited.  When research has been 

conducted on the incidence of viruses in wild plant populations, the results are revealing.  

When surveys are conducted, viruses are found to be commonplace in natural plant 

populations.  Yahara and Oyama (7) found as many as 69% of the native Eupatorium 

chinense were infected by a geminivirus, Tobacco leaf curl virus (TLCV).  A study of 

Tobacco mild green mosaic virus (TMGMV) infecting the wild plant Nicotiana glauca in 

Spain, found as high as a 77% infection rate with TMGMV in plants surveyed (8).  When 

wild cabbage populations were sampled over a 25 km stretch of countryside in Dorset, 

England, Cauliflower mosaic virus (CaMV) was found in 60% of the natural cabbage 

population (9).   

Though infection rates vary, the consensus is that viruses maintain a strong 

presence in wild plant populations (10).  However, it is agreed that there is under-

abundance of research into viruses affecting wild plant populations (11).  The reasons are 

many and may be best understood by first examining why such studies would be 

conducted, and most of those reasons are obviously concerning agricultural practices.  A 

driving force for exploring wild plants and viruses would be to discover an alternative 

host, a source, or a reservoir for a virus that is having an adverse impact on crop 

production (12).  Another motivation would be drastic symptoms being expressed in wild 
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plants catching the eye of an observant scientist; though, as will be discussed shortly, 

drastic symptoms are rare in wild plants (13).  Recent research into wild plants and their 

viruses has been prompted by the goal of finding genetic sources for virus resistance or 

tolerance that may be incorporated into crop plants (14, 15).  Another plausible incentive 

for inquiry into this matter would be phytosanitary measures as a prophylactic for one 

region from the introduction of a virus infecting native species of another region (16).  

From the perspective of why scientists would take the time and effort to study viruses in 

wild plants, the reasons are almost entirely limited to solving problems directly affecting 

agriculture, yet there are a multitude of viruses in wild populations researchers have 

never considered, simply because they are as yet a non-issue for plant commerce (1). 

 As mentioned in the previous paragraph, one factor in the lack of ardent 

investigation of viruses in wild plants is the typical absence of apparent symptoms during 

viral infection (10).  In large part, this is attributed to high tolerance, or even resistance, 

to viruses in the natural plant population.  In this regard, wild plants have definite 

advantages over domesticated plants.  As plants and viruses have co-evolved over 

millions of years their relationship has affected both at the genotypic level (17).  This is 

evidenced in part by the resistance genes (R genes) of plants and the effector proteins of 

viruses (18).  Native populations have high genetic diversity supplying them with greater 

chances of tolerance or resistance to viral infections, thus reducing obvious viral 

symptoms (19).  Not only would genetic diversity serve these plant populations well in 

resistance to viruses, but also in resistance to the insects or nematodes that transmit 

viruses.   
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Examples of viral infections in wild plants species with unapparent symptoms 

include reported cases dating back to the 1960’s (20) to present studies (21).  A 

comprehensive review of this subject was presented in the American Journal of Botany 

(22), that listed occurrences such as wild plantain, Plantago, with a 64% virus infection 

rate of randomly sampled plants in Great Britain, with the majority of the infected plants 

having no visible symptoms (23).  Another example of asymptomatic wild plant 

populations that are infected by viruses is found in wild grasses that were infected with 

Barley yellow dwarf viruses (BYDVs).  Small grain crops are susceptible to BYDV 

infection and the consequences are severe if infected.  Symptoms range from 

reproductive harm, such as reduced seed set, to stunting, even to early senescence or 

premature death of the grain crop.  In a 2002 study of BYVDs in three weedy grass 

species growing near crop field margins in upstate New York, Remold found that it is 

difficult, if not impossible, to visually diagnose BYDV infection in the wild grasses used 

in this study, though a majority were infected (13).  Peanut stunt virus (PSV), as the 

name implies, causes severe dwarfing of peanut plants and up to 50% yield loss; 

however, no clear symptoms were observed on PSV infected wild clover.  Furthermore, 

in a random sampling of white clover in the southeastern United States, PSV was 

detected in 21% of the plants assayed (24). 

Besides the aid of genetic diversity in combatting viral diseases, wild plants have 

other advantages in diminishing the impact, and thus the symptoms, of plant viral 

diseases.   The non-uniform nature of the growing environment of wild plants lends 

protections such as buffers of non-host plant species between susceptible species, 

environmental and climactic variations that may not favor transmission of the virus, 
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varying plant population densities that could discourage viral transfer, natural predators 

and parasites of insect, nematode, or wind borne vectors of the virus, varied ages of 

plants in the wild population influencing susceptibility, varied proximity to viral sources, 

and even antagonism between indigenous viral populations.  Because of all the above 

factors, a virus that has minimal impact on wild populations can prove to be devastating 

if and when it spills over to plant monocultures cultivated for human use (25).  

Conditions in nature mitigate the severity of viral invasions in wild plants, while designed 

breeding and agricultural practices exacerbate viral invasion in agriculturally significant 

plants (21). 

Wild plant populations can serve as a reservoir for viruses that have detrimental 

effects on agroecosystems.  Viruses that move from wild to cultivated plants (or 

conversely, from cultivated plants to wild plants) are referred to as emerging viruses; in 

other words, they are newly discovered and are likely increasing in incidence in plants 

that are valuable for food, feed, or fiber (or in the case of wild plants, have ecological 

importance) (26, 27).  The definition of an emerging virus may also include a viral 

population that has evolved in such a way that it is able to infect new hosts or vectors and 

spread where it has not traditionally been epidemic (28).   Pepino mosaic virus (PepMV) 

causes leaf chlorosis and mottling on tomato plants, along with economically devastating 

symptoms of fruit discoloration and reduced fruit size (29).  Recent research in Peru has 

supported, on a molecular level, the hypothesis that PepMV emerged from wild Solanum 

species plant hosts to infect cultivated tomatoes (30). 

At times, when a plant virus emerged from a wild plant population into crop 

species, one of the management practice employed is destruction of proximal wild hosts 
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of the detrimental virus, thus reducing incidence of viral infection spreading from the 

wild plants to the cultivated crop.  In Melbourne, Australia, Lettuce necrotic yellow virus 

(LNYV) was harming lettuce production.  It was discovered that wild sow thistle was a 

source of the virus.  A study was conducted to assess the effectiveness of destroying wild 

sow thistle in a 470-yard by 170-yard area surrounding a lettuce field using manual and 

chemical methods.  Using an alternative lettuce field, which had not been cleared of 

bordering sow thistle for comparison, researchers found that this management practice 

could account for a dramatic reduction in rate of infection of cultivated lettuce.  The 

incidence of LNYV in the untreated field was 75.6% of lettuce plants lost to the virus, 

whereas in the treated field loss was 6% (31).   

Removing sources of inoculum in wild plant populations is not always practical 

because of logistics, differing opinions on land use, cultural or religious ideals, and 

environmental or ecological implications.  There is also the confounding factor of the 

number of species, genera, and even families that may be present in wild plant 

populations that can host an agriculturally significant virus.  For example, Hawaiian 

grown tomatoes, lettuce, and bell peppers are adversely impacted by Tomato spotted wilt 

virus (TSWV), causing up to 90% loss of crop production (32).  Years of research 

concerning TSWV has demonstrated that 16 plant families and 44 plant species are 

natural hosts of this virus (33).  Five out of six grass subfamilies have been shown to host 

BYVDs in 150 species, with the majority of these being wild grasses (34). 

Missouri is home to at least five species of wild grapes: Vitis aestivalis, Vitis 

cinerea, Vitis riparia, Vitis rupestris, and Vitis vulpina, and North America has as many 

as 15 indigenous Vitis species (35).  According to the USDA plant database there are 
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around 50 native plants in the Vitaceae family that are native to the United States, with 

about 21 of those species inhabiting niches in Missouri (36).  Viruses have been detected 

in native grapevines in the United States (37)  and in other countries (38, 39).  When the 

nine most crucial grapevine viruses were surveyed in wild grapevines in Sicily, the 

results showed five populations of wild grapevines were infected with Grapevine 

rupestris stem pitting-associated virus (GRSPaV) and one population with Grapevine 

fanleaf virus (GFLV)  (38).  In Missouri, GVCV has been detected in native V. rupestris 

plants (Beach et al., unpublished).  Clear statements concerning whether wild or 

cultivated grapevines were the source of spillover of the viruses were not forthcoming in 

any of these studies. 

 

Viruses in Cultivated Grapevines 

 Roughly 20 million acres of arable land is devoted to vineyards worldwide (40).  

Grapes are an extremely valuable agricultural product, and have been cultivated since 

human history has been recorded (41).  In the United States grapes are the highest value 

fruit crop, and in 2014 over 1 million acres was used for vineyards and  $162 billion in 

revenue was generated from the grape and wine industry (42).  Missouri is one of the top 

ten grape producing states with nearly 2,000 acres devoted to vineyards harvesting over 

6,000 tons of fruit in 2013.  Revenue from vineyards and related industry totaled $1.76 

billion in 2013 for the state of Missouri (43).   

Unfortunately, this economically important plant is also host to more viral 

pathogens than any other woody crop (44).  It is difficult to quantify the toll that the 

aggregation of viral diseases exerts on grapes as an agricultural product worldwide.  The 
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five main RNA viruses affecting grape production are: Grapevine fanleaf virus, Arabis 

mosaic virus, Grapevine leafroll-associated virus 1, Grapevine leafroll-associated virus 

3 and Grapevine fleck virus  (45).  Grapevine-leaf roll associated virus (GLRaV) is 

estimated to be the most prevalent and damaging grapevine virus in the world (46), and is 

predicted to cost California at least $60 million annually (47).  Interestingly, the virus 

rarely kills the plant.  It is economically detrimental because viral symptoms include 

reduced photosynthesis and vine productivity, and altered sugar and organic acid 

composition which affects berry quality and ultimately the end products of the vineyards, 

especially wines (48).    

Grapevines are shown to host more than 65 viral pathogens (44).  This is partly 

because grapevines are perennials, and as such have many opportunities for exposure to 

pathogens over their lifespan (49).  Another cause, and arguably the most culpable, for 

the high number of viruses infecting grapevines are vegetative propagation methods (50, 

51).  Most vineyards are established using cuttings, rooted cuttings, grafted plants, or a 

combination of all three.  In all of these cases, viruses can be moved into the new 

vineyard via the planting material, or introduced to an established vineyard with the 

addition of new plants (52, 53).  As discussed previously, native plants also play a role in 

viral infections in cultivated grapevines either as a source of spillover or as a reservoir for 

viruses (54). 

There are no cures for viral disease in grapevines established in the field (55-57).  

Recommendations for control of viral disease include controlling the vector (58), planting 

only certified virus free vines (47), rouging infected vines to prevent vectors from 
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spreading the virus to non-infected plants (59), and surveying nearby wild plant 

populations as potential sources (37, 60). 

 Most of the 65 known viruses infecting grapevines are RNA viruses.  To date 

there are only three DNA viruses that have been described.  The first DNA virus 

discovered in grapevines, GVCV, was found in Missouri, and is a double-stranded (ds) 

DNA virus in the Caulimoviridae family (2).  A second DNA virus of grapevines was 

simultaneously explored circa 2010 in California and New York, Grapevine red blotch-

associated virus (GRBaV), a single-stranded (ss) DNA virus in the family Geminiviridae 

(61, 62).  The third DNA virus found to infect grapevines was discovered in Greece, 

Grapevine Roditis leaf discoloration-associated virus (GRLDaV), another dsDNA virus 

in the Caulimoviridae family (63), with a strain of this virus found in Italy in 2016 (60). 

 

Caulimoviridae Badnavirus and Grapevine vein-clearing virus 

 The family of viruses known as Caulimoviridae are the only dsDNA 

pararetroviruses in the plant kingdom (64).  R.J. Shepherd made the discovery that 

Cauliflower mosaic virus (CaMV), in the genus Caulimovirus was composed of dsDNA 

(65).  Since that time, dsDNA viruses in the Caulimoviridae family have been divided 

into two groups and classified into eight genera (66).  The shape of the virion determines 

which group they are placed in; either rod shaped in the bacilliform group, or roughly 

spherical in the icosahedral group (67).  Only two of the eight genera are in the 

bacilliform group, Badnavirus and Tungrovirus.  Whereas there is only one species of 

Tungrovirus, there are at least 32 species of Badnavirus, and GVCV is one of these (2). 
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Replication and genome structure.  All Caulimoviridae replicate through an 

RNA intermediate and have a reverse transcription step; but they do not require genome 

integration as do true retroviruses (68).  Badnavirus genomes are dsDNAs of  7.2 to 9.2 

kb long with single-strand overlaps, or discontinuities, this is referred to as open circular 

form (66).  The overlaps mark the beginning of plus and minus strand reverse 

transcription at the tRNAmet-binding site that is the initiation for reverse transcription on 

the minus strand.  The first step in the replication process is when the genomic DNA is 

imported into the nucleus and the overlaps are covalently closed.  The host DNA-

dependent RNA polymerase II creates terminally redundant, longer than genome size 

mRNA which is transported to the cytoplasm and translated into viral proteins or used as 

a template for reverse transcription to the open circular dsDNA, starting the cycle over 

(69).  The primer for reverse transcription is tRNAmet, and the virally encoded reverse 

transcriptase is responsible for polymerization of the first strand (-) DNA, using the 

virally encoded RNaseH to degrade the RNA template.  Small fragments of the degraded 

RNA are used as primers for synthesis of the second strand (+) DNA, and upon 

completion the complementary strands form the characteristic relaxed dsDNA molecule 

of a badnavirus (70). 

The badnavirus genome is around 7.5 kb and encodes at least three open reading 

frames (ORFs), but can have up to five ORFs.  GVCV-CHA has 7,753 bp and three 

ORFs.  Current research has identified two ORFs on the antisense strand of at least one 

badnavirus, but has not identified expression or function of these ORFs (66).  The first 

ORF on the sense strand of badnaviruses ranges from 399 to 927 bp, the second ORF is 

the shortest at 312 to 561 bp, and the third ORF is the largest at 5100 to 6000 bp.   The 
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reference sequence for GVCV has an ORF I of 627 bp, ORF II of 384 bp, and the third 

ORF is 5,826 bp.  A leader sequence of 686 nucleotides is present in GVCV and four 

short ORFs are contained in the leader region (71).  The first and second ORFs encode 

products whose function is still being deciphered.  The ORF I protein is thought to be 

associated with both virions and plant components (72), while the ORF II likely encodes 

a nucleic acid-binding protein (73).  The third ORF encodes the reverse transcriptase 

(RT), RNaseH, capsid protein, aspartate protease, and perhaps a movement protein (74).  

There is one strong promoter for the GVCV genome, with the core promoter of 341 

nucleotides (nt) long and the transcription initiation site at nucleotide 7571, which is 27 

nts downstream from the TATA1 box (71). 

Classification and diversity.  Badnaviruses are classified by the percentage 

identity of the RT-RNaseH sequence in ORF III.   If there is ≥ 20% divergence of 

nucleotide sequence in this region, then the badnavirus is considered a novel species 

according to the International Committee on the Taxonomy of Viruses (ICTV) (75).     

Badnaviruses are highly heterogeneous, likely due to the lack of proofreading 

capacity of the reverse transcriptase and introduced inaccurate nucleotides during 

replication by reverse transcription (80).  Propagation methods also lend to the diversity 

of badnavirus populations, as frequent exchange of plant material through grafting and 

cuttings is common in perennial plants, thus possibly introducing several isolates of a 

virus into one plant or plants in a growing region (26).  The genetic diversity of 

badnaviruses has been documented in banana (81), yams (82), sugarcane (83), and cacao 

(84), among other crop plants.  This phenomenon of genetically diverse viral populations 
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holds true for GVCV as well, with sequence variations defying phylogenetic grouping by 

location or grape variety (3). 

Transmission and symptomatology.  There are three main ways that 

badnaviruses are transmitted from plant to plant.  Vegetative propagation is the primary 

means for badnaviruses to spread among the propagated plant material, particularly in 

perennial woody plants such as grapevines (76).  Insect transmission, particularly via 

mealybugs and aphids, is the second most likely means of conveyance of any given 

badnavirus (77).  Finally, a very few badnaviruses are known to be vertically transmitted 

through the seeds or pollen of infected plants (78), and fewer yet may be mechanically 

transmitted (79).  For many badnaviruses however, the vector remains unknown (66), 

which is currently the case for GVCV.  

Symptoms attributed to badnaviruses include chlorotic mottling and streaking, 

necrotic streaks and spots, vein clearing, deformed leaves, reduced internode length, 

swollen shoots, overall stunting of the plant, and death of the infected plant (69)   The 

spectrum of symptoms caused by badnaviruses is diverse for many reasons.  Even though 

most badnavirus species have a limited host range, as a genus they do infect a large 

variety of plant families, thus symptoms vary according to the type of host plant (66).  

The host also has an influence on symptoms according to the level of resistance, 

tolerance or susceptibility that is genetically inherent in the plant (85).  Alternative causes 

of symptom variation are viral titer, or concentration in the host plant, along with the 

pathogenicity of the specific badnavirus species (86, 87).  Studies have shown that 

environmental factors, such as temperature and humidity, also influence symptoms 

caused by badnavirus infections.  Biotic and abiotic stresses may lend to the type and 
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severity of symptoms, along with the age of the infected plant (88).  Finally, symptoms 

have been shown to develop, disappear, and appear again over the life of the host, with 

new growth of the plant, or with the seasons (89). 
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MATERIALS AND METHODS 

 

Synopsis of Research Methods 

 The focal points of this study included determining whether GVCV is infecting 

wild plants outside of the Vitis genus in order to gain insight into the origin of the virus, 

aiding in understanding the range of the virus in native, non-domesticated plants, and 

conducting genomic comparisons between all known GVCV isolates, including the two 

obtained from A. cordata.  To achieve these research goals the work entailed extracting 

DNA from the A. cordata plants (referred to as AMP1P and AMP2P, while the viral 

isolates obtained are referred to as AMP1 and AMP2), using the widely available 

technique of polymerase chain reaction (PCR) to amplify specific fragments of the DNA, 

isolating and purifying the fragments in an agarose gel, cloning the fragments into 

competent bacterial cells allowing the E. coli to make many thousands of copies of the 

viral DNA, extracting the plasmid DNA from the bacteria and then capturing the 

nucleotide order by Sanger sequencing.  The primer-walking technique was then used to 

design primers to obtain any unknown portions of the viral sequences that could not be 

gained using previously designed GVCV specific primers.  Once the entire genomes were 

known, comparative analysis between the two newly discovered GVCV isolates in A. 

cordata and the three previously determined isolates, CHA, VRU1, and VRU2 was 

conducted using various bioinformatics software.  
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Collection and Preservation of Samples 

 The plant sample AMP1P was collected from Linn Creek, Missouri (Figure 1) on 

June 11, 2015 along with a V. rupestris sample (which tested negative for GVCV).  

While on a scouting trip to investigate viral symptoms in an Augusta, Missouri vineyard, 

a group from Missouri State University’s plant biotechnology laboratory stopped along 

creek beds to search for samples of native Vitis plants for lab testing to determine the 

status of GVCV in this part of Missouri.  The A. cordata was collected for the following 

reasons; mild visible symptoms associated with GVCV were noticed on some A. cordata 

plants, they are in the Vitaceae family as are cultivated and wild grapes, and A. cordata 

shares habitat with native grapes (90).   

The plant sample AMP2P was collected from Close Memorial Park in 

Springfield, Missouri (Figure 1) in the summer of 2014.  This sample was collected by 

Dr. Wenping Qiu, Missouri State University, for similar reasons as AMP1P; the mild, 

GVCV-like symptoms present on the vine leaves.  The plants were placed in a plastic bag 

with a moist paper towel, labeled, placed in a cooler with ice, and transported back to the 

lab.  Both plants were vegetatively propagated and clones of each are in the greenhouse at 

the MSU Fruit Experiment Station in Mountain Grove, Missouri.  Leaf samples of each 

were kept in the original plastic bag and placed in the 4°C freezer for no more than three 

days, at which time three 100 mg portions of leaf tissue from each plant (AMP1P and 

AMP2P) were weighed, wrapped in foil, labeled, and frozen in liquid nitrogen.  These 

were stored in a -80°C freezer. 
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Extraction and Visualization of DNA 

 Leaf samples were removed from the freezer and immediately placed in liquid 

nitrogen.  Using a mortar and pestle, the samples were ground to a fine powder constantly 

exposed to liquid nitrogen.  Using Qiagen DNeasy© Plant Mini Kit, DNA was extracted 

from the powdered leaf samples following Qiagen protocol and eluted in 15 µL of 

autoclaved distilled water.  DNA was quantified using the Thermo Scientific NanoDrop 

2000 spectrophotometer and the quality was assessed by sample absorbance at 260/280 

nm.  The minimum acceptable concentration was 10 ng/µL, and all samples were diluted 

to this concentration prior to polymerase chain reaction (PCR). 

 The initial assay to detect the presence of GVCV in the Ampelopsis DNA 

samples was conducted using the primer set designed specifically for the GVCV genome 

to generate an 835 bp amplicon.  The primers are defined as follows:  1101 F (5’-

CTGAAAGGTAGATCTCCACG-3’) and 1935R (5’-TCGGTGTAGCACTTCTATTCT-

3’).  To ensure the presence of quality DNA from the plant samples 16S ribosomal RNA 

gene primers were included with an expected amplicon size of 105 bp.  The 16S primers 

used are as follows:  forward primer (5’-TGCTTAACACATGCAAGTCGGA-3’) and 

reverse primer (5’-AGCCGTTTCCAGCTGTTGTTC-3’).  The PCR master mix 

consisted of all necessary reagents shown in Table 1 in the noted concentrations, 

excluding the DNA, which is independently added to each PCR tube.  Reactions were 

placed in a Verti 96 Well thermocycler with the program parameters shown in Table 2.  

 After completion of the above settings in the thermocycler 10 µL of each sample 

were loaded into a GelRed stained 1% agarose gel and subjected to electrophoresis at 100 

volts in a 1X Tris-Borate EDTA buffer for 30 minutes.  The gel was viewed under UV 
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light to assess bands and an image of the gel was saved.  Because the bands for 16S and 

the 835 bp amplicon specific to GVCV were detected in this initial assay, the procedure 

to capture and sequence the entire genome of each putative GVCV isolate in both 

AMP1P and AMP2P samples was implemented. 

 

Generation of Overlapping Fragments by PCR 

 The known sequence of the reference genome, GVCV-CHA, was used to design 

primers for acquiring the unknown sequences of the GVCV isolates in AMP1P and 

AMP2P.  Dividing the reference sequence of 7,753 bp into three overlapping fragments 

of roughly 3000 bp each, three sets of primers were designed and used in PCR to amplify 

each of these fragments.  Specific primers and fragment sizes are shown in Figure 2.  The 

primers shown in Figure 2 are named according to their numerical position on the 

GVCV-CHA reference genome which begins with 1 at the transfer RNA (tRNA) binding 

site.   

 Using the primers shown in Figure 2, three large fragments of the previously 

detected viral genomes were amplified with PCR.  Because of the length of the fragments 

and the downstream applications of cloning and sequencing the DNA amplified, 

Platinum® Taq DNA Polymerase, High Fidelity was used.  This polymerase possesses 3’ 

to 5’ proofreading capability to ensure a more accurate transcription of longer stretches of 

nucleotides.  Master mix for the High-Fidelity polymerase reaction is recorded in Table 3 

and thermocycler settings are shown in Table 4.  The forward and reverse primers used 

were different for each of the three fragments so they are simply represented in Table 3 as 

F and R respectively but a detailed definition of each can be found in Table 5 using their 
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numerical names as shown in Figure 2.  Thermocycler settings (Table 4) were also varied 

from the initial assay because of the increased length of the amplicons and to 

accommodate the optimal temperature for the High-Fidelity polymerase.  

  

Purification and Isolation of GVCV Fragments 

 Once the large fragments had been amplified using PCR, 15 µL of each reaction 

were mixed with 5 µL of loading dye and loaded into a 1% agarose gel that had been 

stained with GelRed nucleic acid stain.  Electrophoresis was carried out at 100 volts for 

40 minutes in a 1X Tris-Borate EDTA buffer.  Electrophoresis was used, not only to 

verify the correct fragments had been amplified, but also to isolate the desired fragments 

of viral DNA (91).  The large fragments migrating to the correct location on the gel in 

comparison with the DNA ladder ensures that only the DNA of the correct size is present.  

The gel was placed under UV light so that the DNA was visible and then the fragments to 

be purified were cut from the gel and placed in tubes for separation from the agarose.  For 

this purpose the Qiagen MinElute© Gel Extraction kit was used in accordance with 

Qiagen protocol.  The pure DNA was eluted in 15 µl of autoclaved distilled water and 

then concentration was measured using the NanoDrop spectrophotometer.  

 

Cloning the Three Overlapping Fragments 

 

 Recombinant, or chimeric DNA was pioneered by scientists in the 1960s and 

made a mature appearance in lab processes with the work of Cohen and Chang in the 

1970s (92).  The technique allowed combination of the purified viral DNA of the three 

overlapping fragments with a predesigned vector, which together formed a recombinant 
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plasmid.  The 2817 bp predesigned vector included three important features for this 

research; a spectinomycin resistance gene, GW1 and GW2 priming sites that flanked the 

inserted viral DNA, and a TOPO® cloning site.  Following the protocol of Invitrogen’s 

pCR®8/GW/TOPO® TA Cloning Kit, the viral DNA was inserted into the vector with 

ease due to the complementarity of Taq polymerase-amplified PCR product (ends with 

nucleotides AA) and the TOPO® cloning site (with overhanging TT nucleotides).   The 

recombinant DNA was then transformed into competent One Shot® TOP 10 E. coli 

bacteria by the heat shock method.   

 The transformed E. coli were plated on sterile Luria-Bertani (LB) agar plates that 

contained 100 µg/m of spectinomycin and encouraged to form colonies by being placed 

in a 37°C incubator.  Two plates were inoculated for each fragment, one with 90 µl of the 

transformation and one with 40 µl.  The inclusion of spectinomycin in the growing 

medium for the transformed bacteria was complementary to the spectinomycin resistance 

gene engineered into the pCR®8/GW/TOPO® vector, as this allowed only bacteria 

containing the recombinant plasmid to grow on the plates.  Because plasmids replicate 

autonomously as bacteria replicate, many thousands of copies of the recombinant plasmid 

were made over the 18 hours of incubation.   

 After incubation, three clearly defined colonies were chosen that represented each 

plasmid created from one viral DNA fragment plus the predesigned vector.  Colony PCR 

and visualization on agarose gel was performed to verify the presence of the inserted 

DNA fragments in the recombinant plasmids.  This was achieved using the initial primers 

that had been employed in amplifying the viral DNA shown in Figure 2.  Each of these 

confirmed colonies were placed in a 15 ml tube with 5 ml LB broth and 100 µg/ml of 
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spectinomycin, again to ensure the growth of only transformed bacteria.  The tubes were 

placed in an incubator at 37°C with shaking at 260 rpm for a period of 14 hours.  As the 

bacteria replicated, so did the inserted plasmid, manufacturing thousands of clones of the 

recombinant DNA.   

 Following the final incubation period, plasmid DNA was purified from 3 ml of 

the 5 ml solution.  The rationale in not using the entire 5 ml was to save verified plasmid-

containing bacteria as an inoculant for subsequent replication if necessary and to reserve 

for long term storage the bacteria containing the DNA fragments of interest.    For 

purification of molecular biology grade DNA from the plasmids, Qiagen’s QIAprep® 

Spin Miniprep Kit was used according to the protocol, except 50 µl of autoclaved 

distilled water was the elution medium as opposed to 50 µl of Buffer EB.   

 

Sequencing the Genomes 

 Once the bacteria contained the fragments of interest and the plasmid DNA had 

been extracted from the bacteria, the DNA samples were sent for sequencing.  The 

samples were sent to Nevada Genomics Center, University of Nevada, Reno.  Sanger 

sequencing (93) was the chosen method of DNA sequencing because of its high 

reliability.  Protocol for sending samples to the Nevada Genomics center requires at least 

a 5 µl reaction in a labeled tube.  The reaction components for plasmids greater than 5000 

bp must include at least 250 ng of DNA along with 1 µl of 10 µM primer in each tube.  

Tubes were created for each fragment of interest with GW1 primer along with DNA, and 

tubes were created with each fragment of interest with GW2 primer included with DNA.  

As mentioned earlier, TOPO® vector contains GW1 and GW2 priming sites that flank 
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our inserted DNA allowing sequencing of only that portion of the plasmid.  This was the 

first step in the sequencing process, as typically only around 500 quality nucleotides are 

read from each sequencing event, and the fragments of interest were approximately 3000 

bp each.   

 After sequencing, Nevada Genomics Center reports the nucleotides read along 

with a chromatograph that includes a phred quality score for each nucleotide. Phred 

quality scores are defined as a property that is logarithmically related to the base-calling 

error probabilities, and was designed in large part for use in the Human Genome Project 

(94).  In this study, only nucleotides with a phred score equal to or greater than 20 were 

accepted.  A phred score of 20 indicates a probability of 99% that the base called is 

accurate.  After examining the sequenced nucleotides along with their corresponding 

phred quality scores in the CodonCode Aligner software package, that information was 

used to discriminate between reliable nucleotides to begin building contiguous sequences, 

and unreliable nucleotide regions that should be re-subjected to sequencing.  The GVCV-

CHA sequence was used as a reference in aligning the newly obtained sequence 

fragments.  This process was conducted for both AMP1 and AMP2 viral genomes.   

 

Primers and the Primer Walking Technique 

 Because DNA polymerase cannot begin transcribing de novo, a short stretch of 

oligonucleotides were used to “prime” the transcription process.  By designing a primer 

of complementary bases to the DNA desired, the primer will anneal to the targeted DNA 

and the polymerase will begin adding nucleotides to the primer.  Fortunately, many 

primers had already been designed that were specific to the viral genome, GVCV-CHA, 
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and many of these available primers were suitable for sequencing the AMP1 and AMP2 

isolates, as would be expected.  However, there were areas in the AMP isolates that were 

dissimilar enough from the reference genome that the primers designed for the reference 

genome did not anneal to the viral DNA found in the Ampelopsis plants.  Primers were 

designed for these stretches of DNA sequence that could not be accessed by the available 

primers.  Once a stretch of DNA was sequenced and the results were viewed, it was 

possible to design a primer toward the end of that sequence because those nucleotides 

were now known.  The new primer would then yield an additional 500 or so quality base 

reads.  In this way, little by little, unknown sequences of bases were revealed until the 

entire genome was represented with bases having phred quality scores of 20 or greater.   

 A detailed list of primers used in sequencing AMP1 and AMP2 may be found in 

Table 5 and 6, along with a table (Table 7) showing the previously designed GVCV-

specific primers that did not anneal to the viral DNA found in Ampelopsis.  Excluding 

GW1 and GW2; in total 24 primers were effectively used in sequencing AMP1, and 28 

primers were effectively used in sequencing AMP2.  GVCV-CHA primers that were not 

effective in sequencing the AMP genomes numbered seven in total.   

 

Sequence and Phylogenetic Analysis 

 Sequence analysis was conducted by examining all five GVCV genomes at the 

nucleotide level, and comparing open reading frames at both nucleotide and amino acid 

levels.  Identity percentages at both nucleotide and amino acid level were calculated 

using the EMBOSS Needle program.  The entire nucleotide sequence of each genome 
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was uploaded to ORF Finder (NCBI) to determine ORF lengths, and also to MOTIF 

(GenomeNet) to investigate protein motifs in the sequence. 

 Phylogenetics is a scientific method of grouping organisms based on evolutionary 

divergence.  The first modern phylogenetic tree is credited to Darwin (95), but with the 

advent of computer driven bioinformatics phylogenetic trees have become much more 

detail oriented and complex.  For comparison purposes an unrooted phylogenetic tree was 

constructed at the nucleotide level with the five genomes of GVCV isolates that have 

been sequenced. Each sequence was then converted to its amino acid equivalent by 

EMBOSS Transeq software.  Each isolate’s open reading frame II (ORF II) was 

compared at the amino acid level, and an unrooted tree was constructed using ClustalW.   

 

Designing Definitive Primers 

 It has been proposed that criteria for determining a new isolate of GVCV be based 

on the most variable region of the genome, ORF II.  Anything with a less than 90% 

identity at the nucleotide level to any other GVCV isolate’s ORF II would be considered 

a novel isolate of the virus (Qiu, unpublished).  To that end, all five known genomes were 

aligned in CodonCode Aligner to explore conserved areas common to all five that flank 

ORF II, so that universal primers could be designed to capture this area in potentially all 

viral isolates of GVCV.  This would allow this area to be quickly sequenced in order to 

determine if it were necessary to sequence the entire genome, or if this were an isolate 

that had already been described. 
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Local Survey of Vitaceae Species 

 During the spring of 2016, just as native Vitaceae plants were flowering, a 

localized survey was conducted to determine the status of Ampelopsis and Vitis plants in 

regard to GVCV infection.  Six areas in and around Springfield, MO (Figure 3 and Table 

8) were chosen and were documented by GPS coordinates as noted in Table 8.   A total of 

17 Ampelopsis and 15 Vitis samples were subjected to the protocol detailed above under 

the ‘Collection and Preservation of Samples’ and ‘Extraction and Visualization of DNA’ 

headings, except a triplex of primers was used for PCR.  The PCR assay used for the 

local survey included the 835 bp and 16S primers sets, and also a 442 bp primer set.  The 

former primer sets have already been defined, the latter consists of the GVCV specific 

primers 4363F (5’-ATCTGCTCAATTTCTGAAGGAGAAG-3’) and 4804R (5’-

GGAATGCATTGTGCTCGTAG-3’).  The components for the triplex master mix are 

listed in Table 9 and the thermocycler program for PCR on these samples is listed in 

Table 10.  It should be noted that primer 4804R is a primer listed in Table 7 as one that 

does not anneal to the AMP1 or AMP2-GVCV isolates.  This was intentional to include 

this primer in the assay, and the rationale will be discussed with the results. 

 After completion of PCR, 10 µl of each reaction were loaded into a 1% agarose 

gel that had been stained with GelRed and subjected to electrophoresis for 30 minutes in 

a 1X Tris-Borate EDTA buffer.  The gel was viewed under UV light with the GelDoc-It 

Imaging System. 
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RESULTS 

 

Symptoms on Two Accessions of Ampelopsis cordata 

 Symptoms associated with GVCV have been documented in both accessions of A. 

cordata that were the subjects of this thesis.  The plant sample referred to as AMP1P was 

collected from Linn Creek, MO and sample AMP2P was taken from Close Memorial 

Park in Springfield, MO (Figure 1).   

 The initial interest in pursuing the research was based on symptoms seen in 

Ampelopsis plants in their native habitat; such as mild vein clearing, chlorotic spots, 

necrosis of leaf tissue, and slight curling of leaf margins, all of which may indicate the 

presence of GVCV (2).  As shown in Figure 4, the vegetatively propagated clones of both 

plants used in this study exhibited mild to moderate GVCV associated symptoms.  These 

clones remain in the greenhouse at the Missouri State Fruit Experiment Station. 

 

Discovery of GVCV in A. cordata 

 The initial assay on the A. cordata DNA was a standard test for detection of 

GVCV, consisting of primers designed to yield an 835 bp amplicon if GVCV is present 

and a quality control band of 105 bp representing 16S ribosomal RNA.  The results 

indicated that GVCV was present in both AMP1P and AMP2P samples (Figure 5). 

 Further testing with GVCV specific primers was done to verify the initial results, 

and a 246 bp amplicon was shown to be present as well.  Because two PCR assays 

showed positive results, the decision was made to pursue obtaining the entire genome of 

the suspected viral isolate present in each A. cordata plant.  The strategy of using 
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overlapping fragments to determine an unknown nucleotide sequence is a traditional 

biotechnological method (96).  This technique serves more than one purpose.  For this 

research it not only ensured the entire genome was represented, it also ensured 

sequencing of only one isolate of GVCV by using three PCR reactions cloned by three 

discrete bacterial colonies.  The technique of using overlapping fragments based on the 

GVCV-CHA reference sequence was employed to divide the putative viral genomes into 

three pieces of approximately 3000 bp each.  Figure 6 shows three lanes of each of the 

three fragments found in AMP1P, and it was from this gel that the DNA was extracted, 

purified and cloned.  Because the GVCV isolates in the two A. cordata differed from the 

reference genome and each other, obtaining three fragments from AMP2 DNA proved to 

be more complicated.   

 Fragments 1 and 2 of AMP2 were acquired by the same methods as described 

above in Materials and Methods; however, to obtain Fragment 3 of AMP2 alternate 

primers had to be utilized because of the slightly differing sequences.  After two failed 

attempts to capture Fragment 3 of AMP2 with the previously designed primer set, two 

alternative primer sets were attempted that would yield a new Fragment 3 of a larger size.  

Both attempted alternate fragments performed well in PCR, gel visualization, and DNA 

purification from the gel.  The longer 3,877 bp fragment was chosen for cloning and 

sequencing.  The primers used to obtain this alternate Fragment 3 were 6004F (5’-

AGTCTGCCTGGAATCACCTC-3’) and 2128R (5’-TACCGTATCCTCTGGTGGTA-

3’), and the previously detailed High-Fidelity polymerase PCR protocol (Tables 3 and 4) 

was likewise used in obtaining this fragment for sequencing.  All fragments were cloned 
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and plasmid DNA was extracted and sent for Sanger sequencing as described in Materials 

and Methods. 

 

Sequencing and Sequence Analysis 

 Over a period of seven months, from initial purification of the AMP1 and AMP2 

DNA to generation of overlapping fragments, through cloning and sequencing, the two 

AMP viral isolate genomes were assembled in their entireties.  The entire nucleotide 

sequences may be seen in Appendix A (AMP1) and B (AMP2).  This marks the third and 

fourth GVCV isolates discovered in native, non-domesticated plants, and the first time 

GVCV has been found in a genus other than Vitis.  There are now five GVCV isolates 

that have been fully sequenced, including the GVCV-CHA reference genome, and 

comparisons have been made between the known sequences in Table 11. 

 Both AMP1 and AMP2 were found to have an ORFII that was less than 90% 

identical at the nucleotide level to the GVCV-CHA reference genome, demonstrating that 

they would both be considered novel isolates.  Table 12 shows the percent identity matrix 

for ORFII at the nucleotide and amino acid levels among all known GVCV isolates, 

while Figure 7 specifically demonstrates similarities and differences at each nucleotide 

location.  A full comparison of identity percentages of the five known isolates at the 

nucleotide level is presented in Table 13. 

  

Phylogenomic and Phylogenetic Analysis 

 Phylogenomic analysis has become essential in uncovering evolutionary 

relationships between organisms.  Multiple sequence analysis is the crucial first step in 
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phylogenomic comparisons (97).  Changes in DNA sequences over time help determine 

evolutionary rates and are the basis for building phylogenetic trees.  MUSCLE was used 

to align the nucleotide sequences of the five known GVCV genomes and the results were 

sent to ClustalW2 Phylogeny where an Unweighted Pair Group Method with Arithmetic 

Mean (UPGMA) tree (98) was built as can be seen in Figure 8A.  When the same process 

was used, but a neighbor joining tree was built, the results were slightly different as can 

be seen in Figure 8B.  By comparing the two methods of phylogenomic tree building it 

can be observed that AMP1 is considered its own clade when neighbor joining is used, 

but shares a more recent common ancestor with CHA when the UPGMA method is 

employed.  Two related badnaviruses, Gooseberry vein banding virus and Fig badnavirus 

were then included in the UPGMA tree and the results are shown in Figure 8C. 

 Phylogenetic relationships between the five available GVCV isolates were 

determined based on the most variable region, ORFII.  Both the nucleotide and amino 

acid levels were used to build phylogenetic trees and the results shown in Figures 8D and 

8E indicate that GVCV-CHA has evolved independently for a period of time in relation 

to the four GVCV isolates that infect wild Vitaceae. 

 

Definitive Primer Set Design 

 Because ORFII has been found to be the most variable region of the GVCV 

genome, it has been used to characterize isolates of the virus.  A universal primer set was 

needed that would flank ORFII, which is approximately 300 bp long, so that this region 

could be amplified and sequenced efficiently.  All known sequences of GVCV were 

compared in CodonCode Aligner and a set of primers was designed that would 
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potentially capture ORFII in all known isolates and improve efficiency in determining 

novel isolates of GVCV.  The primers designed for this purpose are as follows:  963F (5’-

TCCATCACAGATCTAACGGCA-3’) and 1634R (5’-CAAGGTAGCGGGCACGAG-

3’) and would yield an amplicon of approximately 672 bp from any given GVCV isolate.  

An initial test PCR was performed with the veriflex option to determine the optimal 

annealing temperature for the new primer set.  Results showed that 60°C was the best 

choice, and the subsequent PCR was programmed in the same way as the initial assay 

(Table 1 and 2), with the exception of an annealing temperature of 60°C instead of 55°C.  

The results presented in Figure 9 show that this primer set was effective for all GVCV 

isolates except VRU2. 

 

Local Vitaceae Survey 

 

 A sampling of Vitaceae in and around Springfield, Missouri was conducted in the 

spring of 2016 in six locations (Table 8).  A total of 30 Vitaceae samples, both Vitis and 

Ampelopsis, were randomly collected with no regard for visual assessment as 

“symptomatic” or “asymptomatic”.  DNA was extracted from the samples and subjected 

to PCR assays for detection of GVCV.  The results of the survey are shown in Table 14 

and indicate an incidence of GVCV infection in A. cordata of 29% in the Springfield 

area. 

 The primer triplex that was used to test these Vitaceae samples for the presence of 

GVCV included primer 4804R, which does not anneal to the two known GVCV-AMP 

isolates, therefore the 442 bp fragment is not seen on the gel image even if the A. cordata 

plant tests positive for the 835 bp fragment.  This set of primers can be used to 
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differentiate between GVCV isolates infecting vineyard grapes.  In Figure 10 two 

positive controls were used for the 835, 442, and 16S triplex; one is AMP1 and the other 

CHA.  By observation of the band, or lack thereof, at 442 bp an assumption may be made 

about the GVCV isolate infecting the plant.  If the band at 442 bp is present, the isolate 

would not be either AMP1 or AMP2 since the 442 bp primer set does not anneal to the 

sequences of either of these isolates. 
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DISCUSSION 

 

 The results show that A. cordata in Missouri is infected with GVCV (Figure 5).  

The genomes of two viral GVCV isolates were sequenced from A. cordata plants that 

were separated by 155 miles, and shared 89.1% identity at the nucleotide level (Table 

12), indicating that they are genetically divergent and that this plant as a GVCV host is 

not an issue focused solely near Springfield.  However, a survey of wild A. cordata plants 

in the Springfield area gives a glimpse into the prevalence of GVCV in native 

populations of the plant.  Approximately 30% (5 out of 17) of randomly sampled A. 

cordata plants in five locations tested positive for GVCV.   

 In every Missouri vineyard inspected this summer by scientists from the Center 

for Grapevine Biotechnology (Missouri State University) A. cordata has been found 

growing within 100 yards or less from the vineyard borders.  To be sure, this alone may 

not provide ample evidence that GVCV originally spread to cultivated grapes from native 

A. cordata, admittedly, the opposite scenario could be true.  The possibility exists that A. 

cordata plays only a subsidiary role and could be one of many hosts, though so far the 

only native plants that have been found to host GVCV are V. rupestris and A. cordata.  

However, several other clues must be considered.  To begin with, an edge effect has been 

observed with GVCV infected vineyards, virus infected vines are concentrated on the 

outer rows of plants, those closer to native plant populations.  Secondly, the known range 

of GVCV infection in cultivated grapes lies within the native range of A. cordata 

(Figures 11 and 12).  Thirdly, GVCV has been detected in native V. rupestris, a plant that 

not only shares the Vitaceae family with A. cordata, but shares habitat in an extremely 
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proximate manner.  Figure 13 shows one of many instances of the intertwined growth 

habit observed between Vitis and Ampelopsis.  Finally, the prevalence of GVCV in A. 

cordata in the localized survey, where cultivated grapes are much less common than in 

other Missouri regions, indicates that the probability for GVCV to have spread from 

vineyard grapes to native Vitaceae populations is lower than the probability for GVCV to 

have spread from wild plants to cultivated grapes. 

 Consider also surveys conducted for GVCV in other regions of the United States 

and globally.  In 2013, nine years after GVCV symptoms inspired research into the 

disease in Missouri, testing for a wide array of grapevine viruses, including GVCV, in 99 

samples of grapevines from the United States and Europe found no indication of GVCV 

in any of the samples (99).  This year a survey for GVCV in 384 Vitis germplasm 

samples was conducted in our Missouri State Plant Science laboratory.  These samples 

were generously provided to Missouri State University by Jason Londo from the National 

Plant Germplasm Collection in Geneva, NY.  The samples represented native and 

cultivated Vitis species from locations around the globe.  GVCV was not detected in any 

of these samples (Wenschel et al., unpublished).  These assays combined with the 

incidence of GVCV detected in the Midwest United States bolsters the plausibility of our 

hypothesis that GVCV is emergent in this region, the indigenous range of A. cordata and 

several wild Vitis species. 

Decades of previous research have solidified the model of viral emergence in 

cultivated plants.  Though viral emergence is extremely complex, the occurrence is 

simplified to three phases:  1) The virus that has been maintained in a plant population 

(typically the reservoir is a wild plant population) encounters the new host.  Preexisting 
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genetic variation of the virus and fitness of the host determine the outcome of the 

encounter (i.e., infection of the new host plant occurs, or not).  2) The virus adapts to the 

new host in such a way that transmission of the virus between individuals of the new host 

is possible without any further spillover from the reservoir.  3)  Epidemiology dynamics 

shift so that between-host transmissions in the new plant population are optimized (25, 

28, 30, 100).  It could be speculated that GVCV was transmitted to native Vitis species 

from A. cordata, adapted to native Vitis, made a facile transition to cultivated Vitis, and is 

now in the third phase of viral emergence. 

The detection and sequencing of two GVCV isolates in A. cordata provides new 

and salient information on the genetic changes in the viral populations among native 

plants in two host genera of Vitaceae.  Of particularly notable interest is the high 

variability of ORF II, in part due to the 9 bp insertion/deletion.  Based on phylogenetic 

trees constructed using both the nucleotide and amino acid sequences of ORF II of all 

five GVCV genomes (Figure 8D and 8E), it is clear that the four isolates found in native 

plants are more closely related to each other than they are to GVCV-CHA, which infects 

grape cultivars in commercial vineyards.  Phase 2 of the above model of viral emergence 

states that there are genetic changes in a virus as it adapts to a new host, changes that 

scientists can now map through sequencing.  The sequencing of two isolates of GVCV 

found in a different plant genus provides the data for beginning to map these genetic 

changes and track the evolution of the virus.  A. cordata DNA samples which tested 

positive for GVCV in the localized survey may now be used, along with the designed 

definitive primers for ORF II, for sequencing of this variable region so that comparisons 

may be made and inferences drawn based on genetic variations.  This, along with 
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comparisons of homologous sequences of ORF II in cultivated grapes, should reveal 

much about the origin and evolution of GVCV.  

 Implications of this study also include vineyard pest and disease management 

practices.  One of the most sustainable approaches for management of GVCV-associated 

disease is selection and deployment of host plant resistance.  In light of the mild 

symptoms present on infected A. cordata, perhaps future work could uncover the genetic 

source of tolerance/resistance these plants possess for transfer to cultivated grapes.  A. 

cordata is, at the least, a host plant or reservoir for GVCV, and possibly the source of the 

virus’s spillover into vineyard grapes.  Either way, consideration should be taken when 

selecting and planning a new vineyard site as to the native population of A. cordata and 

V. rupestris.  Proximity and density of these wild plant populations should be taken into 

account.  One pressing issue for effective management of GVCV is discovery of the 

transmission vector(s).  There is now an additional plant to observe in situ as to which 

insects feed on this native host as well as cultivated grape hosts.   

Grapevines are transported and traded at a global level.  Since this is the case, it 

would behoove any distributor of stock from a GVCV infected region to create protocol 

for the detection of GVCV before sending out plant material.  Standard tests for virus-

free vines, especially in the Midwest, should include detection of GVCV to ensure that 

nurseries are not distributing the virus with grapevine sales.  The virus appears to be 

endemic to the Midwest United States and necessary precautions should be taken to 

minimize the loss caused locally and to keep it from spreading to unaffected areas. 

The economic impact of GVCV on grape production has not yet been quantified, 

but a comprehensive survey of vineyard damage in Missouri, and eventually in the 
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Midwest, would be an important step in assessing the severity of GVCV associated 

disease.  Vineyard managers could be requested to supply number of vines infected and 

number of vines lost each year, while researchers might assess fruit set reduction, sugar 

concentration shifts, photosynthetic effects of the viral disease, etc.   A quantitative study 

of profit loss for the grape industry that is attributable to GVCV could encourage urgency 

in research and funding.  Most importantly, containing the spread of the virus to protect 

other major viticulture regions throughout the world should be the motivation of future 

research and education.      

From a broad perspective, the addition of two more badnavirus genome sequences 

to GenBank will hopefully serve all involved in research and exploration of the 

Caulimoviridae family of plant viruses by contributing more information on the genetic 

nature of this family of viruses infecting wild and cultivated Vitaceae plants. 
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Table 1.  PCR master mix components for initial assay. 

Reagent Concentration 

Autoclaved dH2O To 25 µl 

5X buffer 1X 

1101F primer 0.3 µM 

1835R primer 0.3 µM 

16SF primer 0.08 µM 

16SR primer 0.08 µM 

dNTPs 0.2 mM 

Taq polymerase 1.25 units 

DNA 0.4 ng/µl 

 

 

Table 2.  Thermocycler PCR program for initial assay. 

Step Cycle Temperature Time 

Initial denaturing 1 94°C 1 minute 

Denaturing 35 94°C 30 seconds 

Annealing 35 55°C 30 seconds 

Extension 35 72°C 1 minute 

Final extension 1 72°C 10 minutes 
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Table 3.  High-Fidelity PCR master mix components. 

Reagent Concentration 

Autoclaved dH2O To 25 µl 

10X hifi buffer 1X 

F primer 0.2 µM 

R primer 0.2 µM 

50mM MgSO4 2 mM 

dNTPs 0.2 mM 

High-Fidelity polymerase 1 unit 

DNA 0.4 ng/µl 

 

 

Table 4.  Thermocycler PCR program for high-fidelity polymerase.  

Step Cycle Temperature Time 

Initial denaturing 1 94°C 2 minutes 

Denaturing 35 94°C 30 seconds 

Annealing 35 55°C 40 seconds 

Extension 35 68°C 4 minutes 

Final extension 1 68°C 10 minutes 
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Table 5.  Primers used in sequencing AMP1 (excluding GW1 and GW2). 

Primer Sequence 5’ to 3’ Tm °C Location 

1101F CTGAAAGGTAGATGTCCACG 60.4  

 

 

Fragment 1 

988-4,387 

 

 

 

 

 

Fragment 2 

4,142-6,795 

 

 

 

 

Fragment 3 

6,666-1,935 

1869F TGGTACGAGAAGGTATGCAGC 62.6 

1915F AGAATACAAGTGCTACACCGA 62.4 

2112R1 GCAGGTGGTGGTAGAAATCAT 60.6 

2128R TACCGTATCCTCTGGTGGTA 60.4 

2507R TTCGAAGGTTCCAACTAGGGC 62.6 

2569F1 CGGAGGAGAATGGCTGGGTAA 64.5 

3122R GCTAAAACTTTCGAGCTAAC 56.3 

3163F AGGGTAAAAACTGCGACGGCTA 62.7 

3468F ATCCTCCCTCCTGAAGTAGC 62.4 

3615R TTCTCTTTCCCTTGGTCC 57.6 

   

4363F ATCTGCTCAATTTCTGAAGGAGAAG 61.3 

4632F ACTATACTAGGTCGACGTGC 60.4 

4828F AAACAGGAACTCCAAGCTGC 60.4 

5405F CAGCCTTCGAAATGAACATGC 60.6 

6004F AGTCTGCCTGGAATCACCTC 62.4 

6158R GCCATTCATATAGTCCTGCG 60.4 

6407F GAAATAGCAGAGTGAGTCTG 58.4 

6690R GATAACTGCGTGGGGTGGAG 64.5 

   

7635F CCAGTTCCAGTTCCAGTGTTCTTAATGC 66.1 

217R TCTCACAACGGGCTACTACC 62.4 

1179R GCCACGTGGACATCTACCTT 62.4 

1615R GTATTCGTTGCTCCGCAAG 60.2 

1827R CTGCCGGTCTATGACATGGG 64.5 

1 Primer designed specifically for AMP genomes. 
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Table 6.  Primers used in sequencing AMP2 (excluding GW1 and GW2). 

Primer Sequence 5’ to 3’ Tm °C Location 

988F ACCTAAGCCGATTGAAGCAG 60.4  

1101F CTGAAAGGTAGATGTCCACG 60.4 Fragment 1 

988-4,387 

 

 

 

 

 

 

Fragment 2 

4,142-6,795 

 

 

 

 

Fragment 3 

6,004-2,128 

1869F TGGTACGAGAAGGTATGCAGC 62.6 

2109F TACCACCAGAGGATACGGTA 60.4 

2112R1 GCAGGTGGTGGTAGAAATCAT 60.6 

2460F AGACACAGGAGAAAGGGTAACT 60.8 

2569F1 CGGAGGAGAATGGCTGGGTAA 64.5 

2589R TCCTTCCACATGTTTCACCC 60.4 

3163F AGGGTAAAAACTGCGACGGCTA 62.7 

3468F ATCCTCCCTCCTGAAGTAGC 62.4 

4162R CATGAGAGTCATGAGGTTTAC 60.8 

4387R CTTCTCCTTCAGAAATTGAGCAGAT 61.3 

4363F ATCTGCTCAATTTCTGAAGGAGAAG 61.3 

4632F ACTATACTAGGTCGACGTGC 60.4 

4828F AAACAGGAACTCCAAGCTGC 60.4 

5117F CGTATACTGAAATGCCTCG 58.0 

5558R GCTATCTTTTGAGGTTCCAGGG 62.7 

5755F GATATCACCATTGAGGCAAAGC 60.8 

5880R GGACCTATGTCTGCTCTTGC 62.4 

6158R GCCATTCATATAGTCCTGCG 60.4 

6690R GATAACTGCGTGGGGTGGAG 64.5 

6004F AGTCTGCCTGGAATCACCTC 62.4 

6606F GATAACTGCGTGGGGTGGAG 55.1 

81F AATCGTGTAGGGAATCGTTA 56.3 

217R TCTCACAACGGGCTACTACC 62.4 

697F GCTGCTGAATACACTGTACG 60.4 

1535R GCACGAGGCAACTCAGTGGTCT 66.4 

2128R TACCGTATCCTCTGGTGGTA 60.4  

1 Primer designed specifically for AMP genomes  
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Table 7.  Primers designed for GVCV-CHA that did not work for GVCV-AMP1 and 

GVCV-AMP2. 

Primer Sequence 5’ to 3’ Tm °C Location 

697F1 GCTGCTGAATACACTGTACG 60.4 Fragment 3 

922R TGACTGATTAGCCTTGAT 53.7 Fragment 3 

1915F2 AGAATACAAGTGCTACACCGA 58.7 Fragment 1 

3074R GCTGGTAGTGTCGAAGATAGG 62.6 Fragment 1 

3615R TTCTCTTTCCCTTGGTCC 57.6 Fragment 1 

4804R GGAATGCATTGTGCTCGTAG 60.4 Fragment 2 

7068F AAGGCTTGCCCAGAATGT 57.6 Fragment 3 

1 Primer did not anneal to AMP1 
2 Primer did not anneal to AMP2 
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Table 8.  Geographic locations of Vitaceae plants in a local survey. 

Map Number Plant Samples Location Latitude  Longitude  

1 6 Ampelopsis 

4 Vitis 

Sunset and 

Kansas 

 

37°10’4” 93°19’3” 

2 2 Ampelopsis 

3 Vitis 

 

Close 

Memorial Park 

37°10’13” 93°19’31” 

3 2 Ampelopsis 

3 Vitis 

Confluence of 

Wilson and 

South Creeks 

 

37°8’54” 93°22’15” 

4 5 Ampelopsis 

3 Vitis 

Lake 

Springfield 

Park 

 

37°6’52” 93°15’50” 

5 1 Ampelopsis 

1 Vitis 

Ritter Springs 

Park 

 

37°16’50” 93°20’36” 

6 1 Ampelopsis 

1 Vitis 

 

Dr. Qiu’s yard   

 

 

  



55 

Table 9.  PCR master mix components for local Vitaceae survey. 

Reagent Concentration 

Autoclaved dH2O To 25 µl 

5X buffer 1X 

1101F primer 0.4 µM 

1835R primer 0.4 µM 

4363F primer 0.24 µM 

4804R primer 0.24 µM 

16SF primer 0.14 µM 

16SR primer 0.14 µM 

dNTPs 0.28 mM 

Taq polymerase 1.25 units 

DNA 0.4 ng/µl 

  

 

Table 10.  Thermocycler PCR program for local Vitaceae survey. 

Cycle Repetitions Temperature Time 

Initial denaturing 1 94°C 1 minute 

Denaturing 35 94°C 30 seconds 

Annealing 35 55°C 30 seconds 

Extension 35 72°C 1 minute 

Final extension 1 72°C 10 minutes 
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Table 11.  Comparative analysis of genome and regional lengths in five GVCV isolates. 

GVCV 

isolate 

Genome 

length in 

nucleotides 

(nt) 

 

IGR ORFI ORFII ORFIII 

CHA 7,753 nt 7,321-7,753; 1-484 

917 nt 

 

485-1,111 

627 nt 

1,112-1,495 

384 nt 

1,495-7,320 

5,826 nt 

VRU1 7,755 nt 7,332-7,755; 1-483 

907 nt 

 

484-1,110 

627 nt 

1,111-1,503 

393 nt 

1,503-7,331 

5,829 nt 

VRU2 7,726 nt 7,317-7,726; 1-474 

884 nt 

 

475-1,104 

630 nt 

1,105-1,488 

384 nt 

1,488-7,316 

5,829 nt 

AMP1 7,749 nt 7,336-7,749; 1-481 

895 nt 

 

482-1,108 

627 nt 

1,109-1,501 

393 nt 

1,501-7,335 

5,835 nt 

AMP2 7,765 nt 7,341-7,765; 1-486 

911 nt 

 

487-1,116 

630 nt 

1,117-1,509 

393 nt 

1,509-7,340 

5,832 nt 
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Table 12.  Percent Identity matrix of five GVCV isolates’ ORF II.  Italicized numbers 

represent amino acid level, and non-italicized numbers represent nucleotide level. 

 CHA VRU1 VRU2 AMP1 AMP2 

CHA 100 85.5 93.0 88.5 90.8 

VRU1 83.0 100 90.8 92.4 93.9 

VRU2 88.1 88.3 100 91.6 90.8 

AMP1 83.2 88.5 89.3 100 93.9 

AMP2 88.0 92.9 88.0 89.1 100 
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Table 13.  Percent identity matrix of five GVCV genomes at the nucleotide level. 

 CHA VRU1 VRU2 AMP1 AMP2 

CHA 100 91.6 91.7 92.3 92.8 

VRU1 91.6 100 93.2 91.9 92.2 

VRU2 91.7 93.2 100 91.8 91.6 

AMP1 92.3 91.9 91.8 100 92.4 

AMP2 92.8 92.2 91.6 92.4 100 
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Table 14.  Results of local Vitaceae Survey. 

Map Number Location Genus Results 

1 Sunset and Kansas 6 Ampelopsis 

4 Vitis 

 

1 positive, 5 negative 

4 negative 

2 Close Memorial Park 2 Ampelopsis 

3 Vitis 

1 positive, 1 negative 

3 negative 

 

3 Confluence of Wilson 

and South Creeks 

2 Ampelopsis 

3 Vitis 

1 positive, 1 negative 

3 negative 

 

4 Lake Springfield Park 5 Ampelopsis 

3 Vitis 

5 negative 

3 negative 

 

5 Ritter Springs Park 1 Ampelopsis 

1 Vitis 

1 positive 

1 negative 

 

6 Dr. Qiu’s yard 1 Ampelopsis 

1 Vitis 

1 positive 

1 positive 
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Figure 1.  Mapped locations of two A. cordata accessions used in this research, AMP1P 

and AMP2P, native wild plants that were collected and tested for the presence of GVCV. 

  

AMP1P 

AMP2P

P 
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Figure 2.  Genome map of overlapping fragments.  Locations of three sets of primers that 

were used in PCR for acquiring the unknown AMP viral genomes.  Fragment 1 ≈3,400 

bp.  Fragment 2 ≈2,654 bp.  Fragment 3 ≈3,023 bp. 
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Figure 3.  Six locations of local Vitaceae survey.  1; Sunset and Kansas, 2; Close 

Memorial Park, 3; Confluence of Wilson and South Creeks, 4; Lake Springfield Park, 5; 

Ritter Springs Park, 6; Dr. Qiu’s yard. 
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Figure 4.  GVCV associated symptoms in two A. cordata accessions.  (A)  

AMP1Pexhibiting mild vein clearing and chlorotic spots associated with GVCV.  (B) 

AMP2P exhibiting moderate GVCV associated symptoms.  Chlorotic and necrotic spots, 

along with slight leaf curling are present. 

  

A 

B 
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              L               1       2                3               4 

 
Figure 5.  Initial GVCV assay results of A. cordata. Lanes 1; AMP1, 2; AMP2, 3; 

positive control, 4; negative control. The size is indicated to the right of the ladder. 
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    L    1-3     4           5-7     8         9-11    12 

Figure 6.  AMP1 DNA separated on an agarose gel.  Lanes 1-3; Fragment 1, 4; positive 

control, 5-7; Fragment 2, 8; positive control, 9-11; Fragment 3, 12; positive control.  The 

size is indicated to the right of each positive control. 
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Figure 7.  CLUSTAL multiple sequence alignment by MUSCLE showing all five GVCV 

isolate’s ORFII.  The (*) denotes all sequences are identical at this position. 
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Figure 8.  Phylogenetic trees of five GVCV isolates.  (A) UPGMA rooted tree built with 

ClustalW2 from the five available GVCV nucleotide sequences.  (B) Neighbor joining 

tree built with ClustalW2 from the five available GVCV nucleotide sequences.  (C) 

UPGMA rooted tree built with ClustalW2 showing the five GVCV isolates in relation to 

two other badnaviruses.  (D) UPGMA rooted tree built on the nucleotide sequences of 

ORFII in all five GVCV genomes.  (E) UPGMA rooted tree built on the amino acid 

sequences of ORFII in all five GVCV genomes. 

 

 

 

  

A 

B 
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   L        1       2       3       4      5        6       7 

 
Figure 9.  Agarose gel image of DNA fragments acquired in PCR using a primer set to 

isolate all of ORF II in five known GVCV isolates.  Lane 1; CHA, 2; VRU1, 3; VRU2, 4; 

AMP1, 5; AMP2, 6; positive control, 7; negative control.  The size is indicated to the 

right of positive control. 
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    L   1 2 3                                        17  18  19  20 

 
Figure 10.  Agarose gel image of a portion of local Vitaceae survey results on 2 Vitis and 

15 Ampelopsis samples.  Lanes 1 and 2; Vitis, 3-17; Ampelopsis, 18; AMP1 positive 

control, 19; CHA positive control, 20; negative control.  The size is indicated to the right 

of GVCV-CHA positive control. 
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Figure 11.  Present known range of GVCV in cultivated grapes. 
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Figure 12.  USDA, NRCS map of native range of A. cordata in the United States. 
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Figure 13.  Ampelopsis and Vitis sharing habitat. 
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APPENDICES 

 

Appendix A.  Nucleotide Sequence of GVCV-AMP1 Genome in FASTA Format 

 

>AMP1 

TGGTATCAGAGCAAGTTTCAAATCTGGGAATTTCTACAATTATTCCTTCAAGA

TTATGATGAGGAACTAACTCTCATAATCGTGTAGGGAATCGTTAGTAGGATCT

CAGAACAAGGTTCTTATCCCCTCAGACTACTGATTCTGGTATATAGGCTGGAA

ACACGACACTGTTACGATCCCACTTCTGTTGGAGTGGTAGTAGCCCGTTGTGA

GACAACGCCACGTACCATTTTCAGTCCTCCTAGCCCAAATCCCCATGAACAG

AACTCCCACAGTCAATAAGCTTCAACAGGATCCCTAGCCCAACAATACTGAA

AGTCCTAGGACAGGCTGCGACGCGAAGTATCACTAGTTCAGGCGATGCTGTT

CCGCCGACTATTTGTGAGAAAACTGCAGTAGGAGAGGACGGACAACTATTCA

AGGGAACGGAACCTGGAGACACTGGCCGAGTTCTTAGTAAGCGGTTCAAGGA

AGGAGACTGATGCAAAATATAGAACAACAACAGTTTGAGGCGGAGATAGAA

TCTTGGGAGAGATCTGAACGCACACCCCTACACGGTTACCGTGATCTTGTGG

AATACCCCCGTTACGAAAGGAACCAGCACTTCCCATCTGCAAAGTTCCCCTG

TTACCACTTTGTTGCTGAGAAAGACAACGTTCACGCCACTTACACTAAGGGA

GATAGAATCCCTCAGTTGCTAAATACACTGTACGACCTACAGGTCAACCAGT

GTCACAACCAGGCAGTGATCTACGATCGGATCCAACTCCTTTCGAGGTATAC

GGTCCGAAAGGATAAGCCTTTACCGGCTATCCCTGAGGAATCTGTCCTCAAA

GAGCCAGAAGAAAGCTCAACTGAGCTTAAGCACCAGATCGAGCTCCTTCGAG

CAGATCTAAGGGAAATCAAGGCCAACCAGTCAGGTCTTCGCCTTGCCATCTC

TGAGATCCGTGACTCCATCACAGATCTAACGGCAAGAGAATCGGCACCCAAG

CCGATTGAAGCAGAGACAGCCTACCTGACCGCCCAGCTGAAGGTCCAGGTTC

AGGAGATCAAAACAGCTTTAGCAGAGATTAAAACCTTTGCCAGATCCCTGGT

CCCTGAAAGGTAGATGTCCACGTGGCAAATTGCTGCTGCCACAGAAGAATAC

AAGAAAGCCATAGAAGCAACTAAAACCCTCACTAAAGACGAAAGAGCAGTT

GGCTTCGTCAAGCCCCACGAGTTCGAACCAAACTACAGCGACACCAACATCC

AAAGGCAAAACAATACCTTGATCCACCTATTGATCCAAAATCTTGAGGAAAT

CAAAGAGCTCCGTGCTCAGGTCCAGACCCTCAACGATCGAATTGTGGCCTTA

GAAAAAGGGAAGTCCAAAGCGACCCCTGTCACTCTTCCTGACAACGTGGTAG

AACAGATCTCCACTCAATTAAAGGAAGCAAAGTTCGGAACTCAGAAAGAAG

GCTCAGTAAAAGGGACAAAAGGCACTTTCCGGGTCTGGAAGTGATGTCTCGG

TCCAGAACTCAGACCACTGAGTTGCCTCGCGCAACCAGGAGATCCACTAGCC

CAGTTGAGAGGCTAGATGATCAGATCCGCGGTTACCGGCGGATGGCTCGTGC

CCGCTACCTTGCGGAGCAACGGATACGTAGGTCCTTCTCAAGGAACTACAGG

GAAACTCTGGAAAGACGCCTAGATCCAGAGGCAGAATTGCAGCTCAGTCGAA

GACGAAGAGCTAACCTAGTACCAGCAGAAGTACTATACTCCCTCAACTACAA

TGAACCCCAGAATAGGGTTTATCAACACTATGAAGAGGTGAGATCCCACGTC

ATAGACCGGCAGCAAGATTTCCGGTTTATTGAAGAACAGTCCTACCGCACCC

TGGTGCAAGAAGGCATGCAGCATATCCACCCTGGAATGCTGATGGTAAGAAT

ACAGATGCTACACCGAGTAGACGCAGGAATCAGTGCCATGATCGTGTTCCGA

GACACGAGGTGGAATGATGAAAGGCAAATCATCAGTGCTATGACTGTAGATA
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TGGCCAGAGGCGCACAGCTGGTCTACGCAATCCCAGATCTCATGATGTCAAT

TCATGATTTCTACCACCACCTGCAAGTCAGCATCACCACTAGAGGATACGGT

ACCGGTTGGGCAGGAGGAGAAAGTAACCTCATAGTAACTCGGTCACTCACCG

GAAGAATCACCAATACTAGTCAAGCCAACTTCAATTATCAGATTGAAGGAGT

AGCTGACTACCTGGCGAGCCATGGCGTGCAGAGTATACCAGGACAGCCATGG

AGAGACATAAACCAGGAAGGTTCCTGGAACCTAAGGCCTTCGTCAATACAGG

CCCCTACTCAGGTCCCTACAGGTCTTGTCTCAAGACAGACTGCCACCGGCAAT

ATAAGCCTAAGGTTCACTAGTTTTCAGGACCAGGTCCAGACTGTTGATACAGa

AGAAGAAGCAGGGACTACTGACACAGAAAGGGTAACTCACTATGCCCTTGTT

GGAACCTTCGAATGGTTGGAGGAATGTCCTTCATATCAACAAAGAAGGAGTC

AAGAAACGGAGGAGAATGGCTGGGTAAACCATGTGGAAGGAGATAAGGGGT

TCAACTTCAAAGTCCGCATGACCCCTCCAGCATGGAGCCATAATCCGCAGCC

TATTACGGCTACAGGATGGGGAGATGATTTTGATGACTCTCCACCACCTCCTA

AACCTCCTAAGACTGAAGAGGAGGAAATACTGGAATTATACCCAGTAAGAA

GACAACCCGATCCAGTACAGATAGCAAGGAAAGAAAAGGCAGTAGTTTTCTC

TCAAGCTGTCAACGATATCTTTGAGCAAGAAGGGAAGGGTGTCTCTAGAATG

CAACCATCAGGGGAAGCCCCTGACTCAGATCCAGATAGCCCAGTCTGGAAGA

TAAAGAAAAGCCCATATCCGCAACAACCTCTAAAGCTGAAGGATGAGAAGG

GTAAAAGTCCTTTTGAGGACTTAGAGCTGAAACAAGACCTAGTTCAAAGCTG

GATAGCTCAACTAGGAAGTGGCTCAGGAAGCAGAACGGAGAAACCAGTCTT

CGATACCACTAGCAGCGACTCAGATTCTGATTTATCTGATGTCAGCTCAAAAG

TACTAGCCTACGCTGGAGTTGAAGAAGCGGTAATGGAATACCCAAGAAGGGT

AAAAACTGCGACGGCTAAGCTAGCAGACATGGAAAAGGCTTTTGCCGGAGA

AACAACTGCAGCAGTGGGAGGAGACTCGGAGATGACGACTGGTCAGTCTTCC

AGATCTACCCTCATACCACCAAATGAAGGAGGAGGACCTATACGGTACCCAC

CAGCAGAAAGACCGTCCACATCGGCCTCTACGTATAACGCCACAGCCCCACC

TCTTTTTGAAGGGACTGTTAGGCCTGGAAGATATGGTCGCCCCCTGGCACCAT

GGTCTCTGCCATCAGCACAGCACTCCCAAGGAGCTTTGCTGATCCTCCCTCCT

GAAGTAGCAAGTCACGCTGACGCCATCACTACATGGGAAACAATCACCCTAA

ATCATTTGATGAATATATCATTTGATTCCCTCCAAGATAGGGTTGATTACATT

GAAAACCTCCTTGGACCAAGAGAAAGAGAAGCTTGGGTCACTTGGAGAATG

GCGTATGATACGGAGTACAGACAGCTGGTCGAGCTCTCTGGAGAACCAAGAA

ATGTGACCAGCACCATTAAAAGAGTTCTAGGGATTAATGACCCCTATACAGG

AACTACTCATATCCAGAATCAGGCTTATGCTGATCTTGAGCGCCTGCAGTGCA

AAAATCTGGAATCAGTAATGCCGTTCCTAAACTCTTATTTCCAACTCGCTGCA

AAGAGTGGAAAGATGTGGAGTAGCCCTGAACTCTCAGAAAAGCTTTTTAGAA

AGCTCCCACCAGAAATCGGTCCCACCATAGCAAAGGAGTATGCTGAGCGATA

CCCTGGCATGTTGATTGGAGTAAATGCCAGAATACAGTTCGTCTCTGAGTATC

TCCAGGACCTCTGTAAACAAGCAGATCTTCAAAGAAAATTGAAGAATTTGAA

TTTCTGCAAGGCAATTCCCATTCCTGGTTACTATGACCAAGGAGTGAAGAAG

AAGTACGGCCTGCGCAAATCCAAGACATACAAAGGGAAACCTCATGACTCTC

ATGTCAAGGTTATCAAAAACAAGTACAAAGGTGCCCAAGGTCGTAAGTGCAA

ATGCTACTTATGTGGCATTGAAGGACATTACGCTCGCGAATGCCCAAAGAAG

CATGTTAGGCCTGAAAGAGCAGCATACTTCGAAGGCATGGGCTTGGATGTCA

ACTGGGATGTAATAAGTGTTGACCCAGGAGATCAAGATGGATCTGACATCTG

CTCAATCTCTGAAGGAGAAGCCCAACATGGGATGGAGGAATTAGCTGCATTC
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AAAGCCCAACTTCCATATCCAGTGGAAGCCCAATATGAGCAGCACCAGGCCT

TTGTGGTTATCCAAACAACTTTCAAGAAGGAGGATAAGCCCCAAGGTTCCTG

GCGCATGTCCAAGCCCATCCCCGAAGCCCAACAACAATGCCAGCACACATGG

GATGATATGTACGCCCTAGCAGAAGGACAGCAAGCGTGCAGCACTTGCCAGA

CCATCACTGTACTTGGTCGCCGTGCCACATGCACCCTTTGCCTACTCAACCTC

TGTTCACTCTGCGCTGGCCTAGACTTCGGTCTCAAAATAGTTCCTAAAACTGC

CACACGTGCTGACTGGAAATTTCAGGATCGTGATACCCTCATCGCCTCCTTAT

ATGAGCACAATGCATTCCTTCTTCGCCAAGTCGAAGGGCTGAAACAGGAACT

CCAAGCTGCCAAAGAACAGCTTCAACTGCTACACTCGGTTGATATGATCAAC

CTCTCTGATGATGGATTAGAGAATTTTTCCGTTGAGGAAAAATCCTTTTTAAG

AGGGGGAGGGGGTACCAGTAGTAGTTCAATCAAAATTTCATCAACCACAACA

CCCCCTGGTTTTCCTACAACACCCAATAGATTCCAGCCTCTTGCGCAGGAAAA

ACTTAAAGGAATACAGGAAGACCTATCTCTAGTGGTACAGTTTGATAATGCT

AGACAACAAGAACAGGCGTATACTGAAATGCCTCGAGGAGCCCACAACAAG

TTATACCACGTGGTGGTAACTTTCAGAATCCCTGATGTTAAGGGACAGCTCCT

AGAGTTTGATATCAACGCCATTATAGACACTGGCTGTACCTGTTGCTGCATCA

ACCTCACAAAGGTGCCTGATGGAGCAATCGAAAACGCCTCCATAATCCAAGA

AGTCTCTGGGATTAACAGCAAAACAGTAGTCACCAAGAAACTCAGGCAAGGC

AAGATGATCCTCGCAGGGAATGATTTCTACATTCCTTATGTATCAGCCTTCGA

GATGAACATGCCCGGGATTGACATGCTGATAGGCTGCAACTTCATTAGAGCA

ATGAAGGGAGGAATACGGTTGGAAGGAACTGAGGTCACCTTCTACAAAACC

ATCACCAGGATTCAAACTACCCTGGAACCTCAGAAGATAGCGTACTTGGAAG

AGCTAGTAGAAGCAGAAGATCTACACTATGAGCTCGCAGCTGCAAGTATGCC

TGAGCCCACTGCTGAAGGACTCAGAAACACCAAGCTCCTAGCCGAGTTAAAA

GAACAAGGCTACATAGGAGAAGAGCCTCTCAAACACTGGTCAAAGAATAGG

GTACGATGCAAGCTTGACATCATCAACCCTGACATCACCATTGAGGCAAAGC

CACCTGGTCACCTAACACTGGAGGACAAGGTCAAATATCAGAAGCACATTGA

CGCCCTCCTAGATCTTGGAGTCATAAGACCCAGCAAGAGCAGACACAGGTCC

GCAGCTTTCATAGTTGCCTCTGGGACCTCTGTAGATCCTAAAACTGGCAAAGA

AACACGCGGTAAAGAAAGAATGGTGATCGACTACCGCATGCTTAATGACAAC

TGCTACAAGGATCAATACAGTCTGCCTGGTATCACCTCCATCATCAAATCCCT

TGGGCAAGCCAAAATATTCAGCAAATTTGACCTGAAGTCTGGCTTCCACCAA

GTCATGATGGAAGAAGAAAGCATCCCCTGGACTGCTTTTATCAGCCCCGCAG

GATTATATGAATGGCTAGTTATGCCATTTGGGATCCAAAATGCTCCTGCAATA

TTCCAAAGAAAGATGGATGAGTGCTTCAAAGGAACTGAGGATTTCATCGCTG

TTTATATTGATGATATTCTAGTTTTCTCCAACTCCATCAAAGAGCATGAAAAG

CACCTACAGAGAATGCTGAGTATCTGCAAGGAACATGGGCTCGTCCTTAGCC

CAACAAAAATGAAGATCGCTGTCCCAGGAATTGATTTCCTTGGTGCCCATATC

AGAAACAGCAGAGTGAGTCTGCAACCACACATCATCAAGAAGATTGCTGACA

AGAAAGATGATGAGCTGATGACCCTAAAAGGCCTCAGAAGCTGGCTAGGGG

TAATCAACTATGTCAGGCAATACATTCCTAAGTGCGGAACCCTTCTCGGTCCC

CTCTATGCTAAAACTTCAGAGCATGGTGATCGAAGATGACACCCCAAAGACT

GGGAAATAGTAAGACAGATCAAGAAGATGGTTCAATCCCTTCCTGATCTTGA

ACTTCCTCCACCCCACGCAGTTATTATCATCGAATCTGATGGATGCATGGAAG

GATGGGGAGGAATCTGCAAATGGAAGAACTCAAAGGGGGAATCTAAAGGCA

AAGAGCGAATCTGTGCTTATGCCAGTGGAAAATTCCCAACAGTTAAATCCAC
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CATAGATGCTGAAATCTATGCAGTCATGGCATCCCTGGAGAACTTCAAGATTT

ACTATCTTGATAAAAGGGAAATTACCATCAGAACAGACTGCCAAGCCATAAT

CAGTTTCTATGATAAAATGGCTGTTAAAAAACCTAGCAGAGTCCGCTGGATA

AATTTCTGTGACTACATCACTAACACAGGAATCAAAGTCCAGTTCGAGCACA

TAAAGGGTCAAGATAACCAGCTAGCAGACCAGCTCTCAAGGCTAGCCCAAG

GACTTTGCAGCATTCAAGTCATCCCTGAAGCAGCCCACGAAGCTCTCAATAT

CATCCTTGAACAGGATTGTACAGCCCAAGAGCTCATGGCCCAATTCAACTCT

ATGCTGCAAGCTAACCTCAGGGTTAACCAAGGAAGGCCCAATACAACTTGGT

ATTCTAGGACCAAGCCCAAGAAATCCAAAGCCCGCAAACCAGCCCATGTCCA

GCCATGCTTTGACGTAAGCAATGACGACGCGGGATAATAATGGAGGAATCTT

ACAAGGACAGCACATGGTCCTTTTCCTCTTTATTTTAGTTTGTTTTCTTGTGTC

GGCAACCTCTCCTTTTGTAAAGAGGAATCTGCTTTTGAGCTGTCGATGGGGCC

CAATGAGCACCCGAGCTCTAAAAGTAACTTACCTCTGGTTGCTTTTGTTAACC

TTAGTTTGGTTTGTTTGCTTTTCTCCCCTATATAAGGGAGCTTCTCATTTGTTA

GAAGGCATCGAACAGAGTAATACCTCTGAGCGCTCCTTCTCTCTAGTTTTCTT

ATGTTCTTGTATCTTTCCAGTTCCAGTGTTCTTAATGCAATTTGAAGTTTTCCT

ACTCTATGTTATTCTGTTCATAGTTCTTTTCCGCTACTTATACTCTGTGATCCA

AATTTTTAATTTGTGATCTGTTTCATC 
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Appendix B.  Nucleotide Sequence of GVCV-AMP2 Genome in FASTA Format 

 

>AMP2 

TGGTATCAGAGCTCCAGTTTCAAATCTGGGAATTTCTGCAATTATTCCTTCAA

GATTATGATGAGGAACTAACTCTCATAATCGTGTAGGGAATCGTTAGTAGGA

TCTCAGAACAAGGTTCTTATCTCCAACTCCACTACTGATTTTTGGTATATAGG

CTGGAAACACGACACTGTTACGATCCCATTTCTGTTGGAATGGTAGTAGCCCG

TTGTGAGACAACGCCACGTACCATTTTCAGTCTTCCTAACCCAAATCCCCATG

AACAGAACTCCTACGGTCAATAAGCTTCAACAGGATCCCTAGCCCAACAATA

CTGAAAGTCCTAGGACAGGCTGCGACGCGAAGTACCACCAGTTCAGGCGATG

CTGTTCCGCCGATTGTTTGTGGGAAAACTGCAGTAGGAGAGGACGGACAACT

ATTCAAGGGAACGGAACCTAGAGACACCGGCCGAGTTCTTAGTAAGCGGTTC

AAGGAAGGAGACTGATGCAAAGAATCACAGAACAACAACAGTTTGAGGCGG

AGATAGAATCTTGGGAGAGATCTGAACGCACACCCCTACACGGTTACCGTGA

TCTTGTGGAATACCCCCGTTACGAAAGAAATCAGCATTTCCCATCAGCAAAG

TTCCCCTGCTACCACTTTGTTGCTGAGAAAGATAACGTTCACGCCACCTATAC

TAAGGGAGACCGAATCCCTCAGTTGCTGAATACACTGTACGACCTACAGGTC

AACCAGTGTCATAACCAGGCAGTGATCTACGAACGGATCCAACTCCTTGCGA

GATATACGGTCCGAAAGGGTACGCCGTTACCGGCTATCCCTGAGGAATCTGT

CCTCAAAGAACCAGAAGAAAGCTCAACTGAGCTTAAACACCAGATCGAGCTC

CTTCGAGCTGATCTAAGGGAAATTAAGGCCAATCAGACAGGCCTCAAGCTTG

CCATCTCTGAGATCCGTGATTCCATCACAGATCTAACGGCAAGAGAATCAGC

ACCCAAGCCGATTGAAGCAGAAACAGCCTACCTGACCGCCCAGCTAAAGGTT

CAGGTTCAAGAAATCAAAACGGCTTTGGCAGAGATTAAGACCTTTGCCAGGA

CTCTTGTTCCTGAAAGGTAGATGTCCACGTGGCAAATCGCTGCTGCCACAGA

AGAATATCAGAAAGCCATAAACGCAACTGCAACCCTCACCAAGGACGAAAG

AGCAGTTGGCTTCGTTAAGCCCCACGAGTTCGAACCAAATTACAGTGACACC

AACATTCAGAGGCAAAACAATACTCTGATCCACCTGTTGATCCAGAATCTTG

AGGAAATCAAAGAGCTCCGTGCTCAGGTCCAGACCCTCAACGATCGTATTGT

GGCCCTAGAAAAGGGAAAAGCTAAAGCAACAGCCGTCACTCTTCCTGATAAC

GTGGTAGAACAGATCTCCACTCAACTCAAGGAAGCCAAGTTCGGACAACCAA

AGGAAGGTTTGGTAAAAGGGACAAAAGGCACCTTCCGGGTCTGGAAGTGAT

GTCTAGGTCCAGGACTCAGACCACTGAGTTGCCTCGTGCAACCAGGAGATCT

ACTAGCCCAGTTGAAAGGCTAGATGACCAGATCCGCGGCTACAGGCGGATGG

CTCGTGCCCGCTACCTTGCGGAGCAGCAAATGCGTAGGACCTTTTCAAGGAA

CTACAGAGAAACCCTGGAAAGACGCCTTGATCCAGACGCAGAATTACAGCTA

AGCAGAAGGCGAAGGGCCAACCTAGTACCAGCAGAGGTACTATACTCCCTCA

ACTACAATGAACCCCAGAATAGGGTTTATCAGCACTATGAAGAGGTGAGATC

CCATGTCATAGACCGGCAGCAAGATTACCGGTTTATCGAAGAACAGTCCTAC

CGCACCCTAGTGCAAGAAGGCATGCAGCATATCCACCCAGGAATGCTGATGG

TAAGAATACAGATGCTGCACCGAGTTGATGCAGGGATCAGTGCCATGATTGT

GTTCCGAGACACAAGGTGGAATGATGAAAGGCAAATTATCAGTGCCATGACT

GTTGATATGGCTAGAGGAGCACAACTGGTCTATGCTATCCCAGATCTCATGAT

GTCAATTCATGATTTCTATCACCACCTACAAGTTAGCATCACCACCAGAGGAT

ACGGTACCGGATGGGAAGGAGGTGAAAGTAACCTCATAATAACTCGGTCACT

AACCGGCAGAATCACCAACACCAGTCAGGCCAACTTCAATTATCAGATTGAA
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GGAGTAGCTGACTACCTGGCAAGCCATGGCGTGCAGAGTATACCAGGACAGC

CATGGAGAACCATAAACCAGGAAGGTTCTTGGAACTTAAGGCCTTCATCAAT

ACAGGCCCCTACTCAGGTCCCCACAGGCCTTATCTCAAGACAATCTGCCACC

GGTAATATCAGTCTTCGATTCACTGGTTTTCAGGACCAGGTCCAGACCATTGA

CACAGAAGAAGAATCCGGTATGACAGATACAGAGGAAAGGGTAACTCACTA

TGCCCTTGTTGGAACCTTCGAATGGTTGGAGGAATGTCCTTCATATCAACACA

GAAGGAGTCAAGAAACAGAGGAAAATGGCTGGGTGAACCATGTGGAAGGAG

ATAAGGGGTTCAACTTCAAAGTCCGTATGACCCCTCCAGCATGGAGCCATGA

TCCACAACCCATTATAGCCACGGGATGGGGAGATGATCTTGATAATCCTCCA

CCACCTCCACCTCCTAAGATTGAAGAGGAGGAGATACTGGAATTATACCCAG

TAAGAAGACGACCCGACCCTTTACAGATAGCCAGGAAGGAAAAGGCAGCAG

TCTTCTCTCAAGCTGTCAATACTATCTTCGAGCACGAAAGGGAAGGTACCTCA

AGGATGCAACCATCAGGGGAAGCCCCTGAATCAGATCCAGAAAGCCCAGTCT

GGAAGATAAAGAAAAGCCCCTATCCTCAGAAGTCAATGAAACTAAAGGATG

AGAAGGGTAAAAGTCCTTTTGAGGACTTAGAGTTGAAACAAGACCTAGTTCA

AAGCTGGATAGCTCAACTAGGAAGTGGCTCAGGAAGCAGAACGGAGAAACC

AATCTTCGACACCACCAGCAGCGACTCAGATTCTGATCTATCTGATGTCAGCT

CAAAGGTTCTAGCCTATGCTGGAGTTGAAGAAGTGGTAATGGAATACCCAAG

AAGGGTAAAAACTGCGACGGCCAAGCTAGCAGACATGGAAAAGGCTTTTGC

CGGAGAAACAACCGCAGCAGTAGGAGGAGACTCGGAGATGACAACTGGTCA

ATCTTCAAGATCTACCCTCATACCACCAAACGAAGGAGGAGGACCTATACGG

TATCCACCAGCAGAAAGACCGTCCACATCGGCCTCTACATACAACAATACAG

CCCCACCTCTCTTTGAAGGGACTGTCAGGCCTGGAAGATATGGTCGCCCTTTG

GCACCATGGTCCCTACCATCAGCACAGCACTCTCAAGGAGCCCTGCTGATCC

TCCCTCCTGAAGTAGCAAGTCACGCTGACGCCATCACCACATGGGAAACAAT

CACCCTGAATCATCTGATGAATATATCATTTGATTCCCTCCAAGACAGGGTTG

ATTATATCGAAAATCTCCTTGGACCAAGAGAACGTGAAGCATGGGTCACATG

GAGAATGGCGTATGATACGGAGTATAGACAGCTGGTTGAGCTCTCTGGGGAG

CCAAGAAATGTCACCAGCACTATCAAAAGAGTTTTAGGGATCAATGACCCCT

ACACAGGAACAACTCACATCCAGAACCAGGCTTATGCTGATCTTGAACGCCT

GCAGTGCAAAAATCTGGAGTCAGTAATGCCGTTCCTGAACTCTTATTTCCAAC

TCGCAGCAAAGAGTGGAAAAATGTGGAGCAGCCCTGAACTATCAGAAAAGC

TTTTTAGAAAGCTTCCCCCAGAAATCGGTCCTACTATAGCAAAGGAGTATGCT

GAGCGATACCCTGGTATGTTAATCGGAGTTAATGCCAGAATACAGTTCGTCTC

TGAGTATCTCCAGGACCTCTGTAAGCAAGCAGATCTTCAAAGAAAATTGAAG

AATTTGAATTTCTGCAAGGCAATTCCCATTCCTGGTTACTATGACCAAGGAGT

GAAGAAGAAGTACGGCCTACGCAAATCCAAGACATATAAAGGAAAACCTCA

TGACTCTCATGTCAAGGTTATCAAAAATAAGTATAAAGGAGCTCAAGGTCGT

AAATGCAAATGCTACCTCTGTGGTATTGAAGGCCACTATGCTCGTGAATGCCC

AAAGAAGCATGTCAGGCCTGAAAGAGCAGCCTACTTTGAAGGCATGGGCCTA

GATGTCAACTGGGATGTGATAAGTGTGGACCCAGGAGACCAAGACGGCTCAG

ACATCTGCTCAATTTCTGAAGGAGAAGAAGATGGGATGGAGGACCTAGCTGC

ATTCAAAGCCCAACTTCCATACCCAGTGGAAGCCCAATATGAACAGCACCAG

GCCTTTGTGGTTATCCAGACAACCTTTAAAAAGGAGGATAAGCCCCAAGGTT

CTTGGCGCATGTCAAAGCCCATCCTTGAAACCCAACAGCAATGCCAGCACAC

ATGGGATGACATGTATGCCCTAGCAGAAGGACAGCAAGCGTGCAGCACTTGC
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CAGACCATCACTGTACTTGGTCGACGTGCTACCTGCACCCTCTGCCTACTCAA

CCTCTGCTCACTATGCGCTGGCCTAGACTTCGGTCTCAAAATAGTTCCTAAAA

CTGCAACTCGTGCTGACTGGAAATTCCAGGATCGCGATTCTCTCATCGCCTCC

TTATATGAGCACAACGCATTCCTTCTTCGACAGGTCGAAGGACTGAAACAGG

AACTCCAAGCTGCCAAGGAACAGCTTCAACTGCTACACTCGGTTGATATGAT

CAACCTCTCTGATGATGGATTAGAGAATTTTTCCGTTGAGGAAAAATCCTTTT

TAAGAGGGGGAGGGGGTACCAGTAGCAGTTCAATCAAAATCTCATCAACAAC

AACACCCCCTGGTTTTCCTACAACACCCAACAAATTCCAGCCTCTTGCGCAGG

AAAAACTAAAAGGAATACAGGAAGACTTATCTCTGGCAGTACAGTTTGATGA

TGTTAGACAACAAGAACAGGCGTATACTGAAATGCCTCGAGGAGCCCACAAC

AAGCTATACCACGTAGTGGTAACTTTCAGAATCCCTGATGTTAAGGGACAAC

TCCTTGAATTTGACATCAACGCCATCATAGACACCGGCTGTACATGCTGCTGC

ATCAACCTCACAAAGGTGCCTGATGGAGCAATCGAGAACGCCTCCATAATCC

AGGAAGTCTCTGGAATCAATAGCAAAACAGTAGTCACTAAGAAACTCAGGCA

AGGCAAGATGATCCTCGCAGGGAATGATTTCTACATTCCTTATGTTTCAGCCT

TTGAGATGAACATGCCTGGGATTGACATGCTGATAGGCTGTAACTTCATCAG

AGCAATGAAGGGAGGAATACGGTTGGAAGGAACTGAGGTCACCTTCTACAA

AACCATCACCAGGATCCAAACTACCCTGGAACCTCAAAAGATAGCGTACTTG

GAAGAGCTAGTAGAAGCAGAAGATCTACACTATGAGCTCGCAGCTGCAAGTA

TGCCTGAGCCCACTGCTGAAGGACTCAGAAACACAAAACTCCTAGCCGAGTT

AAAAGATCAAGGCTACATAGGAGAAGAGCCTCTTAAGCACTGGTCAAAGAA

TAGGGTAAGATGTAAGCTTGATATCATTAACCCTGACATCACCATTGAGGCT

AAACCACCTGGACACCTGACTCTGGAGGATAAGGTCAAATATCAGAAGCACA

TTGACGCCCTCCTAGATCTTGGAGTCATCAGACCTAGCAAGAGCAGACATAG

GTCCGCAGCTTTCATAGTTGCTTCTGGAACCTCTGTAGATCCTAAAACTGGTA

AAGAAACACGCGGTAAAGAAAGAATGGTGATCGACTACCGCATGCTAAATG

ACAATTGCTACAAGGATCAGTACAGTCTGCCTGGAATCACCTCCATCATCAA

ATCTCTTGGGCAAGCCAAAATATTCAGTAAGTTCGACTTAAAATCAGGCTTCC

ACCAAGTCATGATGGAAGAAGAAAGCATCCCCTGGACTGCTTTTATCAGCCC

CGCAGGATTATATGAATGGCTAGTTATGCCATTTGGAATTCAAAATGCACCTG

CAATCTTTCAAAGAAAGATGGATGAATGCTTCAAAGGAACTGAGGATTTCAT

CGCTGTCTATATCGATGATATTCTGGTTTTCTCTAACTCCATCAAAGAACATG

AAAAGCACCTGCAGAGAATGCTGAGTATCTGCAAGGAACATGGGCTTGTCCT

CAGCCCAACAAAAATGAAAATCGCTGTCCCAGGAATTGATTTTCTTGGTGCC

CATATCAGAAATAGCAGAGTAAGCCTGCAACCGCACATCATCAAGAAAATTG

CTGACAAGAAAGATGATGAGCTGATGACCCTCAAAGGCCTCAGAAGCTGGCT

AGGGGTAATCAACTATGTCAGGCAATACATTCCCAAGTGCGGAACACTTCTC

GGTCCCCTCTATGCTAAGACCTCTGAGCATGGTGATCGAAGATGGCACCCCA

AAGATTGGGAAATAGTGAGACAGATCAAGAAGATGGTCCAATCCCTTCCTGA

TCTTGAACTTCCTCCACCCCACGCAGTTATTATCATTGAATCTGATGGATGCA

TGGAAGGATGGGGAGGAATTTGCAAATGGAAGAACTCAAAAGGGGAATCCA

AAGGTAAAGAGCGAATCTGTGCTTACGCCAGTGGGGAATTCCCAACAGTCAA

ATCCACCATAGATGCTGAAATCTATGCAGTCATGGCATCCCTGGAGAATTTCA

AAATTTACTATCTTGATAAACGGGAAATCACCATCAGAACAGATTGCCAAGC

TATAATCAGCTTCTATGATAAGATGGCTGTCAAGAAACCCAGCAGAGTCCGC

TGGATTAATTTCTGTGATTATATCACTAACACAGGGATTAAAGTCCAGTTTGA
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GCACATAAAGGGCCAAGATAATCAGCTCGCAGACCAACTCTCCAGATTAGCC

CAGAATGTCTGCGCAGTCCAAGTCATCCCTGAAGCAGCCCATGAAGCCCTCA

CCATTATCCTTGAACAAGATTGTACAGCCCAAGAGCTCATGGCCCAGTTCAA

CTCCATGCTGCAGGCTAACCTCAGGCTAAATCAAGGAAGGCCCAATACAACT

TGGTATTCTAAGACCAAGCCCAAGAAATCCAAAGCCCGCAAACCAGCCCAAG

TCCAGCCACGCTTTGACGTAAGCAATGACGATGAGGGATAATAATGGAGGAA

TCTTACAAGGACAGCACATGGTCCTTCCTTCCTCTTTTCTTTTGTAAAATTTTT

GTCTTCTTGTGTCGGCAACCGCTCCTTTTGTAAAGAGGAATCTACTTTTGAGC

TGTCGATGGGGCCCATTGAGTACCCGAGCTCCAAAAGTAACTTACCTCTGGTT

GCTTTTGTCAACCTTAGTTAGGTTTGTTTGCTTTTCTCCCCTATATAAGGGAGC

CTCTTATTTTGTAAGAAGGCATCGAACAGAGCAATACCTCTGAGCGTTCCTTC

TCTCTAGTTTTCTTGTGTTCTTGTATCTTTCCAGTTCCAGTGTTCTTAATGCAAT

TTGAAGTTTTTCTACTCTATGTCATTCTGTTCATAATTCTTTTCCGCTATTTTTA

CTCTGTGATCCAAATATTTAATTTGTGATCTGTTTCTATC 
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