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values (  or p – values (Holm, 1979); 
Westfall and Young, 1989, 1993. Hocheberg, 
1988, and Hommel, 1988. Recently, (de Una-
Alvarez, 2015) developed a new BB-SGoF 
method for comparing the procedures in 
multiple testing using SGoF package. 
 
The standard Bonferroni adjustment proce-
dure, which is very popular for multiple tests 
posits that if any of the test in (n) multiple 

test has  the hypothesis should be 
rejected (Savitz and Olshan, 1995). The ma-
jor problem of this Bonferroni procedure is 
that it has the tendency of increasing the 
probability of producing false negatives 
which is a reduction in statistical power of 
rejecting H0 in each test conducted 
(Nakagawa, 2004). Sidak (1967) procedure 

ABSTRACT 
Multiple testing is associated with simultaneous testing of many hypotheses, and frequently calls for 
adjusting level of significance in some way that the probability of observing at least one significant 
result due to chance remains below the desired significance levels. This study developed a Binomial 
Model Approximations (BMA) method as an alternative to addressing the multiplicity problem associat-
ed with testing more than one hypothesis at a time. The proposed method has demonstrated capacity 
for controlling Type I Error Rate as sample size increases when compared with the existing Bonferroni 
and False Discovery Rate (FDR). 
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INTRODUCTION 
Multiple testing is a statistical technique of 
performing simultaneous multiple test of 
hypothesis. The multiplicity problem associ-
ated with simultaneous testing of many hy-
potheses is the basis of multiple testing; it is 
an error rate controlling issue. Application 
of multiple testing gained widespread popu-
larity in health services research among bio-
statisticians, medical biologists and pharma-
ceutical industries. Multiple testing has been 
of great research interest in Statistics and 
researchers are searching for various scien-
tific methods to improve the existing proce-
dures in multiple testing. Consequently, 
many methods have been developed in liter-
ature for multiple testing. Most of the meth-
ods are developed from the parameter Bon-
ferroni inequality for adjusting significance 
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was developed to test each hypothesis at 

 with accuracy better than 
the Bonferroni; however the gain in power 
is small. Holm (1979) introduced the se-
quential Bonferroni procedure to counter-
act the problem of power reduction. Alt-
hough this procedure still exhibits power 
reduction, it is in low extent (Nakagawa, 
2004). Holm (1979) applied the Sequential 
Bonferroni method for multiple adjust-
ments and the approach was used to con-
trol the family-wise Type I  error rate, the 
flexibility of the approach when compared 
to the Bonferroni correction makes Holm’s 
to be more popular among researchers. 
Hocheberg, (1988) also improved on the 
Bonferroni method with stepwise adjust-
ments for adjusting p-value sequentially 
while making sure the observed p-value or-
der was preserved. The improved procedure 
rejects all hypotheses with smaller or equal 
p-value to that of any p-values discovered 
to be smaller than its critical value. The 
method is a step up procedure sharper than 
the sequentially rejected procedure of Holm 
(1979). Gaetano (2013) extended the Holm 
sequential Bonferroni procedure and intro-
duced an Excel calculator for calculating the 
sequential corrected p-values. The first 
study of stability properties of the Bonfer-
roni and Benjamini-Hochberg (BH) proce-
dures shows that the extended Bonferroni 
procedure can be made as powerful as the 
BH procedure by a proper choice of its pa-
rameter (Gordon et.al. 2007). The work of 
Dunnett and Tamhane (1992) which has 
not been implemented in any statistical soft-
ware was also developed as a stepwise pro-
cedure for controlling type II error rate ac-
cording to (Blakesley et al., 2009). Dunnett 
and Tamhane (1992) is a step-up procedure 
for comparing k treatments with a control, 
the study revealed that the step-up is often 

more powerful than the single–step and the 
step-down procedures. 
 
The False Discovery Rate (FDR) was sug-
gested by Benjamini and Hochberg (1995) as 
an alternative procedure. It has been ob-
served by (Benjamini et al. 2001) that FDR is 
the expected proportion of false discoveries 
among the discoveries, and controlling the 
FDR goes a long way towards controlling the 
increased error from multiplicity while losing 
less in the ability to discover real differences. 
In a study of multivariate samples involving 
analysis of large micro array data, instead of 
using Bonferroni Corrections, Garcia (2003) 
applied FDR controlling the error rate. Sto-
rey (2003) described FDR as an error meas-
ure mechanism in multiple hypothesis test-
ing; it is an expected proportion of false pos-
itives among all significant proportions of 
hypothesis. The researcher introduced and 
investigated pFDR, and q-value; the pFDR is a 
modified FDR while q-value is the pFDR 
analogue of the p-value. 
 
The method of Binomial Model Approxima-
tion (BMA) for multiple testing is introduced 
in this paper. The proposed method has 
been compared with some multiple testing 
procedures in the literature using computer 
simulation. The remainder of this article is as 
follows. Section 2 presents the materials and 
method; section 3 presents the proposed Bi-
nomial Model Approximation method. In 
section 4, results are discussed while section 
5 concludes the paper. 
 

MATERIALS AND METHOD 
The BMA technique is a generalization of 
the Bernoulli experiment with n number of 
hypothesis, the method satisfies the condi-
tions for a discrete probability function f(x)
>0. The assumptions for the methodology 
are that;  
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There are n Hypothesis tests to be conduct-
ed, the Hypothesis tests are independent, 
the probability of success (correctly reject-
ing the true null Hypothesis) is α, the proba-
bility of failure ( not rejecting the true null 
Hypothesis) is 1- α. and the probability of 
observing at least one significant result due 
to chance occurrence is:  
 

P (A) =1-P (B) =                                                                                                        
Where P(A) is the probability of obtaining 
at least one significant result and P(B) is the 
probability of no significant result. 

 
The method requires  setting up the null 
and alternative hypotheses Ho and Ha re-
spectively, the test procedures and selection 
of significance level (α). The test statistics 
and its associated values are calculated and 
used in making decision about the null hy-
pothesis. 
 
In a test involving only two hypotheses, the 
parameters of two mean vectors for the test 
can be estimated using the Hotelling T 
square method.  
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The sample mean vectors are: 

  and     

The estimated variances are  
                  
Both Sx and Sy are estimators for the common variance-covariance matrix Σ. 
 

                                      
 Multiple testing: In multiple testing, using 
at least one procedure, the methodology 
required that for one or more false discov-
ery among the null hypothesis, the global 
null hypothesis is rejected. Using none or all 
procedure required that for false discovery 
among all the null hypotheses, the global 
null hypothesis is rejected. 
 
In a multivariate analysis of multiple sam-
ples divided into groups A and B, the ex-
periment required many hypotheses to be 
tested. The multivariate variables (X, Y) are 

designed in form of data matrix such that: 

  observation in the data frame X 

and observation in the data 
frame Y,  i=1,2…n rows, j=1,2…m columns. 
In carrying out n-multiple tests simultane-
ously, the estimated sample mean and its var-
iance from samples in population group A is: 
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Multiplicity Adjustment in Multiple 
Testing 
Adjustment for multiplicity is very crucial 
and requires topmost attention most espe-
cially in clinical trials, this is because it tends 
to inflate the Type I error rate of the experi-
ment. In order to mitigate this multiplicity 
problem of incorrectly rejecting a true null 
hypothesis, statisticians have developed sev-
eral multiple comparison adjustment proce-
dures. Multiplicity adjustment involved ei-
ther  
(i) Adjusting significance levels (α) down-

ward or (ii) Adjusting p-values for Hi, the 
lowest overall error rate (α) at which the hy-
pothesis is rejected.  
Some of the existing procedures in literatures  
are:  
 
Bonferroni Correction 
 The standard Bonferroni adjustment proce-
dure states that if any of the multiple tests 

has  the hypothesis should be re-
jected. 
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              ,                                                                 
The associated variance-covariance matrix is 

                               . 
 

The null and alternative hypotheses for the multiple sample tests is presented respectively 
as,     

 

  

Mean of the k – observations in sample m,  
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gFWER controlling method 
At significance level α, assume we have F as 
the number of false positive and t as the 
number of rejected null hypothesis.

is the generalized family-
wise error rate (gFWER). It means rejecting 
t more hypotheses at controlling level α of 
the gFWER. It is the probability of errone-
ously rejecting at least one true null hypoth-
esis. 
 
 Benjamin-Hochberg (BH) method 
 Let G be any number of rejected hypothe-
ses at α while F is the number of false posi-

tives.   
The FDR is defined as the ratio of the num-
ber of Type I errors by the number of sig-
nificance tests. 
Instead of controlling the overall alpha lev-
el, Benjamin –Hochberg proposed a proce-
dure for controlling  the False Discovery 
Rate (FDR) 
 
The Holm-Bonferroni (HB) Procedure 
This procedure is based on Holm’s paper of 
1979; it is a modification from the existing 
Bonferroni approach. 

The procedure runs a test for each hypothe-
sis to obtain their p-values; the p-values are 
then compared to the calculated Holm-
Bonferroni for the specific hypothesis or-
dered from smallest to greatest. 

In a multiple testing of n hypothesis , 

…. with corresponding ,

…  
Giving FWER at alpha level=0.05 

HB is calculated for the  starting from 

the smallest  

Any whose    is significant 

and the null hypothesis is rejected. 
 
BB-SGoF Procedure 
de Una–Alvarez (2015) proposed a beta-
binomial model, a correction of SGoF for 
serially dependent tests. The Beta-Binomial 
transforms the original p-values and assumes 
independent blocks of p-values. Each block 
is chosen to be a realization of beta-binomial 
variable introduced as a suitable modification 
of the sequential goodness-of–fit multiple 
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In testing , i=1,2…n hypothesis, is rejected if  
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testing techniques having correlated blocks, 
the Beta distribution is the Bayesian prior of 

parameter  
The procedure was applied to two different 
real data sets, the study revealed that BB-
SGoF method weakly controls for FDR. 
The authors concluded that the SGoF pro-
cedure may have much power even when 

there is possibility of dependences among 
the tests to be carried out. 
 

THE BINOMIAL MODEL  
APPROXIMATION METHOD 

In this study, the BMA procedure was intro-
duced to calculate adjusted probabilities us-
ing the Z score.  

78 

In order to test the following hypothesis     
The threshold value (α) of the Hypothesis is defined together with the associated p-value  

                                                         
From equation 3.1, when α = 0; the Probability of at least one significant result = 0, also 

when  
α = 1; Probability of at least one significant result = 1 

Table 1. Outcome of Binary Trials  

Α P(A) <α 

0 0 
1 1 

When the p-value is less than α, (p <α) the 
result is said to be statistically significant at 
the level α. 
 
The experiment is transformed as a binomi-
al model experiment involving a binary 
event of success or failure, correctly reject-
ing hypothesis or incorrectly rejecting hy-
pothesis. 

From equation 3.1 and the table above, n is 

the total number of hypothesis while   is 

the parameter of the Binomial Model, (0 < 

 < 1). The number of true null hypothesis 
denoted as x can be chosen from n   total 

hypothesis in    ways.  

Under this method,   is defined as the 

probability of success and (1-  ) is defined 
as the probability of failure.    
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The empirical null hypothesis is an estimat-
ed distribution for the test statistics under 
the null hypotheses when the test statistics 
can no longer be considered as a random 
sample from the theoretical null distribu-
tion. The adjusted p-value is used for taking 
decision on the true null hypothesis which 
is rejected whenever p-value is less than ad-
justed p-value.          

Multiple testing in the field of biostatistics 
and clinical trials is a big data challenge in 
large microarray data. As n (the number of 
tests) increases, Binomial Model can be ap-
proximated using the normal distribution. 
The binomial distribution by the Central 
Limit Theorem approximates to the standard 
normal distribution as n→infinity. 
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), 

is approximately ; 
nα is the mean  and the  standard deviation 

is  

P(Type I error) = number of  False/
(number of True+ number of False), is the 
number of False Positives i.e when we false-
ly reject the null Hypothesis  when P(X ≥  
x0 -  0.5) 

 

By applying the continuity correction factor 

on   which is the probability that 

at least  number of hypothesis is rejected, 

we obtained  this  
probability  can be presented graphically by 
drawing a diagram with the mean in the cen-
ter and the shaded area  under the normal 
curve corresponding to the Probability of 

 (Fig. 1) 

nα x0- 0.5 

Figure 1. Probability that at least  is rejected 
 

The Z-score for the BMA is a test based on Z-Statistics given by: 

               Z=                                                             (3.2) 
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The Statistics is compared with the value 
from the Z-Table under the following hy-
pothesis. 
 

 

RESULTS  
Method of Simulation:  50,000 random data 
sets were generated with two groups, of 

40,000 and 10,000 observations for Type I 
and Type II errors respectively. The samples 
were used to estimate false positive and false 
negatives. 

 
The table below is a result of the simulation 
carried out on different methods of multiple 
comparisons in the literature. The R software 
was used for the analysis to generate proba-
bility for the false negative and false positive. 
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Table 2. Results of Computer Simulation Comparing Various Methods  

Procedures False Positive 
TYPE 1 ERROR= 
FALSE/TRUE + FALSE 

False Negative 
TYPE II ERROR= 
TRUE/TRUE + FALSE 

 Binomial Model  
Approximation 

2055/40,000 = 0.0514 9488/10,000 = 0.9488 

Bonferroni 0/40,000 = 0.0000 10,000/10,000 = 1.0000 
False Discovery Rate 453/40,000 = 0.0113 9891/10,000 = 0.9891 
Benjamini-Hochberg 2055/ 40,000 = 0.0514 9488/10,000 = 0.9488 

Benjamini-Yekutieli(BY) 2055/ 40,000 = 0.0514 9488/10,000 = 0.9488 
Hommel Approach 2055/ 40,000 = 0.0514 9488/10,000 = 0.9488 
Holm Procedure 2055/ 40,000 = 0.0514 9488/10,000 = 0.9488 
Hochberg method 2055/ 40,000 = 0.0514 9488/10,000 = 0.9488 

DISCUSSION 
Increase or decrease in the false negatives 
versus false positive depends on the nature 
of the problem and consequences of each 
type of error. Different methods were used 
to compute the type I error and type II er-
ror rates, the result of the method proposed 
was compared with other methods obtained 
in the existing literatures. 
 
From the summary of simulation using R 
software, all the procedures apart from 
FDR, and BONFERRONI have the same 

return values of false positives and false neg-
atives. This implies the procedures have the 
ability to limit the probability of incorrectly 
rejecting the null hypothesis. It also reveals 
that the BMA has the ability to control the 
Type I error, the central limit theorem guar-
antees that the result is equivalent under nor-
mal sampling for large testing. 
 
Some of the literature advised that it is al-
ways good to use  a procedure which is more 
familiar to the researchers and more applica-
ble to the specific field of study. In particu-
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lar, taking a decision on the effectiveness of 
new drugs over the existing ones require 
high degree of accuracy, therefore, proce-
dures that can help in effectively controlling 
the probability of committing type I error 
relative to type II error should be adopted. 
A type I error occurs when we falsely reject 
the null hypothesis while a type II error oc-
curs when we erroneously failed to reject 
the null hypothesis, i.e. when there is a fail-
ure to detect a difference.  
 

CONCLUSION 
FDR based method aimed to control ex-
pected proportion of false discoveries at a 
given (α), in this situation, the BH and BY 
are suggested useful methods for independ-
ent and dependent test respectively. The 
Bonferroni Correction is appropriate when 
false positive in a set of tests would be a 
problem. When there are a large number of 
testing, i.e. (as the testing increases),  and 
the researcher is interested in much likely 
significance, the Bonferroni Correction 
leads to a very high rate of false negatives. 
This has also been confirmed in this study 
as revealed in the Bonferroni probability of 
Type II error =1, showing the maximum 
rate of false negatives. As the number of 
testing increases this study has shown that 
the Binomial Model Approximation (BMA) 
is adequate. 
 
The study agrees with the view of Castro-
Conde and de Una-Alvarez (2015) who 
concluded in their work that even though 
FDR based method are often used nowa-
days to take multiplicity of tests into ac-
count, they may exhibit poor power in 
some particular scenario when the number 
of test is large, therefore application of al-
ternative method is recommended. 
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