
HIERARCHICAL CLASSIFICATION OF  
MORPHOLOGICAL FEATURES OF TILAPIA CABREA 

 
*1S. O. N. AGWUEGBO,  2A. P. ADEWOLE AND 3M. G. ISENAH 

 
1 Department of Statistics, Federal University of Agriculture, Abeokuta, Nigeria.  
2 Department of Computer Science, University of Lagos, Nigeria.  
3 Department of Statistics, University of Ibadan, Nigeria. 
*Corresponding author: agwuegbo_son@yahoo.com  Tel: +2348038004887 

tice, as the dimensions increase, they become 
less effective and difficult to interpret for 
even moderate number of variables. A solu-
tion to this apparent shortcoming was given 
by Kleiner and Hartigan (1981), who applied a 

hierarchical clustering algorithm to  vari-
ables and then represent each object by a 
tree or a scale. For hierarchical cluster analy-
sis, it has always been natural to treat dis-
tance (or similarity measure) and details of 
the cluster algorithm like the linkage methods 
at par, and most software implementations 
reflect this fact, offering the user a wide 
range of different distance measures (Leisch, 
2005). In programmatic environments like 

, hierarchical clustering often works off a 
distance matrix, allowing for arbitrary dis-
tance measures to be used (Becker et al, 
1998). 

ABSTRACT 
This article proposes an effective data visualization of multidimensional data. These displays are use-
ful to represent the existence or absence of relationships among objects corresponding to hierarchical 
classifications, bifurcation or evolutionary structure. The display in this article used some morphologi-
cal features of Tilapia Cabrea, as represented in the dendrogram or cluster tree which illustrates the 
successive fusions of objects into groups or divisions made at each successive stage of the analysis. 
Effectively, this clustering reduces the dimensionality and makes interpretations easier. 
 
Keyword: Multi-dimensional data, Fusion level / height, Hierarchical classification, Dendrogram. 

INTRODUCTION 
Over the years, a wealth of algorithms and 
computer programs has been developed in 
an attempt to display multi-dimensional 
data effectively. Many graphical methods 
for displaying multivariate data consist of 
arrangements of multiple displays of one or 
two variables using scatter-plot matrices and 
parallel coordinate plots (Hurley, 2004). 
Wayner (1983) gives a survey of methods 
for displaying multivariate data in which 
each object is represented by an icon such 
as polygon, made up of parts that vary in 
size or shape with the measured attributes. 
Some other commonly used techniques are 
loop plots (Bertin, 1967), bi-plots (Gabriel, 
1971, Chernoff, 1971); faces-(Chernoff, 
1973) and boxes-(Hartigan, 1975).  
 
In principle, these methods generalize to 
arbitrary numbers of variables, but in prac-

J. Nat. Sci. Engr. Tech. 2012, 11(1): 24-32  24 

Journal of Natural  
Science, Engineering 

and Technology  

ISSN: 
Print    -  2277 - 0593 
Online -  2315 - 7461 
© FUNAAB 2012 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federal University of Agriculture, Abeokuta: FUNAAB Journal

https://core.ac.uk/display/233939963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Kaufman et al (2005) proposed techniques 
for solving large problems in the area of 
hierarchical clustering analysis. These tech-
niques roughly can be divided into two 
groups; with the first group concerned with 
the adaptation of existing algorithms in or-
der to reduce either the storage or the num-
ber of calculations. Most work on this first 
group has been done on variants of the sin-
gle linkage algorithm that involve fewer cal-
culations but yield the same results. The 
second group techniques consists of new 
methods that have been specifically de-
signed for clustering large data sets, al-
though they are often based on concepts 
used in classical methods. The most signifi-
cant aspect of the procedure is that objects 
are inserted into hierarchical tree and used 
effectively for classifying new objects. A 
significant part of the hierarchical classifica-
tion is based on approximation by a den-
drogram. Kaufman et al (2005) introduced 
two measures of clustering strength, 
namely, the agglomerative and divisive coef-
ficients, which are appropriate when the 
groups are unknown.   
 
When data are collected from many units 
that are somehow similar, the statistical 
problem is on how to combine the informa-
tion from the various units, in order to un-
derstand better the phenomenon under 
study. Usually, there is substantial variability 
among units and a natural way to approach 
the problem is based on the notion that 
there exists a configuration of points in a 
higher dimensional space, and this in turn 

requires that the multivariate data to be 
quantitative so that values can be used as 
coordinates of points. 
 
This study is concerned with data visualiza-
tion using discrete mathematics and combi-
natorics to represent, interpret and reveal 
structures of relationships existing within 
groups of variables. To carry out a cluster 
analysis of a set of n-dimensional multivariate 
data, it becomes necessary and useful to im-
pose some structures into metric space by 
classifying objects as a Euclidean high dimen-
sional state space. 
 
We expand this reasoning through the gen-
eral concept of a data matrix, which consist 
of n rows of objects and p columns of vari-
ables or features. The data matrix X may be 
further specified as a norm space, in order to 
study the geometry of the vector space, and to 
discuss those aspects which depend only 
upon the notion of distance between two 
points. 
 

METHODOLOGY AND DATA  
Many of the concepts in the study can be 
easily generalized to an n-dimensional linear 

space . In a linear space, besides the op-
eration of addition and multiplication by sca-
lars, it is convenient to introduce a norm (i. 
e., the length) into the linear space. The 

norm of the vectors  is 
defined as: 
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We regard the set of all distribution functions as a topological space in order to introduce a 
metric, that is, a distance between pairs of elements or points of the space. The metric is 
defined as: 
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Trosset (2005) asserts that if we replace 
Euclidean distance in (3) with some meas-
ure of dissimilarity, then there are two natu-
ral ways to proceed. The first is to restrict 
attention to methods (e.g., complete linkage 
cluster analysis and (or) nearest neighbor classifica-
tion) that operate directly on dissimilarities. 
The second is on the use of multidimen-
sional scaling to embed the objects to be 
clustered or classified in the Euclidean 
space. This paper is restricted to the use of 
multidimensional scaling techniques. 
 
Multidimensional scaling (MDS) is a collec-
tion of techniques for constructing configu-
rations of points (typically in a low dimensional 
Euclidean space) from dissimilarity data. The 
basic idea is to find a configuration for 
which the inter-point distance approximates 
the specified dissimilarities. The variation in 
the dissimilarity measure provides opportu-
nity to observe how the objects may vary 
with the intended use of the data. Kaufman 
and Rousseauw (2005) pointed out that dis-
similarities among objects can be computed 
using the group average clustering algo-
rithm AGNES (abbreviation for Agglomerative 

Nesting) as available in S-Plus. 
 
Our intension is not to establish a tree struc-
ture from a combinatorial view point, but to 
assign optimal lengths to the edges of a given 
tree. The technique used to group the data is 
a hierarchical clustering algorithm. The ac-
tual application of the procedure for the 
Euclidean distance is by a cluster tree or den-
drogram which shows how objects are suc-
cessively amalgamated into groups or clus-
ters at various values of dissimilarity meas-
ure. The cluster tree shows clearly the order 
and value of the measure at which the clus-
ters are formed. At any value on the measure 
axis, each horizontal line in the tree repre-
sents a cluster of one or more objects from 
which representative objects must be chosen. 
The number of objects and the object mem-
bership for any cluster can be determined 
from the cluster tree by following the branch 
of the tree to the extreme left, at which point 
the objects in the cluster can be identified. 
Mojena (1977) suggests considering the rela-
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This is referred to as Minkowski’s distance or  metric. The quantity  is the dis-

tance between two points  and  and this is equal to the dissimilarity between the cor-

responding points. The set  together with the metric defined in (2) above is a metric 
space. 

The distance between two objects  and  is a function of their observed values and can 
be defined as Euclidean distance: 
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tive sizes of the different fusion levels in the 
cluster tree to determine the number of 
clusters to be selected. His proposal is to 
select the number of clusters corresponding 
to the first stage in the dendrogram for 
which 

Where  are the fusion lev-
els corresponding to the stages with 

 clusters. The terms  and 

 are respectively, the mean and unbiased 

standard deviation of the -values and  
is a constant. He recommends that 

. Milligan and Cooper 
(1985), however, suggest that a more satis-

factory value of  is 1.25. 
The data set used for this study was ab-
stracted from a similar study conducted by 
Uchendu and Nwishi (2007). The data con-
sist of ten morphological features of Tilapia 
Cabrea and since our aim is to determine the 
similarities between the morphological fea-
tures, we evaluated the transpose of the 
standardized data matrix of the morpho-
logical features. 
 

RESULTS AND DISCUSSION 
Our study examined the differences among 
the fusion levels in the cluster tree resulting 

from the application of group average hierarchi-
cal clustering of the morphological features. 
The dendrogram is presented in Fig. 1 in the 
appendix. Classifications corresponding to a 
particular point in this process can be ob-
tained by first graphing a matrix of scatter 
plots of the variables as shown in Fig. 2. Ap-
plying the Mojena (1977) scheme, the estimated 
mean and unbiased standard deviations of 
the fusion levels are 6.3545 and 1.7284 re-
spectively. Using a k-value of 1.23 gives the 
two-cluster classification of the morphologi-
cal features of Tilapia cabrea shown in Table 
1. The fusion levels and k-values for a two-
cluster average linkage classification are also 
shown in Table 2 and the by-plot of clusters 
of the first-two principal components of the 
standardized morphological features are 
shown in Figure 3.  
 
As shown in Table 1 and Fig. 2, it implies 
that the morphological features of Group 1 
are similar and are the major features that 
determine the size of Tilapia cabrea fish. The 
correlations between these features are posi-
tive and are very significant as verified by 
Uchendu and Nwishi (2010). On the other 
hand, the features that constitute Group 2 
are also similar but are sparingly correlated 
with those of Group 1. Thus, this group’s 
contribution to the size of Tilapia cabrea is 
negligible. 
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Average linkage dendrogram of standardized Euclidean distances

Fig. 1: Average linkage dendrogram of standardized morphological features of Tilapia  
          cabrea 
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Fig. 2: Pair-wise scatter plot of standardized morphological features of Tilapia cabrea  
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Table 1: Two-cluster hierarchical classification of standardized morphological  
              features of Tilapia cabrea 

Group 1 Total length, Standard length, Body weight, Gutted weight, 
Head length, Snout length, Body weight, Head width. 

Group 2 Ocular length, Mouth length. 

Table 2: Fusion levels and k-values of average linkage clustering of morphological 
               features of Tilapia cabrea 

Fusion 
level 

3.2045 5.1947 5.7905 6.0404 6.4374 7.1105 7.4689 7.7012 8.2427 

k-value -2.0503 -0.7549 -0.3671 -0.2044 0.0539 0.4921 0.7253 0.8765 1.2290 
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Fig. 3: Plot of the first-two principal components of two-cluster classification of  
           standardized morphological features of Tilapia cabrea.  
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Data on Morphological Features of Tilapia cabrea 
S/N Total 

length 

(mm) 

Standard 

length 

(mm) 

Body 

weight (g) 

Gutted 

weight (g) 

Head 

length 

(mm) 

Snout 

length 

(mm) 

Ocular 

length 

(mm) 

Body depth 

(mm) 

Head 

width 

(mm) 

Mouth 

length 

(mm) 
1 135 85 41.72 38.65 31 11 10 43 16 18 
2 116 87 39.2 37.81 30 10 11 50 19 10 
3 104 81 30.12 28.69 29 11 11 39 17 18 
4 102 74 27 24.93 28 9 10 39 16 16 
5 67 53 5.73 4.9 19 6 6 22 9 10 
6 165 140 40.79 37.71 34 12 11 45 17 16 
7 140 108 62.62 58.09 38 15 11 52 20 20 
8 109 84 38.06 28.57 31 11 9 44 11 15 
9 96 73 30.12 21.52 22 10 9 42 14 15 
10 114 88 37.34 38.47 30 11 10 40 23 18 
11 115 90 40.79 37.71 34 12 11 45 18 17 
12 102 74 27 24.93 28 11 11 39 14 20 
13 127 90 64.13 53.31 37 16 12 53 19 17 
14 96 74 31.13 22.52 22 10 9 43 15 16 
15 112 86 40.94 33.27 30 14 11 46 16 16 
16 168 124 109.88 92.87 43 17 12 60 23 19 
17 136 106 56.17 38 44 18 10 47 17 17 
18 110 87 40.06 30.96 31 12 10 46 18 16 
19 106 84 38.06 28.57 31 11 9 45 16 14 
20 113 87 41.47 31.22 32 13 10 44 18 15 
21 119 95 42.77 37.49 33 11 9 44 17 16 
22 117 97 41.18 38.51 32 12 5 45 18 16 
23 122 94 44.87 40.62 32 11 8 46 19 16 
24 122 96 42.51 39.68 33 11 10 46 18 18 
25 112 86 35.19 31.38 30 10 10 42 17 16 
26 142 110 74.1 72.44 30 15 13 51 23 18 
27 114 88 37.34 35.47 30 11 10 40 17 12 
28 105 80 26.42 24.65 30 10 10 41 16 16 
29 116 90 45.43 38.29 32 11 10 54 17 20 
30 121 94 47.57 45.17 33 13 11 46 18 20 
31 134 103 49 4.47 33 14 11 46 18 20 
32 125 100 48.38 42.1 34 13 12 49 20 18 
33 134 106 57.68 47.47 36 14 12 53 24 22 
34 128 100 57.04 50.34 38 14 10 53 21 20 
35 125 100 51.67 45 33 15 11 49 20 18 
36 130 103 55.82 47.46 37 14 11 50 20 22 
37 124 94 51.42 45.75 35 14 11 51 19 20 
38 150 121 74.43 66.11 40 19 13 58 21 24 
39 126 102 48.88 43.11 35 13 11 49 19 18 
40 123 93 47.73 42.2 33 12 11 49 18 22 
41 102 74 27 24.91 28 11 11 39 14 20 
42 115 90 40.79 37.71 34 12 11 45 18 17 
43 114 84 37.34 35.47 30 11 10 40 23 18 
44 96 73 30.12 21.52 22 10 9 42 14 15 
45 109 84 38.06 28.57 31 11 9 44 16 15 
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46 140 108 62.62 58.09 38 15 11 52 20 20 
47 115 90 40.79 37.71 34 12 11 45 17 16 
48 67 53 5.73 4.9 19 6 6 22 9 10 
49 102 74 27 24.93 28 9 10 39 16 16 
50 104 81 30.12 28.69 29 11 11 39 17 18 
51 116 87 39.2 37.81 30 9 10 39 16 16 
52 135 85 41.72 38.65 31 6 6 22 9 10 
53 105 80 26.42 24.65 30 12 11 45 17 16 
54 114 88 37.34 35.47 30 15 11 52 20 20 
55 142 110 74.1 72.44 30 11 9 44 16 15 
56 112 86 35.19 31.38 30 10 9 42 14 15 
57 122 96 42.51 39.68 33 11 10 40 23 18 
58 122 94 44.87 40.62 32 11 10 46 18 18 
59 117 87 41.18 38.51 32 12 6 45 18 16 
60 119 95 42.77 37.49 33 11 9 44 17 18 
61 113 87 41.47 31.22 32 13 10 44 18 15 
62 109 84 38.06 28.57 31 11 9 45 16 14 
63 110 87 40.06 30.96 31 12 10 46 18 16 
64 36 106 56.17 38 44 18 10 47 17 17 
65 168 124 109.88 92.87 43 17 12 60 23 19 
66 112 86 40.94 33.27 30 14 11 46 16 16 
67 96 74 31.13 22.52 22 10 9 43 15 16 
68 127 100 64.13 53.31 37 16 12 53 19 17 
69 123 93 47.73 42.2 33 12 11 49 18 22 
70 126 102 48.88 43.11 35 13 11 49 19 18 
71 150 121 74.43 66.11 40 19 13 58 21 24 
72 124 94 51.42 45.74 35 14 11 57 19 20 
73 130 103 55.82 47.56 37 14 11 50 20 22 
74 125 100 51.67 45 33 15 11 49 20 18 
75 128 100 57.04 50.34 38 14 10 53 21 20 
76 104 145 57.68 47.47 36 14 12 53 24 22 
77 125 100 48.38 42.1 34 13 12 49 20 18 
78 134 103 49 47.47 33 14 11 46 18 20 
79 116 90 45.43 38.29 32 11 10 45 17 20 
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CONCLUSION 
This study demonstrates the usefulness of 
the cluster tree structure in the visualization 
of multidimensional data. The tree provides 
a hierarchical representation of the feature 
space. The tree structured rules were con-
structed by repeated splitting of subsets of 
the feature space. The procedure provides 
theoretically sound and consistent basis 
upon which decisions to group objects can 
be based. 
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