SOLVABILITY OF A N ORMAL SUBGROUP IN RELATION TO ITS CHARACTER DEGREES

*M. A GANIYU ${ }^{1}$, F. M JIMOH ${ }^{1}$, A. D. AKWU ${ }^{2}$
${ }^{* 1}$ D epartment of Physical Science, Al-hikmah University, Ilorin, K wara State, Nigeria.
D epartment of Mathematics, Federal University of Agriculture, Makurdi, Benue State.

*Comesponding author: bidex1425@yahoo.com Tel: +2348051711777

ABSTRACT

In this work, how the structure of a normal subgroup of a group G is influenced by the degrees of an appropriate subset of irreducible character of a group G was verified. The characters that were used in controlling the structure of $N \Delta \mathrm{G}$ are exactly those whose kernels do not contain N .
Given that $\mathrm{N} \Delta \mathrm{G}$,

$$
\begin{aligned}
& \operatorname{lrr}(\mathrm{G} / \mathrm{N})=\left\{\begin{array}{ll}
X & \in \operatorname{lrr}(\mathrm{G}) / \mathrm{N} \text { 连 } \operatorname{ker}(X) \\
\text { and }
\end{array}\right\} \\
& \operatorname{cd}\left({ }^{\mathrm{G}} / \mathrm{N}\right)=\left\{\begin{array}{llll}
X & (1) / X & \in \operatorname{Irr}\left({ }^{\mathrm{G}} / \mathrm{N}\right)
\end{array}\right.
\end{aligned}
$$

Keywords: Normal Subgroup, Character degrees, Solvable groups, Derived length and irreducible Character.

INTRODUCTION

In group theory, the character of a group representation is a function on the group which associates to each group element, the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form.
Let V be a finite dimensional vector space
over a field F and let ${ }^{\varrho}: G \circledR$ GL (V) be a representation of a group G on V. The character of Q is the function.
$X: G ® F$ given by

$$
\chi(\mathrm{g})=\operatorname{Tr}((\mathrm{g})) . \text { Where } \operatorname{Tr} \text { is the }
$$

trace.
A character X is called irreducible if ϱ is an irreducible representation. A character χ is linear if the dimension of Q is 1 . If x is a character of G. then the kernel of χ is given by:
Ker $\mathcal{X}=(\mathrm{g} \in \mathrm{G}: \mathcal{X}(\mathrm{g})=\chi$
Characters are class functions i.e. they take a constant value on a given conjugacy class. Isomorphic representations have the same characters and if a representation is the direct sum of subrepresentations, then the corresponding character is the sum of the char-
acters of those subrepresentations.
Let P and s be representations of G, then the following identities hold:

$$
\begin{aligned}
& X_{\varrho} \AA \AA_{\mathrm{s}}=X_{\mathrm{e}}+X_{\mathrm{s}} \\
& X_{e}{ }_{\mathrm{A} s}=\mathcal{X}_{\mathrm{e}} . \mathcal{X}_{\mathrm{s}} \\
& x_{e}=\bar{\chi}_{\rho} \\
& \chi_{\text {Alt }^{2}} \rho(\mathrm{~g})=1 / 2\left[\left(X_{\rho}\right.\right. \\
& \left.(\mathrm{g}))^{2}-\chi_{\rho}\left(\mathrm{g}^{2}\right)\right] \\
& \chi_{\operatorname{sym}^{2}} \rho(\mathrm{~g})=1 / 2 \chi_{\rho} \\
& \left.(\mathrm{g})^{2}+\chi_{\rho}\left(\mathrm{g}^{2}\right)\right]
\end{aligned}
$$

Where ${ }^{\rho}$ Äs is the direct sum, ${ }^{\rho}$ Äs is the tensor product, $\rho *$ denotes the conjugate transpose of ρ, Alt ${ }^{2}$ is the alternating product and sym ${ }^{2}$ is the symmetric square.

Garrison (1973) wrote on 'on groups with a small number of character degrees' where he stated that if $|\operatorname{cd}(\mathrm{G})|=4$, then $\mathrm{dl}(\mathrm{G}) \leq$ \mid cd (G)| for all solvable groups. Isaacs (1975) also stated that if $|\operatorname{cd}(\mathrm{G})| \leq 3$, then G is necessarily solvable and $\mathrm{dl}(\mathrm{G}) \leq \mid \mathrm{cd}$ (G)| in his work character degrees and derived length of a solvable group.

Berger (1976) 'characters and derived length in groups of odd order' wrote that if $|\mathrm{G}|$ is odd, then $\mathrm{dl}(\mathrm{G}) \leq \mid$ cd $(\mathrm{G}) \mid$. Also, Gluck (1985) wrote on Bounding the number of character degrees of a solvable groups where he stated that $\mathrm{dl}(\mathrm{G}) \leq 2 / \operatorname{cd}(\mathrm{G}) /$ holds for all solvable group.

Mark (1998) wrote on derived lengths and character degrees. Gustavo and Alexander (2001) treated groups with two extreme character degrees and their normal sub-
groups. Isaacs and Moreto (2001) established a linkage between the character degrees and Nilpotency class of a P-group.

Alexander and Sanius (2005) wrote on character degrees, blocks and normal subgroup. Chen et al (2006) worked on groups with character degrees of two distinct primes. Cossey (2006) showed the bounds on the number of lifts of a Brauer Character in a Psolvable group.

The goal of this paper is to verify how the structure of a normal subgroup of G is influenced by the degrees of an appropriate subset of $\operatorname{Irr}(G)$.

RESULTS AND DISCUSSION Character table

The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a compact form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on the representatives of the respective conjugacy class of G. The columns are labelled by (representatives of) the conjugacy classes of G. It is customary to label the first row by the trivial character and the first column by (the conjugacy class of) the identity. The entries of the 1st column are the values of the irreducible characters at the identity, the degrees of the irreducible characters. Characters of degree are known as Linear Character.

The character table is always square because the number of irreducible representations is equal to the number of conjugacy classes. The first row of the character table always consist of 1 's and that corresponds to the trivial representation. The order of G is given by the sum of the squares of the en-
tries of the 1st column (the degrees of the column is as follows: irreducible characters). More generally, the sum of the squares of the absolute values of the entries in any column gives the order of the centralizer of an element of the corresponding conjugacy classes.

All normal subgroups of G (and whether or not G is simple) can be recognised from its character table. The kernel of a character
χ is the set of elements g in G for which
$\chi(\mathrm{g})=X(1)$. This is a normal subgroup of G.

Orthogonality relations

The space of complex - valued class functions of a finite group G has a natural inner product.

$$
\begin{equation*}
\langle\square, \beta\rangle=\frac{1}{(G)} \sum_{g \in G} \tag{g}
\end{equation*}
$$

Where $\beta^{\overline{(g)}}$ means the complex conjugate of the value of β on g . With respect to this product, the irreducible characters form an orthonormal basis for the space of class functions, and this yield the orthogonality relation for the rows of the character table.

$$
\left\langle\chi_{\mathrm{i},} \chi_{\mathrm{j}}\right\rangle=\begin{array}{lll}
\mathbf{0} & \text { if } & i \neq j \\
\mathbf{1} & \text { if } & i=j
\end{array}
$$

$\left(\square \mid C_{G}(g), @ 0_{r} \quad\right.$) if $g, \mathrm{~h}$ are
conjugate
otherwise
Where the sum is overall of the irreducible characters χ_{i} of G and the symbol $\left.\right|^{C_{G}}$ $(\mathrm{g}) \mid$ denotes the order of the centralizer of g . The orthogonality relations can aid many computations including: decomposing an unknown character as a linear combination of irreducible characters; constructing the complete character table when only some of the irreducible characters are known; finding the orders of the centralizers of representatives of the conjugacy classes of a group G; Finding the order of the group. Therem 1: Bekovid'sTheerem[3]

Let $N \backsim G$ and suppose that every member of cd $\left(G / N^{1}\right)$ is divisible by some fixed prime number P . Then N is solvable and has a normal P-complement.

Verification of Berkovich's Theorem
Let S_{4} (a symmetic group on 4 objects) be a finite group of order 24. i.e. $\left|S_{4}\right|=24$. The elements of S_{4} include:
For g, $h \in G$, the orthogonality relation for
$S_{4}=\left\{\begin{array}{l}1234 \\
1234\end{array}\right),\binom{1234}{1243} \cdot\binom{1234}{1324},\binom{1234}{1342},\binom{1234}{1424},\binom{1234}{1432},\binom{1234}{2134}$,
$\binom{1234}{2143},\binom{1234}{2314},\binom{1234}{2341}$

| (1) | (34) | (23) | (234) | (243) | (24) | (12) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | (12)(34)

(1234)

$$
\binom{1234}{2413} \cdot\binom{1234}{2431},\binom{1234}{3124},\binom{1234}{3142},\binom{1234}{3214},\binom{1234}{3241},\binom{1234}{3412}
$$

$\binom{1234}{3421}, \quad\binom{1234}{4123},\binom{1234}{4132}$
$\left.\begin{array}{llllllll}\begin{array}{llll}(1234) & (124) & (132) & (1342) \\ (142)\end{array} \\ \binom{1234}{4213} & \binom{1234}{4231} & \binom{1234}{4312} & \binom{1234}{4321} & (13) & \text { (24) } & \text { (1324) } & \text { (1432) } \\ (143) & (14) & (1423) & (14)(23)\end{array}\right)$

The set of all even permutations form a group A_{4} of order 12 which include.

Which form a normal subgroup of S_{4}. The commutator subgoup of $A^{1}{ }_{4}$ was obtained by using the formular
$\mathrm{A}^{1}{ }_{4}=\left\{[\mathcal{X}, \mathrm{y}]: \mathcal{X}^{-1} \mathrm{y}^{-1} \mathcal{X} \quad \mathrm{y} \in \mathrm{A}_{4}\right\}$
$\mathrm{A}^{1}{ }_{4}=\{(1),(12)(34),(13(24),(14)(23)\}$ which is called four group or (klein 4-group).
To get the character table of S_{4}; we let (1), (12), (12)(34), (1234), (123) be representatives of its conjugacy classes. This implies that S_{4} have 5 irreducible characters denoted by $\chi_{\mathbf{1}} \quad \chi_{\mathbf{z}}$

```
\mp@subsup{\chi}{3}{}
```

Table 1: Character table of $\mathbf{S}_{\mathbf{4}}$

Representative	(1)	(12)	$(12)(34)$	(1234)	(123)
Class Size	1	6	3	6	8
$\|C G(g)\|$	24	4	8	4	3
$\chi_{\mathbf{1}}$	1	1	1	1	1
$\chi_{\mathbf{2}}$	1	-1	1	-1	1
$\chi_{\mathbf{3}}$	2	0	2	0	-1
$\chi_{\mathbf{4}}$	3	1	-1	-1	0
$\chi_{\mathbf{5}}$	3	-1	-1	1	0

J. Nat. Sci. Engr. Tech. 2012, 11(1): 1-10

By definition
$\operatorname{Irr}\left(\mathrm{S}_{4} / \mathrm{A}^{1}{ }_{4}\right)=\left\{\boldsymbol{X} \mathbf{E} \operatorname{Irr}\left(\mathrm{S}_{4}\right) / \mathrm{A}^{1}{ }_{4}{ }^{\boldsymbol{E}} \mathrm{ker}\right.$
(X) \}
$\operatorname{Irr}\left(\mathrm{s}_{4} / \mathrm{A}^{1}{ }_{4}\right)=\left\{\chi_{4}, \chi_{\mathbf{s}}\right\}$
And $\operatorname{cd}\left(\mathrm{s}_{4} / \mathrm{A}^{1}{ }_{4}\right)=\left\{\begin{array}{l}\chi \\ (1) / \\ \chi \in \quad \operatorname{Irr}\left(\mathrm{s}_{4} /\right.\end{array}\right.$ A_{4}) $\}$
$\mathrm{B} \operatorname{cd}\left(\mathrm{S}_{4} / \mathrm{A}_{4}\right)=\left\{\chi_{\mathbf{4}}\right.$ (1), $\chi_{\mathbf{5}}$ (1) $\}$
$\mathrm{P} \mathrm{cd}\left(\mathrm{S}_{4} / \mathrm{A}^{1}{ }_{4}\right)=\{3,3$,
able which is true and A_{4} has a normal PComplement which means A_{4} has a normal subgroup of index P.
i.e $\mathrm{A}^{1}{ }_{4}$ is a normal subgroup of A_{4} and $\left[\mathrm{A}_{4}\right.$:
$\left.\mathrm{A}_{4}\right]=\left\lfloor\mathrm{A}_{4}\right\rfloor=\frac{\frac{\mathbf{1 2}}{\mathbf{4}}}{\mathrm{A}^{1} 4}=3$, the fixed prime

Theoren2: Isaas andGregThearm[10]

Let $\mathrm{N}^{\Delta} \mathrm{G}$ and suppose that $\left|\operatorname{cd}\left({ }^{G} /{ }_{N}\right)\right|$ Suppose every member of $\mathrm{cd}\left(\mathrm{s}_{4} / \mathrm{A}^{1}{ }_{4}\right)$ is di- ≤ 1, then $\mathrm{dl}(\mathrm{N}) \leq\left|\mathrm{cd}\left(G_{N}\right)\right|$ and in parvisible by a fixed prime 3 ; then A_{4} is solv- ticular, N is abelian.

Verification:
Let $\quad C_{4} \times C_{2}$ be finite group of order 8 where

$$
\mathrm{C}_{4}=\left\{1, \mathrm{a}, \mathrm{a}^{2}, \mathrm{a}^{3}\right\}, \mathrm{a}^{4}=1
$$

and $\quad \mathrm{C}_{2}=\{1, \mathrm{~b}\}, \quad \mathrm{b}^{2}=1$
$C_{4} \times C_{2}=\left\{(1,1),(1, b),(a, 1),(a, b),\left(a^{2}, 1\right),\left(a^{2}, b\right),\left(a^{3}, 1\right),\left(a^{3}, b\right)\right\}$
Order of each element in $\mathrm{C}_{4} \times \mathrm{C}_{2}$ include:

$(1,1)$	-	1
$(1, b)$	-	2
$(a, 1)$	-	4
(a, b)	-	4
$\left(a^{2}, 1\right)$	-	2
$\left(a^{2}, b\right)$	-	2
$\left(a^{3}, 1\right)$	-	4
$\left(a^{3}, b\right)$	-	4

Subgroup of $\mathrm{C}_{4} \times \mathrm{C}_{2}$ of order one

$$
\mathrm{H}_{1}=\{(1,1)\}
$$

Subgroup of $\mathrm{C}_{4} \times \mathrm{C}_{2}$ of order two

$$
\begin{aligned}
& \mathrm{H}_{2}=\{(1,1),(1, \mathrm{~b})\} \\
& \mathrm{H}_{3}=\left\{(1,1),\left(\mathrm{a}^{2}, 1\right)\right\} \\
& \mathrm{H}_{4}=\left\{(1,1),\left(\mathrm{a}^{2}, \mathrm{~b}\right)\right\}
\end{aligned}
$$

Subgroup of $\mathrm{C}_{4} \times \mathrm{C}_{2}$ of order four

$$
\begin{aligned}
& H_{5}=\left\{(1,1),(1, b),\left(a^{2}, 1\right),\left(a^{2}, b\right)\right\} \\
& H_{6}=\left\{(1,1),(a, 1),\left(a^{2}, 1\right),\left(a^{3}, 1\right)\right\} \\
& H_{7}=\left\{(1,1),\left(a^{2}, 1\right),(a, b),\left(a^{3}, b\right)\right\}
\end{aligned}
$$

Subgroup of $\mathrm{C}_{4} \times \mathrm{C}_{2}$ of order eight
M. A GANIYU1, F. M JIMOH¹, A. D AKWU2

Table 2: Character table of C_{4}

G	1	a	a 2	a 3
$\chi_{\mathbf{1}}$	1	1	1	1
$\boldsymbol{X}_{\mathbf{2}}$	1	1	-1	$-\boldsymbol{1}$
$\chi_{\mathbf{3}}$	1	-1	$-i$	1
$\boldsymbol{X}_{\mathbf{4}}$	1	$-i$	1	-1

Table 3: Character table of C_{2}

g	1	b
$\psi_{\mathbf{1}}$	1	1
$\psi_{\mathbf{2}}$	1	-1
So that character table of $\mathrm{C}_{4} \times$		
	C_{2} will be	

Table 4: Character table of $C_{4} \times C_{2}$

g	$(1,1)$	$(1, \mathrm{~b})$	(a,1)	(a2,1)	(a2,b)	(a2,b)	(a2,b)	(a3,b)
χ_{1}, ψ_{1}	1	1	1	1	1	1	1	1
χ_{2}, ψ_{2}	1	1	1	1	-1	-1	i	i
χ_{3}, ψ_{1}	1	1	-1	-1	- ${ }^{\text {t }}$	- ${ }^{\text {i }}$	1	1
χ_{4}, ψ_{1}	1	1	-	i	1	1	-1	-1
χ_{1}, ψ_{2}	1	-1	1	-1	1	-1	1	-1
χ_{2}, ψ_{2}	1	-1	1	-1	-1	1	i	t
χ_{3}, ψ_{3}	1	-1	-1	1	- ${ }^{\text {t }}$	t	1	-1
$\chi_{4} \cdot \psi_{4}$	1	-1	- 1	i	1	-1	-1	1

$\operatorname{Irr}\left(\mathrm{C}_{4}{ }^{\prime} \mathrm{C}_{2} / \mathrm{H}_{-5}\right)=\left\{X_{3} \quad, \psi_{3}\right\}$
Now, cd $\left(\mathrm{C}_{4}{ }^{\prime} \mathrm{C}_{2} / \mathrm{H}_{5}\right)=\{1\}$
$\backslash\left|\mathrm{cd}\left(\mathrm{C}_{4}{ }^{\prime} \mathrm{C}_{2} / \mathrm{H}_{5}\right)\right|=1$
The derived length of H_{5}
$H_{5}=\left\{(1,1),(1, b),\left(a^{2}, 1\right),\left(a^{2}, b\right)\right\}$
$\left[(1, b),\left(a^{2}, 1\right)\right]=(1, b)^{-1}\left(a^{2}, 1\right)^{-1}(1, b)\left(a^{2}, 1\right)$

$$
=(1, \mathrm{~b})\left(\mathrm{a}^{2}, 1\right)(1, \mathrm{~b})\left(\mathrm{a}^{2}, 1\right)
$$

J. Nat. Sci. Engr. Tech. 2012, 11(1): 1-10

```
    \(=(1,1)\)
\(\left[(1, b),\left(\mathrm{a}^{2}, \mathrm{~b}\right)\right]=(1, \mathrm{~b})^{-1}\left(\mathrm{a}^{2}, \mathrm{~b}\right)^{-1}(1, \mathrm{~b})\left(\mathrm{a}^{2}, \mathrm{~b}\right)\)
    \(=(1, \mathrm{~b})\left(\mathrm{a}^{2}, \mathrm{~b}\right)(1, \mathrm{~b})\left(\mathrm{a}^{2}, \mathrm{~b}\right)\)
    \(=(1,1)\)
\(\left[\left(a^{2}, 1\right),\left(a^{2}, b\right)\right]=\left(a^{2}, b\right)-1\left(a^{2}, b\right)-1\left(a^{2}, 1\right)\left(a^{2}, b\right)\)
    \(=\left(a^{2}, 1\right)\left(a^{2}, b\right)\left(a^{2}, 1\right)\left(a^{2}, b\right)\)
    \(=(1,1)\)
\(\backslash \mathrm{H}_{5}{ }^{1}=(1,1), \mathrm{H}_{5} \quad\) コ \(\quad \mathrm{H}_{5}{ }^{1}=(1,1)\)
\ the derived length of \(\mathrm{H}_{5}=1\)
\(\backslash \mathrm{dl}\left(\mathrm{H}_{5}\right) \leq\left|\mathrm{cd}\left(\mathrm{C}_{4}{ }^{\prime} \mathrm{C}_{2} / \mathrm{H}_{5}\right)\right|\)
In particular, \(\mathrm{H}_{5}\) is abelian
\[
\begin{aligned}
& (1, \mathrm{~b})^{\prime}\left(\mathrm{a}^{2}, 1\right)=\left(\mathrm{a}^{2}, \mathrm{~b}\right) \\
& \left(\mathrm{a}^{2}, 1\right)^{\prime},(\mathrm{a}, \mathrm{~b})=\left(\mathrm{a}^{2}, \mathrm{~b}\right) \\
& \left(\mathrm{a}^{2}, \mathrm{a}\right) \\
& \left(\mathrm{a}^{2}, \mathrm{~b}\right)^{\prime}{ }^{\prime}\left(\mathrm{a}^{2} \mathrm{~b}\right)=(1)=(1, \mathrm{~b})
\end{aligned}
\]
Also
```

Theerem3: Isaas andGreetheerem[10]
Let $\mathrm{N} \Delta \mathrm{G}$ and suppose that $|\mathrm{cd}(\mathrm{G} / \mathrm{N})|=2$. If N is solvable, then $\mathrm{dl}(\mathrm{N})=2$.
Verification:
Let S_{3} ' C_{2} be a finite group of order 12; where
$\mathrm{S}_{3}=\left\{\binom{123}{123},\binom{123}{132},\binom{123}{213},\binom{123}{231},\binom{123}{312},\binom{123}{321}\right\}$
(1) (23) (12) (123) (132) (13)
$\left.\mathrm{C}_{2}=\{1, \mathrm{a})\right\}, \mathrm{a}^{2}=1$
$\mathrm{S}_{3}{ }^{\prime} \mathrm{C}_{2}=\{((1), 1),((23), 1),((12), 1),((123), 1)$,
((132),1), ((13), 1), ((1), a), ((23), a), ((12), a), ((123), a),
((132), a) ((13), a) $\}$
Order of each element in $\mathrm{S}_{3}{ }^{\prime} \mathrm{C}_{2}$

$(\mathbf{1 3}, 1)$	-	1
$((23), 1)$		-
$((12), 1)$	-	2
$((123), 1)-$	3	
$((132), 1)-$	3	
$((13), 1)$	-	2
$((1), a)$	-	2
$((23), \mathrm{a})$	-	2
$((12), a)$	-	2
$((123), a)$	-	6
$((132), a)$	-	6
$((13), a)$	-	2

1 element subgroup

$$
\left.\mathrm{H}_{1}=\{(1), 1)\right\}
$$

2 elements subgroup

$$
\begin{array}{ll}
\mathrm{H}_{2}=\{((1), 1),((2,3), 1)\} & \mathrm{H}_{3}=\{((1), 1),((12), 1)\} \\
\mathrm{H}_{4}=\{((1), 1),((1,3), 1)\} & \mathrm{H}_{5}=\{((1), 1),((1), \mathrm{a})\} \\
\mathrm{H}_{6}=\{((1), 1),((23, \mathrm{a})\} & \mathrm{H}_{7}=\{((1), 1),((12), \mathrm{a})\} \\
\mathrm{H}_{8}=\{((1), 1),((13), \mathrm{a})\} &
\end{array}
$$

3 elements subgroup

$$
\mathrm{H}_{9}=\{((1), 1),((123), 1),((132), 1)\}
$$

4 elements subgroup

$$
\begin{aligned}
& \mathrm{H}_{10}=\{((1), 1),((23), 1),((1), \mathrm{a}),((123), 1)\} \\
& \left.\left.\mathrm{H}_{11}=\{((1), 1),(12), 1),((1), \mathrm{a}),(12), \mathrm{a}\right)\right\} \\
& \mathrm{H}_{12}=\{((1), 1),((13), 1)((1), a),((13), a)\}
\end{aligned}
$$

6 elements subgroup
$\mathrm{H}_{13}=\{((1), 1),((123), 1),((132), 1),((123), \mathrm{a}),((132), \mathrm{a})((1), \mathrm{a})\}$
$\mathrm{H}_{14}=\{((1), 1),((23), 1),((12), 1),((132), 1),((13), 1),((123), 1)\}$
$\left.\mathrm{H}_{15}=\{((1), 1),((23), a),(12), a),((132), 1),((13), a),((13), a)\right\}$ 12 element subgroup
$\mathrm{H}_{16}=\{((1), 1),((23), 1),((12), 1),((123), 1),((132), 1),((13), 1)\}$
((1), a), ((23), a), ((12), 1), ((123), a), ((132), a), ((13), a)\}
Testing for normal subgroup, we get
$\mathrm{H}_{9}=\{((1), 1),((123), 1),((132), 1)\}$ to be a normal subgroup of S_{3}
The character table of S_{3} is given below:
S_{3} has 3 conjugacy classes (1), (12) and (132) with 3 irreducible characters

Table 5: Character table of $\mathbf{S}_{\mathbf{3}}$

Representative	(1)	(12)	(132)
Class Size	1	3	2
\mid CG $(\mathrm{g}) \mid$	6	2	3
$\boldsymbol{\chi}_{\mathbf{1}}$	1	1	1
$\boldsymbol{\chi}_{\mathbf{z}}$	1	-1	1
$\boldsymbol{\chi}_{\mathbf{3}}$	2	0	-1

Table 6: Character table of C_{2}.

G	1	a
Class Size	1	1
\mid CG $(\mathrm{g}) \mid$	2	2
$\psi_{\mathbf{1}}$	1	1
$\psi_{\mathbf{2}}$	1	-1

So that we have the following for the character table of $\mathrm{S}_{3}{ }^{\prime} \mathrm{C}_{2}$.

Table 7: Character table of $\mathbf{S}_{\mathbf{3}}{ }^{\prime} \mathbf{C}_{\mathbf{2}}$

Representatives	$((1), 1)$	$((1), \mathrm{a})$	$((12), 1)$	$((12), \mathrm{a})$	$((132), 1)$	$(132 \mathrm{a})$,
$\chi_{\mathbf{1}}, \psi_{\mathbf{1}}$	1	1	1	1	1	1
$\chi_{\mathbf{2}}, \psi_{\mathbf{z}}$	1	1	-1	-1	1	1
$\chi_{\mathbf{3}}, \psi_{\mathbf{1}}$	2	2	0	0	-1	-1
$\boldsymbol{\chi}_{\mathbf{1}}, \psi_{\mathbf{z}}$	1	-1	1	-1	1	-1
$\boldsymbol{X}_{\mathbf{2}}, \psi_{\mathbf{z}}$	1	-1	-1	1	1	-1
$\chi_{\mathbf{z}}, \psi_{\mathbf{z}}$	2	-2	0	0	-1	1

So $\operatorname{Irr}\left(\mathrm{S}_{3}{ }^{\prime} \mathrm{C}_{2} / \mathrm{H}_{9}\right)=\left\{\chi_{3}, \psi_{\mathbf{1}}, \chi_{3}, \psi_{2}\right\}$
and $\left|\operatorname{cd}\left(\mathrm{S}_{3}{ }^{\prime} \mathrm{C}_{2} / \mathrm{H}_{9}\right)\right|=\{2,2\}$
$\backslash\left|c d\left(\mathrm{~S}_{3}{ }^{\prime} \mathrm{C}_{2} / \mathrm{H}_{9}\right)\right|=2$
To test for the solvability of H_{9}
$\mathrm{H}_{9}=\{((1,1),((123), 1),((132), 1)\}$
Picking two elements ((123), 1) and ((132), 1), we get
$\left.\left.\mathrm{H}_{9}=\left[\binom{123}{231}, 1\right)\binom{123}{312}, 1\right)\right]$
$\left.\left.\left.=\left(\binom{231}{123}, 1\right)\binom{312}{123}, 1\right)\binom{123}{231}, 1\right)\binom{123}{312}, 1\right)$
$\left.\left.=\left(\binom{231}{123}, 1\right)\binom{312}{123}, 1\right)\binom{231}{123}, 1\right)$
$\left.\left.=\binom{231}{123}, 1\right)\binom{123}{231}, 1\right)$
$=\left(\binom{231}{123}, 1\right)$
$=((1), 1)$
Since the commutator of H_{9} terminte at ((1), 1): it implies that H_{9} is solvable.
\ $\mathrm{H}_{9} \boldsymbol{\sim} \quad \mathrm{H}_{9}{ }^{1}=\{1\}$
So that the derived length is 1
(the derived length which is less than 2 satisfy the condition of the theorem.

