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_pxp. The ith group conditional density fi(Xi, 
θi) is given by 

ABSTRACT 
This study investigated the performance of the heteroscedastic discriminant function under the non-
optimal condition of unbalanced group representation in the populations. The asymptotic performance 
of the classification function with respect to increased Mahalanobis’ distance (under this condition) 
was considered. Results obtained have shown that the misclassification of observations from the 
smaller group escalates when the sample size ratio 1:2 is exceeded (for small sample sizes). Results 
also show more sensitivity to sample size than the distance function when the data set is balanced, 
while the performance of the function in the classification of the underrepresented group improved by 
increasing the distance function. More robustness with unbalanced data was also observed with the 
Quadratic Function than the Linear Discriminant Function. 
 
Keywords: Heteroscedastic, Unbalanced data, Discriminant function, prior probabilities,  
     Misclassification 2000 Mathematics Subject Classification: 62H30, 62C05, 00A72. 

INTRODUCTION 
In this study we restrict ourselves to the 
two group classification problem when the 
covariance structures and mean vectors are 
unequal. We define two groups R1 and R2 
with Multivariate Normal density functions 
f1(x) and f2(x) respectively. R1  Np(μ1,Σ1) 
and R2  Np(μ2,Σ2)where μi  _p and Σi  
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and θi consists of the elements of μi and the (1/2)P(P + 1) distinct elements of Σi (i =1, 
....., g). It is assumed that each Σi  is nonsingular. The elements of the vector P of the mix-
ing proportions for the populations sum up to 1. 
 
Observations from these groups constitute the training sample. A classification function 
will be constructed using the training sample on the basis of which future observations (of 
unknown group memberships) will be classified. This is done by comparing the function to 
a predetermined cut-off value. The procedure is often utilized (but not limited to) the Social 
Sciences, Medical sciences, Education and Psychology. 
 

MATERIALS AND METHODS 
The Model 
The optimal discriminant rule that minimizes the total probability of misclassification is 
given by the log ratio of densities. That is: 
 

       
    (2.1) 

This reduces to: 

   
           (2.2) 

This is a quadratic classification function here after referred to as the Quadratic Discrimi-
nant 
Function (QDF). This function contains population parameters and the sample estimates 

will be obtained from the training data. is the general equation. Equation (2.2) 
above can be written as 
Q(x) = x/ Ax + b/ x + c     (2.3) 

 
where 

  

     (2.4) 
 
The quadratic 

    (2.5) 
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is the squared Mahalanobis’ distance between x and μi with respect to Σ. 
The cut-off point is determined by the log ratios of the costs of misclassification and prior 

probabilities. We define  as the cost of misclassifying an observed vector as 
belonging to group Ri when it actually belongs to Rj  and C(j|i) as the converse.  
 
Consequently, C(i|i) = C(j|j) = 0. Also, the assumption C(j|i) = C(i|j) is the exception and 
not the norm in practice. This rule is however regularly applied when the misclassification 
costs are unknown. 
 
Let Pi  i=1, 2 be the prior probability of an observation belonging to group Ri  and this in-
formation is often obtained from the training sample composition. An observed P-variate 
vector x is assigned to R1 if 
 

        (2.6) 
 

The total probability of misclassification (TPM) gives a measure of the performance of the 
function. This is a proportion of misclassified observations from the training sample and is 
given as: 

   
             (2.7) 
 

Denote  where  and  are the distributions that generated the train-
ing samples, the TPM using the QDF will be represented as 

       (2.8) 
 
where 
A(R0) = (1/2)(C2(R0)-1 – C1(R0)-1)        (2.9) 
b(R0) = C1(R0)-1T1(R0)-1 – C2(R0)-1T2(R0)-1       (2.10) 
c(R0) = (1/2)log(|C2(R0)||C1(R0)| +(1/2)(T2(R0)/C2(R0)-1T2(R0) 

 − T1(R0)/C1(R0)-1T1(R 0))       (2.11) 
 

This is analogous to the quadratic function and equations 2.9 to 2.11 are the values of a lo-

cation function T at the distributions  and . 

 That is,  and   Similarly, C1(R0) and C2(R0) are the 

values of the covariance matrix function C at the distributions  and . 
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 Thus,  and  When the data follow a normal 

distribution, 

T1(R0) = μ1, T2(R0) = μ2, C1(R0) = Σ1 and C2(R0) = Σ2 (Joossens(5)). 

 

McFarland and Richards(7) have provided exact misclassification probabilities for the finite 
sample from a normal distribution. The future data are supposed to be a normal mixture of 
the training data and the observations of unknown group membership. This gives a TPM 
for the mixture as 
TPM(R0, R) = P1 C(2|1)(R0, R) + P2C(1|2)(R0, R)     (2.12) 
 
The theoretical derivations have been provided by Jossens(5), McFarlan and Richards (7) 
and McLachlan (8). 

The Simulation Experiment 
We consider two populations R1  N

(μ4,Σ4x4) and R2  (μ4,Σ4x4) with  
μ1 =(0,0,0,0) and μ2 = (δ,0,0,0), Σ1 =I and 
Σ2 = kI. For our case we set k=6 (Adebanji 
and Nokoe(1)) and δ=1, 2, 3 and 4. Differ-
ent values of δ are considered to see if there 
is any observable change in the perform-
ance of the functions from very close sam-
ples to well separated samples. Twenty one 
sample sizes (ranging from 25 to 500) are 
generated for R1 and the number of corre-
sponding observations generated from R2 is 
determined by the sample size ratio compo-
sition under consideration. We consider n1 : 
n2 = 1:1, 1:2, 1:3 and 1:4; that is from bal-
anced to extremely unbalanced data sets. 
The large sample sizes are considered in 
order to enable us observe the performance 
of the QDF when the population parame-
ters are known. 
 
The four sample size ratio combinations are 
considered for every value of δ under con-
sideration. Random samples are generated 
and 100 replications of each sample specifi-
cation is generated using SAS V(8) (1996). 

The large number of replications minimizes 
between sample variability. The QDF is con-
structed and the leave-one-out error rate esti-
mation procedure (Lachembruch and Mickey
(6))is used for estimating the TPM. 
 
Results of Simulation 
In the results, the total probability of mis-
classification (averaged over 100 replications) 
is denoted as decimals, and the associated 
standard deviations (SD) are also denoted as 
decimals. The coefficient of variation (CV) 
(denoted as percentages) are presented. Re-
sults are also presented for different values 
of δ and sample size ratio combinations. 
 
Scheme 1: Equal Sample sizes (n1:n2=1:1) 
When the sample size ratios are equal, the 
performance of the function for group G1 
with an identity covariance structure is 
slightly better than that for G2  with the co-
variance structure Σ=kI though not signifi-
cantly different in values. Higher reduction 
in error rates and SD was observed for in-
creased sample sizes than for increase in 
the δ value. The results stabilized around 
sample size 1200 beyond which no signifi-
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cant improvement was recorded in the per-
formance of the function. 
 
Scheme 2: Unequal Sample sizes (n1 : 
n2=1:2) 
The ratio of the error rates for G2: G1 was 
1:5 and this increased to 1:10 when the 
sample size 1200 was attained for δ=1. This 
high misclassification of the under-
represented group underscored the im-
provement in the performance of the func-
tion as can be observed from the total error 

rates. The SD shows a steady decline to sam-
ple size 900 at which it stabilizes. The CV 
reduces more gradually to sample size 1200 
and remained stable afterwards. For δ=2, the 
ratio was 1:3 for smaller sample sizes and 1:6 
when the sample size 1200 was attained. For 
δ=3, the ratio increased to 1:4 and similar 
results was observed for δ=4. The group er-
ror rates for this scheme are presented in 
Table 1. 
 

Table 1: Group Error for δ = 1, 2, 3 and 4(n1:n2 = 1 : 2) 

    δ = 1 δ = 2 δ = 3 δ = 4 
n1 Sample 

Size 
G1 G2 G1 G2 G1 G2 G1 G2 

25 75 0.306 0.065 0.231 0.086 0.146 0.082 0.115 0.053 
50 225 0.305 0.047 0.230 0.047 0.151 0.048 0.114 0.031 
75 225 0.305 0.032 0.225 0.043 0.151 0.047 0.114 .029 
100 300 0.304 0.033 0.228 0.044 0.170 0.037 0.113 0.030 
200 600 0.303 0.029 0.228 0.042 0.148 0.046 0.113 0.027 
300 900 0.302 0.026 0.227 0.040 0.168 0.036 0.113 0.028 
400 1200 0.301 0.027 0.225 0.040 0.157 0.039 0.112 0.027 

Scheme 3:Unequal Sample sizes (n1 : 
n2=1:3) 
The ratio of the error rates G2 : G1 for δ = 
1 increased from 1:9 to 1:26 at sample size 
1200, for δ = 2, it rose from 1:4 to 1:9. At δ 
= 3, the change was from 1:4 to 1:6 and 1:2 
to 1:4 for δ = 4. The high error rate for the 
smaller group further underscores the per-
formance of the function. There was a 
steady reduction in the SD until sample size 
800 beyond which it remained relatively 
constant. A similar pattern was observed for 
the CV which recorded only a slight im-

provement beyond sample size 800. Refer to 
Table 2 below for the group error rates. 
 
Scheme 4:Unequal Sample sizes (n1 : 
n2=1:4) 
The widening in the gap of the ratio G2:G1 
was not as rapid as had earlier been ob-
served. For δ = 1 the increase was from 1:9 
to 1:11, while for δ = 2, 3 and 4 the recorded 
values were 1:4 to 1:7, 1:6 to 1:8 and 1:5 to 
1:9 respectively. See Table 3 below for de-
tails of change in error rates. 
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Table 2: Group Error for δ = 1, 2, 3 and 4(n1 : n2=1:3) 

    δ = 1 δ = 2 δ = 3 δ = 4 
n1 Sample Size G1 G2 G1 G2 G1 G2 G1 G2 
25 100 0.412 0.043 0.279 0.065 0.193 0.054 0.139 0.046 
50 200 0.412 0.027 0.283 0.045 0.195 0.054 0.135 0.033 
75 300 0.411 0.018 0.284 0.042 0.195 0.044 0.133 0.029 
100 400 0.410 0.020 0.299 0.036 0.205 0.038 0.127 0.032 
200 800 0.410 0.016 0.280 0.040 0.193 0.039 0.125 0.032 
300 1200 0.409 0.016 0.297 0.031 0.204 0.035 0.122 0.031 
400 1600 0.409 0.016 0.288 0.035 0.198 0.034 0.084 0.044 

Table 3: Group Error for δ = 1, 2, 3 and 4(n1 : n2=1:4) 

    δ = 1 δ = 2 δ = 3 δ = 4 
n1 Sample Size G1 G2 G1 G2 G1 G2 G1 G2 

25 125 0.426 0.049 0.351 0.047 0.105 0.018 0.179 0.036 
50 250 0.423 0.048 0.348 0.034 0.098 0.017 0.178 0.027 
75 375 0.427 0.048 0.351 0.033 0.091 0.017 0.178 0.027 
100 500 0.442 0.046 0.363 0.027 0.093 0.012 0.178 0.022 
200 1000 0.424 0.047 0.348 0.030 0.089 0.016 0.169 0.025 
300 1500 0.440 0.047 0.361 0.025 0.087 0.016 0.177 0.020 
400 2000 0.432 0.047 0.355 0.028 0.087 0.015 0.177 0.020 

Mean Error rates, SD and CV 
The graphs for the total (mean) error rates, 
standard deviation (SD) and coefficient of 
variation are presented in a series of Figures 
1.1 to 4.3. Figures 1.1, 1.2 and 1.3 are the 
graphs of the mean error rates, SD and CV 
for the balanced data set. Figures 2.1, 2.2 
and 2.3 represent the mean error rates, SD 
and CV for sample size composition n1 : 
n2=1:2. The graphs for sample size ratios 
1:3 and 1:4 are presented in Figures 3.1 to 
3.3 and 4.1 to 4.3 respectively. 
 
 
 

DISCUSSION 
When the data set is balanced, the QDF 
benefits more from increase in sample size 
than increase in the distance function. More 
robustness was also observed in using the 
function for unbalanced data over the linear 
discriminant function (Adebanji et al.) (2). 
 
The performance of the function in classify-
ing unbalanced data also improved signifi-
cantly when the between group squared dis-
tance is relatively large (i.e data sets are well 
separated). The performance, however, dete-
riorates in classifying the smaller group when 
the total sample size is large. 

ATINUKE ADEBANJI1, SAGARY NOKOE2 AND SHOLA ADEYEMI3 

J. Nat. Sci. Engr. Tech. 2010, 9(2):29-37 34 



EFFECTS OF SAMPLE SIZE RATIO ON THE PERFORMANCE OF... 

Figure 1.1 Figure 2.1 

Figure 1.2 Figure 2.2 

Figure 1.3 Figure 2.3 
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Figure 3.1 

Figure 3.2 

Figure 3.3 

Figure 4.1 

Figure 4.2 

Figure 4.3 
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CONCLUSION 
In conclusion, using the QDF for the classi-
fication of unbalanced data will not be rec-
ommended beyond sample size ratio 1:2 
when the data sets are relatively close, and 
ratio 1:3 when the observations are well 
separated (subject to moderate sample size). 
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