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1. Introduction and Preliminaries 
 The concept of fuzzy set was introduced by Zadeh [18] in 

his classical paper. Fuzzy sets have applications in many fields such as 

information [13] and control [17]. Chang [7] introduced the notion of 

afuzzy topology. Later Lowen [10] redefined what is now known as 

stratified fuzzy topology. Sostak [14] introduced the notion of fuzzy 

topology as an extension of Chang and Lowen’s fuzzy topology. Later on 

he has developed the theory of fuzzy topological spaces in [15] and    

[16]. In 1992, he introduced and studied the smooth fuzzy topology. 

Rajarajeswari and Bagyalakshmi [12] studied the concept of 

intuitionistic fuzzy λ-closed sets. 

 Throughout this dissertation, let X be a nonempty set,  

I = [0, 1] and I0= (0, 1]. For α ∈I,  α (x) = αfor all x ∈ X. 

 A fuzzy set in X is an element of the set I
X

 of all functions 

from X to I.[7] 

Definition 1.1 [14] A function T: I
X
→ I is called a smooth fuzzy 

topology on X if it satisfies the following conditions:
 

(1) T ( 0 ) = T ( 1 ) = 1. 

(2) T ( μ
1
∧ μ

2
 ) ≥ T ( μ

1
 ) ∧ T ( μ

2
 ) for any μ

1
, μ

2
∈ I

X
. 

(3) T ( j ∈ Γ
∨   μ

j
 ) ≥  T ( μ

j
 )j ∈ Γ

   ∧     for any { μ
j
 }j ∈ Γ ∈ I

X
. 

The pair ( X, T ) is called a smooth fuzzy topological space.  

Definition 1.2 [1] Let ( X, T ) be a smooth fuzzy topological space. For 

any λ ∈I
X

 and r ∈ I0, 

(1) λ is said to be an r-fuzzy semi-open set iff λ ≤CT ( IT ( λ, r ), r 

). 

(2) λ is said to be an r-fuzzy semi-closed set iff 1 − λ is an r-fuzzy 

semi-open set. 

Definition 1.3 [3] Let ( X, T ) be a smooth fuzzy topological space. For 

any λ ∈I
X

 and r ∈ I0, 

(1) λ  is said to be an r-fuzzy b-open set iff                                          

λ ≤CT ( IT ( λ, r ), r ) ∨IT ( CT ( λ, r ), r ). 

(2) λ is said to be an r-fuzzy b-closed set iff 1 − λ is an r-

fuzzy    b-open set. 

Definition 1.4 [12] An intuitionistic fuzzy set A of an intuitionistic 

fuzzy topological space ( X, 𝜏 ) is called an  

(1) intuitionistic fuzzy λ-closed set (IF λ-CS) if A ⊇ cl ( U ) 

whenever A ⊇ U and U is an intuitionistic fuzzy open set in X. 

(2) intuitionistic fuzzy λ-open set  (IF λ-OS) if the complement 

A
C

 is an intuitionistic fuzzy λ-closed set A. 

Definition 1.5 [4]A smooth g -P-fuzzy topological space ( X, g -P(T) ) is 

called g -P-fuzzy almost compact if for any g -P(T) covering of ( X, g -P(T) 

), there exists a finite subset J0 of J such that j ∈ J0

∨     g -CR(T) ( λi, r ) = 1 , r 

∈ I0 . 

DEFINITION 1.6 [4]A smooth g -P-fuzzy topological space ( X, g -P(T) ) 

is called g -P-fuzzy nearly compact if for any g -P(T) covering of ( X, g -

P(T) ), there exists a finite subset J0 of J such that                                         

j ∈ J0

∨     g -IP(T) ( g -CR(T) ( λi, r ), r ) = 1 , r ∈ I0 . 

Definition 1.7 [5] A smooth fuzzy topological space ( X, T ) is called 

fuzzy 𝐠 -T
1/2

if every r-gfg -closed setis r-fuzzy g -closed.  

 

2. On r-Fuzzy 𝛌-Closed sets 
 This section deals with the interrelations of r-fuzzy λ-

closed sets, r-fuzzy λ-semi-closed sets and r-fuzzy λ-b-closed sets with 

necessary counter examples. 

Definition 2.1Let (X, T) be a smooth fuzzy topological space. For any 

μ ∈I
X

 and r ∈ I0, μ is said to be an r-fuzzy 𝛌-closed set ( briefly, rfλ-cls ) 

if  CT ( γ, r ) ≤ μ whenever γ ≤ μ and γ is an r-fuzzy open set. Its 

complement is said to be an r-fuzzy 𝛌-open set. 

Definition 2.2 Let (X, T) be a smooth fuzzy topological space. For any 

μ ∈I
X

 and r ∈ I0,  μ  is  said  to  be  an   r-fuzzy   𝛌-semi-closed  set ( 

briefly, rfλ-s-cls ) if CT ( γ, r ) ≤ μ whenever γ ≤ μ and γ is an r-fuzzy 

semi-open set. Its complement is said to be an r-fuzzy 𝛌-semi-open 

set. 

Definition 2.3 Let ( X, T ) be a smooth fuzzy topological space. For any 

μ ∈I
X

 and r ∈ I0, μ is said to be an r-fuzzy 𝛌-b-closed set (briefly, rfλ-b-

cls) if CT (γ, r) ≤ μ whenever γ ≤ μ and γ is an r-fuzzy b-open set. Its 

complement is said to be an r-fuzzy 𝛌-b-open set. 

Proposition 2.1 

Every r-fuzzy λ-closed set is r-fuzzy λ-semi-closed. 

Proof: Let (X, T) be a smooth fuzzy topological space. For μ ∈I
X

 and    r 

∈ I0, let μ be an r-fuzzy λ-closed set. Then, CT ( γ, r ) ≤ μ whenever     

γ ≤ μ and γ is r-fuzzy open. By Proposition 2.1, every r-fuzzy open set is 

r-fuzzy semi-open. Thus for any r-fuzzy semi-open setγ, μ is r-fuzzy              
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λ-semi-closed. Therefore, every r-fuzzy 𝛌-closed set is r-fuzzy         𝛌-

semi-closed. 

Remark 2.1 

The converse of the Proposition 2.1 need not be true. 

Example 2.1 

Every r-fuzzy 𝛌-semi-closed set need not be r-fuzzy 𝛌-closed. 

Let X = { a, b } and let λ1, λ2∈I
X

 be defined as follows: 

   λ1 (a) = 0.2, λ1 (b) = 0.4; 

   λ2 (a) = 0.8, λ2 (b) = 0.5. 

Define the smooth fuzzy topology T: I
X
→ I as follows:  

T ( λ ) =  

1
0.1
0.6
0

 

       λ =  0  or 1 

λ =  λ1

λ =  λ2

     otherwise.

 

Let r = 0.1 and γ, μ ∈I
X

 be defined as follows: 

   γ ( a ) = 0.2, γ ( b ) = 0.45;  

   μ ( a ) = 0.8, μ ( b ) = 0.55. 

Then, CT ( γ, 0.1 ) = ( 0.2, 0.5 ) < μ whenever γ < μ and γ is 0.1-fuzzy 

semi-open. 

Hence, μ is 0.1-fuzzy λ-semi-closed. 

But for any T (λ2) ≥ 0.1,  

CT (λ2, 0.1) = (0.8, 0.6) ≮ μ whenever λ2< μ. 

Hence, μ is not 0.1-fuzzy λ-closed.  

Therefore, every r-fuzzy 𝛌-semi-closed set need not be         

r-fuzzy 𝛌-closed. 

Proposition 2.2 

Every r-fuzzy λ-closed set is r-fuzzy λ-b-closed. 

Proof: Let (X, T) be a smooth fuzzy topological space. For μ ∈I
X

 and    r 

∈ I0, let μ be an r-fuzzy λ-closed set. Then, CT ( γ, r ) ≤ μ whenever     

γ ≤ μ and γ is r-fuzzy open. By Proposition 2.2, every r-fuzzy open set is 

r-fuzzy b-open. Thus for any r-fuzzy b-open set γ, μ is r-fuzzy λ-b-

closed. Therefore, every r-fuzzy 𝛌-closed set is r-fuzzy  𝛌-b-closed. 

Remark 2.2 

The converse of the Proposition 2.2 need not be true. 

Example 2.2 

Every r-fuzzy 𝛌-b-closed set need not be r-fuzzy 𝛌-closed. 

Let X = {a, b} and let λ1, λ2∈I
X

 be defined as follows: 

   λ1 (a) = 0.2, λ1 (b) = 0.4; 

   λ2 (a) = 0.8, λ2 (b) = 0.5. 

Define the smooth fuzzy topology T: I
X
→ I as follows: 

T ( λ ) =  

1
0.1
0.6
0

 

       λ =  0  or 1 

λ =  λ1

λ =  λ2

     otherwise.

 

Let r = 0.1 and γ, μ ∈I
X

 be defined as follows: 

   γ (a) = 0.2, γ (b) = 0.45;  

   μ (a) = 0.8, μ (b) = 0.55. 

Then, CT (γ, 0.1) = (0.2, 0.5) < μ whenever γ < μ and γ is 0.1-fuzzy b-

open. 

Hence, μ is 0.1-fuzzy λ-b-closed. 

But for any T (λ2) ≥ 0.1, 

CT (λ2, r) = (0.8, 0.6) ≮ μ whenever λ2< μ. 

Hence, μ is not 0.1-fuzzy λ-closed. 

Therefore, every r-fuzzy 𝛌-b-closed set need not be r-

fuzzy 𝛌-closed. 

Proposition 2.3 

Every r-fuzzy λ-semi-closed set is r-fuzzy λ-b-closed. 

Proof: Let (X, T) be a smooth fuzzy topological space. For μ ∈I
X

 and    r 

∈ I0, let μ be an r-fuzzy λ-semi-closed set. Then, CT ( γ, r ) ≤ μ whenever 

γ ≤ μ and γ is r-fuzzy semi-open. By Proposition 2.3, every r-fuzzy 

semi-open set is r-fuzzy b-open. Thus for any r-fuzzy b-open set γ, μ is 

r-fuzzy λ-b-closed. Therefore, every r-fuzzy 𝛌-semi-closed set is r-

fuzzy 𝛌-b-closed. 

Remark 2.3 

The converse of the Proposition 2.3 need not be true. 

EXAMPLE 2.3 

Every r-fuzzy 𝛌-b-closed set need not be r-fuzzy 𝛌-semi-closed. 

Let X = {a, b} and let λ1, λ2∈I
X

 be defined as follows: 

   λ1 (a) = 0.3, λ1 (b) = 0.2; 

   λ2 (a) = 0.7, λ2 (b) = 0.3. 

Define the smooth fuzzy topology T: I
X
→ I as follows:  

T ( λ ) =  

1
0.1
0.6
0

 

       λ =  0  or 1 

λ =  λ1

λ =  λ2

     otherwise.

 

Let r = 0.1 and let γ
1

, μ ∈I
X

 be defined as follows: 

   γ
1

(a) = 0.3, γ
1

(b) = 0.6; 

   μ (a) = 0.7, μ (b) = 0.7. 

Then, CT ( γ
1

, 0.1 ) = ( 0.3, 0.7 ) < μ whenever γ
1

< μ and γ
1

is 0.1-fuzzy 

b-open. Hence, μ is 0.1-fuzzy λ-b-closed. 

But for any 0.1-fuzzy semi-open set γ
2

∈I
X

 be defined by  

   γ
2

(a) = 0.7, γ
2

(b) = 0.4, 

CT ( γ
2

, 0.1 ) = ( 0.7, 0.8 ) ≮ μ whenever γ
2

< μ.  

Hence, μ is not 0.1-fuzzy λ-semi-closed.  

Therefore, every r-fuzzy 𝛌-b-closed set need not be r-

fuzzy   𝛌-semi-closed. 

Remark 2.4 

From the above discussions the following implications hold. 

 
 

3. On smooth Fuzzy 𝛌-continuous functions 
 In this section the interrelations of smooth fuzzy λ -

continuous functions with other types of smooth fuzzy continuous 

functions are established with the necessary counter examples. 

Definition 3.1 Let ( X, T ) and ( Y, S ) be any two smooth fuzzy 

topological spaces. Any function f : ( X, T ) → ( Y, S ) is said to be a 

smooth fuzzy 𝛌-continuous function ( briefly, sfλ-cf ) if for each λ ∈ I
Y

 

with S ( 1 − λ ) ≥ r, f−1( λ ) ∈I
X

 is r-fuzzy λ-closed.  

Definition 3.2 Let ( X, T ) and ( Y, S ) be any two smooth fuzzy 

topological spaces. Any function f : ( X, T ) → ( Y, S ) is said to be a 

smooth fuzzy 𝛌-semi-continuous function ( briefly, sfλ-s-cf ) if for 

each λ ∈ I
Y

 with S ( 1 − λ ) ≥ r, f−1( λ ) ∈I
X

 is r-fuzzy λ-semi-closed.  

Definition 3.3Let ( X, T ) and ( Y, S ) be any two smooth fuzzy 

topological spaces. Any function f : ( X, T ) → ( Y, S ) is said to be a 

smooth fuzzy 𝛌-b-continuous function ( briefly, sfλ-b-cf ) if for each 

λ ∈ I
Y

 with S ( 1 − λ ) ≥ r, f−1( λ ) ∈I
X

 is r-fuzzy λ-b-closed.  

Proposition 3.1 Every smooth fuzzy  λ-continuous  function  is  smooth  

fuzzyλ-semi-continuous. 

Proof: Let (X, T) and (Y, S) be any two smooth fuzzy topological spaces. 

Let any function f: (X, T) → (Y, S) be a smooth fuzzy λ-continuous 

function. Then for each λ ∈ I
Y

 with S ( 1 − λ ) ≥ r,    f−1( λ ) ∈I
X

 is r-

fuzzy λ-closed. By Proposition 2.1, every r-fuzzy   λ-closed set is r-fuzzy 

λ-semi-closed. Therefore, f−1( λ ) is r-fuzzy  λ-semi-closed for every λ ∈ 

I
Y

 with S ( 1 − λ ) ≥ r.  
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Thus, every smooth fuzzy 𝛌 -continuous function is 

smooth fuzzy 𝛌-semi-continuous. 

 

Remark 3.1 

The converse of the Proposition 3.2 need not be true. 

Example 3.1 

Every smooth fuzzy 𝛌 -semi-continuous function need not be 

smooth fuzzy 𝛌-continuous. 

Let X = {a, b} = Y and let λ1, λ2∈I
X

 and μ ∈ I
Y

 be defined as 

follows: 

   λ1 (a) = 0.2, λ1 (b) = 0.4; 

   λ2 (a) = 0.8, λ2 (b) = 0.5 and 

   μ (a) = 0.2, μ (b) = 0.45. 

Define the smooth fuzzy topologies T: I
X
→ I and S: I

Y
→ I as follows:  

T ( λ ) =  

1
0.1
0.6
0

 

       λ =  0  or 1 

λ =  λ1

λ =  λ2

     otherwise.

     and   

    S ( λ ) =   
1

0.1
0

 
       λ =  0  or 1 

λ =  μ 
      otherwise.

 

Clearly, ( X, T ) and ( Y, S ) are two smooth fuzzy topological spaces. 

Let f : ( X, T ) → ( Y, S ) be an identity function. 

Let r = 0.1 and let γ ∈I
X

 be defined as follows: 

   γ (a) = 0.2, γ (b) = 0.46. 

Then, γ is 0.1-fuzzy semi-open. 

For S ( 1 − μ ) ≥ 0.1, f−1( 1 − μ ) = 1 − μ. 

Then for any 0.1-fuzzy semi-open set γ, 

CT (  γ, 0.1 ) = ( 0.2, 0.5 ) < 1 − μ whenever γ < 1 − μ.  

Hence, 1 − μ is 0.1-fuzzy λ-semi-closed. 

Therefore, f is smooth fuzzy λ-semi-continuous. 

But for any T ( λ2 ) ≥ 0.1,  

CT (  λ2, 0.1 ) = ( 0.8, 0.6 ) ≮ 1 − μ  whenever λ2< 1 − μ . 

Hence, 1 − μ is not 0.1-fuzzy λ-closed.  

Therefore, f is not smooth fuzzy λ-continuous. 

Thus, every smooth fuzzy 𝛌-semi-continuous function 

need not be smooth fuzzy 𝛌-continuous. 

Proposition 3.2 Every smooth  fuzzy  λ-continuous  function  is  

smooth  fuzzy λ-b-continuous. 

Proof: Let ( X, T ) and ( Y, S ) be any two smooth fuzzy topological 

spaces. Let any function f : ( X, T ) → ( Y, S ) be a smooth fuzzy           λ-

continuous function. Then for each λ ∈ I
Y

 with S ( 1 − λ ) ≥ r,          f−1( λ 

) ∈I
X

 is r-fuzzy λ-closed. But, every r-fuzzy λ-closed set is r-fuzzy λ-b-

closed. Therefore, f−1( λ ) is r-fuzzy λ-b-closed for every λ ∈ I
Y

 with S ( 

1 − λ ) ≥ r. 

Thus, every smooth fuzzy 𝛌 -continuous function is 

smooth fuzzy 𝛌-b-continuous. 

 

Remark 3.2 

The converse of the Proposition 3.2 need not be true. 

Example 3.2 

Every smooth fuzzy 𝛌-b-continuous function need not be smooth 

fuzzy 𝛌-continuous. 

Let X = {a, b} and let λ1, λ2∈I
X

 be defined as follows: 

   λ1 (a) = 0.2, λ1 (b) = 0.4; 

   λ2 (a) = 0.8, λ2 (b) = 0.5 and 

   μ (a) = 0.2, μ (b) = 0.45. 

Define the smooth fuzzy topologies T: I
X
→ I and S: I

Y
→ I as follows:  

T ( λ ) =  

1
0.1
0.6
0

 

       λ =  0  or 1 

λ =  λ1

λ =  λ2

     otherwise.

 

S ( λ ) =   
1

0.1
0

 
       λ =  0  or 1 

λ =  μ 
      otherwise.

 

Clearly, ( X, T ) and ( Y, S ) are two smooth fuzzy topological spaces. 

Let f : ( X, T ) → ( Y, S ) be an identity function. 

Let r = 0.1 and let γ ∈I
X

 be defined as follows: 

   γ ( a ) = 0.2, γ ( b ) = 0.46. 

Then, γ is 0.1-fuzzy b-open.  

For S ( 1 − μ ) ≥ 0.1, f−1( 1 − μ ) = 1 − μ. 

Then for any 0.1-fuzzy b-open set γ, 

CT ( γ, 0.1 ) = ( 0.2, 0.5 ) < 1 − μ whenever γ < 1 − μ.  

Hence, 1 − μ is 0.1-fuzzy λ-b-closed. 

Therefore, f is smooth fuzzy λ-b-continuous. 

But for any T ( λ2 ) ≥ 0.1,  

CT ( λ2, 0.1 ) = ( 0.8, 0.6 ) ≮ 1 − μ  whenever λ2< 1 − μ . 

Hence, 1 − μ is not 0.1-fuzzy λ-closed.  

Therefore, f is not smooth fuzzy λ-continuous. 

Thus, every smooth-fuzzy 𝛌-b-continuous function needs 

not be smooth fuzzy 𝛌-continuous. 

Proposition 3.3Every smooth fuzzy λ-semi-continuous function is 

smooth fuzzyλ-b-continuous. 

Proof: Let (X, T) and (Y, S) be any two smooth fuzzy topological spaces. 

Let any function f: (X, T) → (Y, S) be a smooth fuzzy  λ-semi-continuous 

function. Then for each λ ∈ I
Y

 with S ( 1 − λ ) ≥ r, f−1( λ ) ∈I
X

 is r-fuzzy 

λ-semi-closed. But, every r-fuzzy λ-semi-closed set is r-fuzzy λ-b-closed. 

Therefore, f−1( λ ) is r-fuzzy     λ-b-closed for every r-fuzzy closed  λ ∈ 

I
Y

 with S ( 1 − λ ) ≥ r. 

Thus, every smooth fuzzy 𝛌-semi-continuous function is 

smooth fuzzy 𝛌-b-continuous. 

 

Remark 3.3 

The converse of the Proposition 3.3 need not be true. 

Example 3.3 

Every smooth fuzzy𝛌-b-continuous function need not be an smooth 

fuzzy 𝛌-semi-continuous. 

Let X = {a, b} and let λ1, λ2∈I
X

 be defined as follows: 

   λ1 (a) = 0.3, λ1 (b) = 0.2; 

   λ2 (a) = 0.7, λ2 (b) = 0.3 and 

                                                               μ (a) = 0.3, μ (b) = 0.3. 

Define the smooth fuzzy topologies T: I
X
→ I and S: I

Y
→ I as follows:  

T ( λ ) =  

1
0.1
0.6
0

 

       λ =  0  or 1 

λ =  λ1

λ =  λ2

     otherwise.

    and 

S ( λ ) =   
1

0.1
0

 
       λ =  0  or 1 

λ =  μ 
      otherwise.

 

Clearly, (X, T) and (Y, S) are two smooth fuzzy topological spaces. 

Let f: (X, T) → (Y, S) be an identity function. 

Let r = 0.1 and let γ
1

∈I
X

 be defined as follows: 

   γ
1

(a) = 0.3, γ
1

( b ) = 0.6. 

Then, γ
1

 is 0.1-fuzzy b-open. 

For S ( 1 − μ ) ≥ 0.1, f−1( 1 − μ ) = 1 − μ. 

Then for any 0.1-fuzzy b-open set γ
1

, 

CT ( γ
1

, 0.1) = (0.3, 0.7) < 1 − μ whenever γ
1

< 1 − μ.  

Hence, 1 − μ is 0.1-fuzzy λ-b-closed. 

Therefore, f is smooth fuzzy λ-b-continuous. 

Let γ
2

∈I
X

 be defined by 

   γ
2

(a ) = 0.7, γ
2

( b ) = 0.4, 

Then, γ
2

is 0.1-fuzzy semi-open. 

Thus, CT ( γ
2

, 0.1 ) = ( 0.7, 0.8 ) ≮ 1 − μ whenever γ
2

< 1 − μ and γ
2

 is 

0.1-fuzzy semi-open. 

Hence, 1 − μ is not 0.1-fuzzy λ-semi-closed. 

Therefore, f is not smooth fuzzy λ-semi-continuous. 

Thus, every smooth fuzzy 𝛌-b-continuous function need 

not be smooth fuzzy 𝛌-semi-continuous. 
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Remark 3.4 

From the above discussions the following implications hold. 

 
 

Definition 3.4 Let (X, T) and (Y, S) be any two smooth fuzzy topological 

spaces. Any function f: (X, T) → (Y, S) is said to be a smooth fuzzy 𝛌-

irresolute function if for each r-fuzzy λ-closed λ ∈ I
Y

, f−1( λ ) ∈I
X

 is r-

fuzzy λ-closed.  

Proposition 3.4Let (X, T) and (Y, S) be any two smooth fuzzy 

topological spaces. Let f: (X, T) → (Y, S) be a function, r ∈ I0 . Then the 

following statements are equivalent: 

(a) f is a smooth fuzzy λ-irresolute function. 

(b) f ( SFλ-CT ( λ, r ) ) ≤ SFλ-CS ( f ( λ ), r ), for every λ ∈I
X

 . 

(c) SFλ-CT ( f−1( μ ), r ) ≤ f−1( SFλ-CS ( μ, r ) ), for every μ ∈ I
Y

. 

Proof: (a) ⟹ (b). Let f be a smooth fuzzy λ-irresolute function. Let 

λ ∈I
X

. Then SFλ-CS (f ( λ ), r) ∈ I
Y

 is an r-fuzzy λ-closed set. By (a),       

f−1(SFλ-CS (f ( λ ), r)) ∈I
X

is r-fuzzy λ-closed. Now, λ ≤ f−1( f ( λ ) ). 

Therefore, f (SFλ-CT (λ, r)) ≤ SFλ-CT ( f−1( f ( λ ), r ) ) 

≤ SFλ-CT (f−1(SFλ-CS (f ( λ ), r) ), r ) 

                                           = f−1(SFλ-CS (f ( λ ), r). 

Hence, f (SFλ-CT (λ, r)) ≤ SFλ-CS (f ( λ ), r). 

(b) ⟹ (c).Let μ ∈ IY then f−1( μ ) ∈I
X

. 

By (b), f (SFλ-CT (f−1( μ ), r)) ≤ SFλ-CS (f (f−1( μ )), r) 

≤  SFλ-CS (μ, r). 

Thus, f−1( f ( SFλ-CT ( f−1( μ ), r ) ) ) ≤ f−1( SFλ-CS ( μ, r ) ). 

That is, SFλ-CT (f−1( μ ), r) ≤ f−1( SFλ-CS ( μ, r ) ). 

(c) ⟹ (a).Let γ ∈ I
Y

 be an r-fuzzy λ-closed set. 

Then, SFλ-CT (γ, r) =γ. 

By (c), it follows that 

SFλ-CT (f−1( γ ), r) ≤ f−1(SFλ-CS ( γ, r ) ) = f−1( γ ). 

But, f−1( γ ) ≤ SFλ-CT (f−1( γ ), r). 

Therefore, f−1( γ ) = SFλ-CT (f−1( γ ), r). 

Hence, f−1( γ ) is an r-fuzzy λ-closed set. Thus, f is a smooth fuzzy        λ-

irresolute function. 

Definition 3.5 Let (X, T) and (Y, S) be any two smooth fuzzy 

topological spaces. Any function f: (X, T) → (Y, S) is said to be a smooth 

fuzzy 𝛌-semi-irresolute function if for each r-fuzzy λ-semi-closed λ ∈ 

I
Y

, f−1( λ ) ∈I
X

 is r-fuzzy λ-semi-closed.  

Proposition 3.5Let (X, T), (Y, S) and (Z, R) be any three smooth fuzzy 

topological spaces. Let any function f : ( X, T ) → ( Y, S ) be smooth fuzzy 

λ-semi-irresolute function and g : ( Y, S ) → ( Z, R ) be smooth fuzzy λ-

continuous function. Then g ∘ f: (X, T) → (Z, R) is smooth fuzzy λ-semi-

continuous. 

Proof: Let γ ∈I
Z

, with R ( 1 − γ ) ≥ r. Since g is smooth fuzzy                λ-

continuous, g−1( γ ) ∈I
Y

 is r-fuzzy λ-closed. But, every r-fuzzy λ-closed 

set is r-fuzzy λ-semi-closed. Therefore g−1( γ ) ∈ I
Y

 is   r-fuzzy λ-semi-

closed. And since f is a smooth fuzzy λ-semi-irresolute function, f−1( 

g−1( γ ) ) ∈I
X

 is r-fuzzy λ-semi-closed. Thus( g ∘  f )−1( γ ) ∈I
X

 is r-fuzzy 

λ-semi-closed. Therefore g ∘  f is smooth fuzzy λ-semi-continuous.   

Definition 3.6 Let (X, T) and (Y, S) be any two smooth fuzzy 

topological spaces. Any function f: (X, T) → (Y, S) is said to be a smooth 

fuzzy 𝛌-b-irresolute function if for each r-fuzzy λ-b-closed λ ∈ I
Y

, f−1( 

λ ) ∈I
X

 is r-fuzzy λ-b-closed.  

Proposition 3.6Let (X, T), (Y, S) and (Z, R) be any three smooth fuzzy 

topological spaces. Let any function f : ( X, T ) → ( Y, S ) be smooth fuzzy 

λ-b-irresolute function and g : ( Y, S ) → ( Z, R ) be smooth fuzzy λ-

continuous function. Then g ∘ f: (X, T) → (Z, R) is smooth fuzzy   λ-b-

continuous. 

Proof:Let γ ∈I
Z

, with R ( 1 − γ ) ≥ r. Since g is smooth fuzzy                  λ-

continuous, g−1( γ ) ∈ I
Y

 is r-fuzzy λ-closed. But, every r-fuzzy λ-closed 

set is r-fuzzy λ-b-closed. Therefore g−1( γ ) ∈ I
Y

 is r-fuzzy λ-b-closed. 

And since f is a smooth fuzzy λ-b-irresolute function,f−1( g−1( γ ) ) ∈I
X

 

is r-fuzzy λ-b-closed. Thus ( g ∘  f )−1 ( γ ) ∈I
X

 is r-fuzzy λ-b-closed. 

Therefore g ∘  f is smooth fuzzy λ-b-continuous. 

Definition 3.7Let (X, T) and (Y, S) be any two smooth fuzzy topological 

spaces. Any function f: (X, T) → (Y, S) is said to be a smooth fuzzy 𝛌-

closed function if for each λ ∈I
X

 with T ( 1 − λ ) ≥ r, f ( λ ) ∈ I
Y

 is r-

fuzzy λ-closed.  

Definition 3.8Let (X, T) and (Y, S) be any two smooth fuzzy topological 

spaces. If f: (X, T) → (Y, S) is a smooth fuzzy bijective, smooth fuzzy λ-

continuous and smooth fuzzy λ-irresolute function then f is said to be a 

smooth fuzzy 𝛌-homeomorphism. 

Definition 3.9A smooth fuzzy topological space ( X, T ) is said to be 

smooth fuzzy 𝛌-T
1/2

 space if every r-fuzzy λ-closed setγ ∈I
X

 is such 

that T (1 −  γ ) ≥ r, r ∈ I0 . Equivalently ( X, T ) is said to be a smooth 

fuzzy λ-T
1/2

 space if every r-fuzzy λ-open setγ ∈I
X

 is such that T (  γ ) 

≥ r,    r ∈ I0. 

Proposition 3.7Let ( X, T ) and ( Y, S ) be any two smooth fuzzy 

topological spaces. Let f : ( X, T ) → ( Y, S ) be a smooth fuzzy λ-

homeomorphism. Then,
 

(a) If f is a smooth fuzzy λ-closed function and ( Y, S ) is smooth 

fuzzy λ-T
1/2

 space then ( X, T ) is a smooth fuzzy λ-T
1/2

 

space. 

(b) If f is a smooth fuzzy closed function and (X, T) is smooth 

fuzzy λ-T
1/2

 space then (Y, S) is a smooth fuzzy λ-T
1/2

 

space. 

Proof: (a) Let λ ∈I
X

 be an r-fuzzy λ-closed set. Since f is a smooth fuzzy 

λ-closed function, f ( λ ) ∈ I
Y

 is an r-fuzzy λ-closed set. Since (Y, S) is 

smooth fuzzy λ-T
1/2

 space, S ( 1 − f ( λ ) ) ≥ r. Now,   λ = f−1 (f ( λ )) is    

r-fuzzy closed. Hence (X, T) is a smooth fuzzyλ-T
1/2

 space. 

(b) Let μ ∈ I
Y

 be an r-fuzzy λ-closed set. Since f is a smooth 

fuzzy    λ-irresolute function, f
-1

( μ ) ∈I
X

 is r-fuzzy λ-closed. Since (X, T) 

is smooth fuzzy λ-T
1/2

 space, T ( 1 − f
-1

( μ ) ) ≥ r. Now μ = f (f
-1

( μ )) 

is   r-fuzzy closed. Hence (Y, S) is a smooth fuzzy λ-T
1/2

 space. 

 

4. On Smooth Fuzzy 𝛌-Compact Spaces 
 In this section, the concept of smooth fuzzy λ-compact 

spaces is studied and some of its properties and the characterizations 

are also discussed.      

Definition 4.1 [1]A smooth fuzzy topological space ( X, T ) is said to be 

smooth fuzzy compact iff for each family {  γ
i
∈I

X 
: T ( γ

i
 ) ≥ r, i ∈ J } 
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with  i ∈ J
∨   γ

i
 = 1 , there exists a finite index set J0 of J such that i ∈ J0

∨     γ
i
 = 

1 . 

Proposition 4.1Let ( X, T ) and ( Y, S ) be any two smooth fuzzy 

topological spaces. Let f : ( X, T ) → ( Y, S ) be a smooth fuzzy λ-

continuous and surjective function. If ( X, T ) is a smooth fuzzy compact 

and smooth fuzzy λ-T
1/2

 space then ( Y, S ) is also smooth fuzzy 

compact, r ∈ I0 . 

Proof: Let S (λi) ≥ r, where λi∈ I
Y

 and let i ∈ J
∨   λi = 1 . Since f is smooth 

fuzzy λ-continuous, f−1(λ i) ∈I
X

 is r-fuzzy λ-open. Since (X, T) is a 

smooth fuzzy λ-T
1/2

 space, T (f−1(λi)) ≥ r. Since (X, T) is smooth fuzzy 

compact, there exists a finite subset J0 of J such that        i ∈ J0

∨     f−1( λi ) = 

1 . Then, 1  = f ( 1  ) = f (i ∈ J0

∨     f−1(λi)) = i ∈ J0

∨     λi.  

Hence, (Y, S) is smooth fuzzy compact. 

Definition 4.2 Let (X, T) be a smooth fuzzy topological space, 

r∈ I0 . A smooth fuzzy 𝛌-open cover (smooth fuzzy λ-closed cover) of 

(X, T) is the collection { λi∈I
X

: each λi is r-fuzzy λ-open (r-fuzzy λ-

closed), i ∈ J } such that i ∈ J
∨   λi = 1 . 

Definition 4.3 A smooth fuzzy topological space ( X, T ) is said to 

be smooth fuzzy 𝛌-compact if every smooth fuzzy λ-open cover of ( X, 

T ) has a finite subcover. 

Proposition 4.2Let ( X, T ) and ( Y, S ) be any two smooth fuzzy 

topological spaces. Let f : ( X, T ) → ( Y, S ) be a smooth fuzzy λ-

irresolute and surjective function. If ( X, T ) is a smooth fuzzy λ-compact 

space then  ( Y, S ) is also smooth fuzzy λ-compact, r ∈ I0. 

Proof Let λi∈ I
Y

 be r-fuzzy λ-open sets such that i ∈ J
∨   λi = 1 , i ∈ J. 

Since f is smooth fuzzy λ-irresolute, f−1( λi ) ∈I
X

 is r-fuzzy λ-open. Since  

( X, T ) is smooth fuzzy λ-compact, there exists a finite subset J0 of J such 

that i ∈ J0

∨     f−1( λ i ) = 1 . Then, 1  = f ( 1  ) = f ( i ∈ J0

∨     f−1( λ i ) ) = 

i ∈ J0

∨     λi.Hence, ( Y, S ) is smooth fuzzy λ-compact. 

Definition 4.4Let (X, T) be a smooth fuzzy topological space, r ∈ I0. A 

smooth fuzzy regular closed cover of (X, T) is the collection { λi∈I
X

: λi 

is r-fuzzy regular closed } such that i ∈ J
∨   λi = 1 . 

Definition 4.5A smooth fuzzy topological space (X, T) is called  

(1) Smooth fuzzy S-closed if each smooth fuzzy regular 

closed cover of ( X, T ) has a finite subcover. 

(2) Smooth fuzzy S-Lindeolf if each smooth fuzzy regular 

closed cover of ( X, T ) has a countable subcover. 

(3) Smooth fuzzy countable S-closed if each countable 

smooth fuzzy regular closed cover of (X, T) has a finite 

sub cover. 

Definition 4.6 A smooth fuzzy topological space (X, T) is called  

(1) Smooth fuzzy 𝛌-S-closed if each smooth fuzzy λ-closed 

cover of (X, T) has a finite subcover. 

(2) Smooth fuzzy 𝛌-S-Lindeolf if each smooth fuzzy λ-

closed cover of (X, T) has a countable subcover. 

(3) Smooth fuzzy countable 𝛌-S-closed if each countable 

smooth fuzzy λ-closed cover of (X, T) has a finite 

subcover. 

Definition 4.7 A smooth fuzzy topological space (X, T) is called  

(1) smooth fuzzy strongly S-closed if for each collection           

{ λi∈I
X

, where T ( 1 −  λi ) ≥ r } with i ∈ J
∨   λi = 1 , there 

exists a finite subset J0 of J such that i ∈ J0

∨     λi = 1 , r ∈ I0 . 

(2) smooth fuzzy strongly S-Lindelof if for each collection        

{ λi∈I
X

, where T ( 1 −  λi ) ≥ r } with i ∈ J
∨   λi = 1 , there 

exists a countable subset J0 of J such that i ∈ J0

∨     λi = 1 , r 

∈ I0 . 

(3) smooth fuzzy countable strongly S-closed if for each 

countable collection { λi∈I
X

, where T ( 1 −  λi ) ≥ r } with   

i ∈ J
∨   λi = 1 , there exists a finite subset J0 of J such that     

i ∈ J0

∨     λi = 1 , r ∈ I0 . 

Preposition 4.3Let ( X, T ) and ( Y, S ) be any two smooth fuzzy 

topological spaces. Let f : ( X, T ) → ( Y, S ) be smooth fuzzy λ-continuous 

and surjective. If ( X, T ) is smooth fuzzy λ-S-closed [ resp. smooth fuzzy   

λ-S-Lindeolf  and  smooth   fuzzy   countable  λ -S-closed ] then ( Y, S ) is 

smooth fuzzy strongly S-closed [ resp. smooth fuzzy strongl S-Lindeolf 

and smooth fuzzy countable strongly S-closed ], r ∈ I0. 

Proof Let { λi∈ I
Y

, where S ( 1 −  λi ) ≥ r, i ∈ J  } be such that i ∈ J
∨   λi 

= 1 . From the relation 1  = f−1( 1  ) = f−1(i ∈ J
  ∨   λi ), it follows that 1  

=i ∈ J
  ∨   f−1( λi ). 

Since f is smooth fuzzy λ-continuous, f−1( λi ) ∈I
X

 is r-fuzzy λ-closed. 

Hence, { f−1( λi ) ∈I
X

, i ∈ J } forms a smooth fuzzy λ-closed cover of        ( 

X, T ). Since ( X, T ) is smooth fuzzy λ-S-closed, there exists a finite 

subset J0 of J such that i ∈ J0

∨     f−1( λi ) = 1 .  

Therefore, 1  = f ( 1  ) = f ( i ∈ J0

∨     f−1( λi ) ) = i ∈ J0

∨     f ( f−1( λi ) ) = i ∈ J0

∨     λi. 

Thus, ( Y, S ) is smooth fuzzy strongly S-closed. 

The proof is similar to the respective cases. 

Preposition 4.4Let ( X, T ) and ( Y, S ) be any two smooth fuzzy 

topological spaces. Let f : ( X, T ) → ( Y, S ) be smooth fuzzy λ-closed and 

bijective. If ( Y, S ) is smooth fuzzy λ-S-closed [ resp. smooth fuzzy λ-S-

Lindeolf and smooth fuzzy countable λ -S-closed ] then ( X, T ) is 

smooth fuzzy strongly S-closed [ resp. smooth fuzzy strongly S-Lindeolf 

and smooth fuzzy countable strongly S-closed ], r ∈ I0. 

ProofLet { λi∈I
X

, where T ( 1 −  λi ) ≥ r, i ∈ J  } be such that i ∈ J
∨   λi = 1 .  

From the relation 1  = f ( 1  ) = f ( i ∈ J
  ∨   λi ), it follows that 1  =i ∈ J

  ∨   f ( λi ). 

Since f is smooth fuzzy λ-closed, f ( λi ) ∈ I
Y

 is r-fuzzy λ-closed. Hence    { 

f ( λi ) ∈ I
Y

, i ∈ J } forms a smooth fuzzy λ-closed cover of ( Y, S ). Since ( 

Y, S ) is smooth fuzzy λ-S-closed, there exists a finite subset J0 of J such 

that i ∈ J0

∨     f ( λi ) = 1 .  

Therefore, 1  = f−1( 1  ) = f−1 ( i ∈ J0

∨     f ( λi ) ) = i ∈ J0

∨     f−1( f ( λi ) ) = 

i ∈ J0

∨     λi. 

Thus, ( X, T ) is smooth fuzzy strongly S-closed. 

The proof is similar to the respective cases. 

Preposition 4.5 Let ( X, T ) and ( Y, S ) be any two smooth fuzzy 

topological spaces. Let f : ( X, T ) → ( Y, S ) be smooth fuzzy λ-continuous 

and surjective. If ( X, T ) is a smooth fuzzy λ-T
1/2

 space and smooth 

fuzzy strongly S-closed [ resp. smooth fuzzy strongly S-lindelof and 

smooth fuzzy countable strongly S-closed ] then ( Y, S ) is also smooth 

fuzzy strongly S-closed [ resp. smooth fuzzy strongly S-lindelof and 

smooth fuzzy countable strongly S-closed ], r ∈ I0 . 

Proof: Let { λi∈ I
Y

, where S ( 1 −  λi ) ≥ r, i ∈ J  } be such that i ∈ J
∨   λi = 1 . 

From the relation 1  = f−1( 1  ) = f−1( i ∈ J
  ∨   λi ), it follows that 1  =i ∈ J

  ∨   f−1( 

λi ). Since f is smooth fuzzy λ-continuous, f−1( λi ) ∈I
X

 is r-fuzzy λ-

closed.  

Also, since ( X, T ) is a smooth fuzzy λ-T
1/2

 space, every r-fuzzy          λ-

closed set f−1( λi ) ∈I
X

, i ∈ J is such that T ( 1 −  f−1( λi ) ) ≥ r. 

Moreover, since (X, T) is smooth fuzzy strongly S-closed, there exists a 

finite subset J0 of J such that i ∈ J0

∨     f−1( λi ) = 1 .  

Thus, 1  = f ( 1  ) = f ( i ∈ J0

∨     f−1( λi ) ) = i ∈ J0

∨     f ( f−1( λi ) ) = i ∈ J0

∨     λi. 

Therefore, (Y, S) is smooth fuzzy strongly S-closed. 

The proof is similar to the respective cases. 

Preposition 4.6 Let (X, T) and (Y, S) be any two smooth fuzzy 

topological spaces. Let f: (X, T) → (Y, S) be smooth fuzzy λ-closed and 

bijective. If (Y, S) is a smooth fuzzy λ-T
1/2

 space and smooth fuzzy 

strongly S-closed [resp. smooth fuzzy strongly S-lindelof and smooth 

fuzzy countable strongly S-closed] then (X, T) is also smooth fuzzy 

strongly S-closed [resp. smooth fuzzy strongly S-lindelof and smooth 

fuzzy countable strongly S-closed], r∈ I0 . 
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Proof: Let { λi∈I
X

, where T ( 1 −  λi ) ≥ r, i ∈ J  } be such that i ∈ J
∨   λi = 1 . 

From the relation 1  = f ( 1  ) = f ( i ∈ J
  ∨   λi ), it follows that 1  =i ∈ J

  ∨   f ( λi ). 

Since f is smooth fuzzy λ-closed, f ( λi ) ∈ I
Y

 is r-fuzzy λ-closed.  

Since ( Y, S ) is a smooth fuzzy λ-T
1/2

 space, every r-fuzzy λ-closed set  

f ( λi ) ∈ I
Y

 is such that T ( 1 − f ( λi ) ) ≥ r. Since (Y, S) is smooth fuzzy 

strongly S-closed, there exists a finite subset J0 of J such that        i ∈ J0

∨     f 

(λi) = 1 . Therefore, 1  = f−1( 1  ) = f−1 ( i ∈ J0

∨     f ( λi ) ) = i ∈ J0

∨     f−1( f ( λi ) ) 

= i ∈ J0

∨     λi.Thus, ( X, T ) is also smooth fuzzy strongly S-closed. 

The proof is similar to the respective cases. 

Definition 4.8 A smooth fuzzy topological space ( X, T ) is said to 

be a smooth fuzzy 𝛌-almost compact if for any smooth fuzzy λ-open 

covering of     ( X, T ),   there   exists   a   finite   subset   J0of   J   such   

thatj ∈ J0

∨     SFλ-CT( λj, r ) = 1 , r ∈ I0 . 

Definition 4.9 A smooth fuzzy topological space ( X, T ) is said to 

be a smooth fuzzy 𝛌-nearly compact if for any smooth fuzzy λ-open 

covering of ( X, T ),   there   exists   a   finite   subset   J0 of   J   such   that  

j ∈ J0

∨     SFλ-IT( SFλ-CT( λj, r ), r ) = 1 , r ∈ I0. 

Preposition 4.7Let (X, T) and (Y, S) be any two smooth fuzzy 

topological spaces. Let f: (X, T) → (Y, S) be surjective and smooth fuzzy 

λ-irresolute function. Then the following statements are true: 

(a) If (X, T) is smooth fuzzy λ-almost compact, then so is (Y, S). 

(b) If (X, T) is smooth fuzzy nearly compact, then (Y, S) is  λ-

almost compact.  

Proof: (a) Let { λj∈ I
Y

: each  λj is r-fuzzy λ-open, j ∈ J } be a smooth fuzzy 

λ-open covering of ( Y, S ). Since f is a smooth fuzzy λ-irresolute 

function, f−1( λj ) ∈I
X

 is r-fuzzy λ-open. Since ( X, T ) is smooth fuzzy  λ-

almost compact, there exists a finite subset J0 of J such that    j ∈ J0

∨      λ-

CT( f−1( λj ), r ) = 1 . From the surjectivity of f,  

1 = f ( 1  ) = f ( j ∈ J0

∨      λ-CT( f−1( λj ), r ) ) = j ∈ J0

∨     f ( λ-CT( f−1( λj ), r ) ) 

 ≤ j ∈ J0

∨     λ-CS( f ( f−1( λj ), r )  =j ∈ J0

∨     λ-CS( λj , r ).  

Therefore, ( Y, S ) is smooth fuzzy λ-almost compact. 

(b) Let { λj∈ I
Y

: each  λj is r-fuzzy λ-open, j ∈ J } be a smooth 

fuzzy λ-open covering of ( Y, S ). Since f is a smooth fuzzy λ-irresolute 

function, f−1( λj ) ∈I
X

 is r-fuzzy λ-open. Since ( X, T ) is smooth fuzzy  λ-

nearly compact, there exists a finite subset J0 of J such that                                          

j ∈ J0

∨      λ-IT ( λ-CT ( f−1( λj ), r ), r ) = 1 .  

Hence, j ∈ J0

∨      λ-CT( f−1( λj ), r ) = 1 . From the surjectivity of f,  

1 = f ( 1  ) = f ( j ∈ J0

∨      λ-CT( f−1( λj ), r ) )  

     = j ∈ J0

∨     f ( λ-CT( f−1( λj ), r ) ) 

 ≤ j ∈ J0

∨     λ-CS( f ( f−1( λj ), r )  

     =j ∈ J0

∨     λ-CS( λj , r ).  

Therefore, ( Y, S ) is smooth fuzzy λ-almost compact. 
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