Original Article

Certain properties of normaloid operators

P. 0 Mogotu ${ }^{1}$, J Kerongo ${ }^{1}$, R. K Obogi ${ }^{1}$ and B.N Okello ${ }^{*}{ }^{2}$
${ }^{1}$ Department of Mathematics, Kisii University, P. O. Box 408-40200, Kisii-Kenya
${ }^{2}$ School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo-Kenya

*Corresponding Author

N. B. Okelo

School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601,
Bondo-Kenya
E-mail: bnyaare@yahoo.com

Abstract

In this paper we establish new conditions for contractivity of normaloid operators. We employ some results for contractivity due to Furuta, Nakomoto, Arandelovic and Dragomir. A particular generalization is also given.

Keywords:

Normaloid operators, Contractive operators, Cauchy-Schwarz inequality and Tensor product

1. Introduction

An interesting area in operator theory is the study of norm inequalities for Hilbert space operators. Many mathematicians have worked on this subject, for example in [2, 3 and 5]. On the other hand, contractive and normaloid operators have been considered separately by $[1,6,7$ and 8$]$. In this paper, we results on conditions for normaloidity and contractivity of Hilbert space operators. We begin by simple lemmas before we move to main results. Let H be a complex Hilbert space with an inner product $\langle.,$.$\rangle and B(H)$ the algebra of all bounded linear operators on $H .\|\cdot\|$ denotes the usual operator norm and $\operatorname{Dom}(S)$ denotes the domain of S.

2. Basic Concepts and Preliminaries

In this section, we start by defining some key terms that are useful in the sequel.
Definition 2.1. An operator $S \in B(H)$ is said to be normaloid if
$\|S\|=\sup \{|\langle S x, x\rangle|:\|x\|=1\}$ and contractive if $\|S\| \leq 1$.
Definition 2.2. Let $S: H \rightarrow H$ the adjoint of S is $S^{*}: H \rightarrow H$ such that

$$
\langle S x, x\rangle=\left\langle x, S^{*} y\right\rangle \forall x, y \in H
$$

Definition 2.3. An operator S is said to be normal if $S S^{*}=S^{*} S$ and is a self-adjoint if $S=S^{*}$.

3. Main results

In this section we give the main results. We first discuss conditions for normaloidity and lastly we consider conditions for contractivity.
Lemma 3.1. Let $S \in B(H)$. Then S is normaloid if it is self-adjoint.
Proof. Since $S \in B(H)$, then without loss of generality we assume that S is normal i.e. $S S^{*}=S^{*} S$. Hence, S is normaloid if $\|S\|=\sup \{|\langle S x, x\rangle|$: $\|x\|=1\}$. But S is self-adjoint i.e. $S=S^{*}$. So $\|S\|=\left\|S^{*}\right\|=\sup$ $\left\{\left|\left\langle x, S^{*} x\right\rangle\right|:\|x\|=1\right\}$, and this completes the proof.

Lemma 3.2. Let $S_{\in B(H)}$ then S is normaloid if it is normal.
Proof. Suppose S is normal i.e. $S S^{*}=S^{*} S$, then $\|S\|^{2}=\left\langle S S^{*} x, x\right\rangle$ $=\left\langle S^{*} S x, x\right\rangle=$
$\left\|S^{*}\right\|^{2}$,
$\forall x \in \operatorname{Dom}\left(S S^{*}\right)=\operatorname{Dom}\left(S^{*} S\right)$. But the subspace $\operatorname{Dom}\left(S S^{*}\right)=$ $\operatorname{Dom}\left(S^{*} S\right)$ is a core of both S and S^{*}, therefore the norm of S and norm of S^{*} coincide with
$\operatorname{Dom}\left(S S^{*}\right)=\operatorname{Dom}\left(S^{*} S\right)$. Hence it follows that, $\operatorname{Dom}(S)=$ $\operatorname{Dom}\left(S^{*}\right)$ and
$\|S x\|=\left\|S^{*} x\right\| \forall x \in \operatorname{Dom}\left(S S^{*}\right)=\operatorname{Dom}\left(S^{*} S\right)$. By Lemma 3.1, S is selfadjoint so $S S^{*}=S^{*} S$.
Lemma 3.3. Let $S \in B(H)$ then S is normaloid if it is positive.
Proof. From Lemma 3.1, every positive operator is self-adjoint. This implies that; $\langle S x, x\rangle=\overline{\langle S x, x\rangle}=\left\langle x, S^{*} x\right\rangle . \forall x, y \in B(H)$. But $\langle x+y, S(x+y)\rangle=\langle S(x+y), x+y\rangle$ and $\langle x-y, S(x-y)\rangle=$ $\langle S(x-y), x-y\rangle$.
So subtracting gives
$\langle S(x+y), x+y\rangle-\langle S(x-y), x-y\rangle=\langle x, S y\rangle-\langle S x, y\rangle=0$. This implies that $\langle x, S y\rangle=\langle S x, y\rangle$. By Lemma 3.2. We have $S S^{*} \geq 0 . \forall S \in$ $B(H)$, since $\left\langle x, S^{*} S x\right\rangle=\langle S x, S x\rangle=\|S x\|^{2}$. But $S=S^{*}$, hence either $S \geq$ 0 or $S^{*} \geq 0$ or both are ≥ 0. Clearly, S is positive.

Theorem 3.4. Let S_{1} and S_{2} in $B(H)$ be normaloid then $S_{1}+S_{2}$ is normaloid.
Proof. From Lemmas 3.1, 3.2 and Lemma 3.3 if we suppose that $S_{1}+S_{2}$ is densely defined then let $x \in \operatorname{Dom}\left(S_{1}+S_{2}\right)$, such that $\operatorname{Dom}\left(S_{1}\right) \cap$ $\operatorname{Dom}\left(S_{1}\right)$ contains x Then we can find $y \in \operatorname{Dom}\left(S_{1}^{*}+S_{2}^{*}\right)$ contains y. From Lemma 3.1 we have,
$\left\langle\left(S_{1}^{*}+S_{2}^{*}\right) x, y\right\rangle=\left\langle S_{1}^{*} x, y\right\rangle+\left\langle S_{2}^{*} x, y\right\rangle=\left\langle x, S_{1} y\right\rangle+\left\langle x, S_{2} y\right\rangle=$ $\left\langle x,\left(S_{1}+S_{2}\right) y\right\rangle$.
Hence,
$\left\|S_{1}+S_{2}\right\|=\sup \left\{\mid\left\langle S_{1} x_{1}\right\rangle+\left\langle S_{2} x_{2}, x_{2}\right\rangle:\left\|x_{1}\right\|=1\right.$ and $\left.\left\|x_{2}\right\|=1\right\}$
$=\sup \left\{\mid\left\langle S_{1} x_{1}+S_{2} x_{2}, x_{1}+x_{2}\right\rangle:\left\|x_{1}\right\|=1\right.$ and $\left.\left\|x_{2}\right\|=1\right\}$
Therefore, $S_{1}+S_{2}$ is normaloid.

Corollary 3.5. Let $S_{1}, S_{2}, \ldots, S_{n}$ in $B(H)$ be normaloid. Then $\oplus_{i=1}^{n}$ is normaloid in $B(H)$
Proof. From Theorem 3.4 it follows that
$\left\|S_{1}+S_{2}+\cdots+S_{n}\right\|=\left\|\sum_{i=1}^{n} S_{i}\right\| \leq \sum_{i=1}^{n}\left\|S_{i}\right\|$

Let $x_{n} \in \operatorname{Dom}\left(S_{1}+S_{2}+\cdots+S_{n}\right)$, such that $\operatorname{Dom}\left(S_{1}\right) \cap \ldots \cap$ $\operatorname{Dom}\left(S_{n}\right)$ contains x_{n}. Then we can find $y_{n} \in \operatorname{Dom}\left(S_{1}+S_{2}+S_{3}+\cdots+\right.$ $S n$, such that DomS1 $\ldots \cap$ DomSn contains $y n$. Hence, from Theorem 3.4 we have
$\left\|S_{1}+S_{2}+\cdots+S_{n}\right\|=\sup \left\{\\left\langle\left(S_{1}+S_{2}+\cdots+S_{n}\right) x_{n}, x_{n}\right\rangle+\right.$
$\left\langle\left(S_{1}+S_{2}+\cdots+S_{n}\right) y_{n}, y_{n}\right\rangle:\left\|x_{n}\right\|=1$ and $\left.\left\|y_{n}\right\|=1\right\}$
$=\sup \left\{\left|\left\langle\left(S_{1}+S_{2}+\cdots+S_{n}\right) x_{n}+\left(S_{1}+S_{2}+\cdots+S_{n}\right) y_{n}, y_{n}, x_{n}+y_{n}\right\rangle\right|\right.$
: $\left\|x_{n}\right\|=1$ and $\left.\left\|y_{n}\right\|=1\right\}$
Therefore $\bigoplus_{i=1}^{n}$ is normaloid.
Theorem 3.6. Let S_{1}, S_{2} be normaloid then $S_{1} S_{2}-S_{2} S_{1}$ is normaloid and
$\left\|S_{1} S_{2}\right\| \leq \max \left\{\left\|S_{1}\right\|,\left\|S_{2}\right\|\right\} \max \left\{\left\|S_{1}-S_{2}\right\|,\left\|S_{1}+S_{2}\right\|\right\}$.

Proof. Since S_{1}, S_{2} are normaloid we have
$\left\|S_{1} S_{2}\right\|=\max \left\{\left|\left\langle S_{1} S_{2} x, x\right\rangle\right|:\|x\|=1\right\}$.
So
$\left\|S_{1} S_{2}-S_{2} S_{1}\right\|=\left\|\left(S_{1}-S_{2}\right) S_{2}-S_{2}\left(S_{1}-S_{2}\right)\right\| \leq 2\left\|S_{1}-S_{2}\right\|\left\|S_{2}\right\|$
Similarly,
$\left\|S_{1} S_{2}-S_{2} S_{1}\right\| \leq 2\left\|S_{1}-S_{2}\right\|\left\|S_{1}\right\|$
But $S_{1} S_{2}-S_{2} S_{1}$ is normaloid. So using Equation 2 and Equation 3 we have
$\left\|S_{1} S_{2}-S_{2} S_{1}\right\| \leq 2 \max \left\{\left\|S_{1}\right\|,\left\|S_{2}\right\|\right\}\left\|S_{1}-S_{2}\right\|$
In Equation 4 replacing S_{2} by $-S_{2}$, we get
\| $S_{1} S_{2}-S_{2} S_{1}\left\|\leq 2 \max \left\{\left\|S_{1}\right\|,\left\|S_{2}\right\|\right\}\right\| S_{1}+S_{2} \|$
From Equation 4 and Equation 5 we obtain the required result i.e.
$\left\|S_{1} S_{2}\right\| \leq \max \left\{\left\|S_{1}\right\|,\left\|S_{2}\right\|\right\} \max \left\{\left\|S_{1}-S_{2}\right\|,\left\|S_{1}+S_{2}\right\|\right\}$.
Corollary 3.7. Let S be normaloid then
$\left\|S S^{*}-S^{*} S\right\| \leq 2\|S\| \max \left\{\left\|S-S^{*}\right\|,\left\|S+S^{*}\right\|\right\}$

Proof. From Equation 4 and Equation 5. Let $S_{1}=S$ and $S_{2}=S^{*}$.This gives
$\left\|S S^{*}-S^{*} S\right\| \leq 2 \max \left\{\|S\|,\left\|S^{*}\right\|\right\}\left\|S-S^{*}\right\|$
and
$\left\|S S^{*}-S^{*} \mathrm{~S}\right\| \leq 2 \max \left\{\|S\|,\left\|S^{*}\right\|\right\}\left\|S+S^{*}\right\|$
From Equation 7* and $7^{* *}$ we obtain
$\left\|S S^{*}-S^{*} S\right\| \leq 2\|S\| \max \left\{\left\|S-S^{*}\right\|,\left\|S+S^{*}\right\|\right\}$.
The proof is complete.
Lemma 3.8. Let $a=\sum_{i=1}^{n} x_{i} \otimes y_{\mathrm{i}} \in H_{1} \otimes H_{2} \quad$ and $b=\sum_{j=1}^{m} x_{j} \otimes y_{\mathrm{j}} \in$ $H_{1} \otimes H_{2}$ and $\langle.,$.$\rangle be an inner product on B\left(H_{1} \otimes H_{2}\right)$. Then it is well defined.
Proof. Suppose $\langle a, \mathrm{~b}\rangle=0$ when $a=0$ in $B\left(H_{1}, H_{2}\right)$ and $\langle a, \mathrm{~b}\rangle=0$ when
$b=0$. For each
$x \in H_{1}$ and $y \in H_{2}$ then
$(x \otimes y)\left(x_{1}, y_{1}\right)=\left\langle x, x_{1}\right\rangle\left\langle y, y_{1}\right\rangle$
For each $x_{1} \in H_{1}$ and $y_{1} \in H_{2}$
Let $a=\sum_{i=1}^{n} x_{i} \otimes y_{\mathrm{i}} \in H_{1} \otimes H_{2}$ and $b=\sum_{j=1}^{m} x_{j} \otimes y_{\mathrm{j} \in} \in H_{1} \otimes H_{2}$
$\langle a, \mathrm{~b}\rangle=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(x_{i} \otimes \mathrm{y}_{\mathrm{i}}\right)\left(\mathrm{x}_{\mathrm{j}} \otimes \mathrm{y}_{\mathrm{i}}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m}\left\langle x_{i}, x_{j}\right\rangle\left\langle y_{i}, y_{j}\right\rangle$
From Equation 8 and Equation 9 we obtain
$0 \quad=\sum_{j} a\left(x_{j}, y_{j}\right)=\sum_{i, j}\left(x_{i} \otimes y_{i}\right) \quad\left(\quad x_{j}, y_{j} \quad\right)$
$=\sum_{i, j}\left\langle x_{i}, x_{j}\right\rangle_{1}\left\langle y_{i}, y_{j}\right\rangle_{2}$
Similarly, $\langle a, \mathrm{~b}\rangle=0$ when $b=0$. Therefore $\langle a, \mathrm{~b}\rangle$ is well defined. But, $\langle a, \mathrm{~b}\rangle$ is a Hermitian sesquilinear form then $\langle a, \mathrm{~b}\rangle \geq 0$. Choosing orthonormal basis $\left\{e_{1}, \ldots, e_{k}\right\}$ for the linear span of $\left\{x_{1}, \ldots, x_{p}\right\}$ and $\left\{f_{1}, \ldots, f_{q}\right\}$ of $\left\{y_{1}, \ldots, y_{k}\right\}$ and by the bilinearity rules of elementary tensors, we get
$a=\left\langle x_{i}, e_{c}\right\rangle_{1}\left\langle y_{i}, f_{d}\right\rangle_{2} e_{c} \otimes f_{d}$
(10)

Inserting Equation 10 into Equation 9, we get
$\langle a, a\rangle=\sum_{i, c, c^{\prime}, d, d^{\prime}}\left\langle x_{i}, e_{c}\right\rangle_{1} \overline{\left\langle x_{i}, e_{c^{\prime}}\right\rangle}\left\langle y_{i}, f_{d}\right\rangle_{2} \overline{\left\langle y_{i}, f_{d}\right\rangle}\left\langle e_{c}, e_{c^{\prime}}\right\rangle_{1}\left\langle f_{d}, f_{d^{\prime}}\right\rangle_{1}$

$$
=\sum_{i} \sum_{c, d}\left|\left\langle x_{i}, e_{c}\right\rangle\right|^{2}\left|\left\langle y_{i}, f_{d}\right\rangle\right|^{2} \geq 0
$$

Thus $\langle a, a\rangle$ is positive. Since $\langle a, a\rangle=0$ then, $\left\langle x_{i}, e_{c}\right\rangle .\left\langle y_{i}, f_{d}\right\rangle=0 \quad \forall i, c, d$ and so $a=0$. Therefore $\langle a, b\rangle$ is well defined.
Lemma 3.9. Let $S_{1}, S_{2} \in B\left(H_{1} \otimes H_{2}\right)$ then $S_{1} \otimes S_{2}$ is a well defined operator on
$B\left(H_{1} \otimes H_{2}\right)$ with domain $\operatorname{Dom}\left(S_{1} \otimes S_{2}\right)$.
Proof. Let $a=\sum_{i=1}^{n} x_{i} \otimes y_{\mathrm{i}}, \forall x_{i} \in \operatorname{Dom}\left(S_{1}\right), y_{i} \in \operatorname{Dom}\left(S_{2}\right)$. Given an orthonormal basis $\left\{e_{1}, \ldots, e_{k}\right\}$ for the linear span of $\left\{x_{1}, \ldots, x_{k}\right\}$ and set $f_{c}=\sum_{i}\left\langle x_{i}, e_{c}\right\rangle y_{i}$ then
$a=\sum_{i, c}^{n}\left\langle x_{i}, e_{c}\right\rangle e_{c} \otimes y_{i}=\sum_{i} e_{c} \otimes f_{c}$
$\|a\|^{2}=\sum_{c, d}\left\langle e_{c}, e_{d}\right\rangle_{1}\left\langle f_{c}, f_{d}\right\rangle_{2}=\sum_{d}\left\|f_{d}\right\|^{2}$.
From Lemma 3.8, to proof that $S_{1} \otimes S_{2}$ is well defined, then $\sum_{i} S_{1} x_{i} \otimes \mathrm{~S}_{2} \mathrm{y}_{\mathrm{i}}=0$ whenever $a=0$. If $a=0$, then all f_{c} are zero by Equation 12. Therefore
$\sum_{i} S_{1} x_{i} \otimes \mathrm{~S}_{2} \mathrm{y}_{\mathrm{i}}=\sum_{i, e}\left\langle x_{i}, e_{c}\right\rangle S_{1} e_{c} \otimes S_{2} y_{i}=\sum_{c} S_{1} e_{c} \otimes \mathrm{~S}_{2} \mathrm{f}_{\mathrm{c}}=0$.

Theorem 3.10. Let S_{1} and S_{2} be normaloid then $S_{1} \otimes S_{2}$ is normaloid under $\|\cdot\|_{C B}$ and $\left\|S_{1} \otimes S_{2}\right\|=\left\|S_{1}\right\|\left\|S_{2}\right\|$.

Proof. Let $a \in \operatorname{Dom}\left(S_{1} \otimes S_{2}\right)$ as in Equation 11. Suppose $I_{1}=$ $I \mid \operatorname{Dom}\left(S_{1}\right)$ and $I_{2}=I \mid \operatorname{Dom}\left(S_{2}\right)$. Using Equation 12 twice, i.e. for the element $\left(I_{1} \otimes S_{2}\right) a$ and then for a, we get
$\left\|\left(I_{1} \otimes S_{2}\right) a\right\|^{2}=\left\|\sum_{c} e_{c} \otimes S_{2}\right\|^{2}=\sum_{c}\left\|S_{2} f_{c}\right\|^{2} \leq\left\|S_{2}\right\|^{2}=\left\|S_{2}\right\|^{2}\|a\|^{2}$.
This implies that $\left\|I_{1} \otimes S_{2}\right\| \leq\left\|S_{2}\right\|$. Similarly, $\left\|S_{1} \otimes I_{2}\right\| \leq\left\|S_{1}\right\|$ therefore
$\left\|S_{1} \otimes S_{2}\right\|=\left\|\left(S_{1} \otimes I_{2}\right)\left(I_{1} \otimes S_{2}\right)\right\| \leq\left\|S_{1}\right\|\left\|I_{1} \otimes S_{2}\right\| \leq\left\|S_{1}\right\|\left\|S_{2}\right\|$
(13)

To prove the reverse inequality we let $\varepsilon>0$ and the unit vectors $x \in$ $\operatorname{Dom}\left(S_{1}\right)$ and
$y \in \operatorname{Dom}\left(S_{2}\right)$ Such that $\left\|S_{1}\right\| \leq\left\|S_{1} x\right\|_{1}+\varepsilon$ and $\left\|S_{2}\right\| \leq\left\|S_{2} y\right\|_{2}+\varepsilon$. Then
$\left(\left\|S_{1}\right\|-\varepsilon\right)\left(\left\|S_{2}\right\|-\varepsilon\right) \leq\left\|S_{1} x\right\|_{1}\left\|S_{2} y\right\|_{2}=\left\|S_{1} x \otimes S_{2} y\right\|$
$\leq\left\|\left(S_{1} \otimes S_{2}\right)(x \otimes y)\right\| \leq\left\|S_{1} \otimes S_{2}\right\|\|x \otimes y\|$
So, $\left\|S_{1} \otimes S_{2}\right\| \geq\left\|S_{1}\right\|\left\|S_{2}\right\|$
Since ε is arbitrary so small, now letting $\varepsilon \rightarrow 0$, thus from Equation 13 and 14, we get
$\left\|S_{1} \otimes S_{2}\right\|=\left\|S_{1}\right\|\left\|S_{2}\right\|$.

4 Conditions for Contractivity

Lemma 4.1. Let S be normaloid positive then S is contractive.
Proof. Take S as in Lemma 3.2 and from [3 Theorem 1.2], $r(S)=\|S\|$. S is contractive if $\|S\| \leq 1$. Since $\|S\|=\sup \{|\langle S x, x\rangle|:\|x\|=1\}$, then it follows from [4] Theorem A, an indempotent numerical radius contraction is a projection. It follows that the idempotency of S that
$\left\|I+a S+\frac{a^{2}}{2!} S^{2}+\cdots\right\|=\left\|I+\left(e^{a}-I\right) S\right\| \leq e^{|a|}$
where a is an arbitrary complex number. Let $a=t$, where t is a real number. Then
$\left\|e^{-t} I+\left(1-e^{-t}\right) S\right\| \leq 1$ as $t \rightarrow \infty$ we get $\|S\| \leq 1$.
Lemma 3.13. Let S be normaloid then S is contractive if and only if it is the identity.
Proof. Suppose S is a contractive i.e. $\|S\| \leq 1$, then $\left\|S^{n}\right\| \leq\|S\|^{n}$ for all
$n \geq 0$ and the geometric series $1+\|S\|+\left\|S^{2}\right\|+\cdots$ is convergent. It therefore follows that the infinite series $I+S+S^{2}+\cdots+$ converges to some $S_{1} \in B(H)$. Hence; $(I-S) S_{1}=\lim _{n \rightarrow \infty}(I-S)\left(I+S+S^{2}+\cdots+\right.$ $\operatorname{Sn}=\lim n \rightarrow \infty /-S n+1=$
$I-\lim _{n \rightarrow \infty} S^{n+1}=I$. Therefore, $S^{n+1} \rightarrow 0$ since $\|S\|^{n+1} \rightarrow 0$ as $n \rightarrow \infty$. Similarly, $S_{1}\left(I-S_{1}: X \rightarrow Y\right)=I$ this shows that $I-S$ is invertible and
therefore S is an identity. Conversely, assume that S is an identity. Let S_{1} and S_{2} be normaloid and
$S_{1}, S_{2} \in B(H)$ with S_{1} and S_{2} also invertible and $S_{1}: X \rightarrow Y$ and $S_{2}: Y \rightarrow X$ such that $S_{1} S_{2}=I_{y}$ and $S_{2} S_{1}=I_{x}$. Then the equality $S_{1} S_{2} v=V \quad \forall v \in Y$ implies that $K e r S_{2}=0$ and $\operatorname{RanS}_{1}=Y$. Similarly, $S_{2} S_{1} u=U \quad \forall u \in X$ implies $\operatorname{Ker} S_{1}=0 \quad$ and $\operatorname{Ran} S_{2}=X$. This implies that S_{1} and S_{2} are both invertible and $S_{2}=S_{1}^{-1}$. Thus $S_{1} S_{2}=I$ and therefore S is contractive.
Theorem 4.3. Let S_{1} and S_{2} be normaloid then $S_{1} S_{2}$ is also contractive.
Proof. Since S_{1} and S_{2} are normaloid, then $S_{1} S_{2}$ is also normaloid. Now
$\left\|S_{1} S_{2}\right\|=\sup \left\{\left|\left\langle S_{1} S_{2} x, x\right\rangle\right|, x \in H:\|x\|=1\right\}$

$$
=\sup \left\{\left|\left\langle S_{1} x, S_{2} x\right\rangle\right|:\|x\|=1\right\}
$$

The condition $\|S\| \leq 1$ is equivalent to $\left\langle S_{1} x, S_{2} x\right\rangle \leq\langle x, x\rangle$. Then $\left\|S_{1} S_{2}\right\| \leq \sup \{|\langle x, x\rangle|:\|x\|=1\}$

$$
\leq \sup \left\{\|x\|^{2}:\|x\|=1\right\}
$$

Taking the supremum $\left\|S_{1} S_{2}\right\| \leq 1$, therefore $S_{1} S_{2}$ is contractive.
Corollary 4.4. Let S_{1} and S_{2} be normaloid contractive, then the following are equivalent;
i. $\quad S_{1}-S_{2}$ is contractive.
ii. $S_{1}-S_{2}$ is positive.
iii. $S_{1} S_{2}$ is positive.
iv. $S S^{*}-S^{*} S$ is normal.

Proof. ($i \Rightarrow i i$) From Theorem 4.3, it follows that $S_{1}-S_{2}$ is also normaloid contractive. Let S_{1} and S_{2} be normaloid positive operators, then $S_{1}-S_{2}$ is positive.
($i i \Rightarrow$ iii) Suppose $S_{1}-S_{2}$ is positive. Since S_{1} and S_{2} are positive, it follows that their product is positive. Hence $S_{1} S_{2}$ is positive since multiplication is defined point wise and commutative.
$(i i i \Rightarrow i v)$ An operator is said to be positive if it is self adjoint i.e. $S=S^{*}$. This implies that $S^{*} S$ is positive and hence $S S^{*}$ is also positive. Therefore, $S S^{*}-S^{*} S=0$ this implies that $S S^{*}=S^{*} S$ thus S is normal and therefore $S S^{*}-S^{*} S=0$ is also normal.
$(i v \Rightarrow i)$ From 4.3, let $S_{1}=S$ and $S_{2}=S^{*}$ this implies that $S S^{*} \leq 1$.
Theorem 4.5. Let S be normaloid then S is contractive bounded linear operatorif for each $z \in K \subset H$ and any $r \in \operatorname{Int} K$ there exist a positive integer c_{o} such that $S^{n}(z)<r$ for all $n>c_{o}$.

Proof. By the prove of [1 Theorem 3.5], let $(1-S) \circ(1+S+\cdots+$ $\left.S^{n}\right)=$
$1-S^{n+1}$. Then it implies that; $(1-S) \circ\left(1+S+\cdots+S^{n}\right) \geq$
$(1-S) \circ(n+1) S^{n}(z)=\left(1-S^{n+1}\right) z=z-S^{n+1}(z) \leq z$. For each $z \in K \subset H$, since $S^{n}(z) \leq S^{a}(z)$ for each $a=0, \ldots, n$ then, $(1-S) \circ(n+$ $1 \operatorname{Sn} z \leq z$. Therefore, $\operatorname{Sn} z \leq 1-S-1 n+1 z$ given $0<r$, there exist a positive integer c_{\circ} such that $n>c_{0}$, implying that; $\frac{1}{n+1}(1-S)^{-1}(z)<r$. Since ; $\frac{1}{n+1}(1-S)^{-1}(z)$ being a convergent sequence, then $n>c_{\circ}$ implies that; $S^{n}(z)<r$.

5. Conclusion

These results are properties of Hilbert space operators are when they are normaloid and contractive. It would be interesting to give generalizations which thus will help in further classification of these operators.

References

[1] Arandelovic I.D., Contractive linear operators and their applications in F-cone metric fixed point theory, Int. J. math. Analysis, Vol.4, no.41, (2010), 2005-2015.
[2] Bonyo J.O., Adicka D.O., Agure J.O., Generalized Numerical Radii inequality for Hilbert space operators, Int. Math. Forum, Vol.3, no.7, (2011), 333-338.
[3] Dragomir S.S., Some inequalities for normal operators in Hilbert space, j. Operator theory, Vol.3, (2005), 11-23.
[4] Furuta T., Nakamoto R., Certain Numerical Contractive Operators, American math.soc,(1970), 521-523.
[5] Kittaneh F., Norms inequalities for certain operator sums j.Functional Analysis, Vol. 143, (1997), 337-348.
[6] Peterson B., Contraction mapping, Math 507-summer, (1999), 1-8.
[7] Seddick A., The injective norm of $\sum_{i=1}^{n} A_{i} \otimes B_{i}$ and characterization of normaloid operators, j. Operators and matrices, Vol.2, no.1, (2008), 67-77.
[8] Sheth I.H., Normaloid operators, Pacific j. Math. Vol.28, no.3, (1969), 675-680.

