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1. Introduction 
An interesting area in operator theory is the study of norm 

inequalities for Hilbert space operators. Many mathematicians have 

worked on this subject, for example in [2, 3 and 5]. On the other hand, 

contractive and normaloid operators have been considered separately 

by [1, 6, 7 and 8]. In this paper, we results on conditions for 

normaloidity and contractivity of Hilbert space operators. We begin by 

simple lemmas before we move to main results. Let 𝐻 be a complex 

Hilbert space with an inner product  . , .   and 𝐵(𝐻)  the algebra of all 

bounded linear operators on 𝐻.  ∙  denotes the usual operator norm 

and Dom(𝑆) denotes the domain of 𝑆. 

 

2. Basic Concepts and Preliminaries 
In this section, we start by defining some key terms that are 

useful in the sequel. 

Definition  2.1.  An operator 𝑆  𝐵(𝐻) is said to be normaloid if 

 𝑆 =sup {| 𝑆𝑥, 𝑥  |:  𝑥 =1} and contractive if  𝑆   1. 

Definition  2.2.  Let 𝑆 : 𝐻  𝐻 the adjoint of 𝑆 is S*:  𝐻 → 𝐻 such that  

 𝑆𝑥, 𝑥  =  𝑥, 𝑆∗ 𝑦    𝑥 , 𝑦  𝐻. 

Definition 2.3.  An operator 𝑆 is said to be normal if 𝑆𝑆∗ = 𝑆∗𝑆 and is a 

self-adjoint if  𝑆  𝑆∗. 

 

3. Main results  
In this section we give the main results. We first discuss 

conditions for normaloidity and lastly we consider conditions for 

contractivity. 

Lemma  3.1. Let 𝑆  𝐵(𝐻). Then 𝑆 is normaloid if it is self-adjoint. 

Proof. Since 𝑆  𝐵(𝐻), then without loss of generality we assume that S 

is normal i.e. 𝑆𝑆∗ = 𝑆∗𝑆 . Hence, 𝑆 is normaloid if  𝑆 = sup {|  𝑆𝑥,𝑥 |: 

 𝑥 = 1}. But 𝑆  is self-adjoint i.e. 𝑆 = 𝑆∗ . So  𝑆  =  𝑆∗ =  sup 

{| 𝑥, 𝑆∗𝑥 |:  𝑥 =1}, and this completes the proof. 

 

Lemma  3.2. Let 𝑆  𝐵(𝐻)  then 𝑆 is normaloid if it is normal. 

Proof. Suppose  𝑆  is normal i.e.  𝑆𝑆∗ = 𝑆∗𝑆,  then  𝑆 2 =   𝑆𝑆∗𝑥, 𝑥   

=   𝑆∗𝑆𝑥, 𝑥   

  𝑆∗ 2, 

 ∀ 𝑥   𝐷𝑜𝑚 𝑆𝑆∗  = 𝐷𝑜𝑚 𝑆∗𝑆 . But the subspace 𝐷𝑜𝑚 𝑆𝑆∗  =

𝐷𝑜𝑚 𝑆∗𝑆 is a core of both 𝑆 and 𝑆∗, therefore the norm of 𝑆 and norm 

of 𝑆∗ coincide with 

 𝐷𝑜𝑚 𝑆𝑆∗  = 𝐷𝑜𝑚 𝑆∗𝑆 . Hence it follows that, 𝐷𝑜𝑚 𝑆  = 

𝐷𝑜𝑚 𝑆∗  and 

 𝑆𝑥 =  𝑆∗𝑥   𝑥  𝐷𝑜𝑚 𝑆𝑆∗  = 𝐷𝑜𝑚 𝑆∗𝑆 . By Lemma 3.1, 𝑆 is self-

adjoint  so  𝑆𝑆∗ = 𝑆∗𝑆.  

Lemma  3.3. Let 𝑆  𝐵(𝐻)  then 𝑆 is normaloid if it is positive. 

Proof. From Lemma 3.1, every positive operator is self-adjoint. This 

implies that;  𝑆𝑥, 𝑥   =  𝑆𝑥,𝑥   =   𝑥, 𝑆∗ 𝑥 .   𝑥, 𝑦  ∈ 𝐵 𝐻    . But 

 𝑥 + 𝑦,𝑆 𝑥 + 𝑦     𝑆 𝑥 + 𝑦 , 𝑥 + 𝑦   and   𝑥 − 𝑦, 𝑆(𝑥 − 𝑦)   

  𝑆 𝑥 − 𝑦 ,𝑥 − 𝑦 .  

So subtracting gives  

 𝑆 𝑥 + 𝑦 , 𝑥 + 𝑦  −  𝑆 𝑥 − 𝑦 ,𝑥 − 𝑦      𝑥,𝑆𝑦     𝑆𝑥 ,𝑦    0. This 

implies that  𝑥, 𝑆𝑦     𝑆𝑥, 𝑦  . By Lemma 3.2. We have 𝑆𝑆∗ ≥ 0.  𝑆  

𝐵(𝐻), since  𝑥, 𝑆∗𝑆𝑥      𝑆𝑥, 𝑆𝑥  =  𝑆𝑥 2 . But 𝑆  𝑆∗, hence either 𝑆 ≥

 0 or 𝑆∗  0 or both are  0. Clearly, 𝑆 is positive. 

 

Theorem  3.4. Let 𝑆1and 𝑆2  in 𝐵(𝐻)  be normaloid then 𝑆1 +  𝑆2  is 

normaloid. 

Proof. From Lemmas 3.1, 3.2 and Lemma 3.3 if we suppose that 𝑆1 + 𝑆2  

is densely defined then let 𝑥 ∈  𝐷𝑜𝑚 𝑆1 + 𝑆2 , such that 𝐷𝑜𝑚 𝑆1 ∩

 𝐷𝑜𝑚 𝑆1  contains 𝑥  Then we can find 𝑦 ∈ 𝐷𝑜𝑚 𝑆1
∗ + 𝑆2

∗ contains 𝑦. 

From Lemma 3.1 we have, 

   𝑆1
∗ + 𝑆2

∗ 𝑥, 𝑦      𝑆1
∗𝑥, 𝑦     𝑆2

∗𝑥, 𝑦     𝑥, 𝑆1𝑦    𝑥, 𝑆2𝑦    

 𝑥, (𝑆1 + 𝑆2)𝑦  .  

Hence, 

ǁ 𝑆1 + 𝑆2ǁ  sup {| 𝑆1𝑥1     𝑆2𝑥2 ,𝑥2  ǀ: ǁ 𝑥1ǁ  1 and ǁ 𝑥2ǁ  1}     

 sup {| 𝑆1𝑥1 + 𝑆2𝑥2 , 𝑥1 + 𝑥2 ǀ: ǁ 𝑥1ǁ  1 and ǁ 𝑥2ǁ  1} 

Therefore, 𝑆1 + 𝑆2 is normaloid.  

 

Corollary 3.5. Let 𝑆1 , 𝑆2 ,..., 𝑆𝑛  in 𝐵(𝐻)  be normaloid. Then  ⊕𝑖=1
𝑛  is 

normaloid in 𝐵(𝐻)  

Proof. From Theorem 3.4 it follows that 

ǁ 𝑆1 + 𝑆2 + ⋯+ 𝑆𝑛  ǁ  ǁ  𝑆𝑖
𝑛
𝑖=1  ǁ    𝑆𝑖 

𝑛
𝑖=1  

Abstract 
In this paper we establish new conditions for contractivity of normaloid operators. 

We employ some results for contractivity due to Furuta, Nakomoto, Arandelovic and 

Dragomir. A particular generalization is also given. 
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Let 𝑥𝑛   Dom ( 𝑆1 + 𝑆2 + ⋯+ 𝑆𝑛 ), such that 𝐷𝑜𝑚 𝑆1 ∩  ...  

𝐷𝑜𝑚 𝑆𝑛  contains 𝑥𝑛 . Then we can find 𝑦𝑛   𝐷𝑜𝑚 𝑆1 + 𝑆2 + 𝑆3 + ⋯+

𝑆𝑛, such that 𝐷𝑜𝑚𝑆1∩ ...  𝐷𝑜𝑚𝑆𝑛 contains 𝑦𝑛. Hence, from Theorem 

3.4 we have 

 ǁ 𝑆1 + 𝑆2 +⋯+ 𝑆𝑛 ǁ  sup {ǀ  𝑆1 + 𝑆2 + ⋯+ 𝑆𝑛 𝑥𝑛 ,𝑥𝑛 + 

  𝑆1 + 𝑆2 +⋯+ 𝑆𝑛 𝑦𝑛 , 𝑦𝑛  ǀ: ǁ 𝑥𝑛ǁ 1 and ǁ 𝑦𝑛 ǁ 1} 

 sup {|  𝑆1 + 𝑆2 + ⋯+ 𝑆𝑛 𝑥𝑛  +    𝑆1 + 𝑆2 + ⋯+ 𝑆𝑛 𝑦𝑛 , 𝑦𝑛 ,𝑥𝑛 + 𝑦𝑛  | 

  : ǁ 𝑥𝑛ǁ 1 and ǁ 𝑦𝑛 ǁ 1}  

Therefore  ⊕𝑖=1
𝑛    is normaloid.   

                                                                 

Theorem 3.6. Let 𝑆1 , 𝑆2 be normaloid then 𝑆1𝑆2 − 𝑆2𝑆1 is normaloid 

and  

 𝑆1𝑆2 ≤ max   𝑆1 ,  𝑆2   max {ǁ 𝑆1 − 𝑆2ǁ, ǁ 𝑆1 + 𝑆2ǁ}.                        (1) 

 

Proof. Since 𝑆1 , 𝑆2 are normaloid we have  

          ǁ𝑆1𝑆2 ǁ  max    𝑆1𝑆2𝑥,𝑥  ∶  𝑥 = 1 . 

So  

ǁ𝑆1𝑆2 − 𝑆2𝑆1 ǁ  ǁ (𝑆1 − 𝑆2)𝑆2  – 𝑆2(𝑆1 – 𝑆2)ǁ ≤ 2 ǁ𝑆1 − 𝑆2 ǁ ǁ 𝑆2ǁ          (2) 

Similarly,        

                                                                                                                        

 𝑆1𝑆2 −  𝑆2𝑆1  ≤ 2  𝑆1 − 𝑆2   𝑆1                                      (3) 

But 𝑆1𝑆2 − 𝑆2𝑆1 is normaloid. So using Equation 2 and Equation 3 we 

have 

ǁ 𝑆1𝑆2 − 𝑆2𝑆1ǁ ≤ 2 max {ǁ 𝑆1ǁ, ǁ𝑆2ǁ} ǁ𝑆1 − 𝑆2 ǁ                                (4) 

In Equation 4 replacing 𝑆2  by−𝑆2 , we get 

ǁ 𝑆1𝑆2 − 𝑆2𝑆1ǁ ≤ 2 max   𝑆1 ,  𝑆2   ǁ𝑆1 + 𝑆2  ǁ                                          (5) 

From Equation 4 and Equation 5 we obtain the required result i.e. 

 𝑆1𝑆2 ≤ max   𝑆1 ,  𝑆2   max {ǁ 𝑆1 − 𝑆2ǁ, ǁ 𝑆1 + 𝑆2ǁ}. 

 

Corollary 3.7. Let 𝑆 be normaloid then 

ǁ 𝑆𝑆∗ – S*S ǁ ≤ 2ǁ 𝑆 ǁ max {ǁ 𝑆   𝑆∗ǁ, ǁ 𝑆  𝑆∗ǁ}                                 (6) 

   

Proof. From Equation 4 and Equation 5. Let 𝑆1 = 𝑆 and 𝑆2 = 𝑆∗.This 

gives 

 ǁ 𝑆𝑆∗ – S*S ǁ  2max{ǁ 𝑆 ǁ, 𝑆∗  } ǁ 𝑆  𝑆∗ǁ                               (7*) 

and                                                           

ǁ 𝑆𝑆∗ – S*S ǁ  2max{ǁ 𝑆 ǁ, 𝑆∗  } ǁ 𝑆  𝑆∗ǁ                          (7**) 

From Equation 7* and 7** we obtain 

ǁ 𝑆𝑆∗ – S*S ǁ  2ǁ 𝑆 ǁ max {ǁ 𝑆   𝑆∗ǁ, ǁ 𝑆  𝑆∗ǁ}. 

The proof is complete. 

Lemma 3.8. Let 𝑎 =  𝑥𝑖 ⊗𝑦𝑛
𝑖=1 i  𝐻1 ⊗ 𝐻2   and  𝑏   𝑥𝑗 ⊗𝑦𝑚

𝑗=1 j  

𝐻1 ⊗ 𝐻2  and   . , .   be an inner product on 𝐵(𝐻1⊗𝐻2). Then it is well 

defined. 

Proof. Suppose  𝑎, b   0 when 𝑎  0 in 𝐵 (𝐻1, 𝐻2) and  𝑎, b   0 when 

𝑏  0. For each 

𝑥  𝐻1 and  𝑦  𝐻2 then  

 𝑥 ⊗ y  𝑥1 ,𝑦1 =  𝑥, 𝑥1  𝑦, 𝑦1          (8) 

For each  𝑥1  𝐻1 and 𝑦1  𝐻2 

Let 𝑎   𝑥𝑖 ⊗𝑦𝑛
𝑖=1 i  𝐻1 ⊗ 𝐻2 and 𝑏 =  𝑥𝑗 ⊗𝑦𝑚

𝑗=1 j ϵ∈ 𝐻1⊗ 𝐻2 

 𝑎, b       𝑥𝑖 ⊗ yi 
𝑚
𝑗=1

𝑛
𝑖=1 (xj yj)     𝑥𝑖 ,𝑥𝑗  

𝑚
𝑗=1

𝑛
𝑖=1  𝑦𝑖 , 𝑦𝑗         (9) 

From Equation 8 and Equation 9 we obtain 

0 =   𝑎 𝑥𝑗  , 𝑦𝑗   𝑗 =   (𝑥𝑖 ⊗𝑦𝑖)𝑖 ,𝑗 ( 𝑥𝑗 ,𝑦𝑗 ) 

=   𝑥𝑖 ,𝑥𝑗  1𝑖 ,𝑗  𝑦𝑖 ,𝑦𝑗  2  

Similarly,  𝑎, b   0 when 𝑏  0. Therefore   𝑎, b  is well 

defined. But,  𝑎, b  is a Hermitian sesquilinear form then   𝑎, b  ≥ 0. 

Choosing orthonormal basis   𝑒1 ,… , 𝑒𝑘   for the linear span of  𝑥1 ,… ,𝑥𝑝   

and  𝑓1 ,… , 𝑓𝑞   of  𝑦1 ,… , 𝑦𝑘  and by the bilinearity rules of elementary 

tensors, we get 

𝑎   𝑥𝑖 , 𝑒𝑐 1 𝑦𝑖 ,𝑓𝑑  2 𝑒𝑐  ⊗𝑓𝑑                                                                     (10) 

Inserting Equation 10 into Equation 9, we get 

 𝑎, 𝑎     𝑥𝑖 ,𝑒𝑐 1𝑖 ,𝑐,𝑐 ′,𝑑,𝑑 ′  𝑥𝑖 ,𝑒𝑐 ′  𝑦𝑖 ,𝑓𝑑  2 𝑦𝑖 ,𝑓𝑑   𝑒𝑐 ,𝑒𝑐 ′ 1 𝑓𝑑 ,𝑓𝑑 ′ 1 

                𝑥𝑖 ,𝑒𝑐  
2

𝑐 ,𝑑𝑖    𝑦𝑖 , 𝑓𝑑  
2 ≥ 0. 

Thus  𝑎,𝑎  is positive. Since  𝑎, 𝑎 = 0 then,  𝑥𝑖 ,𝑒𝑐 .  𝑦𝑖 ,𝑓𝑑  =0   𝑖, 𝑐,𝑑 

and so  𝑎 = 0. Therefore  𝑎,𝑏  is well defined. 

Lemma 3.9. Let 𝑆1 , 𝑆2 ∈ 𝐵(𝐻1⊗𝐻2) then 𝑆1⊗ 𝑆2  is a well defined 

operator on 

 𝐵(𝐻1⊗𝐻2)  with domain 𝐷𝑜𝑚 𝑆1 ⊗ 𝑆2 .  

Proof. Let 𝑎 =  𝑥𝑖 ⊗𝑦𝑛
𝑖=1 i,     𝑥𝑖  ∈ 𝐷𝑜𝑚 𝑆1  ,  𝑦𝑖   𝐷𝑜𝑚 𝑆2 . Given an 

orthonormal basis  𝑒1 ,… , 𝑒𝑘  for the linear span of  𝑥1,… ,𝑥𝑘  and set 

𝑓𝑐 =   𝑥𝑖 ,𝑒𝑐 𝑖 𝑦𝑖  then  

      𝑎 =     𝑥𝑖 ,𝑒𝑐 
𝑛
𝑖 ,𝑐 𝑒𝑐 ⊗ 𝑦𝑖 =  𝑒𝑐 ⊗  𝑓𝑐𝑖                             (11) 

 𝑎 2 =   𝑒𝑐 ,𝑒𝑑 1𝑐 ,𝑑  𝑓𝑐 , 𝑓𝑑  2 =   𝑓𝑑 
2

𝑑 .                                             (12) 

From Lemma 3.8, to proof that 𝑆1⊗ 𝑆2 is well defined, then 

 𝑆1𝑖 𝑥𝑖 ⊗ S2yi = 0 whenever 𝑎 = 0. If 𝑎 = 0, then all 𝑓𝑐  are zero by 

Equation 12. Therefore  

 𝑆1𝑖 𝑥𝑖 ⊗ S2yi    𝑥𝑖 ,𝑒𝑐 𝑖 ,𝑒 𝑆1𝑒𝑐 ⊗ 𝑆2𝑦𝑖    𝑆1𝑐 𝑒𝑐 ⊗ S2fc   0. 

 

Theorem 3.10. Let 𝑆1 and 𝑆2 be normaloid then 𝑆1⊗ 𝑆2 is normaloid 

under  ∙ 𝐶𝐵 and  𝑆1 ⊗ S2    𝑆1   𝑆2 . 

Proof. Let  𝑎   𝐷𝑜𝑚 𝑆1 ⊗  𝑆2  as in Equation 11. Suppose 𝐼1 =

 𝐼  𝐷𝑜𝑚 𝑆1  and 𝐼2 =  𝐼  𝐷𝑜𝑚 𝑆2 . Using Equation 12 twice, i.e. for the 

element (𝐼1 ⊗  𝑆2) 𝑎  and then for 𝑎, we get 

 (𝐼1 ⊗  𝑆2) 𝑎 2    𝑒𝑐 ⊗  𝑆2𝑐  2    𝑆2 𝑓𝑐 
2

𝑐 ≤  𝑆2 
2   𝑆2 

2  𝑎 2. 

This i mplies that  𝐼1 ⊗  𝑆2  ≤   𝑆2 . Similarly,  𝑆1 ⊗  𝐼2  ≤   𝑆1  

therefore 

 𝑆1 ⊗  𝑆2  =  (𝑆1 ⊗  𝐼2) (𝐼1 ⊗  𝑆2)  ≤  𝑆1   𝐼1 ⊗  𝑆2     𝑆1   𝑆2   

(13) 

To prove the reverse inequality we let 𝜀 > 0 and the unit vectors 𝑥  

𝐷𝑜𝑚 𝑆1  and 

 𝑦   𝐷𝑜𝑚 𝑆2  Such that  𝑆1  ≤   𝑆1𝑥 1 + 𝜀  and  𝑆2  ≤   𝑆2𝑦 2 + 𝜀. 

Then 

  𝑆1 −  𝜀   𝑆2 −  𝜀 ≤  𝑆1𝑥 1 𝑆2𝑦 2 =  𝑆1𝑥 ⊗ S2y  

                                              𝑆1 ⊗  𝑆2 (𝑥 ⊗ 𝑦) ≤  𝑆1 ⊗  𝑆2  𝑥 ⊗ 𝑦  

So,   𝑆1 ⊗  𝑆2  ≥   𝑆1  𝑆2                                                                  (14) 

Since 𝜀 is arbitrary so small, now letting 𝜀 → 0, thus from 

Equation 13 and 14, we get  

 𝑆1 ⊗  𝑆2  =   𝑆1  𝑆2  .  

 

𝟒  𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝐬 𝐟𝐨𝐫 𝐂𝐨𝐧𝐭𝐫𝐚𝐜𝐭𝐢𝐯𝐢𝐭𝐲     
𝐋𝐞𝐦𝐦𝐚 𝟒.𝟏.  Let  𝑆 be normaloid positive then 𝑆 is contractive. 

𝑷𝒓𝒐𝒐𝒇. Take 𝑆 as in Lemma 3.2 and from [3 Theorem 1.2], 𝑟 𝑆  =   𝑆 . 

𝑆  is contractive if  𝑆 ≤  1. Since  𝑆  = sup    𝑆𝑥,𝑥  ∶  𝑥 = 1 ,

then it follows  from [4] Theorem A, an indempotent numerical radius 

contraction is a projection. It follows that the idempotency of 𝑆 that 

 𝐼 + 𝑎𝑆 +
𝑎2    

2!
 𝑆2 + ⋯    𝐼 +  𝑒𝑎 − 𝐼 𝑆   𝑒 𝑎  

where 𝑎 is an arbitrary complex number. Let 𝑎 = 𝑡, where 𝑡 is a real 

number. Then 

 𝑒−𝑡𝐼 +  1− 𝑒−𝑡 𝑆 ≤ 1  as  𝑡 → ∞ we get   𝑆 ≤ 1. 

𝐋𝐞𝐦𝐦𝐚 𝟑.𝟏𝟑. Let 𝑆 be normaloid then 𝑆 is contractive if and only if it is 

the identity. 

𝑷𝒓𝒐𝒐𝒇. Suppose 𝑆 is a contractive i.e.  𝑆 ≤ 1, then  𝑆𝑛    𝑆 𝑛  for all 

𝑛 ≥ 0  and the geometric series 1 +  𝑆 +  𝑆2 + ⋯ is convergent. It 

therefore follows that the infinite series  𝐼 + 𝑆 + 𝑆2 + ⋯+ converges to 

some  𝑆1 ∈ 𝐵 𝐻 . Hence;  𝐼 − 𝑆 𝑆1 = lim𝑛→∞ 𝐼 − 𝑆  𝐼 + 𝑆 + 𝑆2 + ⋯+

𝑆𝑛=lim𝑛→∞𝐼−𝑆𝑛+1= 

𝐼 − lim𝑛→∞ 𝑆
𝑛+1 = 𝐼.  Therefore, 𝑆𝑛+1 → 0  since  𝑆 𝑛+1 → 0  as 𝑛 → ∞ . 

Similarly, 𝑆1 𝐼 −  𝑆1  : 𝑋 → 𝑌  = 𝐼 this shows that 𝐼 − 𝑆 is invertible and 
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therefore 𝑆 is an identity. Conversely, assume that 𝑆 is an identity. Let 

𝑆1 and 𝑆2 be normaloid and 

 𝑆1 ,  𝑆2 ∈ 𝐵 𝐻  with 𝑆1  and 𝑆2 also invertible and  𝑆1  :  𝑋 → 𝑌  and 

 𝑆2  :  𝑌 → 𝑋   such that 𝑆1𝑆2 = 𝐼𝑦  and 𝑆2𝑆1 = 𝐼𝑥 . Then the equality 

𝑆1𝑆2𝑣 = 𝑉    ∀ 𝑣 ∈ 𝑌 implies that 𝐾𝑒𝑟𝑆2 = 0 and 𝑅𝑎𝑛𝑆1  = 𝑌. Similarly, 

𝑆2𝑆1𝑢 = 𝑈    ∀ 𝑢 ∈ 𝑋 implies 𝐾𝑒𝑟𝑆1 = 0  and 𝑅𝑎𝑛𝑆2  = 𝑋. This implies 

that 𝑆1  and 𝑆2  are both invertible and 𝑆2 = 𝑆1
−1  . Thus 𝑆1𝑆2 = 𝐼  and 

therefore 𝑆 is contractive. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒.𝟑. Let 𝑆1 and 𝑆2 be normaloid then 𝑆1𝑆2 is also contractive. 

𝑃𝑟𝑜𝑜𝑓. Since 𝑆1 and 𝑆2 are normaloid, then  𝑆1𝑆2 is also normaloid. Now 

 𝑆1𝑆2 = sup    𝑆1𝑆2𝑥, 𝑥  , 𝑥 ∈ 𝐻 ∶  𝑥 = 1  

               sup    𝑆1𝑥, 𝑆2𝑥  ∶   𝑥 = 1  

The condition  𝑆 ≤ 1 is equivalent to  𝑆1𝑥, 𝑆2𝑥 ≤  𝑥, 𝑥 . Then 

   𝑆1𝑆2  ≤ sup    𝑥, 𝑥  ∶   𝑥 = 1  

                sup   𝑥 2:  𝑥 = 1  

Taking  the supremum  𝑆1𝑆2  ≤ 1, therefore 𝑆1𝑆2 is contractive. 

Corollary 4.4. Let 𝑆1  and 𝑆2  be normaloid contractive, then the 

following are equivalent; 

i. 𝑆1 − 𝑆2  is contractive. 

ii. 𝑆1 − 𝑆2  is positive. 

iii. 𝑆1𝑆2  is positive. 

iv. 𝑆𝑆∗ − 𝑆∗𝑆  is normal. 

Proof.  𝑖 ⇒ 𝑖𝑖  From Theorem 4.3, it follows that 𝑆1 − 𝑆2 is also 

normaloid contractive. Let 𝑆1 and 𝑆2 be normaloid positive operators, 

then 𝑆1 − 𝑆2 is positive. 

 𝑖𝑖 ⇒ 𝑖𝑖𝑖  Suppose 𝑆1 − 𝑆2 is positive. Since 𝑆1  and 𝑆2  are positive, it 

follows that their product is positive. Hence 𝑆1𝑆2  is positive since 

multiplication is defined point wise and commutative. 

 𝑖𝑖𝑖 ⇒ 𝑖𝑣  An operator is said to be positive if it is self adjoint i.e. 𝑆 = 𝑆∗. 

This implies that 𝑆∗𝑆 is positive and hence 𝑆𝑆∗   is also positive. 

Therefore, 𝑆𝑆∗ − 𝑆∗𝑆 = 0 this implies that 𝑆𝑆∗ = 𝑆∗𝑆  thus 𝑆 is normal 

and therefore  𝑆𝑆∗ − 𝑆∗𝑆 = 0 is also normal. 

 𝑖𝑣 ⇒ 𝑖  From 4.3, let 𝑆1 = 𝑆 and 𝑆2 = 𝑆∗ this implies that 𝑆𝑆∗ ≤ 1. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒.𝟓. Let 𝑆 be normaloid then 𝑆  is contractive bounded linear 

operatorif for each 𝑧 ∈ 𝐾 ⊂ 𝐻 and any 𝑟 ∈ 𝐼𝑛𝑡𝐾 there exist a positive 

integer 𝑐𝑜  such that 𝑆𝑛 𝑧 < 𝑟 for all   𝑛 > 𝑐𝑜 . 

𝑃𝑟𝑜𝑜𝑓. By the prove of [1 Theorem 3.5], let  1 − 𝑆 ∘  1 + 𝑆 + ⋯+

𝑆𝑛 = 

1 − 𝑆𝑛+1 . Then it implies that;  1 − 𝑆 ∘  1 + 𝑆 +⋯+ 𝑆𝑛 ≥ 

 1 − 𝑆 ∘  𝑛 + 1 𝑆𝑛 𝑧 =  1 − 𝑆𝑛+1 𝑧 = 𝑧 − 𝑆𝑛+1 𝑧 ≤ 𝑧. For each 

𝑧 ∈ 𝐾 ⊂ 𝐻, since 𝑆𝑛 𝑧 ≤ 𝑆𝑎 𝑧  for each 𝑎 = 0,… ,𝑛 then,  1− 𝑆 ∘ 𝑛 +

1𝑆𝑛𝑧≤𝑧. Therefore, 𝑆𝑛𝑧≤1−𝑆−1𝑛+1𝑧 given  0<𝑟, there exist a positive 

integer 𝑐∘ such that  𝑛 > 𝑐∘ , implying that; 
1

𝑛+1
 1− 𝑆 −1 𝑧 < 𝑟. Since ; 

1

𝑛+1
 1 − 𝑆 −1 𝑧  being a convergent sequence, then 𝑛 > 𝑐∘ implies that; 

𝑆𝑛 𝑧 < 𝑟.  

 

5. Conclusion 
These results are properties of Hilbert space operators are when 

they are normaloid and contractive. It would be interesting to give 

generalizations which thus will help in further classification of these 

operators.  
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