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1. Introduction 
Ever since the concept of fuzzy sets was introduced by Zadeh 

[5] in 1965 to describe the situation in which data are imprecise or 

vague or uncertain. It has a wide range of application in the field of 

population dynamics, chaos control, computer programming, medicine, 

etc. Kramosil and Michalek [7] introduced the concept of fuzzy metric 

spaces (briefly, FM- spaces) in 1975, which opened an avenue for 

further development of analysis in such spaces. 

The study of common fixed points with A – contractions is 

new and also interesting. Works along these lines have recently been 

initiated by M. Akram, A. A. zafar, A. A. Siddiqui [6] in 2008 and by 

Gbenga Akinbo, Memudu O. Olatinwo And Alfred O. Bosede [4] in 2010. 

In this article we introduce a new class of contraction maps, called A – 

contractions in fuzzy metric space. Under different sufficient 

conditions, existence of common fixed point for a pair of maps, four 

maps and also for a sequence of maps will be established here. Also it is 

shown that A – contractions is more generalized than TS – Contraction, 

B – Contraction in FM-space. If two fuzzy metrics are given on a set X , 

which are related, a pair of self map can have common fixed point 

though the contractive condition with respect one fuzzy metric is given. 

Our result extends, generalized and fuzzifies several fixed point 

theorems with A – contractions on metric space. 

 

2. Preliminaries 
We quote some definition and statements of a few theorems 

which will be needed in the sequel. 

 

Definition 1.1 [ 2 ] A binary operation*: [ 0 , 1 ]   [ 0 , 1 ]   [0 ,1] 

is continuous t – norm if   satisfies the following conditions :  

( i )   * is commutative and associative, 

( ii )  * is continuous, 

( iii )  a *1 = a    a  [ 0 , 1 ],  

( iv )  a *b   c  d whenever a   c, b   d and a, b, c, d   [ 0,1]. 

 

Result 1.2 [ 3 ] ( a ) For any 
 1r  , 

 2r    ( 0 , 1 ) with 
 1r  > 

 2r , there exist 

 3r    ( 0 , 1 )  

 such that 
 1r    

 2r  > 
 2r , 

 ( b ) For any 
 5r   ( 0 , 1 ) , there exist 

 6r    ( 0 , 1 ) such that 
 6r  

  
 6r  

 5r . 

 

Definition 1.3 [ 1 ] The 3-tuple  , ,X   is called a non - 

Archimedean  fuzzy metric space if X is an arbitrary non-empty set,   

is a continuous t - norm and μ is a fuzzy set in 2X   ( 0 ,  ) satisfying 

the following conditions : 

( i )   , , 0x y t  ; 

(ii)   , , 1x y t  if and only if x = y ; 

(iii)     , , , ,x y t y x t  ; 

(iv)        , , , , , , max ,x y s y z t x z s t     ; 

(v)     , , : 0 , (0 , 1]x y     is continuous ;  

for all , ,x y z X  and  , 0t s  . 

 

Note that  , ,x y t  can be thought of as the degree of nearness 

between x and y with respect to t . 

 

Remark: 1.4 In fuzzy metric space X ,  , ,x y   is non – decreasing 

for all x , y   X  and   

     , , , , , ,x y t x z t z y t     for all x , y , 

z   X ,  t  > 0 . 

That is, every non – Archimedean fuzzy metric space is also a fuzzy 

metric space. 

Definition 1.5 [ 8 ] A sequence  n
n

x
 in fuzzy metric space is said to 

converge to  x   X if and only if
 lim , , 1n

n
x x t




. 
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A sequence  n
n

x
  in fuzzy metric space is said to be a Cauchy 

sequence if and only if  lim , , 1n p n
n

x x t 



. 

A fuzzy metric space  , ,X    is said to be complete if and only if 

every Cauchy sequence in X   is convergent in X  . 

Let 
+R  denote the set of all non-negative real numbers and A  be the 

set of all functions 3
: R R    satisfying  

( i )   is continuous on the set 3
R 

 . 

( ii ) k a b  for some k   (0 , 1)  whenever   , ,a a b b  or  

 , ,a b a b  or    , ,a b b a  for all ,a b R  . 

 

Definition 1.6 [ 9 ] Let  , ,X    be fuzzy metric space and 

:T X X .  T is said to be TS – contractive mapping if there exists k 

  ( 0 , 1 ) such that 

                              , , , ,k T x T y t x y t 

 0t  .  

 

Definition 1.7  Let  , ,X    be fuzzy metric space :T X X . T is 

said to be B – contractive mapping if there exists k   ( 0 , 1 )  such that

      , , min , , , , ,k T x T y t x T x t y T y t    

  ,x y X  and   0t  .  

 

Definition 1.8 A self- map T on a non – Archimedean fuzzy metric 

space X , is said to be A – Contraction if it satisfies the condition: 

 

        , , , , , , , , , ,T x T y t x y t x T x t y T y t      

for all ,x y X  and some A  . 

 

3. Convergences of Contractive maps 
Theorem 3.1 Every TS - Contraction is an A – Contraction on non – 

Archimedean fuzzy metric space  , ,X   , where 

 min , , [0 , 1]a b a b a b      

Proof: Assume that T on the non – Archimedean fuzzy metric space X  

is TS – Contraction. Define 3
: R R    by  

   
1

, , min ,u v w v w
k

   for all  , ,u v w R   with some 

fixed ( 0 , 1)k   . Next we show that A  . 

( i ) Clearly   is Continuous. 

( ii ) If   , ,u u v v  then   
1

min ,
v

u v v
k k

 
. 

If  , ,u v u v   then  
1

min ,
v

u u v
k k

  . So that  

k u v . 

Similarly, if   , ,u v v u  then k u v  . 

So we deduce that A  . Further, since T is a TS - Contraction, there 

exists ( 0 , 1)k   such that 

   , , , ,k T x T y t x y t   for all 0t  . 

         , , , , , , , , , ,k T x T y t x y t x Tx t Tx Ty t Ty y t          

        , , min , , , , , , , ,k T x T y t x Tx t Tx Ty t Ty y t      

      
1

, , min , , , , ,T x T y t x Tx t Ty y t
k

   
 

        , , , , , , , , , ,T x T y t x y t x Tx t Ty y t       

This completes the proof. 

 

Theorem 3.2 Every B – Contraction is an A – Contraction on non – 

Archimedean fuzzy metric space  , ,X   , where 

 min , , [0 , 1]a b a b a b    . 

 

Proof: Assume that T on the non – Archimedean fuzzy metric space X is 

B – Contraction. 3
: R R    by     

1
, , min ,u v w v w

k
   for 

all  , ,u v w R  with  some fixed ( 0 , 1)k  .  

From the proof of the above theorem, we see that A  . 

Further, since T is a B – Contractive, we get 

      , , min , , , , ,k T x T y t x T x t y T y t      

,x y X  and   0t   

        , , , , , , , , , ,T x T y t x y t x Tx t Ty y t     

 

This completes the proof. 

 

4. Fixed point Theorems 
In this section, we give some results on fixed points of A – 

Contractions. 

 

Let , ,F G S  and T  be self – maps of a fuzzy metric space X  satisfying  

                                     S X F X ;  T X G X .                       (1) 

Then for any point 
0x X , we can find points

 1x , 
 2x ,…, all in X  , 

such that  

                            
0 1 1 2 2 3, , ,S x F x T x G x S x F x     . 

Therefore, by induction, we can define a sequence  n
n

y
 in  X  as 

1n n ny S x F x   , when n  is even and 
1n n ny T x G x   , 

when n  is odd , where 0 , 1 , 2 ,n   . 

The following theorem establishes existence of coincidence and unique 

common fixed point of , ,F G S  and T  where the union of the ranges of 

F  and G  is required to be complete. The set of coincidence points of 

T  and F  is denoted by  ,C T F , and the set of natural numbers 

denoted by N .  

 

Theorem 4.1 Let , ,F G S  and T  be self-maps of a non - Archimedean 

fuzzy metric space X  satisfying ( 1 ) and for all ,x y X  

          , , , , , , , , , , 2S x T y t G x F y t G x S x t F y T y t       

where A  . Suppose FX GX  is a complete subspace of  X  , then 

the sets  ,C T F  and   ,C S G  are nonempty. Suppose further that 

 ,T F and  ,S G
 are weakly compatible, then , ,F G S  and T   have a 

unique common fixed point. 

 

Proof:  Assuming n N  is even, then  

   1 1, , , ,n n n ny y t S x T x t  
 

      1 1 1, , , , , , , ,n n n n n nG x F x t G x S x t F x T x t     

      1 1 1, , , , , , , ,n n n n n ny y t y y t y y t       

   1 1, , , ,n n n nk y y t y y t     

On the other hand, assuming n N   is odd, 

   1 1, , , ,n n n ny y t T x S x t    

      1 1 1, , , , , , , ,n n n n n nG x F x t G x S x t F x T x t     
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      1 1 1, , , , , , , ,n n n n n ny y t y y t y y t       

   1 1, , , ,n n n nk y y t y y t   
 

Thus whether n is odd or even, we have  

  
   1 1

1
, , , ,n n n ny y t y y t

k
   

  for some 

( 0 , 1)k  . 

Inductively, we have 

   1 0 1
1

, , , ,n n n
y y t y y t

k
  

 

 1lim , , 1n n
n

y y t 


 
 

Observe that  ny  is contained in FX GX . We now verify that  
 ny

 

is Cauchy sequence. 

     1 1, , , , , ,n n p n n n p n py y t y y t y y t          

 lim , , 1 1 1n n p
n

y y t 


    
 

 lim , , 1n n p
n

y y t 


 
 

Therefore {
 ny } is Cauchy and FX GX  is complete, there exists a 

point p FX GX   such that lim n
x

y p


 . Without loss of 

generality, let p GX . It means we can find a point q X  such that  

p G q .  Putting x q , my x  , m  is odd , in to ( 2 ) yields 

        , , , , , , , , , ,m m m mS q T x t G q F x t G q S q t F x T x t      

         1 1, , , , , , , , , ,m m m mS q y t p y t p S q t y y t      
 

Letting m   , recalling that α is continuous on 3
R 

, we obtain 

        , , , , , , , , , ,S q p t p p t p S q t p p t      

    , , 1 , , , , 1S q p t p S q t     

 , , 1k S q p t   

 , , 1S q p t  . Consequently, p S q . 

From S X F X  we know that there exists a point u X  such 

that F u S q p G q   . 

Choosing x q  , y u , ( 2 ) gives  

        , , , , , , , , , ,S q T u t G q F u t G q S q t F u T u t      

    , , 1 , 1 , , ,p T u t p T u t     

 , , 1k p T u t   

 , , 1p T u t  . Consequently, p T u . 

Hence, F u T u p S q G q     . This proves the first part of the 

theorem.  

Now suppose  ,T F and  ,S G  are weakly compatible pairs, then 

F  and T  commute at u , and G  and S  commute at q  so that  

F p F F u F T u T F u T p     and 

 3S p S S q S G q G S q G p      

Now with x p  , y u ,  ( 2 ) and ( 3 ) yield 

        , , , , , , , , , ,S p T u t G p F u t G p S p t F u T u t    

    , , , , , 1 , 1S p p t S p p t     

 , , 1k S p p t    , , 1S p p t   

p S p G p   . 

In a similar way, letting x y p  , ( 2 ) and ( 3 ) yield 

p T p F p  .  

Thus, S p G p p F p T p     .  

Finally, we show that p  is unique in X .  

Suppose z  is another common fixed point of the four maps. Then 

putting x z  , y p in  ( 2 ), we have 

        , , , , , , , , , ,S z T p t G z F p t G z S z t F p T p t    

    , , , , , 1 , 1z p t z p t     

 , , 1z p t z p    . 

This completes the proof. 

 

Corrolary 4.2  Let  S  and T  be self-maps of a non - Archimedean 

fuzzy metric space X  , satisfying  

 

        , , , , , , , , , ,S x T y t x y t x S x t y T y t    

where A   and for all ,x y X . Then S  and T have a unique 

common fixed point. 

 

Theorem 4.3 Let , ,F G S  and T  be self-maps of a  non - Archimedean 

fuzzy metric space X , and let  nS  and  nT  be sequences on S  

and T  satisfying  

nS X F X ;  
nT X G X ,  1 , 2 ,n                          ( 4 ) 

and for all ,x y X , 

          , , , , , , , , , , 5i j i jS x T y t G x F y t G x S x t F y T y t     

 

where A  . Suppose FX GX  is a complete subspace of  X  , then 

for each n N , 

( i ) the sets  , nC F T  and  , nC G S  are nonempty. 

Further, if 
nT commutes with F  and 

nS commutes with G  at their 

coincidence points, then 

( ii ) , , nF G S  and nT  have a unique common fixed point. 

 

Proof: For any arbitrary 
0x X  and 0 , 1 , 2 ,n    , following a 

similar argument as in the beginning of this section, we can define a 

sequence  n
n

y  in  X  as 1n n n ny S x F x    , when n  is 

even and 1n n n ny T x G x    , when n  is odd , where 

0 , 1 , 2 ,n   . 

Now for each 1 , 3 , 5 ,i    and  2 , 4 , 6 ,n    , from ( 5 ) we have  

   1 1, , , ,i i i ik y y t y y t       and 

   1 1, , , ,j j j jk y y t y y t       

That is,     1 1, , , ,n n n nk y y t y y t       for all 

0 , 1 , 2 ,n    . 

By induction ( as in the proof of Theorem 4.1), we have  

   1 0 1
1

, , , ,n n n
y y t y y t

k
       for some ( 0 , 1)k  . 

Consequently,  n
n

y
 is Cauchy in FX GX , a complete subspace 

of X.  

The rest of the proof is similar to the corresponding part of the proof of 

Theorem 4.1. 

 

Theorem 4.5 Let T be an A-Contraction on a complete non - 

Archimedean fuzzy metric space X  . Then T  has a unique fixed point in 
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X  such that the sequence  0
nT x

 converges to the fixed point, for 

any 
0x X  . 

Proof: Fix 
0x X  and define the iterative sequence  nx  by 

0
n

nx T x   (equivalently, 
1n nx T x    ) where 

nT  stands for 

the map obtained by n - time composition of T  with T . Since T  is an 

A-Contraction,   A   such that the definition 1.8 holds, i.e., 

          , , , , , , , , , , 6T x T y t x y t x T x t y T y t       

for all ,x y X . Now, 

   1 1, , , ,n n n nx x t T x T x t    

      1 1 1, , , , , , , ,n n n n n nx x t x T x t x T x t     

 

      1 1 1, , , , , , , ,n n n n n nx x t x x t x x t       

   1 1, , , ,n n n nk x x t x x t     

Continuing this way, we get 

   1 0 1
1

, , , ,n n n
x x t x x t

k
  

 

 1lim , , 1n n
n

x x t 


 
 

We now verify that   nx  is Cauchy sequence. 

     1 1, , , , , ,n n p n n n p n px x t x x t x x t          

 

 lim , , 1 1 1n n p
n

x x t 


    
 

 lim , , 1n n p
n

x x t 


   

Thus  nx  is Cauchy sequence in X . Since X  is complete, there 

exists x X  such that 

nx x  as n   . 

Again, with x x  and 
ny x , the inequality ( 6 ) gives  

   1, , , ,n nT x x t T x T x t    

      , , , , , , , ,n n nx x t x T x t x T x t     

 n N  . 

By allowing n     and using the continuity of  , we get  

        , , , , , , , , , ,T x x t x x t x T x t x x t           

 

i.e.,     , , 1 , , , , 1T x x t T x x t       

 , , 1k T x x t      , , 1T x x t      

T x x   . 

Now, if  w X  satisfies, T w w , then by taking x w  and 

y x  in ( 6 ) we get 

   , , , ,w x t T w x t    

      , , , , , , , ,w x t T w w t T x x t       

  , , , 1 , 1w x t    

 , , 1k w x t      , , 1w x t     

w x  . 

This completes the proof. 

Theorem 4.6 Let A   and  nT  be a sequence of self-maps on the 

complete non - Archimedean fuzzy metric space  , ,X    such that  

          , , , , , , , , , , 7i j i jT x T y t x y t x T x t y T y t       

for all ,x y X  and  ( 0 , 1)k  . Then  nT  has a unique common 

fixed point in X . 

PROOF.  Taking any 
0x X  , we define 

1n n nx T x   for each 

n N . Now from (7), we have 

   1 2 1 0 2 1, , , ,x x t T x T x t   

 

      0 1 0 1 0 1 2 1, , , , , , , ,x x t x T x t x T x t     

   

      0 1 0 1 1 2, , , , , , , ,x x t x x t x x t     

   1 2 0 1, , , ,k x x t x x t    

Similarly, we have 

   2 3 1 2, , , ,k x x t x x t   

     2 3 1 2 0 12

1 1
, , , , , ,x x t x x t x x t

k k
      

Inductively, we have 

   1 0 1
1

, , , ,n n n
x x t x x t

k
    

 1lim , , 1n n
n

x x t 


   

We now verify that  
 nx

 is Cauchy sequence. 

     1 1, , , , , ,n n p n n n p n px x t x x t x x t          

 

 lim , , 1 1 1n n p
n

x x t 


    
 

 lim , , 1n n p
n

x x t 


   

Therefore  nx  is Cauchy sequence in the complete fuzzy metric 

space X ,  so it converges to x X . Next, 

     1 1, , , , , ,n m m nx T x t x x t x T x t         

   1 1, , , ,m m m nx x t T x T x t      

        1 1, , , , , , , , , ,m m m m m nx x t x x t T x x t T x x t           

        1 1, , , , , , , , , ,m m m m nx x t x x t x x t T x x t           

Letting m   , recalling that   is continuous on 3R
, we obtain 

          , , , , , , , , , , , ,n nT x x t x x t x x t x x t T x x t               

 

    , , 1 , 1 , , ,n nT x x t T x x t        

 , , 1nT x x t     
nT x x n N     . 

For uniqueness of the fixed point 'x , we suppose 
nT y y  for some y 

  X and for all n N .  

Then by ( 7 ), we have 

   , , , ,i jx y t T x T y t    
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      , , , , , , , ,i jx y t x T x t y T y t       

         , , , 1 , 1x y t x y      . 

 

Theorem 4.7 Let X be a set with two non - Archimedean fuzzy metrics 

  and   satisfying the following conditions: 

( i )    , , , ,x y t x y t    for all ,x y X . 

( ii ) X  is complete with respect to   . 

( iii ) ,S T  are self maps on X  , such that T  is continuous with respect 

to    and 

 

        , , , , , , , , , ,T x S y t x y t x T x t y S y t      

for all ,x y X  and for some A  . 

 Then S  and T  have a unique common fixed point. 

 

Proof: Take any 
0x X  . For each n N  , we define 

1n nx S x 

, when n  is even and 
1n nx T x  , when n  is odd. Then, by 

inequality in the above condition ( iii ) we get 

    1 2 0 1, , , ,x x t T x S x t    

           

      0 1 0 0 1 1, , , , , , , ,x x t x T x t x S x t     

           

      0 1 0 1 1 2, , , , , , , ,x x t x x t x x t     

   1 2 0 1, , , ,k x x t x x t     

In general, for any n N  we get ( as in the proof of the of the previous 

theorem) that  

   1 0 1
1

, , , ,n n n
x x t x x t

k
  

 for some ( 0 , 1)k  . 

     1 1 0 1
1

, , , , , ,n n n n n
x x t x x t x x t

k
      

  

(By the condition (i))  

 1lim , , 1n n
n

x x t 


 
 

This implies that  nx  is a Cauchy sequence in X  with respect to   

and hence by condition (ii), we have 

 lim , , 1n
n

x x t


 
 for some x X . 

Since T  is given to be continuous with the respect to   we have  

     2 1 21 lim , , lim , , , ,n n
n n

x x t T x x t T x x t  
 

     
 

T x x   . 

Now , by condition ( iii ) 

   , , , ,x S x t T x S x t       

      , , , , , , , ,x x t x T x t x S x t           

              1 , 1 , , ,x S x t     

S x x   . 

Thus x  is a common fixed point of S  and T . 

For the uniqueness, let y be any common fixed point of S  and T  in X . 

Then by condition ( iii ) ,  

   , , , ,x y t T x S y t    

 (
'x  , y, t ) =  ( T

'x  , Sy , t )  

       

      , , , , , , , ,x y t x T x t y S y t     

         , , , 1 , 1x y t   

 , , 1x y t    x y  . 

This completes the proof. 
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