Bulletin of Advanced Scientific Research 01 [03] (2015) www.asdpub.com/index.php/basr

Original Article

On analytic functions and characterization of Schwarz Norms in Banach spaces

I.O. Okwany and N. B. Okelo*

School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo-Kenya

Abstract

*Corresponding Author N. B. Okelo School of Mathematics and Actuarial Science,

Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo-Kenya E-mail: <u>bnyaare@yahoo.com</u>

Keywords:

Schwarz Norms, Banach Spaces

1. Introduction

Suppose that f is an analytic function in the open unit disk U ={ $z \in \mathbb{C} : |z| < 1$ } and is bounded i.e. $||f||_{\infty} = \sup\{|f(z)| : z\mathbb{C}U\} < \infty$. If f has the following additional properties, f(0) = 0, $||f||_{\infty} < 1$, then the following (Schwarz Lemma) holds:

If f is analytic in the open unit disk as described above and,

(i.) $|f(z)| \le |z|, z CU$

(ii.) $|f'(0)| \le 1$,

and if the equality appears in (i) for one $z \in U - \{0\}$, then f(z) = az, where *a* is a complex constant with |a|=1 and also if the equality appears in(ii), f behaves similarly. In case of operators, we have that, if $|T| \le 1$, then $|f(T)| \le \|f\|$ for each $f \in R(D)$ such that f(0) = 0. Here R(D) is the (sup-norm) algebra of the rational functions with no poles in the closed unit diskD and f(T) defined by the usual Cauchy integral around a circle slightly larger than the unit circle.[5]We note here that a contraction (i.e an operator T such that $\|T\| < 1$) $T \in B(H)$ has some relation with the closed unit disk, then by von Neumann [9],[11] the norm equality holds; $\|f(T)\| \le \|f\|_{\infty} \equiv \max_{|z|\le 1} |f(z)|$ where the operator f(T) is defined by the usual functional calculus[10].

The above lemma has an interesting application in the theory of operators namely the following assertions hold , if f is analytic in the open unit disk and f(0) = 0 with $||f||_{\infty} < 1$, then for any operator $T \in B(H)$, ||T|| < 1, (Berger and Stampfli) [2] we have ||f(T)|| < ||T||. Clearly if we have an equality for some T, then f is of the form f(z) = az. Where a is a complex constant with |a| = 1. A norm, say, ||T|| < 1 on the algebra B(H) of all bounded operators T, is called a Schwarz norm if it is equivalent to the usual norm ||.|| and the Schwarz lemma holds for it, i.e for any f analytic in the open unit disc U with f(0) = 0 and $||f||_{\infty} < 1$, and for any T $\in B(H)$, ||T|| < 1, we have $||T||^* < 1$

2. Preliminaries

We will in this section give the definitions that will be essential in our study. In the following K = R or C

Definition 2.1. For a set of points X, the pair (X; K) is called a linear space

results on the s-norms in B (H).

In this paper, we characterize Schwarz norms in Banach spaces. We give new

if for all x, $y \in X$ and $\alpha, \beta \in K$ then $\alpha x + \beta y \in X$

In case $\mathbf{K} = \mathbf{R}$ then the pair is referred to as real linear space but if $\mathbf{K} = \mathbf{C}$ then it is a complex linear space.

Definition 2.2. Let (X; K) be a linear space as defined above. A mapping $\|.\|$: $X \to \mathbb{R}$ is called a norm on X if it satisfies the following properties (norm axioms);

(i) $||x|| \ge 0$ for all $x \in X$ (non-negativity)

(ii) If $x \in X$ and ||x|| = 0, then x = 0 (zero axiom)

(iii) $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and $y \in K$ (homogenity)

(iv) $||x + y|| \le ||x|| + ||y|| \forall y, z \in X$ (triangular inequality)

The ordered pair (X; :)) is called a normed linear space (n.l.s) over K

Definition 2.3. Suppose property number (ii) (zero axiom) in the above definition fails ,i.e if $x \in X$ and ||x|| = 0; x = 0, then the function , $||:||:X \to \mathbb{R}$ is referred to as seminorm on X.

Definition 2.4. Let (X, \mathbf{K}) be a linear space and $\|\cdot\|_1, \|\cdot\|_2$ be norms on X we say that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if their exists positive reals, β , such that

 $\alpha \| \mathbf{x} \|_1 \le \| \mathbf{x} \|_{2} \le \beta \| \mathbf{x} \| \forall \mathbf{x} \in X$. The two norms generate the same open sets (same topology)

Definition 2.5. A sequence (x_n) is said to converge strongly in a normed linear space $(X, \|:\|)$ if their exists $x \in X$ such that $\lim_{n\to\infty} ||x_n \cdot x_n|| = 0$

Definition 2.6. Let $(X, \|:\|)$ be a normed linear space and ρ be the metric induced by $\|:\|$. If (X,ρ) is a complete metric , then we call $(X, \|:\|)$ a Banach space or strongly complete normed linear space.(A normed linear space $(X; \|:\|)$ is a Banach space if every strong Cauchy sequence of elements of X converges strongly in X)

Definition 2.7. Let (X, K) be a linear space. If M is a subset of X such that $x, y \in M$ and

 $\alpha, \beta \in \mathbf{K} \rightarrow \alpha x + \beta y \in M$, then M is called a subspace of X

Definition 2.8. Let X be a linear space over K and $\langle \rangle > : X \leftrightarrow K$ be a function spectrum with,

- (i) $\langle x, x \rangle \ge 0$ for all $x \in X$
- (ii) $\langle x, x \rangle = 0 \rightarrow x = 0$
- (iii) $\langle y, x \rangle = \langle x, y \rangle^*$ or $\langle x, y$ if $\mathbf{K} = \mathbb{C}$ or $\mathbf{K} = \mathbb{R}$ respectively for all $x, y \in \mathbf{X}$. where $\langle x, y \rangle^*$ denotes the conjugate of the complex number $\langle x, y \rangle$.
- (iv) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ for all x, y $\in X$ and all $\lambda \in K$.
- (v) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ for all x, y, z $\in X$ The function <.> is called inner-product (i.p) function and the real or complex number

<x, y>is called the inner product of x and y (in this order). The ordered pair (X,<.>) is called an inner product space or pre-Hilbert space over K. Let (X,<.>) be an inner-product space. The norm in X is given by $||x|| = \sqrt{< x, x >}$ for all $x \in X$ and is called the norm determined by (or induced by) the inner-product function of x. The metric ρ determined by this norm ||.|| as defined above $is\rho(x, y) = ||x - y||$ for all $x, y \in X$ is called the metric induced by the inner-product function<.>. If with respect to this norm ||x||, defined above, (X, ||.||) is strongly complete i.e(X, ||.||) is a Banach space,then we refer to (X, ||.||) as a Hilbert space i.e a Hilbert space is a complete inner product space.

Definition 2.9. Let H be a complex Hilbert space and T be a linear operator from H to H. T is said to be positive if<Tx, x>>0, for all x in H. This can be denoted by T>0 or 0<T. T is said to be strictly positive or positive definite if<Tx, x>>0 for all $x \in H \setminus \{0\}$

Definition 2.10. If $T \in B(H)$, then the operator $T^* : H \rightarrow H$ defined by $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all x,y in H is called the adjoint of T. (T* is also in B(H)) and $||T^*|| = ||T||$

Definition 2.11. An operator $T \in B(H)$ is said to be self – adjoint if $T^* = T$ and if T is linear on a linear subspace M of a Hilbert space H into M, then it is said t be Hermitian addition $\langle Tx, y \rangle = \langle x, Ty \rangle \forall x, y \in M$

Defination 2.12.Let H be a complete Hilbert space and TEB(H). Then there exist unique self-adjoint operators A,BEB(H) such that T=A + iB, A and B are given by $A=\frac{1}{2}(T+T^*)$, $B=\frac{1}{2i}(T-T^*)$ so that A is called real part of T denoted by ReT and B the imaginary part of T denoted by ImT. Note that Re $\langle Tx, x \rangle = \langle (\text{Re }T)x, x \rangle$ for every $x \in H$. Indeed $\langle Tx, x \rangle =$ $\frac{1}{2}\langle (T+T^*)x, x \rangle + i\frac{1}{2}\langle ((\frac{T-T^*}{2})x, x \rangle$, being a complex number, we have $\langle Tx, x \rangle = a + ib$, where a, b are real numbers given by $a= \langle (\text{Re }T)x, x \rangle$, $b= \langle (\text{Im }T)x, x \rangle$

Defination 2.13.Let H be a complex Hilbert space and $T \in B(H)$, The numerical range of T is the set $W(T) \subset \mathbb{C}$ defined by $W(T) = \langle Tx, x \rangle : x \in H$ and ||x|| = 1}

3. Main Results

It is quite natural to investigate the problem about the existence of Schwarz norms on the algebra B(X) of all bounded operators on a Banach

© ASD Publisher All rights reserved.

X↔K be a function space X. For this we recall that a function [.] on X xX into c is called a semi-inner product if the following conditions are satisfied:

- 1. $[x_1 + x_2, y] = [x_1, y] + [x_2, y]$
- 2. [ax, by] = ab* [x, y]
- 3. $|[x, y]| \le ||x|| . ||y||$
- 4. [x,x] > 0 for $x \neq \overline{0}$ for all $x_1, x_2, x, y \in X$ and a, b are complex numbers.

Theorem 3.1. On every Banach space there exist a semi-inner product [,] with the property[x, x] = $||x||^2$ (i.e it is compatible with the norm).Indeed for any $x \in X$ we define the functional $f_{x \in X}^2$. (Where X denotes the space of all the bounded functionals on X) with the properties;

(i) $|| f_x || = || x ||$ (ii) $f_x(x) = || x ||^2$

The existence of the functional is guaranteed by Hahn-Banach theorem and we define

 $[x, y] = f_y(x)$ and $f_{\lambda x} = \lambda^* f_x$ which satisfy the four conditions above, for each $\lambda \in \mathbb{C}$, $x \in X$. An operator $T \in B(X)$ is called hermitian if $||e^{iT}|| = 1$ for all real numbers t or equivalently, Bonsall[6] if $W(T) = \{[T x, x] : ||x|| = 1\}$ is a subset of real numbers.

An operator $T \in B(X)$ is called positive if T is hermitian and the spectrum of T is in the subset $\{x \in R : x > 0\}$.

Now the definition of the class $S_{\mbox{\scriptsize Q}}$ can be as follows.

Definition 3.2. An operator T 2 S_Q if and only if

1. δ(T)⊂U

2. For any $x \in X$, and |z| < 1 Re $[(I + \sum_{i} Q^{\frac{1}{2}} T^{n} Q^{\frac{1}{2}} Z^{n}] x, x] \ge 0$ where Q is a

hermitian operator such that $Q^{1/2}$ is also a hermitian operator. The following results give indications about the possible existence of Schwarz norms.

Theorem 3.3. There exists a Banach spaceX and an operator T such that $Re[T x,x] \ge 0$ does not imply $Re[T^{-1} x, x] \ge 0$.

As an example to illustrate this,we consider the Banach space $\,\ell\,{}^{\rm p_2}$ of all

pairs x = (x₁,x₂) with the normx
$$\mapsto ||x||_p = \{|x_1|^p + |x_2|^p\}^{\frac{1}{p}} \ 1$$

In this case it can be seen that the semi-inner product compatible with the norm $[x, x] = ||x||^{2_p}$ is given by $[x, y] = x_1|y_1|^{p-1} + x_2|y_2|^{p-2}$ where $x = (x_1, x_2)$ and $y = (y_1, y_2)$ We consider an operator on this space with the matrix

 $\begin{bmatrix} a & 0 \\ c & b \end{bmatrix}$ where the elements a; b; c are complex numbers. We need to find

conditions for the a, b ,c such that Re[T x, x] \ge 0.A straight forward but complicated computation shows that these are :

1. Rea ≥0, Reb≥0

2. $|c| \le (pRea)^{1/p} (qReb)^{1/q} (1/p + 1/q = 1)$ and condition for $Re[T^{-1}x,x] \ge 0$ is

 $|\frac{c}{ab}| \ge (pRea^{-1})^{1/p}(qReb^{-1})^{1/q}$ and thus if $|c| \le |a|^{1-2/p}(Repa)^{1/p}(Reqb)^{1/q}$ and

this gives that $Re[Tx, x] \ge 0$.

Remark 3.4. In case of Hilbert space (and invertible) operators, the condition , ReT>0 implies the condition ReT⁻¹>0

We now give an example of a Banach space with the property that the induced norm on B(X) is not a Schwarz norm.

Example 3.5 If X = ℓ_{1_2} then the induced norm on B(X) is not a Schwarz norm.We consider the operator T with the matrix(triangular) $\begin{bmatrix} a & 0 \\ c & b \end{bmatrix}$

and a simple computation shows that $\|\mathbf{T}\| = \max\{|\mathbf{a}| + |\mathbf{c}|, |\mathbf{b}|\}$. We now take 0<a<1 and in this case the operator with the matrix $\begin{bmatrix} a & 0\\ 1-a & 1 \end{bmatrix}$ is a

contraction operator. An elementary computation shows that |a|<1, the

conformal map/function \mathscr{G} $(z) = (z - \alpha)(1 - \alpha z)^{-1}$ for all $z \in \mathbb{C}$, take

contractions; now consider the function f α (T) = (1- α T)⁻¹ (T- α 1). The computation of the norm of the operator f α (T) shows that this is

given by $\|f\alpha(T)\| = a|\alpha + a + (1-a)|\frac{1+\alpha+1+\alpha}{(1+\alpha a)(1+\alpha)}$ and thus for $\|f\alpha$

(T) $\|\leq 1$, where α is a real number, we obtain a $|\alpha + \alpha| + (1-a)(1+a)$

 $\leq |1 + \alpha \alpha$ which is not $\alpha = -1/2(a+1)$. In view of the results is of interest.

Proposition 3.6 If X is a complex Banach space and for any contraction T, f(T) is also a contraction for all $|f| \le 1$, then X is a Hilbert space . **Proof:**

Let $x_0 \in X$ be arbitrary $x_0 \in X$ such that $||x_0|| ||x_0|| \leq 1$ and define the operator on X by the relation $T_x = x_0^*(x)x_0$. Its clear that T is a contraction. From the hypothesis it follows that $||x_0^*(x)x_0 + x \leq ||x + \alpha^* x^*(x)x_0||$. Now if $x,y \in X$ and $||x|| \geq ||y|| \geq 0$, we obtain from the H-Banach theorem that there exists $x_0^* \in X^*$ such that $||x_0^*|| = ||x||^{-1}$, $x_0^*(x) = 1$. We take $x_0 = y$ and remark that the operator T constructed with these

element gives us $||y + \alpha x|| \le ||x + \alpha^* y|| < 1$ and from the continuity

argument, it follows that this relation holds for | α^* |=

1. Now if ||x|| = ||y|, changing the role of x with y and α with α^* , we obtain $|| \le ||x + \alpha^* y|| \ge ||y + \alpha x||$, thus we have the equality $||x + \alpha^*|$

 $\mathbf{y} \| = \| \mathbf{y} + \boldsymbol{\alpha} \mathbf{x} \|$. Now if $|\boldsymbol{\alpha}| > 1$, then for $\boldsymbol{\beta} = \frac{1}{\boldsymbol{\alpha}}$ we have by the above

result $||x + \alpha^* y|| = |\alpha| ||\beta| x + y| = ||\alpha| ||x + \beta y|| = ||\alpha| x + y||$ and thus the relation is true for any α Now for $\alpha = p/q$, p and q being real numbers we obtain that p/q, p and q being real numbers we obtain that ||px + qy|| = |q| ||p/qt + x|| = |q| ||p/qt + x|| = |q| ||y + p/qx|| = ||qy+px|| and thus for any x and y, ||x|| = ||y|| and any p,q real numbers we obtain that ||px + qy|| = ||qx + py|| and by a famous result of F.A.Ficken,this relation is characteristic for a norm to be inner product norm, i.e, there exists an

inner product
$$\langle . \rangle$$
 on X such that for all $x \in X$, $\|X\|^2 = \langle x, x \rangle$

4. Conclusion

A Schwarz norm can be constructed from the sum of a norm and a seminorm and that Schwarz norms are easily realizable in the Hilbert space context.

References

- J.P Williams, (1968), Schwarz norms for operators, Paci c Journal of Mathematics. 24, No.1
- [2] C.A Berger and Stamp i,(1967), Mapping theorems for the numerical range, to appear in *American J. Math.* 26, 247-250.
- [3] B.S.Z Nagy and C.Foias,(1983), On certain classes of powerbounded operators, *Acta.Sci. Math. Ser.* III 18(38) 317-320.
- [4] C. Foias,(1957), Sur certain stheoremes de von Neumann concernant les ensemplesspectraux , Acta. Math. Sci.(Szeged) 85 15-20.
- [5] J.G Stamp i,(1966),Normality and the numerical range of an opera-tor, Bull Amer. Math. Soc., 72 1021-23.
- [6] F.F. Bonsall, J. Duncan, Numerical Ranges of operators on Normed spaces and elements of Normed algebras, London Math. Soc. Lecture Notes series 2, Cambridge University Press, London-New York, 1971.
- [7] F.F. Bonsall, J. Duncan, Numerical Ranges II, London Math. Soc. Lec-ture notes Series 10, Cambridge University Press, London-New York, 1973.
- [8] E. Kreyszig, Introduction to functional analysis with applications, Uni-versity of Windsor, 1978.
- [9] J.A.R Holbrook, Inequalities of von Neumann type for small matrices, Function Spaces(ed.K.Jarosz), Marcel Dekker,1992,273-280
- [10] T. Ando Construction of Schwarz norms, Operator Theory. Advances and Application.,127(2001) 29-39
- [11] J.VonNeumann,EineSpektraltheorie fur allgemeineOperatoreneinesUnitaren Raumes, Math. Nach., 4 (1951),258-281
- [12] C.A Berger, A strange dilation theorem (Ab-stract), Amer. Math. Soc. Notice, 12 (1965)590