Original Article

On reflexivity, denseness and compactness of numerical radius attainable operators

Sabasi Omaoro ${ }^{1}$, J. Kerongo ${ }^{1}$, R. K. Obogi ${ }^{1}$ and N. B. Okelo ${ }^{*}{ }^{2}$
${ }^{1}$ Department of mathematics, Kisii University, Box 408-40200, Kisii-Kenya
${ }^{2}$ Department of Pure and Applied mathematics, Jaramogi Oginga Odinga of Science and Technology, Box 210-40601, Bondo-Kenya.

*Corresponding Author

N. B. Okelo

Department of Pure and Applied mathematics, Jaramogi Oginga Odinga of Science and Technology, Box 210-40601, Bondo-Kenya.
E-mail: bnyaare@yahoo.com

Abstract

In this paper, we study the properties of normal self-adjoint operators. We concentrate on some of their properties, for example, reflexivity, denseness and compactness. We also give some results on norm-attainability.

Keywords: Reflexivity, Compactness, Denseness, Numerical radius attainability, Normal operators and Self-adjoint operators.

1. Introduction

We consider certain properties of operators. A lot of studies have been done on reflexivity, compactness and numerical radius attainability on Hilbert space operators [1-12] and the reference therein.

2. Preliminaries

2.1 Definition

An operator $A \in B(H)$ attain its numerical radius if there are $x_{o} \in H, f_{o} \in H^{*}$ such that $\left\|x_{o}\right\|=\left\|f_{o}\right\|=f_{o}\left(x_{o}\right)=1$ and $\left|f_{o}\left(A\left(x_{o}\right)\right)\right|=r(A)$, that is if the supremum defining $r(A)$ is actually a maximum.

2.2 Lemma

Let each operator $S \in M(A)$ be of rank one and attains its numerical radius. Then $M(A)$ is reflexive.
Proof. For proof see [2].

3. Main Results

3.1 Theorem

Let $M(A)$ be reflexive. Then it is Banach and for some y_{o} in $Q_{M(A)}$ the operator $y^{*} \otimes y_{o}^{*}$ attains its numerical radius for any $y^{*} \in[M(A)]^{*}$.
Proof.
Let $M(A)$ be dense and non-reflexive. Suppose that every operator $y^{*} \otimes y_{o}^{*}$ attains its numerical radius. By the Bishop-Phelps Theorem in [4] and the non reflexive of $M(A)$, we find $\left(y^{*} \otimes y_{o}^{*}\right)$ $\in \Pi\left(M(A)^{*}\right)$ which satisfies $\left|y_{o}^{* *}-y_{o}\right|<1$ and $y^{* *} \notin X$, and since $y_{o}^{* *}\left(y_{o}^{*}\right)-y_{o}^{*}\left(y_{o}\right)<1$ and since $y_{o}^{* *}\left(y_{o}^{*}\right)=1$, then $y_{o}^{*}\left(y_{o}^{*}\right) \neq 1$ and

$$
\begin{equation*}
\alpha y_{o}^{* *}\left(y_{o}^{*}\right)=1 \tag{1}
\end{equation*}
$$

For some scalar $\beta \neq 0$. By the Hahn-Banach Theorem, there $\xi \in Q_{M(A)^{* * *}}$ and $t>0$

Such that $\xi(y)=0, \forall y \in M(A)$ and $\operatorname{Re} \xi\left(y_{o}^{* *}\right)>t . M(A)$ is dense, therefore in $M(A)^{* * *}$ the topology of strong convergence on $M(A) \cup\left\{y_{o}^{* *}\right\}$ is dense. Since $Q_{M(A)^{*}}$
is w^{*}-dense in $Q_{M(A)^{* * *}}$, there exist a sequence $\left\{y_{o}^{*}\right\}$ in $Q_{M(A)^{*}}$ converges to φ in $\sigma\left((A)^{* * *}, M(A) \cup\left\{y_{o}\right\}\right)$. Then

$$
\begin{equation*}
\left\{y_{n}^{*}(y)\right\} \rightarrow 0, \forall \in M(A) \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \text { And assume } \\
& \operatorname{Rey}_{o}^{* *}\left(y_{n}^{*}\right) \tag{3}\\
& \quad \text { The set } C=\widehat{\bigcap}(M(A)) \text { and } D=\widehat{\bigcap}\left(M(A)^{*}\right)(C) \text { are considered }
\end{align*}
$$ as subsets of D. But the function $f_{n}: \widehat{\prod}(M(A)) \rightarrow \mathbb{R}$ given by $f_{n}(y)^{*}, y^{* *}=$ $y^{* *}\left(y_{n}^{*}\right) y^{*}\left(y_{o}\right),\left(\left(y^{*}, y^{* *}\right)\right) \in \bigcap\left(M(A)^{*}\right)$. For each sequence $\left\{g_{n}\right\}$ with $0 \leq g_{n} \leq 1$ and

$$
\sum_{n=1}^{\infty} g_{n} f_{n}\left(y^{*}, y^{* *}\right)=\operatorname{Rey}^{* *}\left(\sum_{n=1}^{\infty} g_{n} y_{n}^{*}\right) y^{*}\left(y_{o}\right), \forall\left(y^{*}, y^{* *}\right) \in
$$

$\widehat{\Pi}\left(M(A)^{*}\right)$.
We now get
$\sup _{\left(y, y^{*}\right) \in \widehat{\Pi}(M(A))} \lim _{n} \operatorname{supRey}_{n}^{*}(y) y^{*}\left(y_{o}\right) \geq \inf _{x^{*} \in \operatorname{Co}\left\{y_{n}^{*}\right\}}$
$\sup _{\left(y^{*}, y^{* *}\right) \in \Pi\left(M(A)^{*}\right)} \quad \operatorname{Rey} y^{* *}\left(x^{*}\right) y^{*}\left(y_{o}\right) \quad$ But, $\sup _{\left(y, y^{*}\right) \in \Pi(M(A))}$
$\lim _{n} \operatorname{supRey}_{n}^{*}(y)\left(y_{o}\right)=0$
and from (3) and (1), suppose $x^{*} \in\left\{y_{n}^{*}\right\}$, then $\operatorname{Rey}^{* *}\left(x^{*}\right) \frac{\beta}{\beta} y_{o}^{*}\left(y_{o}\right) \geq \frac{t}{\beta}$, and
$\inf _{\left.x^{*} \in \operatorname{Co\{ } y_{n}^{*}\right\}} \sup _{\left(y^{*}, y^{* *}\right) \in \widehat{\Pi}\left(M(A)^{*}\right)} \operatorname{Rey}^{* *}\left(x^{*}\right) y^{*}\left(y_{o}\right) \geq \frac{t}{\beta}$.
Finally, from (4), (5) we get $0 \geq \frac{t}{\beta}$, but $t>0$ which is a contradiction.

3.2 Theorem

Let $Y \in M(A)$ be a rank one operator not attaining its numerical radius. Then $M(A)$ can be renormed if it is infinite dimensional.
Proof.
Let $M(A)$ to be reflexive and for normalized elements
 $s_{o}^{*}\left(y_{o}\right)=1$, since $v\left(s_{o}^{*} \otimes y_{o}\right)$ is attained at $y_{o}, s_{o}^{*} \in \widehat{\prod}(M(A))[1,2,3,4$ and 5]. Now if $v\left(s_{o}^{*} \otimes y_{o}\right)=1$ then we have $s_{o}^{*}\left(y_{o}\right)=1=s_{o}^{*}(s)$ and commuting the elements s and s^{*} we obtain in $\widehat{\Pi}(M(A))$ satisfying $s_{o}^{*}\left(y_{o}\right)=1=s_{o}^{*}(s)$

Let y_{o}^{*} be unique in the ball of $M(A)^{*}$ and $y_{o}^{*}\left(y_{o}\right)=1$. From the smoothness of y_{o} we obtain $s^{*}=y_{o}^{*}$. Since $\left(s, y_{o}^{*}\right)=\left(s, s^{*}\right) \in \widehat{\Pi}(M(A)) x$ will uniquely be determined by assuming that y_{o}^{*} is also smooth and so $s=\lambda y_{o}$ for some $\lambda=1$ and $\left(s, s^{*}\right)=\left(\lambda y_{o}, y_{o}^{*}\right)$. Using (1) again, $s_{o}^{*}\left(\lambda y_{o}\right)=s_{o}^{*}=1$, and the smoothness of y_{o} gives us $\lambda s_{o}^{*}=y_{o}=s^{*}$. Finally, the couple $\left(s, s^{*}\right)$ is $\left(y_{o}, y_{o}^{*}\right)$. It is sufficient that $s_{o}^{*} \otimes y_{o}$ satisfies
$v\left(s_{o}^{*} \otimes y_{o}\right)=\left\|y_{o}\right\|=\left\|s_{o}^{*}\right\|=1$, with y_{o}, s_{o}^{*} smooth and hence $s_{o} \notin \mathbb{K} z_{o}$, for some $s_{o} \in B_{M(A)}$ such that $s_{o}^{*}\left(s_{o}\right)=1$. Next if the numerical radius of the operator is 1 ,then there exist $\left\{s_{n}, s_{n}^{*}\right\} \subseteq \Pi(M(A))$ so that $\left\{s_{n}^{*}\left(y_{o}\right)\right\} \rightarrow 1$

By inequality $2 \geq\left\|s_{n}+y_{o}\right\| \geq s_{n}^{*}\left(s_{n}+y_{o}\right)$ and (8), we have $\left\{\left\|s_{n}+y_{o}\right\|\right\} \rightarrow 2$. Similarly, if s_{o} is a w-cluster point of $\left\{s_{n}\right\}$, (8) will also give us $s_{o}^{*}\left(s_{o}\right)=1$. Conversely, if $\left\{s_{n}\right\}$ converges in the $w-$ topology to an element s_{o} in the unit ball and $\left\{\left\|s_{n}+y_{o}\right\|\right\} \rightarrow 2$, then there is a sequence of norm one functional $\left\{s_{n}^{*}\right\}$ so that the sequence $\left\{s_{n}^{*}\left(s_{n}\right)\right\}$ and $\left\{s_{n}^{*}\left(y_{o}\right)\right\}$ converges to 1. By Bishop-Phelps-Bollobas Theorem [1, 2, 3, 4, 5] we assume that $s_{n}^{*}\left(s_{n}\right)=1$ and so, we fix an element s_{n}^{*} in the unit sphere of the dual so that $s_{o}^{*}\left(s_{o}\right)=1$, and we have $\lim _{n} s_{o}^{*}\left(s_{n}\right)=$ $s_{o}^{*}\left(s_{o}\right)=1, \lim _{n} s_{n}^{*}\left(y_{o}\right)=1$ and therefore
$v\left(s_{o}^{*} \otimes y_{o}\right) \geq \sup _{n} s_{o}^{*}\left(s_{n}\right) s_{n}^{*}\left(y_{o}\right) \geq 1$, implying that the numerical radius of the operator is 1 .

3.3 Corollary

Let $M(A)$ be a Banach algebra. Then every operator in $M(A)$ can be perturbed by a normal self-adjoint operator to obtain an operator in $B(H)$.
Proof.
Suppose $X \in M(A)$ with $\|X\|=1$ and $0<\varepsilon<\frac{1}{2}$ given. From [2, 3 and 4] two decreasing sequences of positive numbers, $\left\{\alpha_{n}\right\}$ and $\left\{\delta_{n}\right\}$ are chosen with the following conditions satisfied
$\sum_{i=1}^{\infty}\left(\alpha_{i}+2 \alpha_{i}^{2}\right)<\varepsilon ; \lim _{n=\infty \alpha_{n}} \frac{1}{2} \sum_{i=n+1}^{\infty}\left(\alpha_{i}+2 \alpha_{i}^{2}\right)=;\left\{\frac{\delta_{n}}{\alpha_{n}^{2}}\right\} \rightarrow 0$
(We choose $\alpha_{n}=\frac{\varepsilon}{3.2^{n!}!}$ for example, and $\delta=\alpha_{n}^{3}$). The sequence X_{n} in
$M(A)$ and $\left\{a_{n}, f_{n}\right\}$ in $\Pi(A)$ are constructed satisfying
$X_{1}=X$,
$\left|f_{n}\left(X_{n}\left(a_{n}\right)\right)\right|>v\left(X_{n}\right)-\delta_{n}$
(10)
$X_{n+1}(a)=X_{n}(a)+\alpha_{n} \lambda_{n} f_{n}(a) a_{n}+\alpha_{n}^{2} f_{n}\left(X_{n}(a)\right) a_{n}(a \in A)$
Where $\left|\lambda_{n}\right|=1$ and $f_{n}\left(X_{n}\left(a_{n}\right)\right)=\lambda_{n}\left|f_{n}\left(X_{n}\left(a_{n}\right)\right)\right|$. It can be verified by induction that
$\left\|X_{n+1}\right\| \leq 1+\sum_{i=1}^{\infty}\left(\alpha_{i}+2 \alpha_{i}^{2}\right) \leq 2, \forall n$
It follows that
$\left\|X_{n+1}-X_{n}\right\| \leq 1+\sum_{i=1}^{n+k-1}\left(\alpha_{i}+2 \alpha_{i}^{2}\right), \forall n, k$
By (12) and (7), the norm of the sequence $\left\{X_{n}\right\}$ converges to an operator G in $M(A)$ satisfying
$\left\|G-X_{n}\right\| \leq \sum_{i=1}^{n+k-1}\left(\alpha_{i}+2 \alpha_{i}^{2}\right), \forall n, k$.
For all n, and particularly $\|G-X\|<\varepsilon$. With X_{n} playing the role of $X, \delta=\delta_{n}, \alpha=\alpha_{n, \rho=\alpha_{n+k+2 \sum_{i=n+1}^{\infty}\left(\alpha_{i}+2 \alpha_{i}^{2}\right)},(a, f)=a_{n}, f_{n} \text { and }(y, h)=}$
(a_{n+k}, f_{n+k}), so that the operator X^{\prime} agrees with X_{n+1} and we have
$1+\alpha_{n} v\left(X_{n}\right) \leq\left|f_{n}\left(a_{n+k}\right)\right|+\alpha_{n}\left|f_{n}\left(X_{n}\left(a_{n+k}\right)\right)\right|+\frac{1}{\alpha_{n}}\left[\delta_{n+k+} 2 \sum_{i=n+1}^{\infty}\left(\alpha_{i}+\right.\right.$ $2 \alpha i 2+\delta n 1+\alpha n 2$
$\leq\left|f_{n}\left(a_{n+k}\right)\right|+\alpha_{n}\left|f_{n}\left(X_{n}\left(a_{n+k}\right)\right)\right|+\frac{1}{\alpha_{n}}\left[\delta_{n+k+} 2 \sum_{i=n+1}^{\infty}\left(\alpha_{i}+2 \alpha_{i}^{2}\right)+\right.$ $\delta n 1+\alpha n 2$

Here, the fact that δ_{n} is a decreasing sequence is used for the last inequality. We now replacing X_{n} by G in the inequality above and use
the estimate of $G-X_{n}$ given by (13) (to neutralize the errors) and we get $\quad 1+\alpha_{n} v(G) \leq\left|f_{n}\left(a_{n+k}\right)\right|+\alpha_{n}\left|f_{n}\left(G\left(a_{n+k}\right)\right)\right|+\varepsilon_{n} \quad$ where $\quad \varepsilon_{n}=$ $\frac{1}{\alpha_{n}}\left[\delta_{n+k+} 2 \sum_{i=n+1}^{\infty}\left(\alpha_{i}+2 \alpha_{i}^{2}\right)+\delta_{n}\left(1+\alpha_{n}^{2}\right)\right]+2 \alpha_{n} \sum_{i=n+1}^{\infty}\left(\alpha_{i}+2 \alpha_{i}^{2}\right)$.

Hence by (7) and due to the fact that the sequence $\alpha_{n} \rightarrow 0$ and $\delta_{n} \rightarrow 0$, then $G \in B(H)$.

3.4 Theorem

Let $A \in B(H)$ be normal and $M(A)$ be compact and dense in $B(H)$. Then A is compact.
Proof.
Let $A \in B(H)$ and $M(A) \subseteq B(H)$. Suppose that x_{n} is a strongly convergent sequence in H then $A x_{n}$ is also a strongly convergent sequence in $M(A)$. As A is normal then $M\left(A x_{n}\right) \rightarrow 0$ hence $M(A)$ is normal. But $M(A)$ is compact and dense. Then $A x_{n} \rightarrow 0$ for every strongly convergent sequence $\left(x_{n}\right)$ from H. Then we also have $A x_{n} \rightarrow 0$. Since A is normal [4,7] then the operator A^{*} is also normal. Since x_{n} is a strongly convergent sequence in H then $A^{*} A x_{n} \rightarrow 0$ and A is closed. This implies that A is compact.

References

[1] Acosta M. D., Agurre F. J., Paya R., A space by W. Gowers and new results on norm and numerical radius attaining operators. Acta universitatis Caroline. Math. Et physica 1992; 33 (2): 5-14.
[2] Acosta M. D., Galan M. R., Reflexivity spaces and numerical radius attaining operators. J. Extracta math.2000; 15 (2): 247-255.
[3] Acosta M. D., Paya R., Numerical radius attaining operators. Extracta math.1987; 2: 74-76.
[4] Bishop, E., Phelps, R. R., A proof that every Banach space is sub reflexive. Bull. Amer. Math. Soc.1961; 67: 97-98.
[5] Chi-kwong L., Lecture notes on numerical Ranges. Department of math. College of William and Mary, Virginia 23187-8795. (2005).
[6] Gowers W., Symmetric block bases of sequences with large average growth. J. Israel j. Math.1990; 169: 129-149.
[7] Gustafson K.E., et al, Numerical Range. Springer-verlay, New York, inc., (1997).
[8] Honke D., Wang Y., Jianming L. Reduced minimal numerical ranges of operators on a Hilbert space. J. Acta math. Scientia.2009; 29B (1): 94-100.
[9] Joachim w., Linear operators in Hilbert spaces. Spring-Verlag, New York, (1980).
[10] Omidvar M. E., Moslehian M. S., Niknam A. Some numerical radius inequalities for Hilbert space operators., Involve 2.4, 2009: 471-478.
[11] Shapiro J. H., Notes on the numerical range. Michigan state University, East Lansing,MI 48824-1027, USA.
[12] Yul E., Vitali M., Antonis T., Functional Analysis: An introduction. American Mathematical Society, New York, (2004).
[13] Kittaneh F., Numerical radius inequality and an estimate for numerical radius of the Frobenius companion matrix. Studia math.2003; 158 (1): 11-17.

