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1. Introduction 
We consider certain properties of operators. A lot of studies 

have been done on reflexivity, compactness and numerical radius 

attainability on Hilbert space operators [1-12] and the reference therein. 

 

2. Preliminaries 

2.1 Definition  

An operator 𝐴 ∈ 𝐵(𝐻) attain its numerical radius if there 

are  𝑥𝑜 ∈ 𝐻 , 𝑓𝑜 ∈ 𝐻∗  such that  𝑥𝑜 =  𝑓𝑜 = 𝑓𝑜 𝑥𝑜 = 1  and 

 𝑓𝑜 𝐴 𝑥𝑜   =𝑟 𝐴 , that is if the supremum defining 𝑟 𝐴  is actually a 

maximum. 

2.2 Lemma   

Let each operator 𝑆 ∈ 𝑀(𝐴)  be of rank one and attains its 

numerical radius. Then 𝑀(𝐴)  is reflexive. 

Proof. For proof see [2]. 

 

3. Main Results 
3.1 Theorem  

Let 𝑀(𝐴)  be reflexive. Then it is Banach and for some 𝑦𝑜  in 

𝑄𝑀 𝐴  the operator 𝑦∗ ⊗𝑦𝑜
∗  attains its numerical radius for any 

𝑦∗ ∈  𝑀 𝐴  ∗. 

Proof.  

Let 𝑀(𝐴)  be dense and non-reflexive. Suppose that every 

operator 𝑦∗ ⊗ 𝑦𝑜
∗ attains its numerical radius. By the Bishop-Phelps 

Theorem in [4] and the non reflexive of 𝑀(𝐴), we find  𝑦∗ ⊗𝑦𝑜
∗  

∈ ∏ 𝑀 𝐴 ∗  which satisfies  𝑦𝑜
∗∗ − 𝑦𝑜  < 1  and  𝑦∗∗ ∉ 𝑋 , and since 

𝑦𝑜
∗∗ 𝑦𝑜

∗ − 𝑦𝑜
∗ 𝑦𝑜 < 1 and since 𝑦𝑜

∗∗ 𝑦𝑜
∗ = 1, then 𝑦𝑜

∗ 𝑦𝑜
∗ ≠ 1 and 

 

𝛼𝑦𝑜
∗∗ 𝑦𝑜

∗ = 1                                                                                              1   

 

For some scalar 𝛽 ≠ 0. By the Hahn-Banach Theorem, there 

𝜉 ∈ 𝑄𝑀 𝐴 ∗∗∗ and 𝑡 > 0 

Such that 𝜉 𝑦 = 0, ∀  𝑦 ∈ 𝑀 𝐴  and 𝑅𝑒 𝜉 𝑦𝑜
∗∗ > 𝑡. 𝑀 𝐴  is 

dense, therefore in 𝑀 𝐴 ∗∗∗ the topology of strong convergence on 

𝑀 𝐴 ∪  𝑦𝑜
∗∗  is dense. Since 𝑄𝑀(𝐴)∗    

is 𝑤∗-dense in  𝑄𝑀(𝐴)∗∗∗ , there exist a sequence  𝑦𝑜
∗  in  𝑄𝑀(𝐴)∗ converges 

to 𝜑 in 𝜎  𝐴 ∗∗∗,𝑀 𝐴 ∪  𝑦𝑜   . Then  

 𝑦𝑛
∗  𝑦  → 0, ∀  ∈ 𝑀 𝐴                                                                            (2) 

 

And assume 

      𝑅𝑒𝑦𝑜
∗∗ 𝑦𝑛

∗                                                                                                               (3) 

The set 𝐶 =  ∏  𝑀 𝐴   and 𝐷 = ∏  𝑀 𝐴 ∗   𝐶  are considered 

as subsets of 𝐷. But the function 𝑓𝑛 : ∏  𝑀 𝐴  → ℝ given by 𝑓𝑛 𝑦 
∗,𝑦∗∗ =

𝑦∗∗ 𝑦𝑛
∗ 𝑦∗ 𝑦𝑜 ,   𝑦∗ ,𝑦∗∗  ∈ ∏  𝑀 𝐴 ∗ .  For each sequence  𝑔𝑛  with 

0 ≤ 𝑔𝑛 ≤ 1 and  

 𝑔𝑛
∞
𝑛=1 𝑓𝑛 𝑦

∗ ,𝑦∗∗ = 𝑅𝑒𝑦∗∗  𝑔𝑛
∞
𝑛=1 𝑦𝑛

∗ 𝑦∗ 𝑦𝑜 ,∀  𝑦∗ ,𝑦∗∗ ∈

∏  𝑀 𝐴 ∗ .  

 

We now get 

𝑠𝑢𝑝 𝑦 ,𝑦∗ ∈∏  𝑀 𝐴  lim𝑛 𝑠𝑢𝑝𝑅𝑒𝑦𝑛
∗  𝑦 𝑦∗ 𝑦𝑜 ≥ 𝑖𝑛𝑓𝑥∗∈𝐶𝑂 𝑦𝑛

∗     

𝑠𝑢𝑝 𝑦∗,𝑦∗∗ ∈∏  𝑀 𝐴 ∗   𝑅𝑒𝑦∗∗ 𝑥∗ 𝑦∗ 𝑦𝑜 . But, 𝑠𝑢𝑝 𝑦 ,𝑦∗ ∈∏ 𝑀 𝐴    

lim𝑛 𝑠𝑢𝑝𝑅𝑒𝑦𝑛
∗  𝑦  𝑦𝑜 = 0                                                (4) 

and from (3) and (1), suppose  𝑥∗ ∈  𝑦𝑛
∗ , then 𝑅𝑒𝑦∗∗ 𝑥∗  

𝛽

𝛽
𝑦𝑜

∗ 𝑦𝑜 ≥
𝑡

𝛽
 , 

and  

𝑖𝑛𝑓𝑥∗∈𝐶𝑂 𝑦𝑛
∗     𝑠𝑢𝑝 𝑦∗,𝑦∗∗ ∈∏  𝑀 𝐴 ∗   𝑅𝑒𝑦

∗∗ 𝑥∗ 𝑦∗ 𝑦𝑜 ≥
𝑡

𝛽
.                                 (5) 

Finally, from (4), (5) we get 0 ≥
𝑡

𝛽
, but 𝑡 > 0 which is a 

contradiction.  

 

3.2 Theorem 

Let 𝑌 ∈ 𝑀 𝐴  be a rank one operator not attaining its 

numerical radius. Then 𝑀 𝐴   can be renormed if it is infinite 

dimensional. 

Proof.  

Let 𝑀 𝐴  to be reflexive and for normalized elements 

𝑦𝑜 ∈ 𝐵𝑀 𝐴 ,𝑠𝑂
∗ ∈𝐵𝑀 𝐴 ∗, the equality 𝑣 𝑠𝑜

∗ ⊗ 𝑦𝑜 =  𝑠𝑜
∗ ⊗ 𝑦𝑜 = 1 is true if 

𝑠𝑜
∗ 𝑦𝑜 = 1, since 𝑣 𝑠𝑜

∗ ⊗ 𝑦𝑜  is attained at 𝑦𝑜 ,𝑠𝑜
∗ ∈ ∏  𝑀 𝐴   [1, 2, 3, 4 and 

5]. Now if 𝑣 𝑠𝑜
∗ ⊗ 𝑦𝑜 = 1   then we have 𝑠𝑜

∗ 𝑦𝑜 = 1 = 𝑠𝑜
∗   𝑠  and 

commuting the elements  𝑠 and 𝑠∗ we obtain in ∏  𝑀 𝐴   satisfying 

𝑠𝑜
∗ 𝑦𝑜 = 1 = 𝑠𝑜

∗  𝑠                                                                                                   (6) 

Let 𝑦𝑜
∗ be unique in the ball of 𝑀 𝐴 ∗ and 𝑦𝑜

∗ 𝑦𝑜 = 1. From the 

smoothness of 𝑦𝑜  we obtain 𝑠∗ = 𝑦𝑜
∗. Since  𝑠, 𝑦𝑜

∗ =  𝑠, 𝑠∗ ∈ ∏  𝑀 𝐴  𝑥  

will uniquely be determined by assuming that 𝑦𝑜
∗ is also smooth and so 

𝑠 = 𝜆𝑦𝑜  for some 𝜆 = 1 and  𝑠, 𝑠∗ =  𝜆𝑦𝑜 , 𝑦𝑜
∗ .  Using (1) again, 

𝑠𝑜
∗ 𝜆𝑦𝑜 = 𝑠𝑜

∗ = 1,  and the smoothness of 𝑦𝑜  gives us 𝜆𝑠𝑜
∗ = 𝑦𝑜 = 𝑠∗ . 

Finally, the couple  𝑠, 𝑠∗  is  𝑦𝑜 , 𝑦𝑜
∗ . It is sufficient that 𝑠𝑜

∗ ⊗𝑦𝑜  satisfies 

 

Abstract 
 In this paper, we study the properties of normal self-adjoint operators. We 
concentrate on some of their properties, for example, reflexivity, denseness and 
compactness. We also give some results on norm-attainability. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASD Publisher (E-Journals)

https://core.ac.uk/display/233939475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bnyaare@yahoo.com


 Sabasi Omaoro et al / On reflexivity, denseness and compactness of numerical radius attainable operators 

© ASD Publisher All rights reserved.                                                                                                                                                                                                                     11 

𝑣 𝑠𝑜
∗ ⊗𝑦𝑜  =  𝑦𝑜 =  𝑠𝑜

∗ = 1, with 𝑦𝑜 , 𝑠𝑜
∗  smooth and hence 𝑠𝑜 ∉ 𝕂𝑧𝑜 , 

for some 𝑠𝑜 ∈ 𝐵𝑀 𝐴  such that 𝑠𝑜
∗ 𝑠𝑜 = 1.  Next if the numerical radius of 

the operator is 1,then there exist  𝑠𝑛 , 𝑠𝑛
∗  ⊆ ∏ 𝑀 𝐴   so that 

 𝑠𝑛
∗ 𝑦𝑜  → 1                                                                                                               (7) 

By inequality 2≥  𝑠𝑛 + 𝑦𝑜 ≥ 𝑠𝑛
∗ 𝑠𝑛 + 𝑦𝑜   and (8), we have 

  𝑠𝑛 + 𝑦𝑜  → 2. Similarly, if 𝑠𝑜  is a  𝑤 −cluster point of  𝑠𝑛  , (8) will also 

give us 𝑠𝑜
∗ 𝑠𝑜 = 1. Conversely, if  𝑠𝑛   converges in the 𝑤 −  topology to 

an element 𝑠𝑜  in the unit ball and   𝑠𝑛 + 𝑦𝑜  →2, then there is a 

sequence of norm one functional  𝑠𝑛
∗  so that the sequence  𝑠𝑛

∗ 𝑠𝑛   and 

 𝑠𝑛
∗ 𝑦𝑜   converges to 1. By Bishop-Phelps-Bollobas Theorem [1, 2, 3, 4, 

5] we assume that 𝑠𝑛
∗ 𝑠𝑛 = 1 and so, we fix an element 𝑠𝑛

∗  in the unit 

sphere of the dual so that 𝑠𝑜
∗ 𝑠𝑜 = 1,   and we have lim𝑛 𝑠𝑜

∗ 𝑠𝑛 =

𝑠𝑜
∗ 𝑠𝑜 = 1, lim𝑛 𝑠𝑛

∗ 𝑦𝑜 = 1  and therefore 

 𝑣 𝑠𝑜
∗ ⊗𝑦𝑜  ≥ 𝑠𝑢𝑝𝑛𝑠𝑜

∗ 𝑠𝑛 𝑠𝑛
∗ 𝑦𝑜 ≥ 1 , implying that the 

numerical radius of the operator is 1. 

 

3.3 Corollary 

Let 𝑀 𝐴  be a Banach algebra. Then every operator in 𝑀 𝐴  

can be perturbed by a normal self-adjoint operator to obtain an operator 

in 𝐵 𝐻 . 

Proof.  

Suppose 𝑋 ∈ 𝑀 𝐴  with  𝑋 = 1 and 0 < 휀 <
1

2
 given. From [2, 

3 and 4] two decreasing sequences of positive numbers,  𝛼𝑛  and  𝛿𝑛  

are chosen with the following conditions satisfied 

  𝛼𝑖 + 2𝛼𝑖
2 ∞

𝑖=1 < 휀; lim𝑛=∞𝛼𝑛

1

2
   𝛼𝑖 + 2𝛼𝑖

2 =;  
𝛿𝑛

𝛼𝑛
2 

∞
𝑖=𝑛+1 → 0                  (8)  

(We choose 𝛼𝑛 =
휀

3.2𝑛 !
, for example, and 𝛿 = 𝛼𝑛

3). The sequence 𝑋𝑛  in 

𝑀 𝐴  and  𝑎𝑛 , 𝑓𝑛  in ∏ 𝐴  are constructed satisfying 

𝑋1 = 𝑋,                                                                                                                         (9) 

 𝑓𝑛 𝑋𝑛 𝑎𝑛   > 𝑣 𝑋𝑛 − 𝛿𝑛                                                                                                    

(10) 

𝑋𝑛+1 𝑎 = 𝑋𝑛 𝑎 + 𝛼𝑛𝜆𝑛𝑓𝑛 𝑎 𝑎𝑛 + 𝛼𝑛
2𝑓𝑛 𝑋𝑛 𝑎  𝑎𝑛 𝑎 ∈ 𝐴                      (11) 

Where  𝜆𝑛  = 1 and 𝑓𝑛 𝑋𝑛 𝑎𝑛  = 𝜆𝑛  𝑓𝑛 𝑋𝑛 𝑎𝑛   . It can be verified by 

induction that 

 𝑋𝑛+1 ≤ 1 +   𝛼𝑖 + 2𝛼𝑖
2 ∞

𝑖=1 ≤ 2, ∀ 𝑛                                                           (12) 

It follows that 

 𝑋𝑛+1 − 𝑋𝑛 ≤ 1 +   𝛼𝑖 + 2𝛼𝑖
2 𝑛+𝑘−1

𝑖=1 , ∀ 𝑛, 𝑘                                               (13) 

By (12) and (7), the norm of the sequence  𝑋𝑛  converges to 

an operator 𝐺 in 𝑀 𝐴  satisfying 

 𝐺 − 𝑋𝑛 ≤   𝛼𝑖 + 2𝛼𝑖
2 ,∀ 𝑛, 𝑘.𝑛+𝑘−1

𝑖=1                                                             (14) 

For all 𝑛,  and particularly  𝐺 − 𝑋 < 휀. With 𝑋𝑛  playing the role of 

𝑋, 𝛿 = 𝛿𝑛 ,𝛼 = 𝛼𝑛 ,   𝜌=𝛼
𝑛+𝑘+2  𝛼𝑖+2𝛼𝑖

2 ∞
𝑖=𝑛+1

,  𝑎, 𝑓 = 𝑎𝑛 , 𝑓𝑛  and  𝑦,  =

 𝑎𝑛+𝑘 ,𝑓𝑛+𝑘 , so that the operator 𝑋 ′ agrees with 𝑋𝑛+1 and we have 

1 + 𝛼𝑛𝑣 𝑋𝑛 ≤  𝑓𝑛 𝑎𝑛+𝑘  + 𝛼𝑛  𝑓𝑛 𝑋𝑛 𝑎𝑛+𝑘   +
1

𝛼𝑛
 𝛿𝑛+𝑘+2   𝛼𝑖 +∞

𝑖=𝑛+1

2𝛼𝑖2+𝛿𝑛1+𝛼𝑛2 

≤  𝑓𝑛 𝑎𝑛+𝑘  + 𝛼𝑛  𝑓𝑛 𝑋𝑛 𝑎𝑛+𝑘   +
1

𝛼𝑛
 𝛿𝑛+𝑘+2   𝛼𝑖 + 2𝛼𝑖

2 +∞
𝑖=𝑛+1

𝛿𝑛1+𝛼𝑛2 

Here, the fact that 𝛿𝑛  is a decreasing sequence is used for the 

last inequality. We now replacing 𝑋𝑛  by 𝐺 in the inequality above and use 

the estimate of 𝐺 − 𝑋𝑛   given by (13) (to neutralize the errors) and we 

get 1 + 𝛼𝑛𝑣 𝐺 ≤  𝑓𝑛 𝑎𝑛+𝑘  + 𝛼𝑛  𝑓𝑛 𝐺 𝑎𝑛+𝑘   + 휀𝑛  where 휀𝑛 =
1

𝛼𝑛
 𝛿𝑛+𝑘+2   𝛼𝑖 + 2𝛼𝑖

2 + 𝛿𝑛 1 + 𝛼𝑛
2 ∞

𝑖=𝑛+1  + 2𝛼𝑛   𝛼𝑖 + 2𝛼𝑖
2 .∞

𝑖=𝑛+1  

Hence by (7) and due to the fact that the sequence 𝛼𝑛  → 0 and 

𝛿𝑛  → 0, then 𝐺 ∈ 𝐵 𝐻 . 

 

3.4 Theorem  

Let  𝐴 ∈ 𝐵 𝐻  be normal and  𝑀 𝐴  be compact and dense in 

𝐵 𝐻 . Then 𝐴 is compact. 

Proof.  

Let 𝐴 ∈ 𝐵 𝐻   and 𝑀 𝐴  ⊆ 𝐵 𝐻 . Suppose that 𝑥𝑛  is a strongly 

convergent sequence in 𝐻  then 𝐴𝑥𝑛  is also a strongly convergent 

sequence in 𝑀 𝐴 . As 𝐴  is normal then 𝑀 𝐴𝑥𝑛 → 0 hence 𝑀 𝐴  is 

normal. But  𝑀 𝐴  is compact and dense. Then 𝐴𝑥𝑛 → 0 for every 

strongly convergent sequence  𝑥𝑛  from 𝐻.  Then we also have 𝐴𝑥𝑛 → 0. 

Since 𝐴 is normal [4,7] then the operator 𝐴∗ is also normal. Since 𝑥𝑛  is a 

strongly convergent sequence in 𝐻 then 𝐴∗ 𝐴𝑥𝑛 → 0 and 𝐴 is closed. This 

implies that 𝐴 is compact. 
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