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1. Introduction 
Mycobacterium tuberculosis is still one of the most significant 

human pathogens since it was discovered[1]. It is an intracellular 

pathogen surviving and replicating within macrophages[2]. Knowledge of 

the bacteria-macrophage interaction can help develop novel measures to 

combat tuberculosis. Macrophage models are of great importance for 

studies on tuberculosis because the environment can be simulated for the 

growth of mycobacterium tuberculosis with macrophage models. In this 

article we review cell sources and applications of macrophage models for 

tuberculosis studies.  

 

2. Methods 
The online English database PubMed, Chinese databases CNKI, 

SinoMed, and Wanfang were searched up to December 2010 for 

published articles. Two groups of terms were used for the information 

retrieval, one of which includes macrophage model and macrophage; the 

other group of terms are composed of comprises mycobacterium 

tuberculosis. For PubMed, the two groups of English terms were applied, 

while Chinese terms were used.  

Inclusion criteria were set up for this review, by which articles 

on cell sources, screening of anti-tuberculosis drugs, pathogenic 

mechanisms of tuberculosis or immunomechanism of tuberculosis of 

macrophage models are collected. Exclusion criteria were also developed, 

by which articles about other aspects of macrophage models, such as 

vaccination of tuberculosis, were excluded.  

 

 

3. Results 
Thirty-seven articles met the inclusion criteria, most of which 

are from PubMed. The topics in these articles are cell sources, screening 

of anti-tuberculosis drugs, pathogenesis and immunomechanism of 

tuberculosis with the application of macrophage models.  

2.1. Development of Macrophage Models 

Slayden et al established a macrophage model in the way 

described below: the marrow of six- to eight-week-old female specific-

pathogen-free C57BL/6 mice was flushed from their femurs. The marrow 

plugs were disrupted by gentle pipetting, washed twice, and plated at 

tissue culture treated plates. After 48 hours of incubation, the 

nonadherent cells were removed and new sDMEM was added. The cells 

were washed after a further 4 days, and antibiotic-free medium was 

added and incubated for 2 more days. Eight days after plating, 

macrophages were infected with M. tuberculosis Erdman in 200 µl of 

medium for 2 hours, and then extensively washed to remove 

extracellular bacteria[3].  

Zhao et al developed a macrophage model in the following 

steps: cells of human monocytic cell line THP1 were cultured without 

antibiotics. THP1 cells were seeded into the wells of tissue culture plates. 

Phorbol 12-myristate 13-acetate was added to each well at a final 

concentration of 100 nM after incubation. Finally, mycobacteria were 

added after one additional hour of incubation[4].  

According to Eddine et al, a macrophage model was made as 

follows: bone marrow-derived macrophages were extracted from 

C57/BL6 mice and seeded in culture dishes. They were allowed to 

differentiate for 5 to 6 days in Dulbecco's modified essential medium. 
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These cells were then seeded in 96-well plates and incubated overnight 

for adhesion[5].  

2.2. Cell Sources of Macrophage Models 

2.2.1 Murine Bone Marrows 

Murine bone marrows are one of the cell sources for 

macrophage models. Bone marrow-derived macrophages can be 

obtained from C57BL/6 female mice[6]. Mice can be killed by exposure to 

CO2 with the femur bones dissected out. Their bones are trimmed at each 

end, and the marrow is washed out using Dulbecco’s minimal essential 

medium (DMEM) supplemented with fetal calf serum, L-929 fibroblast 

conditioned supernatant, HEPES buffer, nonessential amino acids, L-

glutamine, and antibiotics. Cell suspensions is then washed twice and 

plated in supplemented DMEM.  

According to Pichugin et al, macrophages were isolated from 

femurs and tibias of male mice for macrophage models by centrifugation 

at room temperature on a NycoPrep gradient, washed, and cultured in 

tissue culture flasks in supplemented DMEM. The nonadherent cells were 

harvested and transferred into tissue culture flacks. Nonadherent cells 

were harvested, washed, and plated to tissue culture plates in the same 

medium without IL-3. Finally the cells were maintained by feeding with 

fresh medium to form monolayer[7]. 

BALB/c mice can also be the source for building macrophage 

models. Bashir N et al reported that RAW 264.7 macrophages were 

washed with wash buffer twice and then incubated with rRv2626c for 

various times on ice. These macrophages were incubated with the anti-

Rv2626c antibody followed by incubation with anti-mouse fluorescein 

isothiocyanate conjugate after washing, suspended in sheath fluid, and 

analysed on a fluorescence-activated cell sorter machine after a final 

washing[8]. 

2.2.2 Human Peripheral Blood 

Another cell source of macrophage models is human 

peripheral blood. Nair et al[9] reported that, in order to obtain a 

macrophage model, monocyte-derived macrophages were isolated from 

heparinized blood from the vein of the healthy participants. Cells were 

collected from the interface. Adherent monolayers were harvested by 

incubating the peripheral blood monocytes in tissue culture plates. 

Nonadherent cells were removed with a transfer pipette and used for 

purifying T cells[9].  There are some other scholars who also used human 

peripheral blood for setting up macrophage models[10][11].  

2.2.3 Human Lungs 

Bronchoalveolar cells are also a source of macrophage models. 

According to Juarez et al the bronchoscope was used, and 0.9% sterile 

saline fluid was instilled into each of two adjacent lung subsegments. 

Bronchoalveolar lavage fluid was centrifuged. The bronchoalveolar cells 

were resuspended in culture medium and their viability was assessed 

using Trypan blue exclusion[12].  

2.2.4 Cell Lines 

In addition, cell lines are one of the cell sources for 

macrophage models. According to Tominaga et al a macrophage cell line 

with activated characters and unique morphology is isolated from the 

human monocytic cell line THP-1. The original THP-1 cells have been 

cultured for years. When they appear to be cells with a different 

morphology, the cells adhere to the bottoms of the culture flasks. The 

adherent cells are selected by discarding floating nonadherent cells at 

every subculture. Enrichment of adherent THP-1 cells with long 

processes proceeds. Adherent THP-1 cells indicate phenotypic changes, 

not only morphologically, but also functionally. The adherent cell line is 

taken as activated-THP-1 (A-THP-1), because it shows characteristics of 

activated macrophages continuously without extra stimulation, providing 

a good model for understanding of activation mechanisms of 

macrophages and multinucleation[13]. Some other researchers also 

reported that cells of human monocytic cell line THP1 were cultured and 

then seeded into tissue culture plates to set up a macrophage 

model[4][9][14]. 

2.3. Applications of Macrophage Models to Tuberculosis Studies 

2.3.1 Screening Antituberculosis Drugs 

Crowle described a technique to treat with chemotherapy 

human macrophages infected ex vivo with tubercle bacilli. The infected 

phagocytes interacted with such drugs as streptomycin, ethambutol, 

pyrazinamide, isoniazid, and ceforanide[15].  

Rastogi et al investigated the actions of ciprofloxacin and 

ofloxacin against M. tuberculosis with a TB-infected macrophage model in 

which the J-774 macrophage cell line was infected with the H37Rv type 

strain of M. tuberculosis.  The two tested drugs were added after 2 days of 

intracellular growth of the bacteria. They came to a conclusion that both 

drugs did not affect macrophage viability, and were effective against the 

virulent tubercle bacilli[16].  

A study by Sbarbaro et al finds a higher bacteriostatic effect 

when low, nonbactericidal levels of rifampin are combined with 

pyrazinamide but not with higher bactericidal levels of rifampin.  The 

way to introduce the drugs affects the result. Giving pyrazinamide after 

the introduction of rifampin increased the killing effect, while adding 

rifampin after the introduction of pyrazinamide resulted in a weaker 

activity than giving the agents simultaneously[17]. 

Rifabutin, clarithromycin, and ethambutol were tested by 

Furney et al for their capacities to inhibit the growth of two isolates of 

Mycobacterium avium in mice and in vitro in a macrophage model. In the 

latter model, rifabutin and clarithromycin showed modest level of 

activities against strain 101 and somehow better activities against strain 

2-151. When all of the three drugs were given in combination, they 

indicated the best results against strain 101, but no significant 

improvement compared with the result of clarithromycin given 

alone[18]. 

Sbarbaro et al quantified the intramacrophage 

antimycobacterial effect of pyrazinamide (PZA) with ofloxacin. As a 

result, a clinically achievable level of PZA strengthens the 

antimycobacterial effect of low, non-bactericidal levels of ofloxacin and 

does not hinder the bactericidal effect of a higher level of ofloxacin[19]. 

Kelly et al tested four rifamycins, which includes rifampin, 

rifabutin, rifapentine, and KRM-1648, in an in vitro murine macrophage 

model and then in the low-dose aerosol infection model, for their effects 

against M. tuberculosis. In both models, KRM-1648 showed the highest 

level of activity among all the tested drugs. In the infected-lung model, 

rifabutin, rifapentine, and KRM-1648 all sterilized the bacterium when 

given orally at 5 mg/kg per day. With a daily dose of 2.5 mg/kg, KRM-

1648 exerted the highest level of activity among these four rifamycins, 

reducing the bacterial load[20].  

Thiolactomycin (TLM) has in vivo antimycobacterial activity 

against the virulent strain M. tuberculosis Erdman, shwoing complete 

inhibition of growth on solid media at 25 micrograms/ml. In an in vitro 

murine macrophage model, the killing of viable intracellular M. 

tuberculosis in a dose-dependent manner was also seen[3]. 

In a human macrophage model infected by wild-type 

Mycobacterium bovis BCG, the C-8 methoxyl group decreased survival 20- 

to 100-fold compared with the same concentration of a C-8-H 

fluoroquinolone, improving fluoroquinolone action against both 

quinolone-susceptible and -resistant clinical isolates. Therefore, a C-8 

methoxyl group strengthens the bactericidal activity of quinolones with 

N1-cyclopropyl substitutions, implying that further refinement of 

fluoroquinolones could be done as antituberculosis agents[4]. 

Isoxyl (ISO), a thiourea (thiocarlide; 4,4′-

diisoamyloxythiocarbanilide), showed effective activity against the 

clinical isolates of M. tuberculosis from different geographical areas with 

various drug resistance patterns. In a murine macrophage model, ISO 

indicated bactericidal killing of viable intracellular M. tuberculosis in a 
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dose-dependent manner, inhibiting the synthesis of both fatty acids and 

mycolic acids at its MIC for M. tuberculosis, while both isoniazid and 

ethionamide demonstrated similarity in inhibition of the synthesis of all 

kinds of mycolic acids only. In addition, a homologous series of ISO 

derivatives were synthesized, most of which were as effective as or more 

effective than the parent compound. Therefore, these thioureas 

demonstrate promise in counteracting a big variety of strains of M. 

tuberculosis[21]. 

Two of the isoniazid derivatives with MIC < 3.13 microg/ml 

and SI > 10 were tested by Szymańska et al for efficacy in vitro in a TB-

infected macrophage model. As a result, none of them demonstrated 

satisfactory activity[22].  

Foroumadi et al evaluated a series of piperazinyl quinolones 

for their antituberculosis activity against M. tuberculosis H37Rv with the 

BACTEC 460 radiometric system and BACTEC 12B medium. It was 

indicated that compounds 1a, 1e and 1g were efficient antimycobacterial 

agents. In their study, compound 1a was also examined for efficacy in a 

macrophage model[23]. 

Qian Zhongqing established macrophage models to test the 

efficacy of Isoniazid, extract of Pittosporum Brevicalyx (Oliv.) Gagnep 

against M. tuberculosis. It is concluded that the two tested drugs are 

effective[24]. 

Maccari et al tested antimycobacterial activities of cobalt (II) 

and copper (II) complexes of fluorinated isonicotinoylhydrazones in M. 

tuberculosis-infected macrophage model. They came to a conclusion that 

all metalcomplexes indicated great activity against M. tuberculosis 

Erdman and single-drug-resistant M. tuberculosis strains[25].  

Maccari et al reported that some hydrazides and 

isonicotinoylhydrazones (ISNEs) are more effective antimycobacterial 

agents than their parental isoniazid in a TB-infected macrophage 

model[26]. 

One of the six carbazole alkaloids from the CH2Cl2 extract of 

the stem bark of Micromelum hirsutum, which is also called micromolide. 

It indicated potent in vitro anti-TB activity against H37Rv, and exhibited 

activity against the Erdman strain of M. tuberculosis in a J774 mouse 

macrophage model[27]. 

In a study by Boyne et al two high-affinity alkyl-substituted 

diphenyl ethers, 6PP and 8PP, were tested for their in vitro activity 

against clinical isolates of M. tuberculosis. The two substances showed 

enhanced activity against bacteria in a macrophage model of 

infection[28]. Eddine AN et al reported the inhibition of the growth of M. 

tuberculosis by 4,4'-dihydroxybenzophenone (DHBP) in a mouse 

macrophage model, while no cell toxicity was detected for DHBP up to 

200 μm[5]. 

In vitro, morphine did not show any direct anti-mycobacterial 

activity up to 1x10(-4) M concentration, which was assessed by 

radiometric BACTEC method. In a macrophage model of infection, 

morphine indicated maximal killing at 1x10(-7) M concentration, but was 

blocked by naloxone and aminoguanidine. These results suggest that 

morphine has a dose-dependent effect in murine tuberculosis, while its 

protective effect is naloxone-reversible and may involve macrophage-

mediated protective mechanisms[29]. 

Wu Guodong et al established peritoneal macrophage models 

for screening anti-TB drugs such as Rifampin, Ranunculus Ternatus 

Thunb, and Xinlaoning Capsule. As a result, the three drugs showed anti-

mycobacterial effects while Ranunculus Ternatus Thunb and Xinlaoning 

Capsule indicated weaker bactericidal effects than Rifampin[30].   

2.3.2 Pathogenic Mechanisms of Tuberculosis 

Horgen et al examined the postantibiotic effects (PAEs) of four 

agents against Mycobacterium avium with a macrophage model. They 

created two different experimental conditions. For postantibiotic 

leukocyte enhancement (PALE), the bacteria were exposed to antibiotics 

before phagocytosis. For pulsed exposure (PE), antibiotics were used 

after phagocytosis. The drugs were applied at their peak concentrations 

in serum in both cases. It was indicated that even a brief exposure of M. 

avium to peak concentrations of some agents in serum may lead to 

prolonged and persistent suppression of bacterial growth in human 

macrophages[31]. 

As an intracellular pathogen, M. tuberculosis suppresses 

macrophage apoptosis to support survival and replication within the host 

cell. Jayakumar et al demonstrated that the functional serine/threonine 

kinase, PknE, is essential for survival of M. tuberculosis which enhances 

macrophage viability by inhibiting apoptosis. A promoter of PknE was 

shown to respond to nitric oxide stress. Deletion of pknE in M. 

tuberculosis resulted in an increased-resistance strain to nitric oxide 

donors and a more-sensitive strain to reducing agents. The deletion 

mutant caused by specialized transduction induced apoptosis while 

inhibiting necrosis[32].  

According to Basler et al murine macrophage cell lines are a 

suitable system to examine M. avium ssp. patho-mechanisms and could 

dispaly that MAP, but not MAA, specifically inhibited the antigen-specific 

stimulatory capacity for CD4(+) T-cells[33].  

Lee et al[1] examined the roles of SigB and SigF in sigma factor 

regulation in M. tuberculosis in terms of their physiological effects of 

transcriptional activation by testing the growth of the sigB and sigF KI 

strains during macrophage infection. It was indicated that baseline sigB 

and sigF expressions in the KI strains were higher than those in the 

control strains because of the increased gene dosage and leakiness of the 

acetamide promoter system. Even with the acetamide-free conditions, M. 

tuberculosis recombinants overexpress sigB and sigF. The sigB KI strain 

demonstrated a growth defect in macrophages, because it could not 

replicate at the same rate as the control strain. Similarly, the normalized 

CFU counts showed a reduced growth rate for the sigB-overexpressing 

strain compared with the control strain. The CFU counts for the sigF-

overexpressing strain also displayed a slowed intracellular growth rate. 

Although macrophages are effective in internalizing and 

clearing most of the bacteria, M. tuberculosis H37Rv has evolved some 

effective survival strategies, which include inhibiting phagosome-

lysosome fusion, inhibiting phagosome acidification, recruiting and 

retaining tryptophan-aspartate with coat protein on phagosomes to 

prevent their delivery to lysosomes and expressing members of the host-

induced repetitive glycine-rich protein family of proteins[34].  

Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the 

first key step of gluconeogenesis. Marrero et al applied genetic analyses 

and (13) C carbon tracing to show that PEPCK is crucial for growth of M. 

tuberculosis on fatty acids and increases the rate of carbon flow from 

tricarboxylic acid cycle-derived metabolites to gluconeogenic 

intermediates. It was further shown that PEPCK is a must for growth of 

M. tuberculosis in a murine macrophage model and in mice. In addition, 

M. tuberculosis without PEPCK failed to replicate in mouse lungs, and 

could not survive, while PEPCK depletion in chronic phase of infection 

caused mycobacterial clearance. M. tuberculosis is therefore based on 

gluconeogenesis during the infection. PEPCK depletion weakens M. 

tuberculosis in IFN gamma-deficient mice, suggesting that this enzyme 

could be a target for chemotherapy[35]. 

Bordbar et al developed a cell-specific alveolar macrophage 

model, iAB-AMØ-1410, and then integrated it with an M. tuberculosis 

H37Rv model, iNJ661, to construct an integrated host-pathogen genome-

scale reconstruction, iAB-AMØ-1410-Mt-661. The integrated model 

allows the simulation of the metabolic changes during infection which 

shows three distinct pathological states[36].  

2.3.3 Immunomechanism of Tuberculosis 

According to Jayakumar et al the pknE mutant alters the innate 

immune response as displayed by the decrease in the pro-inflammatory 

cytokines in a macrophage model[32].  
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In terms of the pathophysiological functions of proline-

glutamic acid (PE)/proline-proline-glutamic acid (PPE) family of proteins 

of M. tuberculosis, Nair et al demonstrated in their study that one of the 

PPE proteins, PPE18, can stimulate macrophages to secrete IL-10 which 

favors a Th2 type response. When macrophages were infected with a 

mutant M. tuberculosis strain lacking the PPE18, less IL-10 was produced 

as compared with those infected with the wild-type strain. The evidence 

suggests that the PPE18 protein may initiate an anti-inflammatory 

response by stimulating IL-10 production[9].  

Pichugin et al used a mouse model of infection with M. 

tuberculosis to figure out the functioning of the genetic locus sst1 in hosts 

developing pulmonary tuberculosis. It is indicated that sst1 can control 

necrosis within tuberculosis lesions in the lung, which is independent of 

both the route of infection and the host’s genetic background. What for 

more, sst1-dependent necrosis took place at low bacterial loads in the 

lung after anti-tuberculosis drug therapy was stopped. As a result, sst1-

susceptible mice with tuberculosis-resistant and -susceptible genetic 

backgrounds can be used to reproduce different types of clinical 

pulmonary tuberculosis and may be applied to predict the efficacy of 

anti-tuberculosis drugs for different human populations[7].  

T cell immunoglobulin and mucin domain 3 (Tim3) is a 

negative regulatory molecule that suppresses effector T(H)1-type 

responses. Such inhibitory signals stop unintended tissue inflammation, 

but can be harmful if they result in premature T cell exhaustion. Despite 

the fact that the role of Tim3 in autoimmunity has been extensively 

explored, whether Tim3 regulates antimicrobial immunity is still 

unknown. According to Jayaraman et al it is demonstrated that Tim3 

expressed on T(H)1 cells interacts with its ligand, galectin-9 (Gal9), 

which is expressed by M. tuberculosis-infected macrophages to inhibit 

intracellular bacterial growth. Tim3-Gal9 interaction activates 

macrophages and increases bactericidal activity by stimulating caspase-

1-dependent IL-1β secretion. The T(H)1 cell surface molecule Tim3 

evolves to restrict the growth of intracellular pathogens via its ligand 

Gal9, which suppresses expansion of effector T(H)1 cells to stop further 

tissue inflammation[37].  

Secretory proteins of M. tuberculosis are the important 

immunomodulators of the host immune response. Open reading frame 

(ORF) Rv2626c, which encodes a conserved hypothetical protein 

inducing a strong humoral immune response in patients with 

tuberculosis (TB), is up-regulated upon infection in mice on hypoxic 

conditions. Bashir et al demonstrate that recombinant Rv2626c protein 

(rRv2626c) can bind to the surface of murine macrophages and lead to 

the type-1 immune response by nitric oxide (NO) secretion and 

expression of inducible nitric oxide synthase (iNOS). Together with 

rRv2626c, significant induction of pro-inflammatory cytokines, which 

include interleukin (IL)-12 and tumour necrosis factor (TNF)-alpha, can 

stimulate murine macrophages and peripheral blood mononuclear cells 

isolated from patients with active TB disease. Stimulation with rRv2626c 

also increases the expression of costimulatory molecules like B7-1, B7-2 

and CD40 on murine macrophages. Furthermore, the production of NO 

and pro-inflammatory cytokines in response to rRv2626c is mediated by 

the transcription factor NF-KB, which is confirmed by using pyrrolidine 

dithiocarbamate, a specific pharmacological inhibitor of NF-KB. Rv2626c 

therefore seems to regulate macrophage effector functions by eliciting 

immune responses[8].  

IL-32 is a cytokine stimulated by M. tuberculosis in a big 

variety of cell types such as human monocytes and macrophages. Bai X et 

al examined the biological significance of IL-32 in an in vitro M. 

tuberculosis infected macrophage model. It is shown that, in THP-1 cells 

infected with M. tuberculosis and stimulated with rIL-32, a higher level of 

apoptosis was seen compared with that with M. tuberculosis infection 

alone. On the other hand, significant abrogation of apoptosis induced by 

M. tuberculosis and a concomitant decrease in caspase-3 activation was 

observed in cells depleted of endogenous IL-32. The rIL-32gamma 

decreased the number of viable M. tuberculosis bacteria, which was 

abolished with a caspase-3 inhibitor. They came to a conclusion that IL-

32 plays a host defense role against M. tuberculosis in a macrophage 

model[14].  

The glutathione-redox balance, which is expressed as the ratio 

of intracellular reduced glutathione and oxidized glutathione, plays an 

essential role to regulate cellular immune responses. Alam et al 

demonstrated in their study that modification of glutathione-redox 

balance in macrophages can differentially regulate the production of IL-

12 cytokine. It is indicated that redox balance of glutathione is an 

important factor that adjusts IL-12 induction in native macrophages, 

while N-acetyl-L-cysteine can tailor macrophages to stimulate enhanced 

Th1 response which may be useful to control tuberculosis and other 

pathophysiological disorders[11].  

Toll-like receptors (TLRs) are important components in the 

regulation of pulmonary immune responses and the recognition of 

respiratory pathogens like M. Tuberculosis. Juarez et al examined human 

alveolar macrophages to define the expression profiles of TLR2, TLR4 

and TLR9. They came to a conclusion that the TLR expression profile of 

autologous human alveolar macrophages and monocytes is not identical, 

which may contribute to compartmentalized immune responses. The 

dissimilarities may have some important implications for the evaluation 

of vaccines with TLR-stimulating adjuvants for the respiratory tract[12].  

 

3. Conclusion 
In regard to cell sources of macrophage models, murine bone 

marrows, human peripheral blood, human lungs, and cell lines are the 

major resources of macrophages for tuberculosis studies.  

The screened antituberculosis drugs include streptomycin, ethambutol, 

pyrazinamide, isoniazid, ceforanide, ciprofloxacin, ofloxacin, rifampin, 

pyrazinamide, rifabutin, clarithromycin, ethambutol, ofloxacin, 

rifapentine, KRM-1648, thiolactomycin, C-8 methoxyl group, C-8-H 

fluoroquinolone, isoxyl, compound 1a of piperazinyl quinolones, 

pittosporum brevicalyx (oliv.) gagnep, cobalt (II) and copper (II) 

complexes of fluorinated isonicotinoylhydrazones, hydrazides, 

isonicotinoylhydrazones, micromolide, 6PP, 8PP, 4,4'-

dihydroxybenzophenone, morphine, ranunculus ternatus thunb, and 

Xinlaoning capsule.  

As to the pathogenesis of tuberculosis, it is indicated from the 

results of studies with macrophage models that, M. tuberculosis H(37)Rv 

has evolved some effective survival strategies, including inhibition of 

phagosome-lysosome fusion and phagosome acidification, recruitment 

and retention of tryptophan-aspartate containing coat protein on 

phagosomes, and expression of the host-induced repetitive glycine-rich 

proteins. The roles of SigB and SigF in sigma factor regulation in M. 

tuberculosis were studied, as a result, it was shown that baseline sigB and 

sigF expressions in the KI strains were higher than those in the control 

strains because of the increased gene dosage and leakiness of the 

acetamide promoter system. Phosphoenolpyruvate carboxykinase 

(PEPCK) is required for growth of M. tuberculosis in isolated bone 

marrow-derived murine macrophages and in mice. M. tuberculosis relies 

on gluconeogenesis throughout the infection. Genes were expressed at a 

much lower level in MAP-infected macrophages than in MAA-infected 

macrophages. Among these were the genes for IL-1beta, IL-1alpha, 

CXCL2, PTGS2 (COX2), lipocalin (LCN2) and TNF, which are essential pro-

inflammatory factors. Infection with MAH also indicated strong induction 

of IL-1beta, CXCL2, COX2, LCN2 and TNF. It is evident that the functional 

serine/threonine kinase is crucial for M. tuberculosis to survive by 

inhibiting apoptosis of macrophages. In addition, it is revealed that a 

short exposure of M. avium to peak concentrations of drugs in serum may 

result in long suppression of bacterial growth in macrophages.  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bai%20X%22%5BAuthor%5D
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The results about immuno-mechanism of tuberculosis from 

studies with macrophage models include: (a)the pknE mutant which 

modifies the innate immune response as shown by the marked decline in 

the pro-inflammatory cytokines in a macrophage model of infection, 

(b)the T(H)1 cell surface molecule Tim3 which inhibits growth of 

intracellular pathogens and expansion of effector T(H)1 cells to stop 

further tissue inflammation, (c) Rv2626c which modulates macrophage 

effector functions by stimulating immune responses, (d) IL-32 playing a 

host defense role against M. tuberculosis, (e) redox balance of glutathione 

playing an essential role in regulating IL-12 induction in macrophages, (f) 

N-acetyl-L-cysteine tailoring macrophages to stimulating enhanced Th1 

response helpful to control tuberculosis, (g) TLR expression of alveolar 

macrophages and monocytes, (h) PPE18 protein triggering an anti-

inflammatory response by inducing IL-10 production, and (i) sst1 

controlling necrosis within tuberculosis lesions in the lungs.  

What could we do for the next step? Here are some questions 

without exact answers. For instance, what is the mechanisms by which M. 

tuberculosis H(37)Rv enters the host cell, circumvents host defenses and 

spreads to neighboring cell? Given the propensity of DHBP for 

nonspecific interactions with proteins, further studies are required to 

figure out a mechanism of DHBP action and to distinguish between the 

bacteriostatic and bactericidal nature of the drug.  
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