
HAL Id: hal-02292537
https://hal.archives-ouvertes.fr/hal-02292537

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OPAM for Coq
Guillaume Claret

To cite this version:

Guillaume Claret. OPAM for Coq. [Technical Report] Inria - Paris 7. 2015. �hal-02292537�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/233895557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02292537
https://hal.archives-ouvertes.fr

OPAM for Coq

Guillaume Claret

2015

Contents
1 Abstract 1

2 Introduction 2

3 OPAM 3

4 Repositories 4
4.1 Stable packages . 4
4.2 Development packages . 5
4.3 Distribution mechanism . 6

5 Contribs 6

6 Bench system 6
6.1 Architecture . 7
6.2 Strategies . 7

7 Website 8

8 Related work 10

9 Conclusion 11

1 Abstract

More and more people are using the Coq system to develop theories or verify
theorems and softwares. Unfortunately, there are no central places to share Coq
developments which offer a unified and mechanized way to install new libraries or
to express dependencies between projects. The existence of such a central place
would foster the Coq community, by enabling more re-usability, more visibility
and more competition among the Coq projects.

1

We will present our work on setting up a package manager infrastructure
for Coq. We reuse the package manager OPAM from the OCaml community
and design a specific repository architecture, an automated bench system and a
website to present the list of the Coq packages. Today, the OPAM infrastructure
is usable and used by more and more people to share their developments. To
the best of our knowledge, this infrastructure is the first package management
system able to organize mathematical proofs in the large.

2 Introduction

In the programming language communities, the package managers have
long been considered as one of the fundamental tools to create an ecosystem
of re-usable libraries. Noticeable examples are the npm1 package manager
for JavaScript, the Gems2 repository for Ruby or the CRAN3 repository for the
language for statistics R. It happens that the challenges faced by the users
of Coq to install external libraries, share their developments or express com-
plex dependency chains between projects are very similar to those encountered
with the programming languages. However and surprisingly, to the best of our
knowledge, no modern package management systems have been proposed for a
theorem prover.

When I started working on the idea of a package manager for Coq, we realized
that we were many trying to reach this goal4. As the project started to grow,
more people of the community got involved in order to add new ideas and reach
a general consensus5. Thus, this work on a package manager for Coq is mostly
a team work.

Instead of redeveloping a new package manager, we decided to use the ex-
isting OPAM package manager from the OCaml community. The Coq system or
plugins being implemented in OCaml and most of the OCaml users being used
to OPAM, the OPAM package manager appeared as the simplest choice for us,
as much technically as socially.

In this chapter we will present what I mostly contributed to:

• an architecture of repositories6 which combines a repository for the sta-
ble versions, a repository for the development versions and a system of
distribution (page 4). Most of the work was actually devoted to the main-
tenance of these repositories (accounting for more than 400 commits);

• a port of the existing Contribs repository7, containing more than 150
projects, to the OPAM system (page 6);

1www.npmjs.com
2rubygems.org
3cran.r-project.org
4Mainly Thomas Braibant and Cyril Cohen.
5In particular Enrico Tassi and Guillaume Melquiond.
6Available on github.com/coq/opam-coq-archive.
7The Contribs project is hosted on GForge on coq-contribs.gforge.inria.fr.

2

https://www.npmjs.com/
https://rubygems.org/
https://cran.r-project.org/
https://github.com/coq/opam-coq-archive
http://coq-contribs.gforge.inria.fr/

• a bench system (page 6) to continuously monitor the status of the packages
by verifying that they can all by installed without errors and that they
respect the policy of the Coq repositories;

• a website (page 8) listing the descriptions of the stable packages available
for Coq8. We generate this website using the program OpamWebsite9,
entirely written in Coq thanks to our library Coq.io10 to implement the
concurrent inputs–outputs operations.

3 OPAM

The package manager OPAM11 was introduced by the company OCaml-
Pro12 to simplify the distribution and the installation of OCaml libraries. OPAM
is entirely written in OCaml and can use various dependency constraint solvers
including aspcud13. This is a source package manager, meaning that the pack-
ages are installed by compiling the sources.

This package manager is provided to the user through the command opam.
We first initiate an OPAM folder where we will install our packages:

1 mkdir opam
2 opam init --root=opam

and setup the environment variables:

1 eval ‘opam config env --root=opam‘

Then we have access to the standard OPAM operations:

1 opam show coq
2 opam install -v -j4 coq
3 opam list
4 opam search http
5 opam update && opam upgrade

By setting up OPAM in different folders, we can setup different development
environments. Indeed, two different projects may need different versions of Coq
or incompatible libraries. Another equivalent way to handle several development
setups is to use the switch mechanism of OPAM, which creates one new folder
per switch in the current OPAM folder.

8The list of the OPAM packages for Coq is available on coq.io/opam.
9The program OpamWebsite is available under MIT license on github.com/coq-io/opam-

website.
10The Coq.io library is available under MIT license on coq.io.
11opam.ocamlpro.com
12www.ocamlpro.com
13The constraint solver aspcud is available on www.cs.uni-potsdam.de/wv/aspcud.

3

http://coq.io/opam/
https://github.com/coq-io/opam-website
https://github.com/coq-io/opam-website
http://coq.io/
http://opam.ocamlpro.com/
http://www.ocamlpro.com/
http://www.cs.uni-potsdam.de/wv/aspcud/

The OPAM packages are available on some repositories, activated with the
command:

1 opam repo add repo-name repo-url

A repository is composed of one folder per package, containing three files: descr
for a short textual description, url for the download link and opam for all the
other metadata such as the compilation commands, the license, the homepage,
etc.

4 Repositories

We organize the OPAM repositories for Coq14 into three main reposito-
ries plus several distribution repositories. This complex architecture is set to fit
the requirements of the users and the wills of all the Coq developers.

4.1 Stable packages
We put the stable packages in the released repository, which can be activated
by:

1 opam repo add coq-released https://coq.inria.fr/opam/released

We consider as stable a package whose sources do not change (by opposition to
a development branch for example, which is updated at every commits). The
stable packages must follow some simple rules15 in order to be accepted.

Installable The installation of a package must succeed when we start from a
fresh OPAM setup. The uninstallation must revert the installation process by
removing all the installed files.

Version The version names must be a triple of numbers separated by dots, like
for example 3.2.0. This convention is proven to fit a wide variety of projects,
as it is the convention used by every npm packages.

The main rationale behind this convention is that, since we express pack-
age dependencies using inequalities over version numbers, the ordering over the
version names should be as clear as possible. The ordering over triples of num-
bers in OPAM corresponds to the natural lexicographic order. By contrast,
the OPAM ordering16 over mixes of digits, letters and special characters is much

14Available on github.com/coq/opam-coq-archive.
15We continuously verify these rules thanks to the bench system.
16The OPAM ordering is the Debian ordering, described on www.debian.org/doc/debian-

policy/ch-controlfields.html#s-f-Version.

4

https://github.com/coq/opam-coq-archive
https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Version
https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Version

more complex17. The other rationale is to follow the SemVer guidelines18, which
recommend to use three numbers to identify the major changes, minor changes
and patch level changes.

Namespace To separate the Coq packages from the OCaml packages, we in-
troduce a concept of namespace for OPAM by using the colon separator ":". In
particular, all Coq packages must by prefixed by "coq:" to indicate that they
are in the "coq" namespace. This idea of namespaces is just a convention which
we can use for other projects too. For example, we prefix all the packages of
the Coq.io project by "coq:io:".

Name To ensure uniformity, the package names must be in small caps and
use the dash "-" as a word separator. An example of a complete package name
with a version name is the following:

coq : io : hello− world.1.1.0

Description Each package must contain a link to its homepage and provide
its license information. The license information is mandatory because so many
developers forget about specifying their license, making their projects de facto
proprietary19.

Parallel compilation Since OPAM is a source package manager, we must
compile each package during the installation. In order to reduce the compilation
time, we enforce the use of the %{jobs}% option in the build commands. This
option represents the number of parallel processes allowed for the compilation,
as specified by the -j or the –jobs= option of OPAM. The Makefile generated
by the coq_makefile command can use this option to speedup the compilation
process.

Checksum A package in the stable repository must come with the checksum
of its sources, to ensure that the sources cannot be silently updated.

4.2 Development packages
We put the development packages in the two repositories extra-dev and core-dev:

1 opam repo add coq-extra-dev https://coq.inria.fr/opam/extra-dev
2 opam repo add coq-core-dev https://coq.inria.fr/opam/core-dev

17This led for example to the bug github.com/coq/opam-coq-archive/issues/8.
18semver.org
19See this study on the license usage for the GitHub repositories: github.com/blog/1964-

open-source-license-usage-on-github-com.

5

https://github.com/coq/opam-coq-archive/issues/8
http://semver.org/
https://github.com/blog/1964-open-source-license-usage-on-github-com
https://github.com/blog/1964-open-source-license-usage-on-github-com

The extra-dev repository is for the user packages, the core-dev repository for the
development versions of Coq. Most development packages follow a Git branch
of a project, and thus evolve at each new commit. We try to apply the same
rules as for stable repository (except for the checksum and the version names,
which typically contain strings such as "beta" or "dev").

4.3 Distribution mechanism
There is a project of a distribution mechanism for the Coq packages. The idea is
to provide a subset of mutually compatible packages, with at most one version
per package, following the policy of the Debian distribution. To implement
the fact that distributions are subsets of the stable packages, the distribution
repositories would be composed of symbolic links to packages of the released
repository.

5 Contribs

Historically, the user packages of Coq were regrouped on a single SVN
repository20, containing the source code of each package. To install a package,
someone would download the source code and compile it using a standard:

1 make
2 make install

The source code of the Contribs was graciously maintained by some of the Coq
developers and represents more than 150 projects.

We split the single SVN repository of the Contribs into individual Git reposi-
tories with one repository per project, keeping the history of the changes for each
project. We created one OPAM package per project, keeping as much metadata
as possible. Since the Contribs are not released with a version number, they
point to Git branches (with one branch per Coq version in each project) and
are hosted on the development repository extra-dev. We fixed many of the Con-
tribs because we realized, during the import to OPAM, that the make install
commands or the generation of the Makefile were often broken.

6 Bench system

In order to make sure that no packages are broken, we continuously run a
bench system21 to check the OPAM packages for Coq. We present the results in

20Hosted on GForge on coq-contribs.gforge.inria.fr.
21The results of the bench are available on coq-bench.github.io.

6

http://coq-contribs.gforge.inria.fr/
https://coq-bench.github.io/

a colored table with the installation times for valid packages. The best column
contains the best score obtained by each package.

We check that the packages are well-formed, using our lint22 checker. We
also check the installation of the dependencies and of the package itself, verifying
that the uninstallation effectively reverts the installation process. We record the
duration of each operation and compute the size of the installed files.

6.1 Architecture
The bench system is hosted on the GitHub organization coq-bench23. We will
detail the four projects of the organization.

Run This Ruby program runs the benchmarks. For each bench we generate
a clean Docker24 image. Then we install OCaml, OPAM and Coq and test each
package. Either the released repository is activated or both the released and
the extra-dev repositories. We save the results into a database.

Database The database is a textual table in the CSV25 format. There is one
file per bench and one row per package. The first row gives a legend for each of
the 31 columns.

Make-HTML This Ruby program generates static HTML pages representing
the content of the CSV database.

Coq-Bench.GitHub.io These are the static HTML pages of the bench web-
site. GitHub provides us a nice and simple way to host web pages from a Git
repository using the GitHub Pages26 service.

6.2 Strategies
There are many possible strategies to check all the packages with respect to
their installation order. The installation order is important because OPAM will
choose to install different dependencies in different contexts. Ideally, we would
like to optimize the installation order to reduce the total execution time of
the bench, by always installing and testing the dependencies first, so that no
packages are compiled twice. Unfortunately this is not possible in general. Here
is a simple counter example. With the list of packages presented in the Table 1,
we must compile B twice (once with A.1.0.0 and once with A.2.0.0) to test
both C.1.0.0 and C.2.0.0. Instead, we provide the two following (non-optimal)
installation strategies.

22The sources of the lint checker are on github.com/coq-bench/run/blob/master/lint.rb.
23github.com/coq-bench
24Docker is a system simplifying the manipulation of Linux containers. It is available un-

der Apache license on www.docker.com.
25en.wikipedia.org/wiki/Comma-separated_values
26The GitHub Pages services is presented on pages.github.com.

7

https://github.com/coq-bench/run/blob/master/lint.rb
https://github.com/coq-bench
https://www.docker.com/
http://en.wikipedia.org/wiki/Comma-separated_values
https://pages.github.com/

Package Dependencies
A.1.0.0 ∅
A.2.0.0 ∅
B.1.0.0 A (any versions)
C.1.0.0 A.1.0.0 and B
C.2.0.0 A.2.0.0 and B

Table 1: Counter example to the optimal installation strategy.

Clean This is the simplest strategy. We install each package in a fresh envi-
ronment with only Coq installed. This strategy is robust and reproducible, but
not really optimal for packages with large dependencies since the dependencies
are always recompiled from scratch.

Tree This is a more complex strategy. We install as many packages as possible
until all new packages are incompatible with the current environment. The main
source of incompatibility is the fact that we cannot install two packages with the
same name but different version numbers. Once we are blocked, we roll-back
until new packages are installable. This strategy is more clever but also more
fragile and harder to maintain, to subtle changes of the opam tool for example.
We use the branch mechanism of Git on the OPAM installation folder to switch
efficiently between OPAM states. At the end of the process, we obtain a tree of
all the Git branches used to explore the space of the packages (Figure 1).

7 Website

We developed a website27 to present the list of the OPAM packages avail-
able for Coq. We statically regenerate this website every hours using the pro-
gram OpamWebsite28. We entirely wrote this program using our Coq.io library
to handle the inputs–outputs operations29. The inputs–outputs operations es-
sentially consist in calling the opam command with the right options to grab the
metadata of each package and then creating the new HTML files. We formally
verify the OpamWebsite program using our method of formal use cases.

27The website of the Coq packages is available on coq.io/opam.
28The program OpamWebsite is available under MIT license on github.com/coq-io/opam-

website.
29This process of using our own tools is called dogfooding.

8

http://coq.io/opam/
https://github.com/coq-io/opam-website
https://github.com/coq-io/opam-website

1 * b99f693 coq:concurrency:pluto.1.0.0
2 * a1ff2f1 coq:concurrency:system.1.0.0
3 * 27c7b93 coq:moment.1.0.0
4 * d950f53 coq:list-string.2.0.0
5 | * 4817264 coq:flocq.2.2.0
6 | | * 3d4105d coq:flocq.2.3.0
7 | |/
8 | | * 544de40 coq:concurrency:proxy.1.0.0
9 | | * 9a1989e coq:coqeal:refinements.0.9.1

10 | | * 0bfd44f coq:fpmods.0.2.0
11 | | * bda2af7 coq:coqeal:theory.0.9.1
12 | | * 27aa320 coq:plouffe.1.0.0
13 | | * 35961d5 coq:coquelicot.2.0.1
14 | | * 89db498 coq:error-handlers.1.0.0
15 | | * aa85f8c coq:flocq.2.4.0
16 | |/
17 | * 48f33a4 coq:iterable.1.0.0
18 | * 0a48735 coq:function-ninjas.1.0.0
19 | * e2980d1 coq:list-plus.1.0.0
20 | * 4122f1a coq:list-string.1.0.0
21 |/
22 * 89705ad coq:math-classes.1.0.2
23 * 5d3ec5d coq:math-comp.1.5.0
24 * 470eefb coq:ssreflect.1.5.0
25 * b0205c8 Initial files.

Figure 1: Installation of a subset of the released repository.

9

8 Related work

A lot of programming languages have their own package managers. Our
architecture and the decision to setup a package manager for Coq is influenced by
the experience of the other programming language communities. Of course, we
mainly got inspiration from the OCaml community, which developed the OPAM
package manager. We do not try to compete with other package management
systems. Instead, we try to reuse as much existing work as possible to design a
simple package platform for Coq.

Historically, the way to share developments in Coq was to use the Contribs
mechanism (page 6). This approach had some limitations. For example, the
original authors of each project could not access to the code hosted on the cen-
tral SVN repository, introducing a fork of each project. Instead, OPAM separates
the metadata from the source code of each package. The Contribs also lacked a
versioning system and a dependency manager, to automatically compute and in-
stall the correct dependency of a project through a command line tool. Finally,
the acceptation policy for the Contribs was private. By contrast, the OPAM pack-
ages are published using public pull-requests on the OPAM repository for Coq30.
We believe that all discussions concerning the Coq packages must be public in
order to preserve the fairness of the platform.

To the best of our knowledge, no other theorem provers propose a modern
package management system. The ProofPeer31 project aims to enable collab-
orative works at a large scale, by design a new theorem prover integrating all
the tools required for collaboration. We take the opposite direction, by reusing
existing tools and concepts from the open source community, such as the idea of
a package manager. The Mizar system32 proposes the MML library33, which is
a centralized repository including the sources of more than 1200 projects. Each
project is published as an article on the Journal of Formalized Mathematics34 and
peer reviewed before acceptation. Projects can express dependencies to other
projects (but with no versioning). The technical architecture of the MML library
is similar to the architecture of the Contribs repository of Coq, in the sense that
all the source code is centralized, and thus suffers from the same limitations.
The idea of a peer reviewed conference for the user contributions is interesting.

The OCaml community also made a bench system for the OPAM packages35,
but this system was not available at the time we made ours. The OCaml bench
has the advantage of presenting a log of the differences between two consecutive
benches, what make it easier to read when there are hundreds of packages to
monitor. The website listing the OCaml packages for OPAM is written in OCaml.

30Available on github.com/coq/opam-coq-archive.
31The ProoPeer project is hosted on www.proofpeer.net.
32The Mizar system is available on mizar.uwb.edu.pl.
33We can explore the theorems of the MML library on mmlquery.mizar.org.
34fm.mizar.org
35The results of the OCaml bench are available on opam.ocaml.org/builds.

10

https://github.com/coq/opam-coq-archive
http://www.proofpeer.net/
http://mizar.uwb.edu.pl/
http://mmlquery.mizar.org/
http://fm.mizar.org/
https://opam.ocaml.org/builds/

We rewrote this website in Coq to experiment our Coq.io library36.

9 Conclusion

We have presented our work on the use of OPAM as a package manager
for Coq. We especially worked on the design of a repository architecture and
on the implementation of a bench system and a website for the OPAM packages
for Coq. As of today, OPAM is usable for Coq and we hope that in the future
more and more people will use OPAM to share their Coq developments and reuse
other’s contributions.

36The Coq.io library is available under MIT license on coq.io.

11

http://coq.io/

	Abstract
	Introduction
	OPAM
	Repositories
	Stable packages
	Development packages
	Distribution mechanism

	Contribs
	Bench system
	Architecture
	Strategies

	Website
	Related work
	Conclusion

