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Abstract

Damage diagnosis is a fundamental task for structural health monitoring (SHM). With the statistical sensitivity-
based damage localization approach, a residual vector is computed from vibration measurements in the reference
and the damaged state. The residual is analyzed statistically in hypothesis tests with respect to change directions
defined by the sensitivities of the structural parameters associated to elements of a finite element (FE) model of the
investigated structure. If the test for a parameter reacts, then the respective element of the structure is indicated as
damaged. This approach offers a very generic and theoretically sound framework to analyze parametric changes in
systems, and takes into account the intrinsic statistical uncertainty related to measurement data. Depending on the
definition of the residual and of the parameterization, the approach offers a simple computation of the test statistics
directly from the measurement data in the damaged system, without the need of system identification. Since an FE
model is used, the approach is applicable on arbitrary structures, while no model updating is required and therefore the
requirements on the FE model accuracy are less strict. While the theoretical framework has been developed previously,
it lacked robustness so far for an application on real structures. The purpose of this paper is the development of this
framework into a working damage localization method that is applicable on real data from complex structures. To
achieve this goal, robust hypothesis tests are used, the sensitivity computation of the residual is revisited for more
precision thanks to reduced modal truncation errors, and an adequate clustering approach is proposed for the case
of a high-dimensional FE parameterization for complex structures. Furthermore, several robustness properties of the
method are proven. Finally, an application of this framework is shown for the first time on experimental data for
damage localization, namely in an ambient vibration test of a 3D steel frame at the University of British Columbia.

Keywords: Damage localization, Structural vibration monitoring, Ambient excitation, Hypothesis testing, Subspace
methods

1. Introduction

The diagnosis of damages is a fundamental task for structural health monitoring (SHM) [1]. With the advent
of new technologies, instrumentation of structures is becoming widespread. In particular, vibration-based techniques
have been actively developed in the last decades [2–4], for example for the monitoring of bridges, buildings or offshore
structures [5]. Physical changes in the structure due to damage induce changes in the modal characteristics of the
structure, which can be monitored through output-only vibration measurements.

Damage diagnosis is usually divided into five sub-tasks of increasing difficulty [1]: damage detection (level 1),
damage localization (level 2), identification of the damage type (level 3), quantification of the damage extent (level 4)
and prediction of the remaining service life (level 5). Methods for damage detection are the most developed since
they can operate purely data-based and do not require a physical model of the monitored structure. Examples are
algorithms from pattern classification and statistical process control, e.g. [6–8].

Methods for damage localization are more sophisticated since some link between the measurement data and the
physical properties of the structure is required in order to localize the physical change in the structure due to damage.
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Such a link is often given by a finite element (FE) model or by directly assuming specific structural types. Data-driven
damage localization methods [3, 4] are usually designed for specific structural types, like beams, plates or rotating
machinery, and often require dense sensor grids. However, they are not easily generalizable to arbitrary structural
types. Using an FE model usually leads to more universal damage localization approaches which are well-adapted
for complex structures. E.g., in model-based methods the parameters of an FE model of the healthy structure are
updated based on measurements from the damaged system, and damage is localized in the regions of the model where
parameters have changed [9–11]. A shortcoming of model-based approaches is often poor conditioning due to the
huge FE parameter dimension in comparison to relatively few modal parameters that can be extracted from data, which
requires user interaction by an experienced engineer in the updating process [9, 10]. In these approaches, the damage
extent quantification is not decoupled from the damage localization, which also contributes to poor conditioning due
to the demand of both information at the same time.

Alternative damage localization approaches, which also use an FE model of the investigated structure, intend to
achieve damage localization (level 2) without addressing the more difficult quantification task (level 4) [12]. There-
fore, by addressing a simpler task, their requirements on the accuracy of the FE model are usually less strict than for
updating approaches. Usually, these approaches are strongly based on data-driven features from measurements of the
reference and damaged states, as well as on some information from an FE model. Damage indicators are defined with
respect to the elements of the FE model without updating it, combining properties of data-driven and model-based
approaches. For example, damage is localized by interrogating changes in the flexibility or in the transfer matrix
of a structure by applying certain load vectors (computed from the data) to an FE model in [13–16]. In [17], dam-
age is located by analyzing stress fields on the boundaries of closed regions of the structure that are computed from
measurement data and the FE model.

Also belonging to this class of combined data-driven and model-based approaches, the statistical subspace-based
damage localization approach introduced in [18, 19] computes a residual vector from the measurements that is based
on subspace properties of a Hankel matrix containing output covariances. The residual is analyzed statistically in
hypothesis tests with respect to change directions defined by sensitivities of the structural parameters associated to
elements of the FE model. If the test for a parameter reacts, then the respective element of the structure is indicated as
damaged, so damage is localized in that element. Indeed, the underlying asymptotic local approach to change detection
[20] on which this work is built, combined with adequate hypothesis tests [21], offers a very generic and theoretically
sound framework to analyze parametric changes in systems. Depending on the definition of the residual and of the
parameterization, the approach offers a simple computation of the test statistics directly from the measurement data
in the damaged system, without the need of system identification, for a decision of which system parameters have
changed and thus where the damage is localized. Therefore, the questions of damage localization and quantification
are decoupled, and the FE updating problem is avoided.

While the underlying framework has been thoroughly developed for statistical subspace-based damage detection
[18, 22–25] with successful applications on structures in the lab and in the field [26–29], the respective damage
localization approach introduced in [18, 19] has only been applied in simulations so far despite its appealing theoretical
properties and its generality. In this paper, we revisit the approach with the purpose of developing it into a working
method applicable on real ambient vibration data from complex structures. To achieve this goal, the framework for
the hypothesis tests of [21] is taken into account, and developments for the appropriate sensitivity computation and
clustering of high-dimensional FE parameters are required. Besides laying out the details of the framework and
proving several robustness properties of the method, the principal contributions of this paper to achieve a working
damage localization method are the following with respect to previous work [18, 19]:

• Choice of the hypothesis tests: While previously so-called sensitivity or direct tests where used [18, 19] that only
take into account the sensitivity of the currently tested parameter, we propose to use minmax tests, where the
sensitivities of all parameters are taken into account each time. We show that it leads to more robust localization
results by avoiding false alarms in healthy elements.

• Sensitivity computation: The sensitivity of the residual with respect to the structural parameters is a key element
for the damage localization approach. It is computed in two steps: first, the sensitivity of the residual with
respect to the modal parameters is evaluated, and second the sensitivity of the modal parameters with respect to
the structural parameters is computed. Previously, the first part has been computed using the identified modal
parameters from measurements in the reference state [18, 19]. Instead, we propose to compute this sensitivity
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using the modal parameters from the FE model. We show that in spite of possible model errors, the model-
based approach may reduce modal truncation errors of the sensitivity significantly, which leads to more robust
localization results.

• Clustering: Depending on the physical parameterization and the number of parameters, there may be parameters
that are close in the sense that a change therein may have nearly the same effect on the residual. In this
case, a preliminary clustering step is required. Previously, k-means clustering [30] was proposed [18, 19],
which however depends strongly on a random initialization and does not necessarily cluster close elements
satisfactorily. We propose a hierarchical clustering strategy, namely complete-linkage clustering [30], and show
that it is well adapted to our damage localization approach.

With these developments, our localization framework is well adapted to meet the requirements of real applications.
This is shown by its first application to experimental data in this paper, namely in an ambient vibration test of the
Yellow Frame [31], which is a 3D steel frame at the University of British Columbia.

This paper is organized as follows. In Section 2 the basic vibration models and parameterizations are introduced.
In Section 3, the subspace residual previously used in [18, 19] and other residuals [25, 32] are presented that are
suitable for damage localization in our framework. In Section 4, the details of the damage localization method are
developed and illustrated on a numerical example. Its application to experimental data of the Yellow Frame is shown
in Section 5, before concluding the paper in Section 6.

2. Vibration model and parameters

The considered damage localization method connects vibration measurements to structural system parameters to
evaluate changes in those parameters statistically. In this section, the underlying vibration models and parameteriza-
tions are recalled.

2.1. Vibration model
The behavior of mechanical structures subject to unknown ambient excitation is assumed to be described by the

differential equation
Mz̈(t) + Cż(t) +Kz(t) = ν(t) (1)

where t denotes continuous time, M,C,K ∈ Rm×m are mass, damping, and stiffness matrices, respectively, the vec-
tor z(t) ∈ Rm collects the displacements of the m degrees of freedom (DOF) of the structure, and ν(t) is the external
unmeasured force (random disturbance). Observing the displacements, velocities or accelerations of system (1) yields
the measurement vector

y(t) = Ldz(t) + Lvż(t) + Laz̈(t) + e(t), (2)

where the selection matrices Ld, Lv, La ∈ {0, 1}r×m indicate the observed displacements, velocities or accelerations at
the respective DOFs, and e(t) denotes the measurement noise.

Sampling at discrete time instants t = kτ (with sampling rate 1/τ), system (1)-(2) can also be described by a
discrete-time state space system model [33] {

xk+1 = Axk + wk

yk = Cxk + vk
(3)

with the state vector xk =
[
z(kτ)T ż(kτ)T

]T
∈ Rn, n = 2m, the measured output vector yk = y(kτ) ∈ Rr and the

system matrices

A = exp
([

0 I
−M−1K −M−1C

]
τ

)
∈ Rn×n, C =

[
Ld − LaM

−1K Lv − LaM
−1C

]
∈ Rr×n. (4)

The state noise wk is related to the unmeasured force ν, and the output noise vk is related to measurement noise e
as well as to the unmeasured force ν in case of acceleration measurements. Both noise terms are unmeasured and
assumed to be zero-mean and white, while in practice also colored noise may be feasible [34].
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2.2. System parameterization for damage localization

Damage in the system is related to a change in the physical properties of the structural elements. A basic step
in our damage localization methodology is the definition of a damage-sensitive system parameter vector. Let such a
parameter vector be called θ ∈ Rl, where l is the number of parameters, and let its value in the (undamaged) reference
state be θ0. The system parameterization is user-defined and adapted to the localization problem at hand. It should be
defined such that damage in any structural element (or in groups of structural elements) of the system corresponds to
a change in one entry of parameter vector θ0. The problem of damage localization is then to find out which entries
of the parameter vector are responsible for the change in the system based on measurements from the healthy and
from the damaged system. The parameter vector consists of, e.g., stiffness, cross sections or mass parameters of
the different structural elements, or any other physical parameter that shall be monitored and whose change affects
the modal parameters of the system. The parameter vector is usually defined in connection with an FE model that
approximates the monitored structure described by (1), where K ,M and/or C are functions of θ. Note that damage
localization requires the parameter vector to be explicitly linked to the physical properties of the different structural
elements, while damage detection can be performed more simply by detecting changes in the modal characteristics of
the system [18, 19, 21].

3. Residual vectors – damage features

Any damage diagnosis method requires the extraction of damage-sensitive features from the measurement data of
the monitored system [1]. With our damage localization approach, this feature vector is defined in a way that it is
approximately Gaussian distributed with zero mean in the reference state and non-zero mean in the damaged state,
hence the designation residual vector. In this section, residual vectors are presented that fit into this framework and
that are suitable for the subsequent damage localization approach.

3.1. Subspace residual

In covariance-driven subspace identification a block Hankel matrix H is built from the output covariances Ri =

E(yk+iyT
k ) ∈ Rr×r, whose column space contains the information on the system matrices (A,C) and thus the modal

characteristics [35–37]. This property is used to define a residual vector from the measurements without doing system
identification [18, 21–25] as follows. The left null space matrix S (θ0) ofH in the reference state is computed, which
satisfies S (θ0)TH = 0 if and only if H is obtained from the system in the reference state, i.e. θ = θ0. To check this
property using measured data YN = {y1, y2, . . . , yN} of the system in the current state under unknown parameter θ, a
consistent estimate Ĥ is obtained from the output covariance estimates R̂i = 1

N
∑N

k=1 yk+iyT
k , and the residual vector

ζ1(θ0,YN) =
√

N vec
(
S (θ0)T Ĥ

)
(5)

is defined, where vec(·) denotes the column stacking vectorization operator. Note that an estimate of S (θ0) is easily
obtained from a singular value decomposition (SVD) of Ĥ in the reference state.

3.2. Subspace residual robust to excitation changes

Changes in the ambient excitation properties do not affect the dynamic properties of the monitored structure, but
they may have an influence on the Hankel matrix Ĥ and thus on (5). The robust subspace residual from [25] is based
on the same subspace properties as in the previous section, but it is not affected by changes in the ambient excitation
properties. There, the Hankel matrix estimate Ĥ computed on the test data is replaced by the left singular vector
matrix Û1 ∈ R(p+1)r×n from an SVD of Ĥ , leading to definition

ζ2(θ0,YN) =
√

N vec
(
S (θ0)T Û1

)
. (6)
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3.3. Transfer matrix-based residual
A residual that is not built on subspace properties, but on the transfer matrix difference between reference and

damaged states, was introduced in [32]. It requires the estimation of the system matrices C and Ac of the continuous-
time state space system corresponding to (3) on the test data, following [14, 16]. Define

R(s) = C(sI − Ac)−1
[
CAc

C

]† [I
0

]
,

where s is a Laplace parameter in the complex plane. This matrix is computed in the reference state, denoted by
Rθ0 (s), and let its estimate from the test data YN be R̂(s). The respective residual vector is

ζ3(θ0,YN) =
√

N vec
(
R̂(s) − Rθ0 (s)

)
re
, (7)

where (·)re denotes the stacking of the real and the imaginary part of the vector.

3.4. Further residuals
While a detailed statistical analysis of the residuals from the previous sections has been made in the respective

works, many other residuals have been used in the literature without such an analysis, but which would also be
compatible with the following damage localization approach after slight adaptations. To name a few, this concerns e.g.
residuals built on a null-space based comparison of data Hankel matrices [38], on the difference of output covariance
Hankel matrices [39] or directly on the modal parameter differences [40, 41].

4. Statistical sensitivity-based damage localization method

The residuals defined in the previous section are computed from the measurement data, and are thus random
variables. It can be shown that they are asymptotically Gaussian distributed, and their asymptotic mean changes
when damage appears. Linking this mean to the system parameterization by the respective sensitivity, and taking
into account the residual covariance, damage is localized by using statistical tests for changes in each of the system
parameters (see also Section 2.2).

In this section, the basics of these statistical tests are first laid out in a generic Gaussian framework, where all
aforementioned residuals fit in. Second, the residual sensitivity, which plays an essential role in these tests, is elabo-
rated in detail. Two different practical ways of its computation are developed. Third, a tailor-made clustering approach
is developed based on the residual sensitivity and covariance. This ensures the robustness of the damage localization
approach in particular when the number of system parameters is high in comparison to the number of sensors.

Illustrative example. In the course of these developments, a simple numerical example will be used for illustration
purposes, namely a shear wall model in two configurations containing six or 15 elements shown in Figure 1. The
stiffness and the mass are equal for all levels. The damping ratio is set to 2% in all modes. Vibration data at three
sensors (see Figure 1) is simulated from Gaussian white noise excitation in all story levels. Gaussian measurement
noise with 5% magnitude of the signals is added. Damage is simulated by reducing stiffness in one or some of the
walls. In all cases, the subspace residual from Section 3.1 is applied.

4.1. Hypotheses definition and Gaussian residual vector
The residual vector is analyzed statistically for changes in the parameter vector in hypothesis tests. It is analyzed

if θ = θ0 or if θ , θ0 for each entry of the parameter vector, and it needs to be decided which entries in θ0 have actually
changed for damage localization. For mathematical convenience, the underlying hypotheses are formulated based on
the asymptotic local approach for change detection [20] as

H0 : θ = θ0 (reference system),
H1 : θ = θ0 + δ/

√
N (damaged system),

(8)

where δ ∈ Rl is an unknown but fixed change vector. With this statistical framework, very small changes in the system
parameter θ0 can be detected if N is large enough. Moreover, this framework allows to characterize the asymptotic
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Figure 1: Shear wall model in two configurations with sensor positions, composed of (a) six elements, and (b) 15 elements.

probability distributions of the residuals defined in Section 3. Indeed, it can be shown that all those residuals are
asymptotically Gaussian distributed for N → ∞ with [21, 22]

ζ(θ0,YN)
d
−→

{
N(0,Σ) under H0
N(J δ,Σ) under H1,

(9)

where J and Σ are the asymptotic sensitivity and covariance of the respective residuals. Besides the residuals defined
in Section 3, any other residual can be treated with the subsequent localization approach if it satisfies property (9).
The computation of the residual sensitivity and covariance depends on the particular residual and general guidelines
are given in Section 4.3 and 4.4. Thanks to property (9), the computed residual can be assumed to be approximately
Gaussian distributed when the number of samples N is large enough, having zero mean in the reference state and
non-zero mean in the damaged state, and the same covariance in both states. Note that the factor

√
N in the residuals

in Section 3 is essential for convergence to a Gaussian distributed random variable. In this Gaussian framework,
classical statistical hypothesis tests can be applied for damage diagnosis as detailed in the following section.

4.2. Statistical tests
For damage localization, it has to be decided which entries in the parameter vector θ0 have changed, i.e. which

entries in the change vector δ = [δ1 δ2 . . . δl]T are non-zero. This is done by testing the entries δi, i = 1, . . . , l
corresponding to each parameter separately, and damage localization in element i corresponds to testing δi = 0 against
δi , 0. For each δi that is tested, define also the change vector corresponding to the non-tested elements as

δῑ = [δ1 . . . δi−1 δi+1 . . . δl]T .

Let the respective columns of the sensitivity matrix J = [J1 J2 . . . Jl] be selected accordingly as Ji and

Jῑ = [J1 . . . Ji−1 Ji+1 . . . Jl], (10)

and let the respective parts of the Fisher information matrix F = JT Σ−1J be rearranged as[
Fi,i Fi,ῑ

Fῑ,i Fῑ,ῑ

]
=

[
JT

i Σ−1Ji J
T
i Σ−1Jῑ

JT
ῑ Σ−1Ji J

T
ῑ Σ−1Jῑ

]
. (11)
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In the following subsections, two tests for parameter subsets are recalled from [21, 42].

4.2.1. Direct test
The simplest possibility for testing δi = 0 against δi , 0 is to assume no change in the remaining parameters, i.e.

δῑ = 0. Then, the generalized likelihood ratio (GLR) test amounts to the test statistic

ti
dir = ζT Σ−1Ji

(
JT

i Σ−1Ji

)−1
JT

i Σ−1ζ, (12)

This test is called sensitivity test or direct test. The test variable ti
dir is χ2-distributed with one degree of freedom and

non-centrality parameter Fi,i δ
2
i if δῑ = 0 is actually true. If the assumption δῑ = 0 does not hold, the non-centrality

parameter of ti
dir is (F1/2

i,i δi + F−1/2
i,i Fi,ῑ δῑ)2 [21].

With this test, damage is located in the elements whose respective test values ti
dir are the highest for i = 1, . . . , l.

This test was used in previous related works on damage localization [18, 19]. However, the underlying assumption
δῑ = 0 is not true when more than one element is damaged, or when testing undamaged elements while others are
damaged. In this case, the non-centrality parameter of the respective tests depends on the relation of the tested
parameter to the remaining parameters in Fi,ῑ and of the change δῑ. Thus, the results from this test may be unreliable
in these situations.

4.2.2. Minmax test
Instead of assuming δῑ = 0, the minmax test is designed such that it reacts only to a change in the tested element,

while being blind to changes in the other elements [21, 42]. Assume that J is of full column rank. First, define the
partial residuals ζi

def
= JT

i Σ−1ζ and ζῑ
def
= JT

ῑ Σ−1ζ, the robust residual ζ∗i
def
= ζi − Fi,ῑF−1

ῑ,ῑ ζῑ and F∗i
def
= Fi,i − Fi,ῑF−1

ῑ,ῑ Fῑ,i.
Then, the mean of the robust residual ζ∗i is only sensitive to changes δi, but blind to δῑ, and the corresponding GLR
test statistic for δi = 0 against δi , 0 turns out to be

ti
mm = ζ∗Ti F∗−1

i ζ∗i , (13)

which is called minmax test. The test variable tmm is χ2-distributed with one degree of freedom and non-centrality
parameter δT

i F∗i δi, independently of δῑ. For a decision, the test variable should be compared to a threshold. Damage
is located in the elements i with the highest values of the test variable ti

mm. A numerically efficient computation of the
test variable is described in detail in [21].

4.2.3. Comparison of direct and minmax test
If there is no damage in the tested element, i.e. δi = 0, the non-centrality parameter of the minmax test is always

zero, while this is not necessarily the case in the direct test. This may lead to false positives in the direct test. On the
other side, if there is actually damage in the tested element, i.e. δi , 0, but also damage in other elements, it may
happen that the direct test actually reacts less (or even not at all) in the case Fi,ῑδῑ < 0, leading to a false negative
result, while the minmax test reacts. Thus, the minmax test should be preferred to the direct test, while in related
previous works on damage localization [18, 19] only the direct test was considered.

Illustrative example. The direct and the minmax test are applied to the shear wall example containing six elements
in Figure 2, where damage is introduced in elements 4 and 6 by a 5% stiffness reduction. While the test reacts for
the damaged elements in the direct test (Figure 2(a)), also the test for the undamaged element 5 reacts strongly, even
more than for the actual damaged element 4, causing a false positive. In the minmax test (Figure 2(b)), only the tests
for the damaged elements react, as expected.

4.3. Sensitivity computation
As seen in the previous section, the sensitivity matrixJ plays an essential role in the statistical tests for the damage

localization. It appears in the asymptotic property (9) of the residual, where it results from its Taylor expansion, being
its derivative with respect to system parameter θ and evaluated in θ0,

J = lim
N→∞

∂

∂θ
Eθ

1
√

N
ζ(θ0,YN)

∣∣∣∣∣∣
θ=θ0
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Figure 2: Damage localization tests of shear wall (six elements) with 5% damage in elements 4 and 6.

where Eθ denotes the expectation when the data YN is recorded under system under parameter θ. Note that the
sensitivity matrix is the derivative of the residual where the normalization factor

√
N is removed, which ensures its

(almost sure) convergence. The normalization factor does not disappear of course, and is part of δ =
√

N(θ − θ0) in
the product Jδ in (9) instead.

This sensitivity matrix is obtained in two steps using the chain rule. First, since all the proposed residuals are
linked to the modal parameters of the system, the analytical residual derivative with respect to the modal parameters
can be directly obtained based on the definition of the residual as

Jmodal = lim
N→∞

∂

∂η
Eη

1
√

N
ζ(θ0,YN)

∣∣∣∣∣∣
η=η0

, (14)

where η is a vector containing the modal parameters of the system and η0 is its value in the reference state. Second,
the derivative of the modal parameters with respect to the system parameter θ is obtained with the help of an FE model
of the structure as

JFE =
∂η

∂θ

∣∣∣∣∣
θ=θ0

.

Finally, the desired sensitivity matrix is the product of both,

J = JmodalJFE.

In practice, its estimate is obtained by using consistent estimates from measurement data recorded in the reference
state and quantities obtained from the FE model, as detailed in the following.

Note that the accuracy of the statistical tests for damage localization depends in particular on the accuracy of this
sensitivity matrix up to some scaling constants (see Appendix C), while accuracy of the FE model itself is not an
explicit requirement.

4.3.1. Sensitivity Jmodal of residual with respect to modal parameters
This part of the sensitivity computation is entirely dependent on the chosen residual and is usually obtained

analytically. The modal parameter vector η is user-defined for the problem at hand. Its components can e.g. be the
frequencies and real-valued mode shapes for compatibility with a standard FE model under classical damping, or the
whole set of modal parameters including frequencies, damping ratios and complex-valued mode shapes. Instead of
the natural frequencies, the circular frequencies could be taken, or directly the eigenvalues of the continuous-time
system (1). For a convenient computation of the derivatives, η should be defined as a real-valued vector, i.e. instead of
containing complex-conjugated pairs of eigenvalues or eigenvectors it should contain their real and imaginary parts,
respectively. The only requirements on η are, first, that it should be a complete parameterization, i.e. the modal
parameters of all the modes in the frequency range of the measured data of system (3) are included to avoid modal
truncation errors, and second, that the derivative of the chosen modal parameter vector η with respect to the desired
system parameters will be available in the second part of the sensitivity computation based on the FE model.

8



To give an example of η, we assume its composition of the natural frequencies and the pairs of conjugate complex
mode shapes, or equivalently their real and imaginary parts of one of each pair, i.e.

η = [ f1 . . . fm∗ <(ϕ1)T . . . <(ϕm∗ )T =(ϕ1)T . . . =(ϕm∗ )T ]T , (15)

where m∗ is the number of modes in the frequency range until 1/(2τ). The damping ratios are omitted in this example
definition of η for simplicity. An example of the sensitivity computation for the subspace residual (5) with respect to
η as defined in (15) is given in Section 4.3.3.

Besides other estimates related to the residual computation in the reference state, the actual value η0 of the modal
parameter vector in the reference state is required in the computation of this part of the sensitivity matrix. Since there
might be some differences between the modal parameters that are obtained either from the measurement data or from
the FE model, the following choices can be made:

Data-based Computation: Vector η0 = ηdata
0 is estimated from measurement data in the reference state, as

previously proposed in [18, 19]. This requires a precise modal analysis from the reference data. In addition, the
identified modes from the data need to be matched with the modes from the FE model, and the mode shapes need
to be appropriately scaled to be consistent with the second part JFE of the sensitivity computation related to the FE
model.

Model-based Computation: Vector η0 = ηFE
0 is obtained from the FE model. We propose this computation as

an alternative to the data-based computation. In this way, η0 is directly consistent with the second part JFE of the
sensitivity computation, which is related to the FE model, and no mode matching or scaling are required. Moreover,
weakly excited modes that cannot be accurately identified from measurement data can be taken into account in the
sensitivity computation, reducing modal truncation.

Illustrative example. In Figures 3 and 4, the influence of both computations on the localization performance is
illustrated with the shear wall example using the minmax test. First, assuming the same (correct) FE model for data
simulation and sensitivity computation, only the first 3 identified modes from the data were used for the computation
of Jmodal in Figure 3(a), while 4 modes from the model were used in Figure 3(b). In the former case, only one of
two damages can be localized, while in the latter case both damages can be localized correctly. This illustrates that
for cases with only few identified modes from the measurements, it might be advantageous to use the model-based
sensitivity computation where more modes are available, reducing modal truncation.

In a second setting in Figure 4, both sensitivity computations are compared assuming an incorrect FE model in the
sensitivity computation, since in practice FE models hardly describe a structure perfectly. Such a perturbed model of
the shear wall was obtained by changing each wall stiffness randomly by up to ±20%. Then, the data-based sensitivity
computation indeed improves the situation, which can be seen in Figure 4(a) where 4 identified modes were used,
compared to Figure 4(b) where 4 modes from the model were used. In the former case, both damages are localized
correctly, while in the latter case only one of two damages can be localized due to the model errors. However, using
6 modes from the model in Figure 4(c), both damages can be localized correctly despite the model errors, illustrating
that the proposed model-based computation ofJmodal may indeed remedy modal truncation errors even in the presence
of model errors.
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(a) Minmax tests using data-based sensitivity computation with 3
modes
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(b) Minmax tests using model-based sensitivity computation with 4
modes

Figure 3: Damage localization tests of shear wall (six elements) with 5% damage in elements 4 and 6, where sensitivity is computed with the
correct FE model.
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(a) Minmax tests using data-based sensitivity computation with 4
modes.
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(b) Minmax tests using model-based sensitivity computation with 4
modes.
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(c) Minmax tests using model-based sensitivity computation with 6
modes.

Figure 4: Damage localization tests of shear wall (six elements) with 5% damage in elements 4 and 6, where sensitivity is computed with the
perturbed FE model.

4.3.2. Sensitivity JFE of modal parameters with respect to system parameter
The derivative of the modal parameters with respect to the system parameter is based on the FE model of the

structure. Its computation can be performed analytically or by using mathematical differential approximation methods
such as the finite difference approach. In the following these two approaches are described.

4.3.2.1. Analytical computation

The sensitivity of the modal parameters is developed based on the eigenvalue equation of the mechanical model (1)

(Mµ2
j + Cµ j +K)ψ j = 0, (16)

for each eigenvalue and eigenvector pair (µ j, ψ j), j = 1, . . . , 2m with in general complex-valued ψ j ∈ Cm. Note that
they are related to the eigenvalues λ j and mode shapes ϕ j ∈ Cr of the monitored system (3), which satisfy

Aφ j = λ jφ j, ϕ j = Cφ j, (17)

through

λ j = eµ jτ, ϕ j = L jψ j where L j = Ld + Lvµ j + Laµ
2
j , (18)

see also (4). Natural frequencies and damping ratios are

f j =
|µ j|

2π
, ξ j = −

<(µ j)
|µ j|

, (19)

respectively.
The i-th column of JFE contains the derivative of modal parameter vector η with respect to system parameter θi

in the parameter vector θ = [θ1 θ2 . . . θl]T . It is based on deriving the eigenvalues and eigenvectors (µ j, ψ j) with
respect to θi based on (16), supposing that the mass, damping and/or stiffness matrices are functions of θ. Then, η is
linked to (µ j, ψ j) using the relations (17)–(19). The details of these derivations are presented in Appendix A. Finally,
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the modal parameter sensitivity JFE for η as defined in (15), as an example, can be composed from these derivatives
as

JFE =



∂ f1
∂θ1

∂ f1
∂θ2 . . . ∂ f1

∂θl

...
...

...
∂ fm∗
∂θ1

∂ fm∗
∂θ2 . . . ∂ fm∗

∂θl

<( ∂ϕ1
∂θ1 ) <( ∂ϕ1

∂θ2 ) . . . <( ∂ϕ1
∂θl )

...
...

...

<( ∂ϕm∗

∂θ1 ) <( ∂ϕm∗

∂θ2 ) . . . <( ∂ϕm∗

∂θl )
=( ∂ϕ1

∂θ1 ) =( ∂ϕ1
∂θ2 ) . . . =( ∂ϕ1

∂θl )
...

...
...

=( ∂ϕm∗

∂θ1 ) =( ∂ϕm∗

∂θ2 ) . . . =( ∂ϕm∗

∂θl )



(20)

4.3.2.2. Finite difference method

In evaluating the analytical sensitivities in the previous section, the mass, damping and stiffness matrices of the
structure are needed to be evaluated and then their sensitivities to the parameters be calculated. This might be a
problem when using commercial software in modeling big structures or complex FE models, where no access to the
full mass and stiffness matrices may be available.

Instead, the finite difference method can be used to compute the required sensitivities. To obtain the i-th column
of JFE, the parameter θi

0 is slightly perturbed in the FE model to θi
0 + ∆θi

0, while the other components of θ0 remain
the same. Then, the modal parameters η(θi

0 + ∆θi
0) are evaluated after the perturbation and

∂η

∂θi

∣∣∣∣∣
θ=θ0

≈
η(θi

0 + ∆θi
0) − η(θ0)

∆θi
0

.

The perturbation ∆θi
0 should be chosen small enough to ensure a small approximation error, but not too small consid-

ering machine precision and computational errors.

4.3.3. Example: sensitivity of subspace-based residual
The sensitivity of the subspace residual (5) has been developed in [18, 19] and is summarized in this section. Fur-

thermore, important properties regarding its uniqueness and its independence from mode shape scaling are revisited.
From definition (14), the residual sensitivity with respect to modal parameter vector η writes as

Jmodal =
∂vec(S (θ0)TH(η))

∂η

∣∣∣∣∣∣
η=η0

.

Assuming η as defined in (15), this sensitivity is computed analytically in three steps with the chain rule. First, the
derivative of vec(S (θ0)TH) is obtained with respect to the set of eigenvalues λ j and mode shapes ϕ j of the discrete-
time system (see (17)-(18)), denoted as Jζ

(λ,ϕ). It is obtained based on the decomposition H = OC into observability
and controllability matrix, where O can be written in the modal basis directly in terms of λ j and ϕ j. Second, the
derivative J (λ,ϕ)

(µ,ϕ) of the λ j’s with respect to the eigenvalues µ j of the continuous-time system is obtained, based on

(18). Third, the derivative J (µ,ϕ)
η with respect to the natural frequencies based on (19) concludes the computation of

Jmodal = J
ζ
(λ,ϕ)J

(λ,ϕ)
(µ,ϕ)J

(µ,ϕ)
η . The details of this computation are developed in Appendix B.1.

In the final step, the sensitivity JFE of η with respect to the system parameter vector θ is obtained from the
FE model as described in Section 4.3.2, leading to the residual sensitivity J = JmodalJFE that is required for the
localization approach.

Note that the mode shapes are always identified or computed up to some particular scaling that may be chosen
by the user or that may be arbitrary, but which is coherent between Jmodal and JFE. Furthermore, the mode shape
sensitivity with respect to the physical parameters inJFE is not unique (see Appendix A). Nevertheless, the subspace
residual sensitivity J is well-defined and unique:
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• Mode shape scaling factors are carried through the computation of Jmodal and cancel out with the respective
scaling factors in JFE, even if the factors are dependent on the model parameters. This is proved in Appendix
B.2.

• The non-unique part of the mode shape sensitivity in JFE lies in the null space of Jmodal and therefore cancels
out. This is proved in Appendix B.3.

Thanks to these properties, the chosen mode shape scaling and the particular solution of the mode shape sensitivity
do not play a role in damage localization with the subspace residual.

4.4. Covariance computation
The residual covariance Σ is estimated for the chosen residual by a sample covariance computed from data in the

reference state, and for some residuals also using data in the tested, possibly damaged, state. The computation may be
direct in the reference state, where the residual is evaluated on several datasets (or on several blocks of a long dataset)
Yk

Nb
, k = 1, . . . , nb, each of length Nb [18, 25]. This applies for example to the subspace residual from Section 3.1.

Then the sample covariance writes as

Σ̂ =
1

nb − 1

nb∑
k=1

ζ(θ0,Y
k
Nb

)ζ(θ0,Y
k
Nb

)T .

For other residuals, the computation may be indirect, where first a sample covariance related to the data is obtained,
e.g. of the system’s output covariances, and then propagated in a sensitivity-based approach to the residual covariance
[25, 32].

4.5. Clustering of parameters
In practice, the number of physical parameters in parameter vector θ may be large, which is usually based on an

FE model. In other cases, a damage in different but close elements of the structure may have a similar effect on the
residual. Then, the information provided by the sensors is not sufficient to be able to distinguish if a damage is due
to a change in one or another close physical parameter. In this case, the direct test will react for all close parameters,
and the minmax test becomes unpredictable since the assumption of J being full column rank is violated in this case.
This is illustrated in Figure 5 for the shear wall from Figure 1(b) containing 15 elements but only three sensors. In the
example, elements 3 and 5 are damaged. Indeed, besides the damaged elements also many other elements react in the
direct test in Figure 5(a), while the minmax test shows a strong reaction only for element 3 in Figure 5(b), missing the
damage in element 5.

The closeness of parameters stems from the modal behavior of the structural elements which in turn is related
to their geometrical and physical closeness and modal direction in the considered mode shapes. This closeness is
reflected in the sensitivity matrix J : if changes in some parameters have (nearly) the same effect on the residual, then
their respective columns in J must be (nearly) identical. Note that only the direction defined by the columns of J is
relevant, but not their magnitude, since the magnitude is cancelled out in the localization tests as shown in Appendix
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(a) Direct tests
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(b) Minmax tests

Figure 5: Damage localization tests of shear wall (15 elements) with 10% damage in elements 3 and 5 without using clustering.
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Figure 6: Schematic illustration of closeness of sensitivity vectors in three dimensions.

C. Hence, the angle between the columns is the relevant parameter for measuring closeness. Figure 6 illustrates the
possible closeness of some parameters in three dimensions.

To be consistent with test statistics of the direct and minmax test, the vectors for clustering are the columns of J
pre-multiplied with Σ−1/2, which is the square root inverse of Σ yielding Σ−1 = (Σ−1/2)T Σ−1/2. Furthermore, they are
normalized to unit norm to remove any effect of their scaling on the clustering approach, since only their angles are
relevant. This leads to the normalized vector set J̃i, i = 1, . . . , l, with

J̃i
def
=

1
||Σ−1/2Ji||

Σ−1/2Ji

for clustering. The distance between two such vectors is defined as

di j = 1 − |J̃T
i J̃ j|, (21)

which varies between zero when both vectors define the same change direction, and one when they are orthogonal.
Closeness of two parameters θi and θ j is then reflected in a small value of di j. In the following, two approaches of
clustering close parameters are described. The first approach is vector quantization that has been proposed previously
for damage localization in [18, 25]. We propose the use of hierarchical clustering in the second approach.

4.5.1. Vector quantization: k-means
k-means clustering is a vector quantization approach frequently used in signal processing, image processing and

machine learning [30]. In this algorithm, the number of clusters nc is defined by the user. Then, nc vectors are selected
randomly from all vectors as the centers of the clusters. Subsequently, the other vectors in space are categorized to
each of these clusters based on their minimum distance to the centers. Iteratively, the mean of each cluster is calculated
and each vector in space is re-associated to the group with the closest center. The iteration converges when no point
is re-associated to other clusters.

This algorithm is highly dependent on the number of clusters nc and the random starting points. It is not guaranteed
to converge, and it can converge to local minima. Therefore, different starting points can result in different classifi-
cations. Moreover, the number of clusters of structural elements are unknown a priori and the resulting localization
tests, in particular the minmax test, are dependent on it. A criterion on closeness of vectors in the resulting clusters is
only implicit, and it is possible that some close vectors are categorized in different clusters. Finally, attention needs to
be paid on the orientation of the vectors, since a multiplication of a vector with −1 does not affect our distance in (21)
nor the results of the localization tests, but it affects strongly the outcome of the k-means clustering approach.
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4.5.2. Hierarchical clustering: complete-linkage
Complete-linkage clustering is an agglomerative hierarchical clustering method [30]. In the first step, each element

defines a cluster. In an iterative process, the two clusters with the shortest distance are combined into a larger cluster,
where the distance between two clusters is defined as the distance of the cluster elements that are farthest to each
other. The result of the clustering can be illustrated in a dendrogram, which shows the sequential cluster fusion and
the cluster distance at which each fusion took place. With this classification, a threshold dmax needs to be selected,
which defines the maximum distance of vectors in each cluster. The clusters in the dendrogram that are combined
below this threshold are our final clusters. For each cluster, it is ensured that the pairwise scalar product between the
associated vectors has the same sign, otherwise a vector is multiplied by −1. Finally, their mean is computed to obtain
the cluster centers.

With this clustering approach, it is not necessary to determine the number of clusters beforehand. Instead, clusters
are formed up to a chosen maximum distance between their elements, where our distance measure is defined in (21).

4.5.3. Application of clusters in the tests

Define the normalized residual as ζ̃ def
= Σ−1/2ζ, and let the cluster centers be ck, k = 1, . . . , nc and k(i) the cluster

index of the cluster containing element i. With this notation, the columns in the sensitivity matrix are replaced by the
cluster centers in the tests as follows.

Direct test: While the direct test (12) can be applied directly without clustering, it can also be applied to the cluster
center ck(i) when testing parameter i, which writes

t̃i
dir =

ζ̃T ck(i)cT
k(i)ζ̃

cT
k(i)ck(i)

.

In this way, the same test value is assigned to all elements in the same cluster.
Minmax test: In the computation of the minmax test (13), the sensitivities of the non-tested elements Jῑ are

replaced by the cluster centers Cῑ = [c1 . . . ck(i)−1 ck(i)+1 . . . cnc ] of the clusters that do not contain element i. Then,
the test for element i writes

t̃i
mm = ζ̃∗Ti F̃∗−1

i ζ̃∗i ,

where the partial residuals are ζ̃i = J̃T
i ζ̃, ζ̃ῑ = CT

ῑ ζ̃, F̃ = [J̃i Cῑ]T [J̃i Cῑ] is the cluster Fisher information with
respective partitions analogous to (11), ζ̃∗i = ζ̃i − F̃i,ῑF̃−1

ῑ,ῑ ζ̃ῑ is the robust residual and F̃∗i = F̃i,i − F̃i,ῑF̃−1
ῑ,ῑ F̃ῑ,i. In

this way, test values can be computed for all elements in a cluster, while being insensitive to changes in the other
clusters. Keeping in mind that all elements in a cluster will yield similar test values, this still can give a slightly higher
localization resolution compared to computing test values only for the cluster centers. In the latter case, J̃i is replaced
by ck(i) in the computation of t̃i

mm.
Note that due to the invariance of the tests to the scaling of the sensitivity matrix (see Appendix C), the different

scaling between the cluster centers and the columns of the sensitivity matrix does not affect the tests. Hence, the
replacement of the columns of Σ−1/2J by the cluster centers is coherent in the tests above.
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(a) Clusters in dendrogram with hierarchical clustering

4     6     7    10    11   3   5     13   14  15     1      2     8     9     11

element number

(b) k-means clusters

Figure 7: Clustering for shear wall (15 elements).
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Illustrative example. Using the same data as in Figure 5 for localization on the 15 element shear wall, the elements
were clustered with the k-means and the hierarchical clustering approach as described above. The resulting clusters
are depicted in Figure 7. For the comparison of both approaches, a threshold of 0.3 was chosen in the dendrogram of
the hierarchical approach in Figure 7(a), which leads to 7 clusters, and 7 clusters were chosen in the k-means approach,
see Figure 7(b). The resulting minmax localization tests are shown in Figure 8, where the hierarchical approach leads
to a clear localization of the damage in elements 3 and 5, while the undamaged elements react more strongly when
using the k-means approach for clustering.
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(a) Minmax tests with hierarchical clustering
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(b) Minmax tests with k-means clustering

Figure 8: Damage localization tests of shear wall (15 elements) with 10% damage in elements 3 and 5 with clustering.

5. Case study: Yellow Frame

The Yellow frame is a modular 4 story, scaled (1/3) steel frame reestablished during this research at the University
of British Columbia (UBC), shown in Figure 9. Previously, this structure has been used as an IASC/ASCE benchmark
structure since 2002 [31]. Several damage scenarios are designed and tested by removal of braces of the structure.

The structure is 3.6 m high and is composed of 2 spans in each direction with a total length of 2.5 m. Each floor
of the structure is carrying dead loads applied to the structure by using 4 steel plates distributed on each level. For

Figure 9: Photo of the Yellow Frame structure (south-east corner).
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the lateral stability, four pairs of threaded steel rods with a diameter of 12 mm are used as braces on each side of
the structure in each floor. In each floor, three sensors are located at the north, south and west side of the structure,
amounting to altogether 12 sensors. In Figure 10, a plan of each level with the mass plates and sensor locations is
shown, as well as the numbering of the braces. In our study, the following damage scenarios are considered in detail:

• Scenario 1: removal of braces 21 and 23

• Scenario 2: removal of braces 2, 4, 18 and 20

The goal is to identify the removed braces. Hence, the stiffnesses of each of the 32 braces are chosen as the physical
parameter vector θ. In order to compute the sensitivity JFE of the modal parameters with respect to the physical

Figure 10: Left: plan of each level with sensor locations, right: brace numbering.

Figure 11: Finite element model of the Yellow frame.
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parameters, an FE model of the Yellow frame has been created using the Abaqus software (see Figure 11). In the
model, the section properties of the elements of the Yellow frame are used in modeling the beams, braces and columns.
The plates on each floor are modeled as four lumped masses in the four corners of each plate on the structure. Since
the plates are bolted and connected with pretensioned rods to their surrounding beams (in friction), their contribution
to the stiffness of the structure for ambient vibration is not negligible. Therefore the plates are also modeled as two
parallel beams. The base of the structure is modeled as a fixed connection to the ground. The connections of beams
and columns are also modeled as fixed connections and the braces are connected as moment free hinge connections to
the structure. Because each group of two braces in each floor at each span is only under axial force, they are modeled
as one element with cross section area equal to the total area of both braces. Localizing damage in one brace element
indicates the possibility of damage in both of these parallel braces. The FE model is not updated based on the ambient
vibration measurements, and is used as is for the sensitivity computation without additional calibration. The first four
mode shapes computed from the model are depicted in Figure 12. Note that the model needs to be approximately
representative of the dynamic behavior of the structure, although it is not required to match perfectly. It is only used
for the sensitivity computation in the reference state, and it is not needed for updating or testing. The computation of
JFE has been made using the finite difference method for the first ten modes of the FE model.

From ambient vibration measurements, the first six identified modes correspond to the modes of the FE model,
confirming the validity of the model. Two further modes correspond to the ninth and tenth mode of the model, so
altogether eight identified modes could be matched. This is in particular relevant when the data-based computation
of the sensitivity Jmodal of the residual with respect to the modal parameters is used. The first four identified mode
shapes are shown in Figure 13. Note that due to the symmetry of the structure some modes appear in pairs with
frequencies that are distinct but close to each other. While the respective mode shapes of these modes are distinct in
x and y directions in the FE model, the identified mode shapes from the data are mixed and need to be decoupled and
scaled beforehand. Besides using the data-based computation of Jmodal, the results will be compared to the proposed
model-based computation of Jmodal in the following, where all ten modes from the model will be used and no mode
matching is necessary. Clustering is done in both cases with the proposed hierarchical linkage clustering approach for
the minmax tests in Figures 16 and 17, and results are compared to k-means clustering in Figure 19. In Figures 14
and 15, the dendrograms are shown for linkage clustering with the data-based and with the model-based sensitivity

Figure 12: First four mode shapes from the FE model.

Figure 13: First four mode shapes identified from the data.
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Figure 14: Dendrogram depicting the hierarchical complete-linkage clustering with the data-based sensitivity computation.

Figure 15: Dendrogram depicting the hierarchical complete-linkage clustering with the model-based sensitivity computation.

computation, respectively, where a threshold of 0.15 was chosen for the closeness of elements. It can be seen that
neighboring braces are always in the same cluster, and furthermore there are few clusters containing four braces.

In Figure 16, the direct and minmax test results are shown for the data-based and the model-based sensitivity
computation for damage scenario 1, where braces 21 and 23 have been removed. Using the data-based sensitivity
computation, the damage cannot be localized with the direct test in Figure 16(a), while the minmax test in Figure 16(b)
shows the highest test values at the damaged braces. However, results are much clearer with the model-based sensi-
tivity computation in Figures 16(c) and 16(d), where the direct test and minmax test show a similar performance and
both tests localize the damage correctly. Since both braces 21 and 23 are in the same cluster, note that this damage
case corresponds actually to one damaged element.

Damage scenario 2, where braces 2, 4, 18 and 20 are removed, corresponds to a truly multiple damage scenario
since those elements are not in the same cluster. Using the data-based sensitivity computation, the damage cannot
be localized neither with the direct test nor with the minmax test in Figures 17(a) and 17(b). Using the model-based
sensitivity computation, the direct test in Figure 17(c) reacts well for the damaged braces, but also reacts for the
undamaged braces 6, 8, 30 and 32 which makes a correct damage localization impossible. Finally, the minmax test in
Figure 17(d) localizes the damage correctly.

In the minmax tests in Figures 16 and 17, the proposed hierarchical complete-linkage clustering was applied. To
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(a) Data-based computation of Jmodal, direct test (b) Data-based computation ofJmodal, minmax test
with linkage clustering

(c) Model-based computation of Jmodal, direct test (d) Model-based computation of Jmodal, min-
max test with linkage clustering

Figure 16: Damage localization tests for scenario 1: removal of braces 21 and 23.

compare to previously used k-means clustering, two datasets from damage scenarios 1 and 2 were considered. Here,
only the model-based sensitivity computation was used which performed best in Figures 16 and 17. The clusters
obtained from one k-means clustering instance are shown in Figure 18, where the number of clusters was set to 15,
analogous to the hierarchical clustering approach in Figure 15. Note that due to the random initialization, the clusters
are different when k-means is run another time. The localization results are shown in Figure 19. The localization
of damage scenario 1 in Figure 19(a) is not successful, which may be caused by close elements being in different
clusters, like neighboring damaged braces 21 and 23. Regarding damage scenario 2 in Figure 19(b), only the damage
in braces 18 and 20 can be localized, while the tests for other braces (in particular 17 and 19) also react, and the
damage in braces 2 and 4 cannot be localized.

From the results in Figures 16, 17 and 19 it can be seen that the minmax approach using the model-based sensi-
tivity computation and the hierarchical complete-linkage clustering approach is the most robust approach for damage
localization, illustrating the new developments of this paper.
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(a) Data-based computation of Jmodal, direct test (b) Data-based computation ofJmodal, minmax test
with linkage clustering

(c) Model-based computation of Jmodal, direct test (d) Model-based computation of Jmodal, minmax
test with linkage clustering

Figure 17: Damage localization tests for scenario 2: removal of braces 2, 4, 18 and 20.

Figure 18: Clusters obtained from k-means with the model-based sensitivity computation.

Finally, this approach is applied to two further challenging damage scenarios. In Scenario 3, one brace of each pair
is removed on all four sides of the frame in the ground floor, namely braces 1–4 and 17–20. As shown in Figure 20(a),
the damage on three of the four sides is localized correctly, while the damage on the east side in braces 1 and 3 is
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(a) Scenario 1: removal of braces 21 and 23. (b) Scenario 2: removal of braces 2, 4, 18 and 20.

Figure 19: Minmax tests with k-means clustering, using model-based computation of Jmodal.

not localized. This may be due to the absence of sensors on this side of the frame, but a proper analysis of damage
detectability based on the Fisher information may give more insight in future work. In Scenario 4, braces 6, 8, 29
and 31 are removed, which includes a brace pair in the highest floor. The tests for all the damaged elements react, as
shown in Figure 20(b), however the tests for some of the neighboring elements show also some reaction in this case,
namely for elements 9, 30 and 32, which may be due to more difficult detectability in the highest floor.

It should be noted that these results are the first successful application of the considered generic damage localiza-
tion framework to experimental data, which has become possible with the developments of this paper.

(a) Scenario 3: removal of braces 1–4 and 17–20. (b) Scenario 4: removal of braces 6, 8, 29 and 31.

Figure 20: Robust damage localization (minmax tests with model-based computation of Jmodal and linkage clustering) on two further damage
scenarios.
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6. Conclusions

In this paper, the theoretical framework for statistical sensitivity-based damage localization was developed into a
working damage localization method that is robust for real applications. The essential steps are the use of minmax tests
for detecting which structural elements are responsible for the change in the residual, the model-based computation
of the residual sensitivity and the use of the hierarchical complete-linkage clustering approach. The resulting method
offers a flexible and generic framework for damage localization, taking into account both physical model information
and measurement based uncertainties. The method was successfully applied to experimental data from different
damage cases of the Yellow Frame, a 3D steel frame, at the University of British Columbia.

Appendix A. Analytical sensitivity of modal parameters with respect to physical parameters

Deriving (16) leads to the expression [19, 43]

∂µ j

∂θi (2µ jM + C)ψ j +

(
µ2

j
∂M

∂θi + µ j
∂C

∂θi +
∂K

∂θi

)
ψ j + (Mµ2

j + Cµ j +K)
∂ψ j

∂θi = 0,

from where the equations for the eigenvalue and eigenvector sensitivities follow as

∂µ j

∂θi = −

ψT
j

(
µ2

j
∂M

∂θi + µ j
∂C

∂θi +
∂K

∂θi

)
ψ j

ψT
j (2µ jM + C)ψ j

, (A.1)

(Mµ2
j + Cµ j +K)

∂ψ j

∂θi = −
∂µ j

∂θi (2µ jM + C)ψ j −

(
µ2

j
∂M

∂θi + µ j
∂C

∂θi +
∂K

∂θi

)
ψ j. (A.2)

Since (Mµ2
j + Cµ j + K)ψ j = 0, the solution for the eigenvector sensitivity is not unique. Thus, for any particular

solution ∂ψ j

∂θi of (A.2), ∂ψ j

∂θi + αψ j is also a solution with any α ∈ C. A particular solution is, e.g.,

∂ψ j

∂θi = (Mµ2
j + Cµ j +K)†

(
−
∂µ j

∂θi (2µ jM + C)ψ j −

(
µ2

j
∂M

∂θi + µ j
∂C

∂θi +
∂K

∂θi

)
ψ j

)
, (A.3)

where † denotes the pseudoinverse. In general, any solution can be chosen. In Appendix B.3 it is shown that the final
sensitivity J of the subspace residual is unique, even though the above eigenvector sensitivity is not unique.

In Equations (A.1) and (A.3), the sensitivities of the eigenvalues and eigenvectors (µ j, ψ j) with respect to the
system parameters are obtained. Since the sensitivity of η with respect to θ is required, the relationship between η
and (µ j, ψ j) needs to be derived for all modes j that are also present in the data. When η is defined as in (15), the
derivatives of the natural frequencies and mode shapes at the sensor coordinates are required. Then, based on (19) and
(A.1) it follows

∂ f j

∂θi =
∂ f j

∂<(µ j)
<

(
∂µ j

∂θi

)
+

∂ f j

∂=(µ j)
=

(
∂µ j

∂θi

)
=

1
2π|µ j|

(
<(µ j)<

(
∂µ j

∂θi

)
+ =(µ j)=

(
∂µ j

∂θi

))
=

1
2π|µ j|

<

(
µ j
∂µ j

∂θi

)
,

and from (18) and (A.3) it follows

∂ϕ j

∂θi =
∂L j

∂θi ψ j + L j
∂ψ j

∂θi , where
∂L j

∂θi = (Lv + 2µ jLa)
∂µ j

∂θi . (A.4)

Note that this general expression is based on relation (18) between the mode shapes ϕ j contained in η and the eigen-
vectors ψ j from the FE model. It is in particular applicable when different sensor types are used at the same time,
e.g. measuring displacements and accelerations. In practice, we may have the following simplifications regarding the
mode shape scaling when only one sensor type is used, e.g. accelerometers:
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• If the data-based computation is used forJmodal, where the mode shapes ϕ j are obtained from the data and need
to be rescaled to match the corresponding mode shapes Laψ j from the FE model through some scaling factor
s j ∈ C with ϕ j ≈ s jLaψ j, e.g. through s j = ϕH

j ϕ j/(ϕH
j Laψ j), then

∂ϕ j

∂θi =
∂s j

∂θi Laψ j + s jLa
∂ψ j

∂θi .

Note that the first term ∂s j

∂θi cancels out in the sensitivity of the subspace residual as shown in Appendix B.2,
effectively leading to ∂ϕ j

∂θi = s jLa
∂ψ j

∂θi in this case.

• If the model-based computation is used for Jmodal, where the mode shapes ϕ j are directly obtained from the
FE model as ϕ j = Laψ j without rescaling, then the components of the FE eigenvector sensitivity are simply
selected at the measured DOFs as

∂ϕ j

∂θi = La
∂ψ j

∂θi .

Appendix B. Subspace residual sensitivity analysis

Appendix B.1. Residual sensitivity computation
For the first step of the derivative computation with respect to the eigenvalues λ j and mode shapes ϕ j of the

discrete-time system (see (17)-(18)), the intermediate parameter vector η̃ is defined as follows. Since all modes appear
in conjugated complex pairs in structural vibration analysis, the eigenvalues and mode shapes of system (3) can be sep-
arated into conjugated complex pairs, being λ j and ϕ j where =(λ j) > 0, j = 1, . . . ,m∗, and their conjugated complex

counterparts being λ j and ϕ j. Define ∆c
def
= diag(λ1, . . . , λm∗ ), Φc

def
= [ϕ1 . . . ϕm∗ ] and η̃c

def
= [λ1 . . . λm∗ ϕ

T
1 . . . ϕT

m∗ ]
T ,

containing each one value of each conjugated complex pair. Then, the system is fully described by the complex-valued
parameter vector [η̃T

c η̃c
T

]T , and we define the corresponding real-valued parameter vector η̃ def
= [<(η̃c)T =(η̃c)T ]T .

The goal of the first step in the derivative computation is to obtain

J
ζ
(λ,ϕ)

def
=

∂vec(S (θ0)TH(η̃))
∂η̃

∣∣∣∣∣∣
η=η0

. (B.1)

This derivative is obtained through the decompositionH = OC, where O = O(η̃) is defined in the modal basis in terms
of the eigenvalues λ j and mode shapes ϕ j of the discrete-time system as follows. In the complex format, it is obtained
from a similarity transform of the state space system, where A = diag(∆c,∆c) and C = [Φc Φc]. In the following,
we use the equivalent real-valued format for ease of computation which is obtained after another simple similarity
transform, yielding

O(η̃) def
=

[
<(Oc(η̃c)) =(Oc(η̃c))

]
=


<(Φc) =(Φc)
<(Φc∆c) =(Φc∆c)

...
...

<(Φc∆
p
c ) =(Φc∆

p
c )

 , where Oc(η̃c) def
=


Φc

Φc∆c
...

Φc∆
p
c

 . (B.2)

Then, (B.1) is obtained in this first step as follows. It holds for each entry i of η̃

∂(S (θ0)TO(η̃)C(η̃))
∂η̃i

∣∣∣∣∣∣
η=η0

= S (θ0)T ∂O(η̃)
∂η̃i

∣∣∣∣∣
η=η0

C(η0) + S (θ0)TO(η0)
∂C(η̃)
∂η̃i

∣∣∣∣∣
η=η0

. (B.3)

Since S (θ0)TO(η0) = 0, the second term vanishes, noting that the physical and modal parameter vectors θ0 and η0
describe the same system state, respectively. Vectorizing the expression, taking the derivative with respect to the
entire vector η̃ and replacing C(η0) = O(η0)†H(η0) leads to

J
ζ
(λ,ϕ) =

(
O(η0)†H(η0) ⊗ S (θ0)

)T
O′(η0), where O′(η0) def

=
∂vec(O(η̃))

∂η̃

∣∣∣∣∣
η=η0

, (B.4)
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where ⊗ denotes the Kronecker product. The derivative O′(η0) is calculated analytically based on the complex-valued
derivative of Oc(η̃c) [18, 22, 25]. Define

Λ j
def
=

[
1 λ j λ2

j . . . λ
p
j

]T
, Λ′j

def
=

[
0 1 2λ j . . . pλp−1

j

]T
,

then

O′c(η0) def
=

∂ vec(Oc(η̃c))
∂η̃c

∣∣∣∣∣
η=η0

=


Λ′1 ⊗ ϕ1 0 Λ1 ⊗ Ir 0

. . .
. . .

0 Λ′m∗ ⊗ ϕm∗ 0 Λm∗ ⊗ Ir


∣∣∣∣∣∣∣∣∣∣
η=η0

(B.5)

and the derivative of the real-valued parametric observability matrix O′(η0) in (B.4) yields

O′(η0) =

[
<(O′c(η0)) −=(O′c(η0))
=(O′c(η0)) <(O′c(η0))

]
. (B.6)

In the second step, the derivatives of λ j with respect to µ j and f j are required. From (18) it follows
∂<(λ j)
∂<(µ j)

∂<(λ j)
∂=(µ j)

∂=(λ j)
∂<(µ j)

∂=(λ j)
∂=(µ j)

 = τ

[
<(λ j) −=(λ j)
=(λ j) <(λ j)

]
,

and thus

J
(λ,ϕ)
(µ,ϕ) =



τ<(λ1) −=(λ1)
. . .

. . .

τ<(λm∗ ) −=(λm∗ )
Im∗r 0m∗r

τ=(λ1) <(λ1)
. . .

. . .

τ=(λm∗ ) <(λm∗ )
0m∗r Im∗r



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
η=η0

(B.7)

where Ia and 0a are the identity and zero matrix of size a×a, respectively. Following from the relation µ j = −2π f jξ j +

2π f j

√
1 − ξ2

j i, the derivatives with respect to the frequencies yield

∂<(µ j)
∂ f j

= −2πξ j,
∂=(µ j)
∂ f j

= 2π
√

1 − ξ2
j ,

and thus

J
(µ,ϕ)
η =



−2πξ1
. . .

−2πξm∗

Im∗r 0m∗r

2π
√

1 − ξ2
1

. . .

2π
√

1 − ξ2
m∗

0m∗r Im∗r



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
η=η0

. (B.8)

Finally, an estimate of Jmodal is obtained by plugging into (B.4) the estimate of S (θ0) that is used for the residual
computation, and an estimate Ĥ of H(η0) from the reference state. The matrices O(η0), O′(η0), J (λ,ϕ)

(µ,ϕ) and J (µ,ϕ)
η

are computed using the modal parameters and the respective eigenvalues of the discrete-time and continuous-time
systems, either based on η0 = ηdata

0 obtained from modal analysis of the reference data when using the data-based
computation, or based on η0 = ηFE

0 obtained from the FE model when using the model-based computation.
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Appendix B.2. Independence from mode shape scaling

First it is shown how the mode shape scaling affects the sensitivity matrix. Suppose the set of mode shapes ϕ j,
j = 1, . . . ,m∗, be given in the parameter vector η, and let the differently scaled mode shapes be ϕd

j = d jϕ j with

deterministic scaling factors d j ∈ C in respective parameter vector ηd, and D def
= diag(d1, . . . , dm∗ ). Comparing to

(B.4), the derivative containing the ϕd
j ’s is evaluated in the following. It holds Φd

c = ΦcD, thus Oc(η̃d
c) = Oc(η̃c)D and

O(η̃d) = O(η̃)DT
Re, DRe

def
=

[
<(D) −=(D)
=(D) <(D)

]
(B.9)

in (B.2). Then, since D is invertible, it holds for the Kronecker product in (B.4)(
O(ηd

0)†H(ηd
0) ⊗ S (θ0)

)T
= H(η0)T (O(ηd

0)†)T ⊗ S (θ0)T

= H(η0)T
(
D−T

ReO(η0)†
)T
⊗ S (θ0)T

=
(
O(η0)†H(η0) ⊗ S (θ0)

)T (
D−1

Re ⊗ I(p+1)r

)
(B.10)

In (B.5) it holds

O′c(ηd
0) =


Λ′1 ⊗ d1ϕ1 0 d1(Λ1 ⊗ Ir) 1

d1
0

. . .
. . .

0 Λ′m∗ ⊗ dm∗ϕm∗ 0 dm∗ (Λm∗ ⊗ Ir) 1
dm∗


= (D ⊗ I(p+1)r)O′c(η0) E, E def

=

[
Im∗ 0
0 D−1 ⊗ Ir

]
, ERe

def
=

[
<(E) −=(E)
=(E) <(E)

]
,

and, following (B.6),
O′(ηd

0) =
(
DRe ⊗ I(p+1)r

)
O′(η0) ERe. (B.11)

Finally, since the mode shape part is not affected when calculating the derivatives with respect to the frequencies, it
follows from (B.4), (B.7), (B.8), (B.10) and (B.11)

Jd
modal = Jmodal F, F def

=

[
Im∗

D−1
Re ⊗ Ir

]
.

Since ϕd
j = d jϕ j, the derivative of ϕd

j with respect to the physical parameters is premultiplied by d j compared to the
derivative of ϕ j, leading to

Jd
FE = F−1JFE

and finally Jd = Jd
modalJ

d
FE = JmodalJFE = J , independently of the mode shape scaling.

Suppose now that the scaling factors depend on the parameter vector, e.g. when derived from the FE model. Then,
a change in the scaling factors cannot simply be replaced in the derivativeJ as it was done through relation (B.9), but
the derivative of this relation needs to be taken into account. Similar to (B.3), the residual derivative with respect to
one parameter component writes as

∂(S (θ0)TO(η̃d)DRe(η̃d)TC(η̃d))
∂η̃d

i

∣∣∣∣∣∣
η=η0

= S (θ0)T ∂O(η̃d)
∂η̃d

i

∣∣∣∣∣∣
η=η0

DRe(ηd
0)TC(ηd

0) + S (θ0)TO(ηd
0)
∂(DRe(η̃d)TC(η̃d))

∂η̃d
i

∣∣∣∣∣∣
η=η0

,

and since the second term vanishes thanks to S (θ0)TO(ηd
0) = 0, also the derivative of possible parameter dependent

scaling factors vanishes. Hence, J is indeed independent of the chosen mode shape scaling, whether it is dependent
on the physical parameters or not.
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Appendix B.3. Independence from non-uniqueness of mode shape derivative
In Appendix A it was shown that the eigenvector sensitivity ∂ψ j

∂θi is not unique and any ∂ψ j

∂θi + αi jψ j with αi j ∈ C is
valid in the computation of JFE for all modes j = 1, . . . ,m∗ and parameters i = 1, . . . , l. Nevertheless, it is shown in
the following that the residual sensitivity J = JmodalJFE is independent from this non-uniqueness, by showing that
the contribution of αi jψ j in JFE lies in the null space of Jmodal for any i and j. The mode shape sensitivity follows
from the eigenvector sensitivity ∂ψ j

∂θi + α jψ j from (A.4) and (18) as

∂L j

∂θi ψ j + L j

(
∂ψ j

∂θi + αi jψ j

)
=
∂ϕ j

∂θi + αi jϕ j, (B.12)

and denote the sensitivity matrices JFE and Jα
FE when replacing ∂ϕ j

∂θi by ∂ϕ j

∂θi + αi jϕ j in (20), respectively. Analyze the
difference d = JmodalJFE − JmodalJ

α
FE. In (B.4) it holds

J
ζ
(λ,ϕ) =

(
O(η0)†H(η0) ⊗ Is

)T
(In ⊗ S (θ0)T )O′(η0)

=
(
O(η0)†H(η0) ⊗ Is

)T
[
(Im∗ ⊗ S (θ0)T )<(O′c(η0)) −(Im∗ ⊗ S (θ0)T )=(O′c(η0))
(Im∗ ⊗ S (θ0)T )=(O′c(η0)) (Im∗ ⊗ S (θ0)T )<(O′c(η0))

]
, (B.13)

where s = (p + 1)r − n. Since the mode shape part in the derivative Jmodal = J
ζ
(λ,ϕ)J

(λ,ϕ)
(µ,ϕ)J

(µ,ϕ)
η is not affected

in the last two derivatives, the only non-zero blocks in d are the derivative with respect to the real and imaginary
parts of mode shape ϕ j in Jζ

(λ,ϕ) multiplied by the real and imaginary part of αi jϕ j. Plugging in (B.13), the block of
(Im∗ ⊗ S (θ0)T )O′c(η0) for mode shape ϕ j gets multiplied by αi jϕ j, which is the only non-zero block in this part of the
product and writes in the respective complex-valued way as

S (θ0)T (Λ j ⊗ Ir)αi jϕ j = S (θ0)T


Ir

λ jIr
...

λ
p
j Ir

αi jϕ j = αi jS (θ0)T


ϕ j

λ jϕ j
...

λ
p
jϕ j

 = 0.

Note that the vector in the last term is the j-th column of Oc(η0), hence the product is zero since S (θ0)TOc(η0) = 0 (cf.
[24, Proof of Theorem 7(a)]). Thus, d = 0 and J = JmodalJFE = JmodalJ

α
FE, independently of the particular solution

of the mode shape sensitivity.

Appendix C. Invariance of the tests to column scaling of the sensitivity matrix

If the i-the column of the sensitivity matrix Ji is scaled with some factor α ∈ R, then the direct test (12) writes

t̆i
dir

def
= ζT Σ−1αJi

(
αJT

i Σ−1αJi

)−1
αJT

i Σ−1ζ

= ζT Σ−1Ji

(
JT

i Σ−1Ji

)−1
JT

i Σ−1ζ = ti
dir,

hence a scaling of the columns of the sensitivity matrix does not affect the direct test.
The minmax test computation involves the entire sensitivity matrix. Suppose column Ji corresponding to the

tested element is scaled with factor α, and the columns of Jῑ are scaled as JῑD with a diagonal invertible matrix D.
Then, the Fisher information (11) writes with the scaled sensitivities[

F̆i,i F̆i,ῑ

F̆ῑ,i F̆ῑ,ῑ

]
=

[
α2Fi,i αFi,ῑD
αDFῑ,i DFῑ,ῑD

]
.

The partial residuals defined in Section 4.2.2 write ζ̆i = αJT
i Σ−1ζ = αζi, ζ̆ῑ = DJT

ῑ Σ−1ζ = Dζῑ and the robust residual
writes ζ̆∗i = ζ̆i− F̆i,ῑF̆−1

ῑ,ῑ ζ̆ῑ = αζi−αFi,ῑD(DFῑ,ῑD)−1Dζῑ = αζ∗i . The projected Fisher information in Section 4.2.2 writes
F̆∗i = F̆i,i − F̆i,ῑF̆−1

ῑ,ῑ F̆ῑ,i = α2F∗i , and finally the minmax test (13) writes

t̆i
mm = ζ̆∗Ti F̆∗−1

i ζ̆∗i

= (αζ∗i )T (α2F∗i )−1αζ∗i = ti
mm,

hence a scaling of the columns of the sensitivity matrix does not affect the minmax test either.
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