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Towards S-NAMO: Socially-aware Navigation
Among Movable Obstacles

Benoit Renaulta,b, Jacques Saraydaryana,c, and Olivier Simonina,b

a CITI Lab., INRIA Chroma, b INSA Lyon, c CPE Lyon,
Université de Lyon, Villeurbanne, France

Abstract. In this paper, we present an in-depth analysis of Navigation
Among Movable Obstacles (NAMO) literature, notably highlighting that
social acceptability remains an unadressed problem in this robotics nav-
igation domain. The objectives of a Socially-Aware NAMO are defined
and a first set of algorithmic propositions is built upon existing work.
We developed a simulator allowing to test our propositions of social mov-
ability evaluation for obstacle selection, and social placement of objects
with a semantic map layer. Preliminary pushing tests are done with a
Pepper robot, the standard platform for the Robocup@home SSPL1, in
the context of our participation (LyonTech Team).

Keywords: Navigation Among Movable Obstacles (NAMO), Socially-
Aware Navigation (SAN), Path planning, Simulation

1 Introduction

In 2005, Stilman et al. [6] formulated the field of Navigation Among Movable
Obstacles (NAMO). The NAMO problem consists in planning a path from a
start to a goal position, while moving obstacles if necessary. It extends the well
known Piano Mover’s Problem by differentiating static and movable obstacles,
and allowing the manipulation of the later if it minimizes the chosen cost function
(eg. travel distance, time, energy). Contexts like service robotics or search and
rescue, in particular, would definitely benefit from algorithms capable of dealing
with manipulable clutter, doors or objects.

In the last two decades, the growing interest in service robotics, implying
robot navigation in human-populated environments, has sparked interest in So-
cial Robotics, and more specifically Socially-Aware Navigation (SAN) [20,24,30].
Basically, it also extended the basic navigation problem: now not only must the
robot find a plan that ensures physical safety (no collisions), minimizes the travel
distance, time or energy, but also the disturbance to humans2.

Until now, to the best of our knowledge, has never been considered in NAMO
problems the necessity of minimizing disturbance to humans (or any other type

1 SSPL: Social Standard Platform League
2 In Socially-Aware Navigation, disturbance is used as synonym for ’discomfort’, the

feeling of being unsafe [24].

http://www.robocupathome.org/
https://robocup-lyontech.github.io/
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of autonomous agents). Thus, we want to create Social NAMO algorithms: ones
that allow an autonomous agent to go from an initial pose to a goal pose, forbid-
ding collision with obstacles but not their displacement, minimizing both robot’s
displacement cost (distance, time or energy) and disturbance to humans.

To achieve this, we make the following contributions: in Section 2, we provide
an analysis of existing NAMO-related works. Then, in Section 3, we define the
expectations for Social NAMO and propose two extensions applied to Wu & Lev-
ihn’s approach [14,16,23]. We introduce social movability evaluation in obstacle
selection, and a semantic map layer to deal with social placement of objects.
Finally, in Section 4, we propose experiments based on our open simulator and
the Pepper robot, in the view of our RoboCup@Home participation (LyonTech
Team). We provide closing remarks and discuss future work in Section 5.

2 NAMO: Analysis of Existing Works

The following paragraphs give an overview of NAMO through the discussion
of the used world representations, notion of cost & optimality, manipulation
characteristics and finally, the actual planning algorithms that rely on them.
Also, we will point out how they relate to socially-aware navigation and its
constraints. A synthesis of the main comparison criteria is given in table 1.

World representation NAMO relies on an object-based representation of the
world [2,5,6,8,10–14,16–19,22,23,26–29,31,33] (in opposition to an occupation-
space-based one): in order to chose the best obstacle placement, it is necessary to
reason about them as separate entities. Final placement selection is what actually
tells NAMO apart from the well-known field of Rearrangement Planning [4].
Inspired by the works of Kim et al. on traversability affordance [7], Clingerman
et al. [21, 25] represent movable obstacles as high values in a costmap, but they
recon that it can’t be called a NAMO algorithm, since it does not allow to control
obstacle placement (the robot simply tries to ”go through the obstacle”).

Semantic information about Movable Obstacles is key to these algorithms.
The most basic need is the ’movability’ attribute, in addition to the obstacles
position and shape. In the literature, individual obstacles are simply assumed to
have a boolean attribute of being movable or not. This attribute has until now
been given as input [2, 5, 6, 8, 10–12, 17, 18, 26–28] (mainly for simulation-only
algorithms), determined on-line from obstacle visual recognition results [19, 22,
29,31,33] or by manipulation tentative [13,14,16,23] (for real-world experiments).
In order to be more realistic, other semantic information is used in more advanced
approaches, like object kinematics and physics (mass, center of inertia, . . . ),
but successfully used only in simulated propositions [2, 6, 8, 26, 27], with mixed
results in actual real-world implementations [29] (these characteristics are hard
to determine with current robot sensing capabilities). Other types of obstacles
than movable or unmovable, like humans or autonomously moving objects have
never been considered in the NAMO literature: a standard hypothesis is that the
robot is the only autonomous agent in the environment. We recapitulate this in
the ’Movability’ column of Table 1.

http://www.robocupathome.org/
https://robocup-lyontech.github.io/
https://robocup-lyontech.github.io/
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We must also say that rather few NAMO propositions have been applied in a
real-world setting [8,13,19,22,29,31,33], and when they are, they always maintain
a 3D representation of the world, though all NAMO algorithms execute their
path finding subroutines in a 2D plane. 3D data is mainly used to allow for proper
grasping of obstacles, but also for cross-plane rearrangement planning [33](e.g.
pick&place an object from ground to tabletop). Data is either acquired through
external cameras and markers [8, 22, 29] to position priorly known polyhedral
models of movable obstacles (eg. chairs, tables, . . . ), guaranteeing negligible
uncertainty as to the environment’s state, or by on-board sensors only [13, 19,
31,33]. A limited number of propositions actually are able to deal with no prior
or partial geometric knowledge [13, 14, 19, 23, 31, 33], uncertainty as to object
positioning [8, 13, 17–19, 26, 27, 29, 31, 33], object movability [13, 17–19, 29] or
object kinematics/physics [18, 29] (Recapitulated in Table 1, columns ’Prior’,
’Uncertainty’ and ’Real-World’).

In the end, SAN and NAMO both depend on semantic knowledge in ad-
dition to spatial knowledge: the robot needs to differentiate objects, associate
proper attributes with them, but also understand their relations to the whole
environment. Systematic segmentation and identification of as many obstacles
as possible thus appears to be a basic requirement for a Social NAMO.

Cost & Optimality There is a wide variety of cost functions used in NAMO:
distance, time, energy, number of moved obstacles, probability of success, that
are sometimes combined or used alternatively: these are synthesized in Table
1, column ’Cost’. The choice of a cost that only takes displacement distance
into account can be motivated by the hypothesis that the weight of the movable
obstacles is negligible in regard to the physical capabilities of the robot. It is
however evident that if manipulating an obstacle results in a significant change
of speed and energy requirements compared to a sole navigation task, time and
energy become way more appropriate choices.

NAMO Algorithms rarely seek completeness like [6, 8, 10, 12, 28]. None have
achieved global optimality, and only Levihn [16, 23] can claim a local optimal-
ity for a very simplified variant of the problem where a plan can only contain
one movable obstacle (see Table 1, ’Comp.’ and ’Opt.’ columns). This situation
actually makes sense, when one knows that a simplified variation of the NAMO
problem, where the robot is considered as a square, all planar obstacles as rect-
angles of four sizes or “L-Shaped”, parallel to the x- or y-axis, has been proved to
be NP-Hard [1], and even PSPACE-hard if the final positions are predetermined.
When obstacles are further reduced to square blocks limited to translations on
a planar grid, the problem still remains NP-Complete [3].

In SAN, the presence of humans brings strong uncertainty that prevents
proving global optimality and completeness of navigation strategies. It also re-
sults in the need to take social costs into account during navigation [20,24,30] to
represent risk of disturbance to humans. In a Social NAMO, we must thus also
take social costs into account, and extend them from the robot to the moved
obstacles: other entities can now suffer the consequences and risks of a carelessly
moved obstacle.
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Manipulation In [9], Stilman formalized three main classes of obstacle ma-
nipulation procedures: Grasping (constrained contact), Pushing (constrained
motion), and Manipulation Primitives (relies on forward simulation of object
dynamics, translational or rotational slip may occur). According to the results
exposed in Table 1, Column ’Manipulations’, grasping is the most popular class,
likely because it is the most reliable. Pushing has also been considered because
large objects cannot necessarily be grasped. Manipulation Primitives have also
been experimented with, but real-world implementations require external cam-
eras to work [8, 29].

In order to reduce the manipulation search space, there are 3 common strate-
gies. The first, applied by all but [2], is to consider that only one obstacle may
be manipulated at once (no cascade effect on nearby movables). The second,
also commonly used by all but [2, 12, 28] (which have never been applied in a
real-world situation), is to consider a limited set of contact/grasping points, fa-
cilitating backward search for robot pose for manipulation. This semantically
makes sense, in particular since some obstacles have specific contact points (eg.
top of chair, regularly spaced points on table side, . . . ) [5, 6, 8, 11, 13, 14, 16–19,
22, 23, 26, 27, 29, 31, 33]. Finally, the third strategy is to limit manipulation to
translations in specific directions [8, 12–14,16,17,23].

In a Social NAMO, the robot should bring a particular attention to human
safety and comfort. Favoring the most reliable manipulation classes when possi-
ble, and reducing the complexity of the manipulation (thus, its chance to fail in a
way that may put humans or their belongings at risk) would be of circumstance.

Planning algorithms While some solutions [2, 26, 27] propose tightly woven
algorithms that do not clearly distinguish the different aspects of NAMO (iter-
ation over movable obstacles, possible actions and path computations), we can
usually tell apart a high-level decision planner and two path planning subrou-
tines. These subroutines can loosely be identified as transit (robot only) and
transfer (+obstacle) path planners.

The most proposition-specific planner is generally the high-level task planner.
While some propositions are explicitly based on existing algorithms, like Dijkstra
[2], DFS [6,8,11,28], BHPN [19], Markov Decision Processes + Monte-Carlo Tree
Search [17, 18, 29], KPIECE+A* [26, 27], others appear to have developed their
approach from scratch [5, 10, 12–14, 16, 22, 23, 31, 33], though [16, 23] is based
off [14], and [33] has been inspired by [14, 23]. In order to reduce computation
time, most high-level planners resort to ways of prioritizing the most promising
obstacles but [2, 10, 12, 19, 22, 26, 27] do not. The most common way is to use a
heuristic path planner that ignores movable obstacles to find ’blocking’ obstacles
[6,8,11,28,31,33]. Then, the last blocking object is selected by last intersection
[6, 8, 11, 28] or by least euclidean cost to go from obstacle to goal [33]. The
propositions of Wu & Levihn [14,16,23] use a priority queue ordered by heuristic
euclidean distance from obstacle to goal. Finally, the last approach is to use
a graph that links obstacles to free space components so that obstacles are
considered in the order they can be reached, as in Levihn & Scholz’s NAMO-
MDP [17,18,29] or Okada’s Task Graph [5].
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Table 1: Synthesis table with main differentiating criteria
Reference Prior Movability Uncertainty Comp. Opt. Cost C-Space Task P. Transit P. Transfer P. Manipula-

tions
Real-
World

Chen [2] Full Given None - - D Disc. Dij. + GD N/A N/A Prim. No
Okada [5] Full Given None - - D‖E Disc. Custom NG NG Grasp No
Stilman [6] Full Given None RC - E+NMO Disc. DFS A* BFS Prim. No
Stilman [8] Full Given Pos. RC - E+NMO Disc. DFS A* BFS Prim. Yes
Nieuwenhuisen [10] Full Given None PC - D+PS Cont. Custom RRT RRT Grasp No
Stilman [11] Full Given None - - D+NMO Disc. DFS A* BFS Grasp No
Van den Berg [12] Full Given None PC - (D) Disc. Custom N/A N/A Grasp No
Kakiuchi [13] None Manip. Pos. Mov. - - (D+NMO) Cont. Custom RRT N/A Push Yes
Wu [14] None Manip. None - - (D‖T‖E) Disc. Custom A* DFS Push No
Levihn [16,23] None Manip. None - LO (D‖T‖E) Disc. Custom D*Lite DFS Grasp No
Levihn [17] Full Given Pos. Mov. - - PS Disc. MDP + MCTS N/A N/A Prim. No
Levihn [18] Full Given Pos. Mov. Kin. - - T+E Cont. MDP + MCTS PRM RRT Prim. No
Levihn [19] Partial Recog. Pos. Mov. - - (D‖T‖E) Cont. BHPN RRT RRT Grasp Yes
Mueggler [22] Full Recog. None - - T Disc. Custom A* Dij. Grasp Yes
Castaman [23,26] Full Given Pos. - - T Disc. KPIECE + A* N/A N/A Grasp‖Push No
Moghaddam [28] Full Given None CO - E Cont. DFS Dij. + VG Dij. + VG Grasp No
Scholz [29] Full Recog. Pos. Mov. Kin. - - T+E Cont. MDP + MCTS PRM RRT Prim. Yes
Sun [31] Partial Recog. Pos. - - (D) Cont. Custom RRT RRT Grasp‖Push Yes
Meng [33] Partial Recog. Pos. - - D Cont. MP Custom RRT RRT Grasp‖Push Yes

Legend: () = Not given but likely; ’+’ = Combination of; ’‖’ = Alternative to; Manip. = Found through manipulation; Recog. = Found through visual
recognition; Pos. = Manage uncertainty on position; Mov. = Same on movability; Kin. = Same on object kinematics; ’-’ = Depending on columns, either Not
Optimal or Not Complete; CO = Complete; RC = Resolution-Complete; PC = Probabilistically Complete; LO = Locally Optimal; D = Distance; E = Energy;
T = Time; NMO = Number of Moved Obstacles; PS = Probability of Success; Disc. = Discrete; Cont. = Continuous; MP = Multi-Plane; Dij. = Dijkstra; GD
= Generalized Distance; VG = Visibility Graph; NG = Not Given; N/A = Non Applicable; Prim. = Motion Primitives
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As for transit path planners, used ones are traditional A* [6, 8, 11, 14, 22],
D*Lite [16, 23] over discrete environments, and RRT [10, 13, 19, 31, 33] or PRM
[18, 29] variants and Dijkstra over Visibility Graph [28] for continuous ones.
On the other hand, obstacle placements are either decided through incremental
application of motion primitives (forward search, eg. little translations/rotations)
[2,6,8,10–14,16–19,23,29], or by growing sampling of possible placements in the
obstacle’s vicinity and subsequent path verification [5,22,26,27,31,33]. In some
cases, when planning for successive obstacles, placement is constrained by the
need to keep a taboo zone for the next manipulations [10–12, 19, 28, 31, 33]. In
the end, in discrete environments, transfer path planners iterate over possible
obstacle placements using Best-First Search [6, 8, 11] or Depth-First Search [14,
16,23], or in continuous ones, using an RRT variant [10,18,19,29,31,33] or again
Dijkstra+VG [28].

Approaches mentioned for the three planning tasks are given in Table 1.
We can note they are commonly found in SAN, thus incorporating social cost in
NAMO planners should be possible. Although, many of them are offline planners:
efficient online or anytime-oriented variants will be needed. In conclusion to this
state of the art, we underline that none of the existing NAMO literature directly
addresses social constraints, though a few references quickly mention the idea of
taking object fragility into account [6, 13].

3 Extension of NAMO Algorithms

3.1 Objectives of Socially-Aware NAMO

From our previous analysis, three general objectives of S-NAMO can be identi-
fied. The first is Social Movability Evaluation, or determining the movability
of an object by human-acceptance for a robot to move it. The second is Social
Placement Choice, or ensuring that the final environment reconfiguration is
the least disturbing to humans compared to the initial one. Finally, the third is
Social Action Planning, or making sure that all robot actions are in them-
selves as safe and comfortable for humans as possible.

In the light of the classification in SAN literature [20, 24], we can elaborate
three levels of problems of growing difficulty: delayed human-object interaction
due to future human presence, indirect interaction due to actual human presence,
and direct human-robot interaction. At the first level, like in usual NAMO, the
robot can assume to be the only autonomous agent around (eg. cleaning robot
servicing while humans are away), thus it only needs to be concerned about
Social Movability Evaluation and Social Placement Choice. At the next
levels, the robot must also integrate the dynamic and social aspects of human
presence, and answer the additional objective of Social Action Planning,
exhibiting behaviors such as kindly asking humans to let it pass. In the rest of
the paper, we make a first S-NAMO proposition addressing Social Movability
Evaluation and Social Placement Choice, in the context of delayed human-
object interaction.
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3.2 Extension of Wu and Levihn’s approach

We chose to build our proposition upon the solution proposed by Wu & Lev-
ihn [14, 16, 23] mainly for two reasons. First, it is designed for unknown envi-
ronments, thus covers plan invalidation in the light of new knowledge, which
is eventually essential for real-world applications. Second, as long as the prob-
lem is solvable by a single obstacle move in a single direction in the current
robot knowledge, local optimality is guaranteed. It basically follows the general
form of a NAMO algorithm presented in Section 2: iterate over known obstacles
following a heuristic order, and evaluate potential plans that include obstacle
movement as long as it can create a better plan. We introduce the S-NAMO Al-
gorithm (see below), which extends the Wu & Levihn approach. The algorithm
relies on two procedures: a main obstacle-level one, make-and-execute-plan(),
that when needed calls a combined transfer/transit path planning sub-procedure
make-plan-for-obstacle(). We first present these two procedures ignoring our
S-NAMO extensions highlighted in red and blue in Algorithm 1, then detail the
extensions.

Fig. 1: The robot (grey
disc) executes a three-step
popt plan to move M1.

The main procedure, make-and-execute-plan(w,
qinit, qgoal), builds and executes the optimal navi-
gation plan popt from world knowledge w (2D metric
map with polygonal entities) and robot configura-
tions {qinit, qgoal}. popt is either a path avoiding all
obstacles or constructed from three path compo-
nents (see Figure 1): c1, c2, c3, respectively paths
from qr to qmanip, from qmanip to qsim where the
robot stops moving obstacle o, and from qsim to
qgoal. It always first tries to find the best plan avoid-
ing all obstacles, and only then, iterates over mov-
able obstacles to find out whether moving one of
them will yield a better plan. Robot knowledge is
updated after each execution step, and if popt is no

longer valid (future collision with other obstacles by robot or manipulated ob-
stacle, failure in manipulation, or disrupting update of the manipulated obstacle
geometry), re-planning is triggered. Since our contributions do not concern this
procedure, we refer the reader to [23] to better understand the iteration through
obstacles.

The sub-procedure, make-plan-for-obstacle(w, qr, qgoal, o, popt), is called
during the iteration over obstacles, and returns the best plan pbest implying
the manipulation of obstacle o. It iterates over actions act that can be done on
o, assuming (line 4) there is only one robot configuration qmanip for every {o,
act} pair (middle of o’s side). The plan components are computed sequentially,
starting with c1. If c1 is found, successive unit actions act of constant length
are simulated (count times) in a copy of w until impossible (collision with other
obstacle). To avoid unnecessary computations of c2 and c3, the simulation is
stopped as soon as an underestimated cost Cest of the currently evaluated plan
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gets higher than the one of popt (l.15). Cest is the sum of c1’s cost, a c2 estimate
(product of count by unit length), and a c3 estimate (minimal euclidean distance
between o and qgoal). Also, full evaluation is only done if a new local opening
has been created around o (l.16, method described in [15]).

Algorithm 1: S-NAMO - Extension of the Wu&Levihn approach: Social
Movability Evaluation in blue and Social Placement Choice in red

1 Procedure make-and-execute-plan(w, qinit, qgoal)
2 B when plan is invalidated, makes a plan avoiding all obstacles, then tries

to improve it by iterating over obstacles and calling
make-plan-for-obstacle(w, qr, qgoal, o, popt)

1 Procedure make-plan-for-obstacle(w, qr, qgoal, o, popt)
2 pbest ← ∅
3 foreach act in affordable-actions(o) do
4 qmanip, c1 ← q-for(o, act), A*(w, qr, qmanip)

5 if c1 6= ∅ then
6 if is-unknown(o) then
7 qlook ← get-last-look-q(w, o, c1)
8 if qlook 6= ∅ then c0, c1 ← split-at-pose(c1, qlook)
9 else c0, c1 ← compute-c0-c1(w, o, qr, qmanip)

10 else c0 ← ∅
11 if is-movable(o) or ( is-unknown(o) and c0 6= ∅ and c1 6= ∅) then
12 wsim ← copy(w)
13 count, qsim ← 1, sim-one-step(wsim, act, o, qr)
14 while Cest(wsim, c1, count, act) ≤ cost(popt)
15 and is-step-success(qr, qsim, count, act) do
16 if check-new-opening(w, wsim, o) and not-in-taboo(w,

o) then
17 c2 ← line(qmanip, qsim)

18 c3 ← A*(w, qsim, qgoal)
19 if c3 6= ∅ then
20 p← plan(c0, c1, c2, c3, o, act)
21 if cost(p) < cost(pbest) then pbest ← p
22 if cost(pbest) < cost(popt) then popt ← pbest

23 count, qsim ← count + 1, sim-one-step(wsim, act, o, qsim)

24 return pbest

1 Procedure compute-c0-c1(w, o, qr, qmanip)

2 qL← get-qL(w, o)
3 paths-qL-qmanip ← multigoal-A*(w, qmanip, qL)
4 paths-qr-qL← multigoal-A*(w, qr, qL)
5 return shortest-c0-c1(paths-qr-qL, paths-qL-qmanip)

Social Movability Evaluation The initial approach of Wu & Levihn supposes
that any obstacle is movable unless a manipulation tentative failed, in which
case it is blacklisted. However, in S-NAMO this is not an acceptable behavior
since it could lead to unauthorized objects manipulations. As a first approach,
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we propose a simple white-listing system: unregistered obstacles are considered
unmovable. But a robot often relies on multiple sensors, and their respective
Fields Of View (FOV) are not necessarily equal. An obstacle may have been
detected geometrically, but not yet identified, leading to three possible states:
unknown, movable, unmovable. As in the initial algorithm, we suppose a perfect
conical ‘geometry sensor’ (eg. high resolution laser range finder), with perfect
segmentation of obstacles (blue disk in Figure 2a), but we add a perfect ‘semantic
sensor’ that guarantees identification if the obstacle is in its FOV (eg. using a
RGB-D Camera). The geometric FOV (G-FOV) is assumed to cover more space
than the semantic one (S-FOV). White-listed obstacles are assumed to fit into
the S-FOV, anything that doesn’t is automatically classed as unmovable.

The make-plan-for-obstacle() procedure has been adapted to work un-
der these hypotheses. When obstacle o is known as movable, the algorithm is
unchanged. When o is unknown, we first check whether the usual computation
of c1 can provide observation certainty (lines 6-7); if not, we try to find another
path that guarantees observation (line 9). To do that, in compute-c0-c1(), we
determine the discrete robot configurations list qL that would allow observation
(l.2): first, we get all non-colliding configurations within the area between the
inflated obstacle polygons by minimal and maximal observation distances, and
among them we only return these where o is included in the S-FOV. Then, we
execute the multi-goal A* algorithm between qmanip and every configuration in
qL (l.3). The same is done from the current robot configuration qr to all elements
of qL (l.4). Finally, we return the best pair of paths {c0, c1} (l.5): see illustration
Fig. 2b.

(a) (b) (c) (d)

Fig. 2: In (a), G-FOV (blue) detected two obstacles, S-FOV (green) only iden-
tified unmovable obstacle O1. Robot is too close from other obstacle to observe
it. Going through best intermediate observation configuration is necessary: final
best path with c0 is shown in (b). (c) represents two facing rooms separated
by a corridor. In typical NAMO (c), robot will push M1 just enough to pass,
blocking the other doorway. In our S-NAMO proposition, the taboo zone (red)
prevents blocking, but may end up with a longer plan.

Social Placement Choice In current NAMO approaches, the robot does not
care about placing obstacles in socially-critical spots (eg. around doors, often-
used furniture, . . . ). As a first step, we answer this problem with a binary ap-
proach: either the zone is taboo for obstacle placement, or it is not.
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We extend the definition of w by adding a social placement semantic map
layer, where taboo zones are defined as a set of polygons P . We assume for now
that P is provided by human users. Now, whenever the polygonal footprint of
an obstacle intersects with any polygonal taboo zone in P , not-in-taboo(w, o)
returns False, preventing full plan evaluation (see make-plan-for-obstacle()

procedure, line 16). Figure 2d) illustrates this process on a simple scenario. Next
section presents experiments with more complex scenarios.

4 Experiments

We implemented the S-NAMO algorithm in a custom simulator based on ROS
standards. This is a first step toward an implementation on a real robot (Pepper),
simplifying object detection and identification, which could later be addressed
with an existing package such as ED from TU-Eindhoven. For the sake of im-
plementation ease, movable obstacles are assumed to be convex polygons. All
computations are done on the 2D vectorial model, except for path planning,
which is implemented as a grid-search A* Algorithm, as in [14] 3.

Social Placement Choice We tested the Social Placement Choice process in a
scenario where a robot has to successively reach two goals represented as empty
circles in Fig.3. The environment consists of two rooms separated by a corridor,
but two yellow boxes are blocking the doorways (Fig.3a). The robot (blue circle,
FOV is the cone) starts from the bottom room.

(a) (b) (c) (d) (e)

Fig. 3: Simulation of a two-goals scenario with NAMO (a,b) vs. S-NAMO (c,d,e)

In Fig.3b we see that a standard NAMO approach like Wu & Levihn’s re-
sults in blocking the other doorway: only the first goal is reached. In Fig.3c we
introduce the social semantic layer which consists in two taboo areas for objects
(in red), respectively related to the doorways and a ‘precious carpet’. Fig.3d
shows how our algorithm deals with the first discovered object: the computed
path moves the box on the right and outside taboo areas, leaving in particu-
lar the doorway area free. In Fig.3e, the robot encountered the second box and
pushed it outside the taboo area, leading to a path reaching the second goal.
This S-NAMO scenario (and others) are available as videos 4.

3 All the code and its execution instructions are available on the following repository:
https://gitlab.inria.fr/brenault/s-namo-sim

4 Link to videos : https://gitlab.inria.fr/brenault/s-namo-sim/wikis/Videos

https://github.com/tue-robotics/ed
https://gitlab.inria.fr/brenault/s-namo-sim
https://gitlab.inria.fr/brenault/s-namo-sim/wikis/Videos
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Pushing Experiments with Pepper In the view of a real-world implemen-
tation, we experimented with Pepper’s base pushing abilities, using our existing
robot architecture developed for the Robocup@Home 2018 [32]. In Fig.4a and
4b, Pepper successfully pushes a garbage bin in a straight line with little devia-
tion. We have also verified that with other light objects such as cardboard boxes,
that when the object’s side is properly centered relatively to the robot, pushes
are more likely to succeed. However, we also learned that, as seen in Fig.4c and
4d, heavier objects of interest such as chairs with wheel-casters will need to be
accompanied with the arms in some way to avoid unpredictable drift, but even
so, the manipulation could still fail (videos available at footnote 4). Thus, in
our future work, we will also strive to address uncertainty as to manipulation
success, like in [18].

(a) (b) (c) (d)

Fig. 4: Pepper pushing a bin and a chair

5 Conclusion

In this paper, we first analyzed existing NAMO approaches in order to adapt
them to social constraints. This led us to extend the Wu&Levihn approach, by
defining the S-NAMO algorithm which introduces Social Movability Evaluation
and Social Placement Choice for object manipulations. We implemented these
propositions in an open source ROS compatible simulator. Experiments showed
how social semantic areas can prevent obstruction of places like circulation zones,
and how the robot can identify obstacles to compute its plan. In future works,
we plan to refine the semantic layer and address actual human presence with
indirect or direct human-robot interaction, while integrating ways to manage
uncertainty as to sensor data or success of manipulation. We will continue to
experiment and validate these social NAMO abilities with robots such as Pepper
and demonstrate their interest in the RoboCup@Home challenge.
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