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REDUCIBILITY OF n-ARY SEMIGROUPS: FROM QUASITRIVIALITY
TOWARDS IDEMPOTENCY

MIGUEL COUCEIRO, JIMMY DEVILLET, JEAN-LUC MARICHAL, AND PIERRE MATHONET

ABSTRACT. Let X be a nonempty set. Denote by Fn
k the class of associative operations

F ∶Xn
→ X satisfying the condition F (x1, . . . , xn) ∈ {x1, . . . , xn} whenever at least

k of the elements x1, . . . , xn are equal to each other. The elements of Fn
1 are said to be

quasitrivial and those of Fn
n are said to be idempotent. We show that Fn

1 = ⋯ = F
n
n−2 ⊊

F
n
n−1 ⊊ F

n
n . The class Fn

1 was recently characterized by Couceiro and Devillet [2], who
showed that its elements are reducible to binary associative operations. However, some
elements of Fn

n are not reducible. In this paper, we characterize the class Fn
n−1 ∖F

n
1 and

show that its elements are reducible. In particular, we show that each of these elements is
an extension of an n-ary Abelian group operation whose exponent divides n − 1.

1. INTRODUCTION

Let X be a nonempty set, let ∣X ∣ be its cardinality, and let n ≥ 2 be an integer. An n-ary
operation F ∶Xn →X is said to be associative if

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1)
= F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1),

for all x1, . . . , x2n−1 ∈ X and all 1 ≤ i ≤ n − 1. The pair (X,F ) is then called an n-ary
semigroup. This notion actually stems back to Dörnte [6] and has led to the concept of
n-ary group, which was first studied by Post [11].

In [5] the authors investigated associative n-ary operations that are determined by bi-
nary associative operations. An n-ary operation F ∶Xn → X is said to be reducible to an
associative binary operation G∶X2 → X if there are Gm∶Xm+1 → X (m = 1, . . . , n − 1)
such that Gn−1 = F , G1 = G, and

Gm(x1, . . . , xm+1) = Gm−1(x1, . . . , xm−1,G(xm, xm+1)), m ≥ 2.

The pair (X,F ) is then said to be the n-ary extension of (X,G).
Also, an n-ary operation F ∶Xn →X is said to be
● idempotent if F (x, . . . , x) = x for all x ∈X ,
● quasitrivial if F (x1, . . . , xn) ∈ {x1, . . . , xn} for all x1, . . . , xn ∈X .

We observe that any quasitrivial n-ary operation is idempotent. However, the converse is
not true. For instance, the ternary operation F ∶R3 → R defined by F (x, y, z) = x − y + z
is idempotent but not quasitrivial.

Recall that an element e ∈X is said to be neutral for F ∶Xn →X if

F ((k − 1) ⋅ e, x, (n − k) ⋅ e) = x, x ∈X, k ∈ {1, . . . , n}.
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Here and throughout, for any k ∈ {1, . . . , n} and any x ∈ X , the notation k ⋅ x stands for
the k-tuple x, . . . , x. For instance, we have

F (3 ⋅ x,0 ⋅ y,2 ⋅ z) = F (x,x, x, z, z).

We also denote the set of neutral elements for an operation F ∶Xn →X by EF .
The quest for conditions under which an associative n-ary operation is reducible to

an associative binary operation gained an increasing interest since the pioneering work of
Post [11] (see, e.g., [1,2,4,5,7,8]). For instance, Dudek and Mukhin [5, Theorem 1] proved
that an associative operation F ∶Xn → X is reducible to an associative binary operation
if and only if one can adjoin to X a neutral element e for F ; that is, there is an n-ary
associative operation F̃ ∶ (X ∪ {e})n →X ∪ {e} such that e is a neutral element for F̃ and
F̃ ∣Xn = F . In this case, a binary reduction Ge of F can be defined by

Ge(x, y) = F̃ (x, (n − 2) ⋅ e, y) x, y ∈X.

Also, it was recently observed [2, Corollary 2.3] that all the quasitrivial associative n-ary
operations are reducible to associative binary operations. On the other hand, the associative
idempotent ternary operation F ∶R3 → R defined by F (x, y, z) = x − y + z is neither
quasitrivial nor reducible (see, e.g., [13] or more recently [10]).

In this paper, we are interested in studying conditions under which an idempotent n-
ary semigroup is reducible to a semigroup. The observations above lead us to investigate
certain subclasses of idempotent n-ary semigroups containing the quasitrivial ones, for
instance by requiring the condition

F (x1, . . . , xn) ∈ {x1, . . . , xn}

to hold on at least some subsets of Xn. More precisely, for every set S ⊆ {1, . . . , n}, we
define

Dn
S = {(x1, . . . , xn) ∈Xn ∶ xi = xj , ∀i, j ∈ S}.

Also, for every k ∈ {1, . . . , n}, we set

Dn
k = ⋃

S⊆{1,...,n}
∣S∣≥k

Dn
S = ⋃

S⊆{1,...,n}
∣S∣=k

Dn
S .

Thus, the set Dn
k consists of those tuples of Xn for which at least k components are equal

to each other. In particular, Dn
1 =Xn and Dn

n = {(x, . . . , x) ∶ x ∈X}.
For every k ∈ {1, . . . , n}, denote by Fn

k the class of those associative n-ary operations
F ∶Xn →X that satisfy

F (x1, . . . , xn) ∈ {x1, . . . , xn}, (x1, . . . , xn) ∈Dn
k .

We say that these operations are quasitrivial on Dn
k .

Thus defined, Fn
1 is the class of quasitrivial associative n-ary operations and Fn

n is the
class of idempotent associative n-ary operations. Since the sets Dn

k are nested in the sense
that Dn

k+1 ⊊Dn
k for 1 ≤ k ≤ n − 1, the classes Fn

k clearly form a filtration, that is,

Fn
1 ⊆ Fn

2 ⊆ ⋯ ⊆ Fn
n .

It is easy to see that Fn
1 = Fn

2 = ⋯ = Fn
n if ∣X ∣ ≤ 2.

Quite surprisingly, we have the following result, which shows that this filtration actually
reduces to three nested classes only. The proof is given in the next section.

Proposition 1.1. For every n ≥ 3, we have Fn
1 = Fn

n−2.
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We observe that the class Fn
1 = Fn

2 = ⋯ = Fn
n−2 was characterized by Couceiro and

Devillet [2] who showed that all its elements are reducible. In particular, we have the
following result.

Proposition 1.2 (see [2, Corollary 3.11]). An operation F ∶Xn → X is associative, qu-
asitrivial, and has at most one neutral element if and only if it is reducible to an asso-
ciative and quasitrivial binary operation G∶X2 → X . In that case, we have G(x, y) =
F (x, y, . . . , y) for any x, y ∈X .

Remark 1. We observe that the class of associative and quasitrivial operations G∶X2 →X
was characterized in [9, Theorem 1].

In this paper, we provide a characterization of the class Fn
n−1 ∖ Fn

1 and show that all
its elements are also reducible to binary associative operations. This result is stated in
Theorem 1.5 and Corollary 1.6. The proofs of these results are given in the next section.

Recall that an n-ary groupoid is a set equipped with an n-ary operation. Moreover, two
n-ary groupoids (X,F ) and (Y,F ′) are said to be isomorphic if there exists a bijection
φ∶X → Y such that

φ(F (x1, . . . , xn)) = F ′(φ(x1), . . . , φ(xn)),

for every x1, . . . , xn ∈X . In that case, the operations F and F ′ are said to be conjugate to
each other.

The exponent of a group (X,G) with neutral element e is the smallest integer m ≥ 1
such thatGm−1(m ⋅x) = e for any x ∈X . Otherwise, (X,G) is said to have zero exponent.

Remark 2. A group (X,G) has an exponent dividing n if and only if Gn((n + 1) ⋅ x) = x
for any x ∈X .

Let us recall the following important result, due to Prüfer and Baer (see, e.g., [12, Corol-
lary 10.37]).

Proposition 1.3 (see [12, Corollary 10.37]). If (X,G) is an Abelian group of bounded
exponent, then it is isomorphic to a direct sum of cyclic groups.

The following immediate corollary provides a characterization of the class of Abelian
groups with nonzero exponents.

Corollary 1.4. Let m ≥ 1 be an integer. An Abelian group (X,G) is of exponent m if and
only if it is isomorphic to a direct sum of cyclic groups whose exponent is m.

Recall that an element a ∈X is said to be an annihilator forF ∶Xn →X ifF (x1, . . . , xn) =
a whenever a ∈ {x1, . . . , xn}.

Theorem 1.5. Suppose that Fn
n−1 ∖Fn

1 ≠ ∅. An associative operation F is in Fn
n−1 ∖Fn

1

if and only if there exists a unique subset Y ⊆ X , with ∣Y ∣ ≥ 3, such that the following
assertions hold.

(a) (Y,F ∣Y n) is the n-ary extension of an Abelian group whose exponent divides n−1.
(b) F ∣(X∖Y )n is quasitrivial and has at most one neutral element.
(c) Any x ∈X ∖ Y is an annihilator for F ∣({x}⋃Y )n .

Moreover, we have that Y = EF .

Remark 3. The associativity assumption can be removed in Theorem 1.5 if we replace
condition (c) by the following two conditions.
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(c’) For any y ∈ Y and any x1, . . . , xn−1 ∈X we have

F (x1, . . . , xn−1, y) = F (x1, . . . , y, xn−1) = ⋯ = F (y, x1, . . . , xn−1).
(c”) For any k ∈ {1, . . . , n − 1}, any y1, . . . , yk ∈ Y , and any x1, . . . , xn−k ∈ X ∖ Y we

have

F (y1, . . . , yk, x1, . . . , xn−k)
= F (x1, . . . , xi−1, (k + 1) ⋅ xi, xi+1, . . . , xn−k), i ∈ {1, . . . , n − k}.

The proof is a little tedious but straightforward.

Corollary 1.6. Every operation in Fn
n−1 is reducible to a binary associative operation.

A reformulation of Theorem 1.5 based on binary reductions is given in the following
corollary.

Corollary 1.7. Suppose that Fn
n−1 ∖Fn

1 ≠ ∅. An operation F is in Fn
n−1 ∖Fn

1 if and only
if it is reducible to an associative operation G∶X2 → X and there exists a unique subset
Y ⊆X , with ∣Y ∣ ≥ 3, such that the following conditions hold.

(a) (Y,G∣Y ) is an Abelian group whose exponent divides n − 1.
(b) G∣(X∖Y )2 is quasitrivial.
(c) Any x ∈X ∖ Y is an annihilator for G∣({x}⋃Y )2 .

Moreover, we have that Y = EF .

Corollary 1.7 is of particular interest as it allows us to easily construct n-ary operations
in Fn

n−1 ∖ Fn
1 . For instance, for any integers n ≥ 3 and p ≥ 1, the operation associated

with any (np + 1)-ary extension of (Zn,+) is in Fnp+1
np ∖ Fnp+1

1 by Corollary 1.7. To
give another example, consider the chain (X,≤) = ({1,2,3,4,5},≤) together with the
operation G∶X2 →X defined by the following conditions:

● ({1,2,3},G∣{1,2,3}2) is isomorphic to (Z3,+),
● G∣{4,5}2 = ∨∣{4,5}2 , where ∨∶X2 →X is the maximum operation for ≤,
● for any x ∈ {1,2,3}, G(x,4) = G(4, x) = 4 and G(x,5) = G(5, x) = 5.

Then for any integer p ≥ 1 we have that the operation associated with any (3p + 1)-ary
extension of ({1,2,3,4,5},G) is in F3p+1

3p ∖F3p+1
1 , again by Corollary 1.7.

We also have the following corollary which follows from Theorem 1.5.

Corollary 1.8. Let n ≥ 3 and assume that any of the two following conditions holds.
● n = 3 and ∣X ∣ ≥ 4.
● n ≥ 4 and ∣X ∣ ≥ n − 1.

Then Fn
1 ⊊ Fn

n−1.

For instance, consider the operation F ∶X3 →X defined on X = Z2
2 by

F (x1, x2, x3) = x1 + x2 + x3 (mod 2),
where (mod 2) is understood componentwise. Then, for any x, y ∈ Z2

2, we haveF (x,x, y) =
y, and hence F ∈ F3

2 . But we have

F([1
0
], [0

1
], [0

0
]) = [1

1
],

which shows that F ∉ F3
1 . However, the converse of Corollary 1.8 does not hold in general.

For instance, the operation associated with the 7-ary extension of (Z3,+) is in F7
6 ∖ F7

1 .
However, we have that ∣Z3∣ = 3.
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Moreover, we observe that Fn
n−1 ⊊ Fn

n . For instance, if (X,≤) is a lattice that is not a
chain, then the ternary operation F ∶X3 → X defined by F (x, y, z) = x ∨ y ∨ z is in F3

3 .
However, it is not in F3

2 since F (x,x, y) ∉ {x, y} whenever x and y are not comparable,
i.e, x ∨ y ∉ {x, y}.

In proving Theorem 1.5 we will make use of the following characterization of the class
of associative operations F ∶Xn →X for which the elements of X are all neutral.

Theorem 1.9. Let F ∶Xn → X (n ≥ 3) be an associative operation. Then EF = X if and
only if (X,F ) is the n-ary extension of an Abelian group whose exponent divides n − 1.

Recall from [5, Lemma 1] that if an associative operation F ∶Xn → X has a neutral
element e, then it is reducible to the associative operation Ge∶X2 →X defined by

(1) Ge(x, y) = F (x, (n − 2) ⋅ e, y), x, y ∈X.

We observe that e is the unique neutral element of Ge.
Using this result, we can also show that all reductions of an associative operation

F ∶Xn → X obtained from neutral elements are conjugate to each other. For instance,
the ternary sum on Z2 has two neutral elements, namely 0 and 1. By [5, Lemma 1] it is
reducible to the operations G0,G1∶Z2

2 → Z2
2 defined by G0(x, y) = x + y (mod 2) and

G1(x, y) = x+ y + 1 (mod 2). It is easy to see that the semigroups (Z2,G0) and (Z2,G1)
are isomorphic.

Proposition 1.10. Let F ∶Xn →X (n ≥ 3) be an associative operation and let e1, e2 ∈ EF .
Then (X,Ge1) and (X,Ge2) are isomorphic.

The proofs of the results above are given in Section 2. In Section 3, we discuss an
alternative hierarchy, which provides variants of Theorem 1.5 and Corollary 1.7.

2. TECHNICALITIES AND PROOFS OF THE RESULTS

Let us start by providing the proofs of Propositions 1.1 and 1.10.

Proof of Proposition 1.1. We only need to prove that Fn
n−2 ⊆ Fn

1 , and so we can assume
that n ≥ 4. Let F ∈ Fn

n−2 and let us show by induction that for every k ∈ {1, . . . , n} we
have

(2) F (k ⋅ x1, xk+1, . . . , xn) ∈ {x1, xk+1, . . . , xn}, x1, xk+1, . . . , xn ∈X.

By hypothesis, condition (2) holds for any k ∈ {n − 2, n − 1, n}. Let us now assume that it
holds for some k ∈ {2, . . . , n} and let us show that it still holds for k−1. Using associativity
and idempotency, we have

F ((k − 1) ⋅ x1, xk, . . . , xn) = F (F (n ⋅ x1), (k − 2) ⋅ x1, xk, . . . , xn)
= F (k ⋅ x1, F ((n − 2) ⋅ x1, xk, xk+1), . . . , xn).

By induction assumption, the latter expression lies in {x1, xk, . . . , xn}. This completes the
proof. �

Proof of Proposition 1.10. The map ψ∶X →X defined by

ψ(x) = F (e1, e2, x, (n − 3) ⋅ e1)
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is a bijection and we have ψ−1(x) = F ((n − 2) ⋅ e2, x, e1). We then have

Ge2(ψ(x), ψ(y))
= F (F (e1, e2, x, (n − 3) ⋅ e1), (n − 2) ⋅ e2, F (e1, e2, y, (n − 3) ⋅ e1))
= F (F (e1, e2, x, (n − 3) ⋅ e1), F ((n − 2) ⋅ e2, e1, e2), y, (n − 3) ⋅ e1)
= F (F (e1, e2, x, (n − 3) ⋅ e1), e1, y, (n − 3) ⋅ e1)
= F (e1, e2, F (x, (n − 2) ⋅ e1, y), (n − 3) ⋅ e1)
= ψ(Ge1(x, y)),

which completes the proof. �

Let us now prove Theorem 1.9. To this extent, we first state and prove some intermediate
results.

Lemma 2.1. Let F ∶Xn → X be an associative operation and let e ∈ EF . Then, for any
x1, . . . , xn−1 ∈X we have

F (x1, . . . , xn−1, e) = F (x1, . . . , e, xn−1) = ⋯ = F (e, x1, . . . , xn−1).
Moreover, for any x ∈X the restriction F ∣({x}⋃EF )n is symmetric.

Proof. Let x1, . . . , xn−1 ∈ X and let Ge be the reduction of F defined by (1). Since
EGe = {e}, we have

F (x1, . . . , xn−1, e) = Gn−1
e (x1, . . . , xn−1, e) = Gn−1

e (x1, . . . , e, xn−1) = ⋯
= Gn−1

e (e, x1, . . . , xn−1),
which proves the first part of the statement. The second part is a direct consequence of the
first part. �

Lemma 2.2. Let F ∶Xn → X be an associative operation such that EF ≠ ∅. Then F
preserves EF , i.e., F (En

F ) ⊆ EF .

Proof. Let e1, . . . , en ∈ EF and let us show that F (e1, . . . , en) ∈ EF . By Lemma 2.1 and
associativity of F , for any x ∈X we have

F ((n − 1) ⋅ F (e1, . . . , en), x)
= F (F (e1, (n − 1) ⋅ e2), F (e1, (n − 1) ⋅ e3), . . . , F (e1, (n − 1) ⋅ en), x)

= F ((n − 1) ⋅ e1, x) = x.

Similarly, for any x ∈X we can show that

F (i ⋅ F (e1, . . . , en), x, (n − i − 1) ⋅ F (e1, . . . , en)) = x, i ∈ {1, . . . , n − 2},
and the proof is now complete. �

Combining Lemmas 2.1 and 2.2, we immediately derive the following result.

Corollary 2.3. If (X,F ) is an n-ary monoid, then (EF , F ∣En
F
) is a symmetric n-ary

monoid.

Proof of Theorem 1.9. (Sufficiency) Obvious.
(Necessity) Suppose that X = EF . Let e ∈ EF and Ge∶X2 → X be the corresponding

reduction of F defined by (1). By Corollary 2.3, we have that F is symmetric. Thus,
we have that Ge also is symmetric. Moreover, since Ge is a binary reduction of F and
EF =X , it follows that

Ge(Gn−2
e ((n − 1) ⋅ x), y) = y = Ge(y,Gn−2

e ((n − 1) ⋅ x)), x, y ∈X,
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which shows that Gn−2
e ((n − 1) ⋅ x) ∈ EGe for any x ∈ X . However, since EGe = {e}, we

have that Gn−2
e ((n − 1) ⋅ x) = e for any x ∈ X . Thus, (X,Ge) is an Abelian group whose

exponent divides n − 1. �

The following result follows immediately from Theorem 1.9.

Corollary 2.4. If (X,F ) is an n-ary monoid, then (EF , F ∣En
F
) is the n-ary extension of

an Abelian group whose exponent divides n − 1.

Let us now prove Theorem 1.5. To this extent, we first state and prove some intermediate
results. We have the following remarkable result, which characterizes the existence of a
pair of neutral elements for F ∈ Fn

n−1 by means of two identities.

Lemma 2.5. Let F ∈ Fn
n−1 and let a, b ∈ X such that a ≠ b. Then a, b ∈ EF if and only if

F ((n − 1) ⋅ a, b) = b and F (a, (n − 1) ⋅ b) = a.

Proof. (Necessity) Obvious.
(Sufficiency) For any x ∈X , we have

F ((n − 1) ⋅ a, x) = F ((n − 2) ⋅ a,F (a, (n − 1) ⋅ b), x)
= F (F ((n − 1) ⋅ a, b), (n − 2) ⋅ b, x) = F ((n − 1) ⋅ b, x),

which implies that F ((n − 1) ⋅ a, x) = x = F ((n − 1) ⋅ b, x) for any x ∈ X . Similarly, we
can show that F (x, (n − 1) ⋅ a) = x = F (x, (n − 1) ⋅ b) for any x ∈ X . Also, we observe
that for any k ∈ {1, . . . , n − 2}, the maps ψk, ξk ∶X →X defined by

ψk(x) = F (k ⋅ a, x, (n − k − 1) ⋅ a)
ξk(x) = F (k ⋅ b, x, (n − k − 1) ⋅ b)

are bijections with inverse maps ψn−k−1 and ξn−k−1. It then follows that, for any k ∈
{1, . . . , n − 2}, we have

F (k ⋅ a, x, (n − k − 1) ⋅ a) = x = F (k ⋅ b, x, (n − k − 1) ⋅ b), x ∈X,
which shows that a, b ∈ EF . �

Given an associative operation F ∶Xn → X , we can define the sequence (F q)q≥1 of
(qn − q + 1)-ary associative operations inductively by the rules F 1 = F and

F q(x1, . . . , xqn−q+1) = F q−1(x1, . . . , x(q−1)n−q+1, F (x(q−1)n−q+2, . . . , xqn−q+1)),
for any integer q ≥ 2 and any x1, . . . , xqn−q+1 ∈X .

Proposition 2.6. Let F ∈ Fn
n−1. For any a1, . . . , an ∈ X such that F (a1, . . . , an) ∉

{a1, . . . , an}, we have that a1, . . . , an, F (a1, . . . , an) ∈ EF . Moreover, F ∣(X∖EF )n is
quasitrivial.

Proof. Let us prove by induction on k ∈ {1, . . . , n − 1} that the condition

F ((n − k) ⋅ a1, a2, . . . , ak+1) ∉ {a1, . . . , ak+1}
implies that a1, . . . , ak+1 ∈ EF . For k = 1, there is nothing to prove. We thus assume that
the result holds true for a given k ∈ {1, . . . , n − 2} and we show that it still holds for k + 1.
Now, consider elements a1, . . . , ak+2 such that

(3) F ((n − k − 1) ⋅ a1, a2, . . . , ak+2) ∉ {a1, . . . , ak+2}.
We first prove that a1, a2 ∈ EF .

If a1 = a2, then a1, . . . , ak+2 ∈ EF by the induction hypothesis.
If a1 ≠ a2, then we prove that F ((n − 1) ⋅ a1, a2) = a2 and F (a1, (n − 1) ⋅ a2) = a1,

which show that a1, a2 ∈ EF by Lemma 2.5.
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● For the sake of a contradiction, assume first that F ((n − 1) ⋅ a1, a2) = a1. Then,
for ` ∈ {1, . . . , n − 2} we have

F ((n − k − 1) ⋅ a1, a2, . . . , ak+2)
= F `+1(((n − k − 1) + `(n − 2)) ⋅ a1, (` + 1) ⋅ a2, . . . , ak+2).(4)

Choosing ` = n − k − 1 and using idempotency of F , we obtain

F ((n − k − 1) ⋅ a1, a2, . . . , ak+2) = F 2((n − 1) ⋅ a1, (n − k) ⋅ a2, a3, . . . , ak+2).
Since the left-hand side of this equation does not lie in {a1, . . . , ak+2}, by (3) we
obtain

F ((n − k) ⋅ a2, a3, . . . , ak+2) ∉ {a1, . . . , ak+2}.
By the induction hypothesis, we have a2, . . . , ak+2 ∈ EF . Then choosing ` = n− 2
in (4) and using idempotency and the fact that a2 ∈ EF , we obtain

F ((n − k − 1) ⋅ a1, a2, . . . , ak+2)
= Fn−1(((n − k − 1) + (n − 2)2) ⋅ a1, (n − 1) ⋅ a2, . . . , ak+2)
= F 2((n − k) ⋅ a1, (n − 1) ⋅ a2, a3, . . . , ak+2)
= F ((n − k) ⋅ a1, a3, . . . , ak+2).

By the induction hypothesis, we have a1 ∈ EF . We then have F ((n−1) ⋅a1, a2) =
a2 ≠ a1, a contradiction.

● Assume now that F (a1, (n − 1) ⋅ a2) = a2. Then, for ` ∈ {1, . . . , n − 2} we have

F ((n − k − 1) ⋅ a1, a2, . . . , ak+2)
= F `+1((n − k − 1 + `) ⋅ a1, (`(n − 2) + 1) ⋅ a2, . . . , ak+2).

For ` = k, using idempotency and the fact that k(n−2)+1 = n−k+(k−1)(n−1),
we obtain

F ((n − k − 1) ⋅ a1, a2, . . . , ak+2)
= F 2((n − 1) ⋅ a1, (n − k) ⋅ a2, a3, . . . , ak+2).

Thus, F ((n−k) ⋅a2, a3, . . . , ak+2) ∉ {a1, . . . , ak+2}. By the induction hypothesis,
we have a2, . . . , ak+2 ∈ EF . It follows that F (a1, (n − 1) ⋅ a2) = a1 ≠ a2, a
contradiction.

Now, since a2 ∈ EF , it commutes with all other arguments of F by Lemma 2.1. Also, by
(3) we have

F ((n − k − 1) ⋅ a1, a3, . . . , ak+2, a2) ∉ {a1, . . . , ak+2},
and thus a3 ∈ EF . Repeating this argument, we have that a1, . . . , ak+2 ∈ EF . Furthermore,
F (a1, . . . , an) ∈ EF by Lemma 2.2. The second part is straightforward. �

Proof of Corollary 1.6. This follows from [2, Corollary 2.3], Proposition 2.6, and [5, Lemma
1]. �

Remark 4. In the proof of Corollary 1.6 we used [2, Corollary 2.3] which is based on results
obtained by Ackerman [1]. In the appendix we provide an alternative proof of Corollary
1.6 that does not make use of [2, Corollary 2.3].

In [2, Proposition 3.7], it was shown that a quasitrivial n-ary semigroup cannot have
more than two neutral elements. The next result shows that an operation in Fn

n−1 is qua-
sitrivial whenever it has at most two neutral elements.

Corollary 2.7. An operation F ∈ Fn
n−1 is quasitrivial if and only if ∣EF ∣ ≤ 2.
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Proof. (Necessity) This follows from [2, Proposition 3.7].
(Sufficiency) Suppose to the contrary that ∣EF ∣ ≤ 2 and that F is not quasitrivial, i.e.,

there exist a1, . . . , an ∈X such that F (a1, . . . , an) ∉ {a1, . . . , an}. By Proposition 2.6, we
have that a1, . . . , an, F (a1, . . . , an) ∈ EF . Thus, we must have

∣{a1, . . . , an, F (a1, . . . , an)}∣ ≤ 2,

which contradicts the idempotency of F and the preservation of EF by F (see Lemma
2.2). �

Proposition 2.8. Let F ∈ Fn
n−1 and suppose that ∣EF ∣ ≥ 3. Then, any element x ∈X ∖EF

is an annihilator of F ∣({x}⋃EF )n . Moreover, F ∣(X∖EF )n is quasitrivial and has at most
one neutral element.

Proof. Let x ∈ X ∖EF and e ∈ EF and let us show that F (k ⋅ x, (n − k) ⋅ e) = x for any
k ∈ {1, . . . , n − 1}. If k = 1, then the latter identity follows from the definition of a neutral
element. Now, suppose that there exists k ∈ {2, . . . , n−1} such that F (k ⋅x, (n−k) ⋅e) ≠ x.
Since x ∈ X ∖ EF , by Proposition 2.6 we must have F (k ⋅ x, (n − k) ⋅ e) = e. But then,
using the associativity of F , we get

F ((n − 1) ⋅ x, e) = F ((n − 1) ⋅ x,F (k ⋅ x, (n − k) ⋅ e))
= F (k ⋅ x, (n − k) ⋅ e) = e,

and we conclude by Lemma 2.5 that x ∈ EF , which contradicts our assumption. Thus, we
have

(5) F (k ⋅ x, (n − k) ⋅ e) = x, k ∈ {1, . . . , n − 1}.

Now, let us show that F (k ⋅ x, ek+1, . . . , en) = x for any k ∈ {1, . . . , n − 1} and any
ek+1, . . . , en ∈ EF . To this extent, we only need to show that

F (k ⋅ x, ek+1, . . . , en) = F ((k + 1) ⋅ x, ek+2, . . . , en),

for any k ∈ {1, . . . , n − 1} and any ek+1, . . . , en ∈ EF . So, let k ∈ {1, . . . , n − 1} and
ek+1, . . . , en ∈ EF . Using (5) and the associativity of F we get

F (k ⋅ x, ek+1, . . . , en) = F ((k − 1) ⋅ x,F (2 ⋅ x, (n − 2) ⋅ ek+1), ek+1, . . . , en)
= F (k ⋅ x,F (x, (n − 1) ⋅ ek+1), ek+2, . . . , en)
= F ((k + 1) ⋅ x, ek+2, . . . , en),

which completes the proof by idempotency of F and Lemma 2.1. For the second part of
the proposition, we observe that F ∣(X∖EF )n is quasitrivial by Proposition 2.6. Also, using
(5) and the associativity of F , for any x, y ∈X ∖EF and any e ∈ EF we obtain

F ((n − 1) ⋅ x, y) = F ((n − 1) ⋅ x,F (e, (n − 1) ⋅ y))
= F (F ((n − 1) ⋅ x, e), (n − 1) ⋅ y) = F (x, (n − 1) ⋅ y),

which shows that F ∣(X∖EF )n cannot have more than one neutral element. �

Proof of Theorem 1.5. (Necessity) This follows from Corollaries 2.4 and 2.7 and Proposi-
tion 2.8.

(Sufficiency) It is not difficult to see that Y ⊆ EF . By Corollary 2.7, we also have that
∣EF ∣ ≥ 3. By Corollary 2.4, the pair (EF , F ∣En

F
) is the n-ary extension of an Abelian

group whose exponent divides n − 1. Thus, since Y is unique, it follows that Y = EF .
Finally, the quasitriviality of F on Dn

n−1 is straightforward to check. �
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Proof of Corollary 1.7. This follows from Theorem 1.5, Corollary 1.6, and Proposition
1.2. �

3. AN ALTERNATIVE HIERARCHY

For any integer k ≥ 1, let Sn
k be the set of n-tuples (x1, . . . , xn) ∈ Xn such that

∣{x1, . . . , xn}∣ ≤ k. Of course, we have Dn
k ⊆ Sn

n−k+1 for k ∈ {1, . . . , n}. Now, denote
by Gnk the class of those associative n-ary operations F ∶Xn →X satisfying

F (x1, . . . , xn) ∈ {x1, . . . , xn}, (x1, . . . , xn) ∈ Sn
k .

We say that these operations are quasitrivial on Sn
k .

It is not difficult to see that if F ∈ Gnk , then F ∈ Fn
n−k+1. Due to Proposition 1.1, we

have Gnn = ⋯ = Gn3 , and hence we only need to consider operations in Gn2 . The analog of
Theorem 1.5 can then be stated as follows.

Theorem 3.1. Suppose that Gn2 ∖ Gnn ≠ ∅. An associative operation F is in Gn2 ∖ Gnn if
and only if n is odd and there exists a unique subset Y ⊆ X , with ∣Y ∣ ≥ 3, such that the
following conditions hold.

(a) (Y,F ∣Y n) is the n-ary extension of an Abelian group of exponent 2.
(b) F ∣(X∖Y )n is quasitrivial and has at most one neutral element.
(c) Any x ∈X ∖ Y is an annihilator for F ∣({x}⋃Y )n .

Moreover, we have that Y = EF .

Proof. (Necessity) Due to Theorem 1.5, we only need to show that condition (a) holds. By
Corollary 2.7, we have that ∣EF ∣ ≥ 3. Also, by Corollary 2.4, we have that (EF , F ∣En

F
) is

the n-ary extension of an Abelian group whose exponent divides n − 1. In particular, for
any e ∈ EF , we have that (EF ,Ge) is an Abelian group whose exponent divides n − 1.
However, since the neutral element is the only idempotent element of a group and since
Ge(e′, e′) ∈ {e, e′} for any e, e′ ∈ EF , it follows that Ge(e′, e′) = e for any e, e′ ∈ EF , i.e.,
for any e ∈ EF we have that (EF ,Ge) is a group of exponent 2. (Recall that an element
x ∈ X is said to be idempotent for an operation F ∶Xn → X if F (n ⋅ x) = x.) Therefore,
we conclude that (EF , F ∣En

F
) is the n-ary extension of an Abelian group of exponent 2.

Also, since 2 divides n − 1 we conclude that n is odd.
(Sufficiency) It is not difficult to see that Y ⊆ EF . Now, let e ∈ EF and let us show that

e ∈ Y . Suppose to the contrary that e ∉ Y , i.e., e ∈X ∖ Y . But then by (c) we have

F ((n − 1) ⋅ e, y) = e, y ∈ Y,

which contradicts the definition of a neutral element. Thus, we have Y = EF . Also, since
(Y,F ) is the n-ary extension of an Abelian group of exponent 2 and n is odd, it follows
that F ∈ Gn2 . The remaining properties follow from Theorem 1.5. �

The following corollary follows from Theorem 3.1, Proposition 1.2, and Corollary 1.6.

Corollary 3.2. Suppose that Gn2 ∖ Gnn ≠ ∅. An operation F is in Gn2 ∖ Gnn if and only if it
is reducible to an associative operation G∶X2 → X , n is odd, and there exists a unique
subset Y ⊆X , with ∣Y ∣ ≥ 3, such that the following conditions hold.

(a) (Y,G) is an Abelian group of exponent 2.
(b) G∣(X∖Y )2 is quasitrivial.
(c) Any x ∈X ∖ Y is an annihilator for G∣({x}⋃Y )2 .

Moreover, we have that Y = EF .
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Corollary 3.2 is particularly interesting as it allows to construct easily n-ary operations
in Gn2 ∖ Gnn . For instance, consider the set X = {1,2,3,4,5,6} together with the operation
G∶X2 →X defined by the following conditions:

● ({1,2,3,4},G∣{1,2,3,4}2) is isomorphic to (Z2
2,+),

● G∣{5,6}2 = π1∣{5,6}2 , where π1∶X2 → X is defined by π1(x, y) = x for any x, y ∈
X ,

● for any x ∈ {1,2,3,4}, G(x,5) = G(5, x) = 5 and G(x,6) = G(6, x) = 6.

Then for any integer p ≥ 1, we have that the operation associated with any (2p + 1)-ary
extension of ({1,2,3,4,5,6},G) is in G2p+12 ∖ G2p+12p+1 by Corollary 3.2.

CONCLUDING REMARKS

In this paper we characterized the class Fn
n−1 ∖ Fn

1 , i.e., the class of those associative
operations F ∶Xn → X that are not quasitrivial but satisfy the condition F (x1, . . . , xn) ∈
{x1, . . . , xn} whenever at least n − 1 of the elements x1, . . . , xn are equal to each other
(Theorem 1.5). Moreover, we proved that any such operation is reducible to a binary
operation (Corollary 1.6). This led to an alternative characterization of the class Fn

n−1∖Fn
1

based on binary reductions (Corollary 1.7). Finally, we characterized the class Gn2 ∖Gnn , i.e.,
the class of those associative operations F ∶Xn →X that are not quasitrivial but satisfy the
condition F (x1, . . . , xn) ∈ {x1, . . . , xn} whenever ∣{x1, . . . , xn}∣ ≤ 2 (Theorem 3.1 and
Corollary 3.2).

The main results of this paper thus characterize several relevant subclasses of associa-
tive and idempotent n-ary operations. However, the characterization of the class Fn

n of
associative and idempotent n-ary operations still eludes us. This and related enumeration
results [2, 3] constitute a topic of current research.
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APPENDIX: ALTERNATIVE PROOF OF COROLLARY 1.6

We provide an alternative proof of Corollary 1.6 that does not use [2, Corollary 2.3].
To this extent, we first prove the following general result.

Proposition 3.3. Let F ∈ Fn
n . The following assertions are equivalent.

(i) F is reducible to an associative and idempotent operation G∶X2 →X .
(ii) F ((n − 1) ⋅ x, y) = F (x, (n − 1) ⋅ y) for any x, y ∈X .

Proof. The implications (i) ⇒ (ii) is straightforward. Now, let us show that (ii) ⇒ (i).
So, suppose that

(6) F ((n − 1) ⋅ x, y) = F (x, (n − 1) ⋅ y) x, y ∈X,

and consider the operationG∶X2 →X defined byG(x, y) = F ((n−1)⋅x, y) for any x, y ∈
X . It is not difficult to see that G is associative and idempotent. Now, let x1, . . . , xn ∈ X
and let us show that Gn−1(x1, . . . , xn) = F (x1, . . . , xn). Using repeatedly (6) and the
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idempotency of F we obtain

Gn−1(x1, . . . , xn) = Fn−1((n − 1) ⋅ x1, (n − 1) ⋅ x2, . . . , (n − 1) ⋅ xn−1, xn)
= Fn−1((2n − 3) ⋅ x1, x2, (n − 1) ⋅ x3, . . . , (n − 1) ⋅ xn−1, xn)
= ⋯
= Fn−1((n(n − 1) − 2(n − 1) + 1) ⋅ x1, x2, x3, . . . , xn−1, xn)
= F (x1, . . . , xn),

which shows that F is reducible to G. �

Remark 5. Let ≤ be a total ordering on X . An operation F ∶Xn → X is said to be ≤-
preserving if F (x1, . . . , xn) ≤ F (x′1, . . . , x′n) whenever xi ≤ x′i for any i ∈ {1, . . . , n}.
One of the main results of Kiss and Somlai [7, Theorem 4.8] is that every ≤-preserving
operation F ∈ Fn

n is reducible to an associative, idempotent, and ≤-preserving binary
operation. The reader can easily verify that the latter is an immediate consequence of
Proposition 3.3 above.

The following result is the key for the alternative proof of Corollary 1.6.

Proposition 3.4. Let F ∈ Fn
n−1. The following assertions are equivalent.

(i) F is reducible to an associative and quasitrivial operation G∶X2 →X .
(ii) F is reducible to an associative and idempotent operation G∶X2 →X .

(iii) F ((n − 1) ⋅ x, y) = F (x, (n − 1) ⋅ y) for any x, y ∈X .
(iv) ∣EF ∣ ≤ 1.

Proof. The equivalence (i)⇔ (ii) and the implication (iii)⇒ (iv) are straightforward.
Also, the equivalence (ii) ⇔ (iii) follows from Proposition 3.3. Now, let us show that
(iv) ⇒ (iii). So, suppose that ∣EF ∣ ≤ 1 and suppose to the contrary that there exist
x, y ∈ X with x ≠ y such that F ((n − 1) ⋅ x, y) ≠ F (x, (n − 1) ⋅ y). We have two cases to
consider. If F ((n−1) ⋅x, y) = y and F (x, (n−1) ⋅y) = x, then by Lemma 2.5 we have that
x, y ∈ EF , which contradicts our assumption on EF . Otherwise, if F ((n − 1) ⋅ x, y) = x
and F (x, (n − 1) ⋅ y) = y, then we have

x = F ((n − 1) ⋅ x, y) = F ((n − 1) ⋅ x,F (n ⋅ y))
= F (F ((n − 1) ⋅ x, y), (n − 1) ⋅ y) = F (x, (n − 1) ⋅ y) = y,

which contradicts the fact that x ≠ y. �

Proof of Corollary 1.6. This follows from Proposition 3.4 and [5, Lemma 1]. �
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