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Contexte du travail effectué
J’ai pris contact en avril 2018 avec l’équipe STEEP du centre Inria de Grenoble et nous avons
rapidement monté un projet de doctorat portant sur la modélisations du changement d’usage des
sols. Nous nous sommes alors donné un an pour trouver un financement de thèse et dans ce laps
de temps il a été convenu que je suive un master 2 de statistiques afin de compléter ma formation
initiale d’ingénieur dans ce domaine. Le présent document rapporte mon travail effectué dans
le cadre du stage de master 2 Statistiques et Sciences des Données (M2 SSD) de l’Université
Grenoble Alpes réalisé de mars à juillet 2019. Nous avons finalement obtenu en juin 2019 une
bourse de thèse entièrement financée par l’Inria.

Ce stage constitue donc une entrée en matière à ce travail de thèse qui s’effectuera sur les trois
prochaines années. Un travail de bibliographie ayant déjà été réalisé en amont par mon directeur
de thèse Pierre-Yves Longaretti, j’ai pu me confronter pendant quatre mois directement aux
premiers problèmes soulevés par le sujet de thèse. Ce travail m’a ainsi permis de me familiariser
avec les modèles de changement d’usage des sols et ainsi confirmer mon attrait pour ce sujet de
recherche. Il s’agissait également de prendre de l’avance, si cela est concevable, sur le doctorat et
la première publication.

Ce contexte de stage particulier m’a donc invité à travailler de manière à pouvoir ré-exploiter
les éléments traités dans la thèse future. Ainsi, l’ensemble de ce rapport est rédigé en anglais.
De plus, la majorité des chapitres relèvent de la théorie des modèles de changements d’usage des
sols afin d’être au plus proche de la structure d’un article scientifique. L’implémentation de ces
méthodes et en particulier du nouvel algorithme d’allocation n’est décrite que dans le chapitre 6.

Ce document constitue ainsi pour moi un point d’étape dans le travail effectué, sans ambition
de résultat et qui se trouve être un véritable marche pied avant la thèse qui s’annonce.
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1 Introduction

1.1 Generalities

Land use and cover change (LUCC) models are mainly used in environmental sciences. The term
land cover refers to the cover kind such as urban or plant as it can be characterized by an air or
satellite photo; land use refers to their management.

LUCC models are used on demarcated areas from landscapes of some square kilometers to
whole continental surface as Europe. Quantify environmental impact due to public policies among
others parameters is one of the main model purpose considering constraints imposed by global
changes, especially climate change. These models are generally employed in research studies but
can also advice public decision.

In this two contexts, a way to apprehend the interface between environment and society is
the concept of ecosystem service by highlighting the whole of services and functions fulfilled by
ecosystems for society benefit. But land use and cover changes can not fully determine kind
and quality services change. It is then necessary to adjoin to LUCC models for all ecosystem of
interest a model in order to evaluate the link between land use and cover change and ecosystem
services on a same territory. Services modeling is a complex subject which is not approached in
this report.

A wide variety of models are described in the literature: dynamic or static, agent or grid
based, global or local etc. (Verburg et al., 2006), on diverse levels of spatio-temporal and
decisional complexity (Agarwal et al., 2002). We focus here on spatially explicit models which
present robustness and development maturity. They produce future state maps of the territory
for discrete time steps, typically for intervals of some years; for example, in the project ESNET
(Ecosystem Services NETworks) which constitutes the case study of this report, the time step is
fixed to 5 years between 2010 and 2040.

The studied territory is divided in a large amount of elements – pixels in an arbitrary case
or parcels if they correspond to homogeneous real units of the landscape – small enough to be
characterized by a single cover use (a typically size is about a few dozen meters). A preliminary
step of any LUCC project consists then to define a list of all possible cover uses in coherence with
the study purpose.

The maps produced by these models and the information that we derive from them are one of
the main supports for scientific analysis of changes on the one hand, and discussion with elected
officials and decision-making bodies of the other. Time horizon of these models is limited to a
few decades in the future due to increasing imprecisions of temporal projections.

Among the best-known and most widely-developed spatially explicit models are the CLUE
model family (Verburg et al., 2002; Verburg and Overmars, 2009), the Dinamica EGO model
(Soares-Filho et al., 2002), and the LCM model (Land Change Modeler). , Eastman 2012).
These are in fact software environments allowing the user to create a specific model for a given
study area and problem, from elementary modules, the most important of which are described
below.

1.2 Spatially explicit models architecture

LUCC models analyze statistically cover change based on three main modules (fig. 1).
The first one (probabilities module) determines probabilities of pixel state change between

different possible land use/land cover types for one time step. This module produces maps of
change probabilities. For example, an agricultural pixel, very close to urban areas has an higher
probability as a mountain pixel to become an urban pixel at the next time step. All areas
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constraints (especially protected areas for environmental reasons or natural risk management)
are introduced in a spatially explicit way at this stage. Change probabilities are calibrated on
past evolution from the difference between two land use and cover maps at two different dates.
These changes are then statistically characterized thanks to several explanatory variables, whose
choice is left to the user. For example, in the case of urban sprawl, we can consider as explanatory
variable the distance to the main urban centers, real estate market prices, the local terrain slope,
etc. Evolution scenarios, which refer to global land use and cover changes, are defined thanks to
either a specific model, or an expert, or a planning organization for example. Whenever possible,
models are validated with a third land use and cover map and validation methods are described in
literature (Pontius 2002, Hagen 2003). However, specific methods can be used for each particular
problem.

The second module (demand module) establishes global changes (for example in hectare by
years) on the whole territory between the different land use for one time step. These surfaces of
changes can be deduced from past evolutions with simple tendencies extrapolation or be based on
evolution scenarios of the territory. The more relevant changes relate to changes between different
type of agricultural crops, exchanges between forest areas and agricultural areas (especially due
to agricultural abandonment), and urbanization of agricultural land.

The last module (allocation module) affects explicitly land use and cover change by time step
based on informations provided by the first two modules and on an initial land use map. An
algorithm selects pixels whose cover use will change during the time step. A new land use map is
produced and the process can be repeated until the whole projection period has been simulated.
Even if change probabilities are defined for each pixels, changes are allocated as patches has
observed in reality.

Probability module
Probability map of 

Transition between use cover

Demand module
Global quantities of
use cover changeConstraints Map

Allocation module
Effective land use cover assignment

Land use
step time i

Iteration Land use
step time i+1

Figure 1: Schematic diagram of LUCC models architecture.

1.3 Models limits and work introduction

It should be noted beforehand that the statistical nature of the model implies that the maps
obtained represent a possible state of the territory, but certainly not a prediction; the quantitative
information from these models is only a statistical value. In addition, models use various methods
to establish statistical correlation between land use and cover change and explanatory variables.
Moreover, the final pixel state allocation can be assigned in different ways. These remarks can
lead to noteworthy model behavior differences for a same problem (Mas et al., 2011, 2014). This
point is essential to consider for any decision support application and insofar as possible, the
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modeler should evaluate the robustness of the conclusions for the decision-maker.
Also, spatially explicit models are frequently cited and used in the literature but their descrip-

tion is incorrect. In particular, the theoretical background underlying such models is deficient,
especially in comparison with the level of sophistication reached by the various modeling en-
vironments mentioned above. Some modeling principles are used intuitively and pragmatically
without adequate justification; some of these are plainly wrong once formulated in an appropri-
ate probability theory language. Indeed, no theoretical tools are available for neither software
users nor developers of other modeling environments even though those objects are essential to
evaluate these models in a critical fashion. Important differences in performance can be noticed
on specific problems but without any explication about the origin of quantitative discrepancies
– even qualitative on occasion. These deficiencies impede systematic improvements of modeling
performances.

In this work which constitutes the first step in a more extensive LUCC theoretical analysis,
we focused on a general approach. Introducing the notations used in this report, an explicit
theoretical framework is introduced to define probabilities of change of land use/land cover. This
framework is strictly correct only in the limiting case of statistically independent explanatory
variables; this hypothesis is never satisfied in practice, but statistical correlations are minimized in
practice by an appropriate choice of these variables. In any case, it provides a useful framework to
analyze the origin of the problems of existing allocation procedures. I focused on what apparently
constitutes the most important limitation in LUCC modeling, i.e., the allocation procedure itself.
A new conceptually correct allocation method is devised and presented. It is then applied in a
actual problem. To this effect, I have developed a Python module called Demeter.
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2 Notation and definitions

2.1 Pixel characterization parameters

We consider a study area for which we have raster data at a same scale for two or three different
dates. They are used for the calibration and the validation procedure of the land use and cover
change model.

Several quantities characterize a given pixel:

1. Each pixel is identified by its index j. J = [1, jm] is the set of all indexes.

2. Pixel coordinates are given by the couple (x, y). The coordinates of the pixel j are therefore
(xj , yj). There is of course a bijection between the set J and the set of used coordinate
couples.

3. The symbol v refers to land use and cover types. A natural number is affected to each type
and therefore v ∈ [0, vm] where 0 refers to a lack of data and only [1, vm] are meaningful.
We use also the term state to indicate a land use and cover type. The model calibration
is based on land use and cover at two different dates. vi and vf refers respectively to a
pixel state at the initial moment and the final one. For simplicity, these subscripts are also
intuitively used in the allocation phase: vi refers to the pixel state at the current step time
and vf is the allocation outcome state. Subsets of J can be defined regarding the land use
state. For example, Jvi = {j ∈ J, vj = vi}. In the following, the sequential aspect of land
use states is implicit, i.e. the subscript vi, vf refers to an element which have transited
from vi to vf during the studied phase. For example, Jvi,vf

is the set of pixel which have
transited from vi to vf .

4. Z denotes the set of explanatory variables which are considered as relevant explanations of
states and each element has an index: Z = {Z1, . . . , Zkm}. The explanatory variables are
defined for a specific initial state vi. Thus, we consider that all elements relative to Z take
this initial state as prerequisite and we omit to mention it in the notation. The value of
the explanatory variable Zk for the pixel j is written zjk. It can be both part of R (for a
continuous variable) or N (for a discrete or qualitative variable). Continuous variables are
discretized in order to handle all variables in the same way while taking into account the
limited volume of some continuous variables samples. The discretization bins are written
αqk with q ∈ [1, qm] (qm can be different for each Zk – the subscript k is omitted) such as:

α1
k = min

j∈Jvi

(zjk)

αq
m

k = max
j∈Jvi

(zjk)
(1)

The other elements of αqk can be freely determined based on the selected discretization
procedure used (chapter ?? Frem: faudra regarder ça à un moment...).
For each pixel j and each explanatory variable Zk, the discrete value of ẑjk is therefore1:

1zj
k < α1

k and zj
k > αqm

k cases are only conceivable in the allocation phase where Jvi is not the same as the set
used for the discretization setting.
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ẑjk =


0 if zjk < α1

k

q | αqk ≤ z
j
k < αq+1

k if zjk < αq
m

k

qm − 1 if zjk = αq
m

k

qm if zjk > αq
m

k

(2)

Some notations are follows:

• ẑj is the n-tuple of all discretized explanatory values for the pixel j, i.e. {ẑj1, ẑ
j
2, . . . , ẑ

j
km}.

• ẑ is any n-tuple of all discretized explanatory values, including cases which are not
represented in the studied case.

• Ẑ is the set of all possible ẑ.
• Ẑ∗ is a subset of Z which includes only n-tuples ẑ which are really represented in the

case, i.e. Ẑ∗ = {ẑj , j ∈ Jvi}.

The main parameters for pixel characterization are summarized in table 1.

symbol set definition
j J = [1, jm] pixel unique index

(x, y) R2 pixel coordinates
v V = [0, vm] land use state; v = 0 refers to a lack of data and only

v = 1 . . . vm are meaningful
vj V land use state of the pixel j

vi → vf V→ V land use transition from an initial to a final state
Zk Z explanatory variable k
zjk R, N value of the explanatory variable Zk for the pixel j
αvk Rqm

k +1, Nqm
k +1 bins returned by the Zk discretization

qk Ẑk = [0, qmk ] bin index as defined in (1)
ẑjk Ẑk discretized value of the explanatory variable Zk as defined

in (2), for the pixel j
ẑ Ẑ any tuple of discretized values of all explanatory variables

(may not occur in the calibration phase)
ẑj Ẑ∗ tuple of discretized values of all explanatory variables for

the pixel j

Table 1: Notations and definitions

J can be divided in subsets according to conditions specified with appropriate subscripts. For
example, Jv = {j ∈ J | vj = v}. The cardinal function is written # and consequently, #J is the
cardinal number of J. For example, #Jvi,vf ,ẑ is equal to the number of pixels such as their initial
state is vi, their final state is vf and their discrete explanatory values are equal to ẑ.

2.2 Justification elements of the probabilistic approach in the LUCC modeling

Two distributions of probability are mainly required in spatially explicit LUCC models:

– P (vf |vi, ẑ) describes the distribution of final states knowing the initial state and the ex-
planatory variables.
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– P (ẑ|vi, vf ) describes distribution of explanatory variables knowing initial and final states.

By drawing pixels, one get a simple but not exclusive way to introduce the probabilities
presented above as random variables. As a draw defines simultaneously a value for all variables,
on can define in this context the joint probability: P (Vi, Vf , Ẑ) which defines the probability for
a given pixel to transit from vi to vf during the time step. Also, for each step of the simulation,
the final state is unknown and as for any problem with complex causes, one prefers handle the
result of the evolution as a random process product.

It is essential to understand the difference between the two probabilities introduced above.
The first one is applied to any given pixel during the simulation. It gives the probability for that
pixel with the initial state vi and knowing its explanatory variables values to change to vf . The
second one corresponds to pixels repartitions function of explanatory variables knowing initial and
final states. It cannot be the probability for a given pixel to present a specified ẑ, because each
pixel has already a fixed ẑ which does not change during the time step. During the calibration
stage, one can realize a fair sampling within the subset Jvi,vf

and get on average a distribution in
compliance with P (ẑ|vi, vf ). Thus, one use for the calibration the Bayes formula in the frequency
sense. However, during a simulation, it is a priori a probability in the Bayesian sens which
defines the distribution function of ẑ, knowing vi and vf . To simulate a trend evolution based on
the calibration, the distribution is used as it is. Alternately, on can edit this probability during
the simulation according to a specified scenario. This Bayesian aspect is used to relate the two
probabilities in section 4.1. Also, only P (vf |vi, ẑ) makes sense to generate a map of probability
during a simulation.
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3 A case study: the SCoT of Grenoble
The ESNET project aims to analyse future land use trajectoires and their effects on biodiversity
and ecosystem services for the Grenoble urban area. As part of this project, a case study dedicated
to LUCC had been defined and I use it as case study of this work.

The employment area of Grenoble covers 4 450 km2. In 2012 according to INSEE, their
were 800 000 inhabitants and 500 000 jobs. The boundaries of this territory have been defined
regarding the economic influence of the agglomeration of Grenoble and the diversity of landscapes
which outline the region. The economic aspect, boundaries are based on EPCI2 areas. Selected
EPCIs belong to the SCoT3 of Grenoble and some surrounding EPCIs. On the landscape aspect,
the region of Grenoble presents a large diversity of natural sites. Planar valleys of Grenoble
and the Grésivaudan encourage urban extension. The three mountain ranges (the Vercors, the
Chartreuse and Belledone) structure the territory and provide natural landscape with numerous
protection areas (regional nature parks, nature reserve).

Thus, the employment area gather 311 municipalities in a radius of about fifty kilometers
organized in ten EPCIs: the agglomeration of Grenoble, the south of Grenoble, the Grésivaudan
and around Voiron (these areas form the “Y” of Grenoble), the Chartreuse and the Vercors (which
are the mountain range areas apart from the SCoT of Grenoble), the Trièves, the Matheysine,
the south of the Grésivaudan, the Bièvre Valloire (which are mainly agricultural plains).

As part of the ESNET project, existing spatial data about this territory have been merged
with photo interpretation and IGN maps in order to provide a data base of land use maps of
1998, 2003 and 2009 with a precision of 15 meters (the pixel width). The topology of this data
base is composed by 34 states ranked in four precision levels (fig. 2). It distinguishes artificial
areas (with within it residential zones, zones of industrial and commercial activity, roads, railway
networks. . . ). It describes also several agricultural types (with within it monocultures, pastures,
market gardening. . . ). Forest and semi-natural4 environments are characterized at the population
level for wooded areas.

In this work, I focused on transitions from agriculture to urban residential area and zone of
industrial and commercial activity. The land use maps used are then only constituted by 8 states
as described in table 2.

id state color
0 null data black
1 aquatic blue
2 residential red
3 agricultural orange
4 forest green
5 semi-natural brown
6 road yellow
7 industrial and commercial activity purple

Table 2: Selected land use states

2EPCI (Établissement Public de Coopération Intercommunale) are administrative structures gathering several
municipalities.

3The SCoT (Schéma de Cohérence Territoriale) is a french urban plan determining on the scale of several
municipalities in order to put in coherence all local policies including accommodations, transports, commercial
areas, environment and landscape.

4Semi-natural areas present unfavorable lands for agriculture or are inaccessible (especially in mountain range).
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Figure 2: Land use states within the employment area of Grenoble in 2009.

4 Calibration through explanatory variables

4.1 Probabilities in the limit of statistical independence of explanatory vari-
ables

Based on land use and cover maps at two distinct dates, the calibration phase aims at determining
transition probabilities for each pixels according to their initial state and explanatory variable
values.

This probability can be written:

P (vf |vi, ẑ) =
P (vf , vi, ẑ)
P (vi, ẑ)

, (3)

where both factors are based on the calibration stage. Alternately, one can rewrite this probability
using Bayes formula:

P (vf |ẑ, vi) = P (vf |vi)×
P (ẑ|vi, vf )
P (ẑ|vi)

. (4)

This second formula is a useful problem formulation which isolates an element with no spatial
dependence, P (vf |vi). This probability will then be considered as a scenario parameter during
the allocation phase.

L’indépendance statistique est une hypothèse; j’ai donné rapidement plus haut dans un des
commentaires une justification de l’usage de cette hypothèse. On fait cette hypothèse parce que
ça permet de formuler les choses analytiquement de façon assez simple, et donc d’identifier les
problèmes.
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To apply this Bayesian statistics approach and for simplicity, explanatory variables are con-
sidered as independent random variables. This hypothesis is never satisfied but explanatory
variables Z are chosen in order to approach it. It is often sufficient considering the precision
level aimed for LUCC modeling. It is possible to conceive more sophisticated statistic methods
for calibration with dependent variables but keeping this hypothesis is very useful to pinpoint
the various problems underlying incorrect (implicit or explicit) assumptions in existing modeling
environments. With this assumption:

P̃ (ẑ|vi, vf ) =
∏
k

Pk(ẑk|vi, vf ) (5)

P̃ (ẑ|vi) =
∏
k

Pk(ẑk|vi) (6)

Where Pk only considers the explanatory variable Zk and the symbol P̃ indicates that the
independent random variables hypothesis is used.

In practice, this hypothesis makes the transition probability easier to calibrate. Indeed, one
needs a smaller amount of calibration data to calibrate a one variable probability at a given
precision level, compared to multiple variable probabilities. In fact, the number of calibration
pixels is usually limited due to the relatively small number of pixels undergoing a transition of a
given type in the calibration data. Indeed, without equations (5 - 6), calibrating would mean to
evaluate every distinct combinations of ẑ. In the present case, it just implies to consider all bins
of each explanatory variable separately. Also, this formulation allows to evaluate probabilities
for some (vi, ẑ) combinations not occurring in the calibration data. Such combinations are not
necessarily unrealistic; they are only not represented due to the inherent sampling noise of the
calibration data.

Thereby:

P̃ (vf |ẑ, vi) = P (vf |vi)×
∏
k

Pk(ẑk|vi, vf )
Pk(ẑk|vi)

(7)

Basically, probabilities are estimated by pixels counting:

P (vf |vi) =
#Jvi,vf

#Jvi

(8)

Pk(ẑk|vi, vf ) =
#Jvi,vf ,ẑk

#Jvi,vf

(9)

Pk(ẑk|vi, vf ) =
#Jvi,ẑk

#Jvi

(10)

#Jx are random variables. As we got only one “statistical experience” which corresponds to
the observed reality, the noise question on probabilities estimation arises. Dinamica proposes a
computing method by weights of evidence described in section 4.2. Note that the calibration phase
could be here achieved and come down to know for all k Pk(ẑk|vi, vf ) and Pk(ẑk|vi). P (vf |vi) is
determined by the scenario. Of course, the obtained probabilities verify the closure relations:
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∑
vf∈V

P (vf |vi) = 1 (11)

∑
ẑ∈Ẑ

P (ẑ|vi) =
∑
ẑ∈Ẑ

∏
k

Pk(ẑk|vi) = 1 (12)

∀ vf ∈ V,
∑
ẑ∈Ẑ

P (ẑ|vi, vf ) =
∑
ẑ∈Ẑ

∏
k

Pk(ẑk|vi, vf ) = 1 (13)

∀ ẑ ∈ Ẑ
∑
vf∈V

P (vf |vi, ẑ) = 1 (14)

4.2 Dinamica weights of evidence

The weights of evidence is a useful and generic method to characterize transition probability
when explanatory variables are independent. However, the approximation used in Dinamica to
compute weights of evidence is particular and it proves to be constrained by a necessary condition.
Dinamica makes this choice in order to reduce statistic noise due to the restricted sampling. One
presents here only practical formulas.

Dinamica defines the weights of evidence W+
k in the following way:

∀ ẑk, W+(ẑk|vi, vf ) = ln
(
Pk(ẑk|vi, vf )
Pk(ẑk|vi)

)
(15)

Thus:
P̃ (vf |vi, ẑ) = P (vf |vi)

∏
k

exp(W+(ẑk|vi, vf )) (16)

Dinamica only keeps track of the weights of evidence at the end of its calibration procedure.

4.3 Imperfect closure

Ẑ∗ is a subset of all possible ẑ which includes only ẑ which are really represented in the calibration
case. Then, we can write the inequation for all vf regarding the closure relations:∑

ẑ∈Ẑ∗
P̃ (ẑ|vi, vf ) ≤

∑
ẑ∈Z

P̃ (ẑ|vi, vf ) = 1. (17)

In practice, it means that ∑ẑ∈Ẑ∗ P̃ (ẑ|vi, vf ) is lower than 1 because Ẑ∗ is a subset of Z ,
i.e. all ẑ are not considered within the calibration phase. This also implies that for a given ẑ,∑
vf∈V P (vf |vi, ẑ) is also lower than 1.
Missing (vi, ẑ) combinations in the calibration data are not the only reason of imperfect

closure. The lack of occurring cases is not the only origin of the closure relation rejection.
Indeed, we have assumed the explanatory variables independence hypothesis. Yet, an error on
this assumption implies a wrong evaluation of P̃ (ẑ|vi, vf) and leads also to an error on the closure
relation.
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5 Pruning and currently used allocation methods
We present in this section the method used by Dinamica to perform the allocation phase. This
description is required to propose then a new allocation method in section 6.

5.1 Position of the problem

In principle, and without making any specific assumption, the allocation process can be viewed
as a two-step process at any time step p in a simulation. First one randomly selects a pixel in J.
This random selection results in a known vjp, ẑj for the selected pixel. Second, one allocates to
this pixel a final state, vjp+1.

This being said, without further relying on some form of a priori knowledge, this procedure,
although theoretically correct, is extremely inefficient; inefficient here means that most random
draws of pixels are performed uselessly as most pixels will not change state, so that most of the
computational time will be spent in checking that no transition occurs. All software suffer from
this problem; in order to minimize it, a preselection stage, called pruning, is introduced and two
different modes of pruning are used in Dinamica and LCM.

We can now now specify the various stages of the allocation procedure that should actually
be implemented for efficiency purposes:

1. Pruning (preselection) of an ensemble of appropriate pixels for transitions from vjp to other
states vjp+1.

2. Random selection of a pixel in this pruned ensemble.

3. Allocation of a final state to this pixel.

This being said, it is unclear which procedure to choose in the pruning and allocation steps,
the only clear step being the random selection of a pixel once pruning is done. The present section
is devoted to clarifying this issue. First, the procedures used in LCM and Dinamica are recalled.
Then, the conceptually correct procedure is constructed. This will show that neither Dinamica
nor LCM are correct in their choices.

5.2 Summary of Dinamica pruning and allocation strategies involving patches

Dinamica ranks pixels by decreasing value of ∑vf 6=vi
P (vf |vi, ẑ) and keeps c times the number of

pixels needed for the transition. c is specified by the user ; the default is c = 10. By this way, it
assures that selected pixels are the most likely to transit from vi to another state vf 6= vi. The
probability value P (vf |vi, ẑ) is directly determined by the weights of evidence calibration and a
scenario which provides P (vf |vi) (equation 16). Then, Dinamica randomly draws a pixel inside
the pruning ensemble and test the various transitions with P (vf |vi, ẑ). If the test is accepted, i.e.
a transition is performed to vf 6= vi, the pixel is allocated to vf and is removed from the pruned
ensemble (figure 3). This test is looped on a huge number of drawn pixels until all the required
volumes of allocation have been performed. The chosen pruning method is questionable. Indeed,
P (vf |vi, ẑ) does not perform a closure relation on ẑ, i.e.

∑
ẑ P (vf |vi, ẑ) 6= 1. For Dinamica it

is just a convenient method to select pixels which are likely to transit without making too much
mistake. We introduce in the following section a pruning process based on P (ẑ|vi, vf ). Note that
as described in section 4.2, Dinamica only keeps track of the weights of evidence at the end of
its calibration procedure. Thereby, P (ẑ|vi, vf ) is inaccessible to Dinamica in the state when the
weights of evidence method is applied.
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Figure 3: Schematic Dinamica allocation procedure.

The tension between the basic units of map characterization – pixels – and the basic units of
LUCC change – patches according ecological observations, i.e. connected (often simply connected
in the mathematical sense) ensembles of pixels – is ubiquitous in LUCC modeling, but does not
seem to have been discussed or resolved in the literature.

All LUCC models only employ distribution functions for a single pixel. For example, an
explanatory variable such as the distance to road describes the probability for a drawn pixel to
be at a given distance from the road. Yet, a patch is defined as a manifestation of a correlation
between of adjacent pixels. It implies that the probability that a pixel changes state is much
greater if a nearby pixel also changes state. State changes are not independent between nearby
pixels and probabilities for several pixels are not simply the product of single pixel probabilities.

In these conditions, the single pixel function (the usual probability in models) does not contain
the whole information required to model cover change and it would make more sense to develop
n-pixels probabilities. Distribution functions implying several objects are problematic because
it is in practice very difficult to obtain a reliable theory when the correlations between objects
are strong and the number of objects involved is large, which is precisely the case with patches.
This complex approach is then not possible here and it is simpler to directly compute probability
distribution of patches.

Even though one can imagine ecological processes that would occur at singular points more
or less randomly distributed in space, most if not all LUCC models tackle LUCC changes that
are known to occur in patches, i.e., across many connected pixels at once, and usually for quite
a few such patches per unit time step. As single pixel probabilities are easy to manage, the
community has developed these methods without considering formal relations between single
pixel probabilities and probability distribution of patches. Pixels drawn by Dinamica by single
pixel probabilities are therefore considered as kernel pixels and a patch builder called to allocate
empirically pixels around the kernel pixel according to patch parameters defined by the user. It
should be noted that this is the most sophisticated approach used in the literature and in practice
to date.

Their is definitely a relation between kernel pixel probabilities and single pixel probabilities.
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Under certain conditions which are probably often satisfied in practice, the both probability
distributions are virtually identical. This aspect is not addressed at all in the literature but
Pierre-Yves Longaretti has studied it and has identified conditions of validity testable on data.
His work is not yet published and it will be reviewed and enriched during the course of the PhD.

5.3 Defining conceptually correct pruning

Because the explanatory variables Z are initially chosen in terms of their relevance for the tran-
sitions to be allocated, one expects that the higher P (ẑ|vi, vf ) for any pixel, the higher the
contribution of such pixels to the overall transition. This intuitive argument suggests that this is
the correct quantity to be used for pruning, a point that we justify here in a more formal way.

Recall firsts the point made above that for the transition vi → vf , the first pruning selection
criterion is obvious: one keeps only pixels belonging to Jvi as vi must be a conditionally known
quantity in the process.

To proceed further, note that

#Jvi,vf
= P (vi|vf )#Jvi =

∑
ẑ

P (ẑ, vf |vi)#Jvi (18)

is the total number of pixels changing state from vi to vf . Therefore, the higher P (ẑ, vf |vi), the
most likely the corresponding pixels (Jvi,vf ,ẑ), whose number amounts to #Jvi,vf ,ẑ = P (ẑ, vf |vi)#Jvi ,
are to contribute to Jvi,vf

. Conversely, one cannot rely on P (vf |ẑ, vi) to identify the most likely
pixels to undergo the required transition, as there is no closure relation on ẑ on this probabil-
ity, i.e.

∑
ẑ P (vp+1|ẑ, vp) 6= 1; this simple remark disqualifies the choice made in Dinamica. In

fact, the probability distribution P (ẑ, vf |vi) is clearly the only one having P (vf |vi) as marginal
probability at given starting state, so that the point made in this paragraph is unavoidable.

Note that one can equivalently use P (ẑ|vi, vf ) = P (ẑ, vf |vi)/P (vf |vi) to define a pruning
ensemble for the vi → vf transition, because P (vf |vi) is pixel independent; algebraically, this
follows because one can also write #Jvf ,vi,ẑ = P (ẑ|vf , vi)#Jvi,vf

, so that the higher P (ẑ|vf , vi),
the most likely the corresponding pixels (Jvi,vf ,ẑ) will contribute to Jvi,vf

.
An extreme case of this argument occurs when a vast majority of pixels j have zero contribu-

tion to the sum, i.e., P (ẑ, vp+1|vp) = 0. Removing these pixels from Jvp does not change anything
in the final allocation, but considerably reduces the required number of random pixel selection.
By extension, removing the pixels with small probability P (ẑ|vi, vf ) should have little effect on
the result.

At first sight, it might be surprising that the pruning criterion involves a probability distri-
bution P (ẑ|vi, vf ) that differs from the allocation procedure one P (vf |ẑ, vi). On second thought,
this is quite normal: the pruning criterion occurs prior to randomly selecting a pixel, i.e. before
ẑ is known, while the allocation procedure occurs after random selection, i.e. after ẑ is known.
Pruning and allocation are therefore two essentially different processes, and there is no reason
they should be based on the same conditional probability.

Let us now turn to the actual elaboration of a pruning procedure. Consider first the case with
a single transition vi → vf . According to the preceding argument, it is logical to order the pixels
in decreasing values of P (ẑ|vi, vf ).

For any given τ ∈ [0, 1], one can define a subset of Ẑ:

Ẑτ = {ẑ ∈ Ẑ |
∑
ẑ∈Ẑ

P (ẑ|vi, vf ) ≥ τ} (19)
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where ẑ in the sum are taken in decreasing values of P (ẑ|vi, vf ). Then, pixels are selected as
follows:

Jvi,vf ,τ = {j ∈ Jvi | ẑj ∈ Ẑτ} (20)

.
In plain words, one keeps the fraction τ of the highest probabilities contributing to the cumu-

lative transition probability. Note that if τ = 1, no pruning is performed.
In case of multiple transitions, selected pixels for each transition vi → vf are gathered by

union (note that τ may well be different for each transition):

Jvi,τ =
⋃
vf

Jvi,vf ,τ (21)

Later on, for the specific case study that we use to illustrate the formal points made in
this report, we make use of a specific procedure that allows us to forego the use of pruning.
Nevertheless, the present discussion of pruning serves two purposes:

1. Doubtless, some problems involve too many pixels and too many variables, making pruning
necessary for computational efficiency purposes. The present discussion, establishing the
correct pruning procedure, is therefore unavoidable in such instances.

2. The clarifications exposed here allow us to analyze in a quantitative way the biases involved
both in this pruning procedure and the incorrect ones used in existing modeling environ-
ments. This was not possible during the course of this internship by lack of time, but this
question will be addressed in the course of the PhD that will pursue the present work where
it is left off, among other objectives.
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6 New land use change allocation algorithm
Dinamica allocation principle is based on a pruning selection. Indeed, this software spends a
large part of the computation time to pick and reject pixels. It seems that bad development
choices are behind this wasting operation. In order to conceive a new allocation algorithm which
could be fast and theoretically correct, we developed a new allocation procedure called Deme-
ter5 written in Python 3. This allocation procedure will eventually turn into a new full LUCC
modeling environment during the course of the PhD that will be devoted to the problem. This
language choice, different from Dinamica which is written in C++, has several advantages. First,
Python is an interpreted, high-level, general-purpose programming language which has a high
code readability and provides a large amount of efficient libraries. Three libraries are especially
employed in Demeter: Numpy for large matrix manipulations, Scipy for digital image processing
( i.e. map processing) and Pandas for database manipulation. These libraries enable the design
of a high efficient LUCC model. Second, the desktop graphic information system QGIS6 provides
a very simple python plug-in implementation. That way, it is straightforward to design a GUI
layer over our python model to call it and visualize directly the results on QGIS.

This new allocation algorithm is based on a very efficient generalized acceptation rejection
test which is able to evaluate transition of a large number of pixels for all possible transitions as
described in section 6.2.

6.1 Calibration and allocation scenario

The calibration phase provided for all pixel j probabilities for transition from vi to any other vf
according to the Bayes formula (eq. 4 reminded below).

P (vf |ẑ, vi) = P (vf |vi)×
P (ẑ|vi, vf )
P (ẑ|vi)

(4 revisited)

P (ẑ|vi, vf ) and P (ẑ|vi) are both coming from the calibration. Using the explanatory variable
independence hypothesis allows us to deal with combinations of explanatory variable values that
are not present in the calibration data. P (vf |vi) is considered as a scenario parameter and
is defined by the user. This probability is directly related to the targeted transited surface
#Jvi,vf

= #JviP (vf |vi).

6.2 Generalized acceptation rejection test

An essential step of the allocation process concerns the transition test from vi to vf . In order
to insure a statistically correct draw, it is necessary to test all possible transitions at the same
time. Von Neumann (1951) presents a method to test a simple acceptation function. A multiple
acceptation rejection test is proposed by Sunter (1977) without replacement in the sample. We
define therefore a simpler method of generalized acceptation rejection test (GART) which is used
to determine a potential land use change for a given pixel. The simplification is that the draw
probabilities are not updated to reflect the fact that the overall sample is decreasing. One justifies
by the fact that the sample is very large in front of the number of pixels drawn.

5In ancient Greek mythology, Demeter is the goddess of the harvest and agriculture, presiding over grains and
the fertility of the earth.

6QGIS is a free and open-source cross-platform desktop geographic information system (GIS) application that
supports viewing, editing, and analysis of geospatial data.
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For a pixel j, knowing vji and ẑj , the calibration allows to determine P (vf |vji , ẑj) for all vf
(eq. 4). For this purpose, we define ηp, ∀[0, vm] as the cumulative sum of P (vf |vji , ẑj):

η0 = 0

∀p ∈ [1, vm], ηp =
p∑

vf =1
P (vf |vi, ẑ)

(22)

Then, a simple random float is sufficient to test simultaneously all possible transitions for j.
For x, a random float in the half-open interval [0, 1), it exists ηp such as ηp−1 ≤ x < ηp. The test
returns in that case p.

We define ϕ as the random function of the generalized acceptation rejection test which takes
the pixel j and returns a state p ∈ V as a random variable. If p 6= vji , the test is said as accepted
and as rejected otherwise.

In fact, we consider output states as sections of the unit interval with length equal to the
various transitions probability; the total length is then equal to one. This test presents several
advantages: all possible final states are tested at the same time, the order of the sections has no
importance and it is numerically very efficient to apply such a test to a large set of pixels. An
example of python implementation of such test similar to the one used in Demeter is presented
in the listing 1 and illustrates the cited advantages. In this piece of code, J_vi is a pandas
DataFrame which informs all pixels transitions probabilities. Its columns are pixels indexes j
and some transitions probabilities whose columns names are listed in P_names. As usual, vi is
the studied initial state and vf is here a list of possible transited states in the same order as
transitions probabilities columns.

Listing 1: Generalized Acceptation Rejection Test applied in Python using the Pandas library
1 J_vi [ ’ v f_kernel_candidate ’ ] = v i
2 J_vi [ ’ x ’ ] = np . random . random( J_vi . j . s i z e )
3

4 for i in range ( len ( v f )−1 ,−1 ,−1):
5 J_vi . l o c [ J_vi . x < J_vi [ P_names [ i ] ] , ’ v f_kernel_candidate ’ ] = vf [ i ]

6.3 Allocation algorithm

The allocation algorithm deployed by Dinamica is time expansive due to pixel draws even if it is
reduced by pruning. We present here a new allocation procedure which requires no pruning and
reduces the computing time significantly.

The global idea is to reduce the necessity of loops on given pixels which are expensive in term
of running time. For this purpose, the procedure begins by applying the generalized acceptation
rejection test on all concerned pixels as presented in section 6.2, then determines a patch surface
for all accepted pixels, selects just enough of kernel pixels to complete the targeted surface and
finally allocates these patches with a loop.
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Figure 4: Schematic new allocation procedure for each transition

The figure 4 presents a schematic algorithm of the allocation procedure and the flowchart 5
presents the allocation algorithm in a technical way and is explained in the following (numbers
in parenthesis refers to numbers on the figure 5). For each vi (the order has no consequence),
we apply a generalized acceptation rejection test ϕ to all pixels of Jvi (4). Then, for all possible
transitions vf 6= vi, accepted pixels, i.e. with ϕ(j) = vf are selected and constitute sets written
J′vi,vf

which are sampled. Those pixels are considered as candidates to become transited patch
kernels. For each, a random function draws patch surface according to the patch surface distri-
bution for the considered transition7 (5). The obtained sets are commonly large regarding the
number of patch kernels required. Thus, for each vf , we select just enough of kernel pixels to fill
the targeted surface and selected pixels are removed from J′vi,vf

. We obtain in this way for each
transition a set of candidates and their sampled union is J̇vi (7). Finally, each j ∈ J̇vi , which are
not yet transited, are processed by the patch design algorithm with the previously determined
surface Sj (8). This method could lead by construction to a lower transited surface than the
target one because of patch overlapping. Then, if the target is not reached down to ε for any vf ,
and if for uncompleted vf , kernel candidates J′vi,vf

provide enough potential surface, a new J̇vi,vf

is constituted from remaining pixels within J′vi,vf
(6). Otherwise, a new draw should be done on

all pixels which are not yet transited (3). When the total transited surface is reached down to ε
for all vf , a new initial state vi is studied (2). The algorithm finally returns the allocated map.

In order to prevent some pathological cases, we have also implemented two additional param-
eters which limit the number of while loops for (2) and (5).

This algorithm has been implemented in Demeter and the first results are extremely convincing.
For the same given real case of study, with the same discretization and calibration, Dinamica has
taken 15 minutes of computation time whereas Demeter has taken only 5 seconds, that being a
computation time relation of 100. More precise tests will be performed in the future.

7The patch surface distribution can be empirically defined or erected during the calibration phase
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for vi ∈ V (1)

∀ vf , N̂∗vi,vf
= 0 (2)

while ∃ vf ∈ Vvi , N
∗
vi,vf

< (1− ε)Nvi,vf (3)

{ϕ(j)}j∈Jvi
computation

∀ vf , J′vi,vf
= random sample ({j ∈ Jvi | ϕ(j) = vf}) (4)

Patch surfaces {Sj}j∈⋃
vf

J′vi,vf
are drawn based on surface histograms according to vf (5)

while ∃ vf ∈ Vvi ,

{
N∗vi,vf

< (1− ε)Nvi,vf

∀ vf ∈ Vvi ,
∑
j∈J′vi,vf

Sj ≥ Nvi,vf
−N∗vi,vf

(6)

∀ vf ∈ Vvi , J̇vi,vf
= {j ∈ J′vi,vf

|
∑
k≤j Sk ≤ Nvi,vf

−N∗vi,vf
}

all j ∈ J̇vi,vf
are removed from J′vi,vf

J̇vi = random sample
(⋃

vf
J̇vi,vf

) (7)

for all j ∈ J̇vi , allocation of Sj pixels according to expansion or island design method
N∗vi,vf

is incremented consequently (8)

sub loop
main loop
vi loop

Figure 5: New allocation algorithm
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7 Islands and expansions allocation procedures
The actual allocation procedure has no vocation to be a prediction. It should only present a
plausible final situation which corresponds to the requested scenario. Two patches types can be
distinguished: expansions and islands. The first one refers to transitions which occur on the
boundary between vi and vf . The second one is about transitions which come out in vi without
any vf adjacency.

In principle, their is no reason to make this distinction – it occurs inherently due to the
distribution of patch sizes and statistic choices of kernel pixel positions. In practice, distinguish
expansion and island patches is useful for two reasons: certain transitions present actually different
characteristics in both cases and it could also be numerically easier to use specific algorithm for
both cases.

7.1 Calibration

In order to model patches, we consider only the surface parameter for both island and expansion
types. It is thus necessary to evaluate patches surface during the calibration phase in order to
obtain a probability distribution which can be then adapted to the desired scenario.

The process to determine if a calibration patch is an island or an expansion can be time and
computing expansive. The idea is to select Jvi,vf

and Jvf
and to determine distinct groups of

pixels for both by using the scipy function ndimage.measurements.label. A group of pixel is
simply a set of neighboring pixels. An index is assigned to each groups. For a group of Jvi,vf

,
the group of Jvf

which presents the same pixels is identified. Finally, both groups are compared
by size. If their size are equal, then it is an island patch. Otherwise, it is an expansion patch.
Patches histograms are finally computed by numpy which provides efficient bins parameters.

The figure 6 presents the expansion surface histogram for the transition crop to urban in the
SCoT case. It is then possible to directly apply this probability density in the allocation phase.
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Figure 6: Expansions surface in hectare for the transition crop to urban in the SCOT case

21



7.2 Island design process

In order to design a patch, all methods begin from a first pixel called kernel pixel. Then, several
possibilities can be considered to create an island patch associated to this kernel pixel:

– Dinamica uses a recursive algorithm based on a anisotropic parameter.

– It is possible to sample the required shape from a bank of shapes, itself constructed from the
calibration data. Then, a geometric similarity is randomly applied (size and orientation) to
correspond to the desired surface.

– It is also possible to use a simple elliptic function or any other shape with the desired
surface. This option however will tend to produce figures that are too regular compared to
reality.

Only a very simple growth algorithm has been implemented, spiraling outwards from the
kernel pixel. This is not intended to be realistic in any way, but as a first and quick step to
produce actual patches and make some simple statistical tests and checks in the limited time
available in the present internship.

In practice, the process starts from a pixel j and recursively selects pixels along a clockwise
spiral. If the selected pixel is in state vi, it is transited to state vf and the next pixel is tested,
otherwise the algorithm goes directly to the next pixel. The spiral ends when the desired island
surface is reached. An actual example coming from a real case is represented in figure 7. On this
map, a relatively large island is constructed in a crop zone. The rectangular shape is an artefact
of the over-simplistic algorithm just described, but satisfies two constraints: the mean position
and the selected patch surface.

Figure 7: Island designed by the spiral algorithm – focus on a small part of the study area – State
colors are defined in table 2.
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7.3 Expansion design process

The expansion process implies to evaluate the transition probability on the border of already
present vf pixels. Soares-Filho et al. (2002) propose a method which favors pixels with higher
P (vf |vi, ẑ) and higher number of vf neighbors. I propose here a method based on matrix oper-
ations in order to reduce computing time cost. In order to select border pixels, we perform the
following convolution:

M∗vf
= Mvf

∗

0 1 0
1 0 1
0 1 0

 (23)

where Mvf
is a zero matrix of dimension equal to the map whose values of coordinates of pixels

belonging to Jvf
are 1. M∗vf

is then a matrix which indicates for each pixel the number of vf
neighbors. It is then easy to select pixels from Jvi with at least one neighbor in the desired
post-transition state. We can then evaluate transition probability for these border pixels.

The expansion process idea is based on the evaluation of the transition probabilities around
already transited pixels. However, a simple algorithm which takes the highest probability around
pixels of the desired state can lead to create biased expansion patches, again because correlations
between pixels are ignored in such a procedure. A simple way to create more satisfying patches
is to draw the new pixel in the list of neighbors with probabilities weights scaled to one. It is
presented in the algorithm 1 which does not verify if a pixel is already in the pixel neighbors list.
This fact gives more weight to pixels with several neighbors already transited.

Algorithm 1: New allocation procedure
Data: vi, vf , the kernel pixel j and the desired surface S
Result: Jvi,vf

S∗ = 0
add all neighbors of j which are vi in Jj∗
while S∗ < S and #Jj∗ > 0 do
P is the set of ordered transition probabilities of Jj∗
a pixel to transite is drawn in Jj∗ with P as weights
S∗ is incremented by one
all neighbors of the new transited pixel, which are vi, are appended to Jj∗

Figure 8 represents an example of the expansion process applied to a real case. In this figure,
urban areas are in red whereas their allocated expansions are in cyan and industrial areas are in
purple whereas their allocated expansions are in light purple. At first sight, the algorithm provides
quite satisfying expansion shapes. However, “holes” are apparent; they are constituted of “or-
phan” vi pixels that were not selected for transition. These are unrealistic, and must be removed.
The scipy library provides again a useful function ndimage.morphology.binary_fill_holes.
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Figure 8: Expansions designed by the algorithm 1 – focus on a small part of the study area –
State colors are defined in table 2 – J3→2 is in cyan and J3→7 is in light purple.

7.4 Patch design implementation within the allocation algorithm

Taking islands and expansions design algorithms in consideration requires to modify the allocation
process presented in section 6.3. The flowchart in figure 9 presents the patch design implemen-
tation within the new allocation algorithm. Several changes have been made and are detailed in
the following where numbers in parenthesis refer directly to the ones in the figure.

First, expansions are allocated and secondly island patches are designed (1). It is an arbitrary
choice motivated by tendency of expansion patches to catch up with island ones if operations
would be performed in the opposite order. For all vf , J◦vi,vf

refers to the selected pixels within
Jvi regarding such patch type (2). More precisely, in the expansion case, only pixels with vf
neighbors are selected and in the island case, only pixels far enough from vf areas are selected –
the far enough definition has to be defined according to the applied island design algorithm. One
defines the island – expansion ratio η according to surface values (3). Thus, the target Nvi,vf

is
adapted to the patch type:

N̂vi,vf

{
ηNvi,vf

in the island case
(1− η)Nvi,vf

in the expansion case (24)

and consequently N̂∗vi,vf
is the target counter according to the current patch type. the acceptation

rejection test has only one positive issue in the expansion case which corresponds to the vf
neighbour (4). Indeed, in the expansion case, the pixel close to vf can only transit to vf . Particular
cases where a pixel is near two different vf are solved by expansion design construction: the two
outputs are uniformly considered and the ensemble sampling determines a priority order between
transitions. patches surface histogram are different for expansion and island cases (5). Finally,
patch design is of course performed according to the expansion or island case (6).
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for vi ∈ V

for expansion (exp) and then island (isl) (1)

J◦vi,vf
= {j ∈ Jvi with a vf neighbor} J◦vi,vf

= {j ∈ Jvi far enough from vf} (2)

J◦vi
= ⋃

vf
J◦vi,vf

∀ vf , N̂∗vi,vf
= 0

while ∃ vf ∈ Vvi , N̂
∗
vi,vf

< (1− ε)N̂vi,vf (3)

{ϕ(j)}j∈J◦vi
computation (binary output for exp, GART for isl)

∀ vf , J′vi,vf
= random sample ({j ∈ Jvi | ϕ(j) = vf})

(4)

Patch surfaces {Sj}j∈⋃
vf

J′vi,vf
are drawn

(based on surface histograms according to exp or isl)
(5)

while ∃ vf ∈ Vvi ,

 N̂∗vi,vf
< (1− ε)N̂vi,vf

∀ vf ∈ Vvi ,
∑
j∈J′vi,vf

Sj ≥ N̂vi,vf
− N̂∗vi,vf

∀ vf ∈ Vvi , J̇vi,vf
= {j ∈ J′vi,vf

|
∑
k≤j Sk ≤ N̂vi,vf

− N̂∗vi,vf
}

all j ∈ J̇vi,vf
are removed from J′vi,vf

J̇vi = random sample
(⋃

vf
J̇vi,vf

)

for all j ∈ J̇vi , allocation of Sj pixels according to expansion or island design method
N̂∗vi,vf

is incremented consequently (6)

exp isl

sub loop
main loop

isl and exp loop
vi loop

Figure 9: Demeter allocation process implementing expansion and island patch formation.
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8 Conclusion
This preliminary work of the PhD has introduced several aspects of LUCC models which require
more detailed studies. It takes part in the progression toward a general theoretical framework.
Some bias implied by the supposed independence of explanatory variables has been described
and should be the main topic of a future work by defining a threshold condition of independence.
Likewise, the patch point of view for LUCC has been presented and conditions to use single pixel
probabilities to draw kernel pixels deserve a specific attention in the future. I focused on the
allocation procedure by analysing Dinamica choices, especially about the pruning method which
is proving to use a wrong statistical value (P (vf |vi, ẑ) instead of P (ẑ|vi, vf )). A correct pruning
method is then defined. I introduce a new allocation method which apply simultaneously the
acceptation rejection test to all pixels. It is then convenient to draw kernel pixels within the
accepted population. This procedure avoid the pitfall of Dinamica which draws a large amount of
pixels which are then rejected. This new algorithm already shows off very promising results with
a saving of time of calculation of factor 100. More precise tests will be performed in the future.
Finally, numerical considerations have been advanced about the practical allocation operation for
both patch types that are island and expansion.

Future work are already envisaged. First on the allocation procedure, allocation patch design,
performance comparison with other softwares and pruning error evaluation have to be studied.
Also the theory of patch modeling have to be explored as well as markovian aspect of LUCC
models.
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