
HAL Id: hal-02304301
https://hal.inria.fr/hal-02304301

Submitted on 3 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Migrating GWT to Angular 6 using MDE
Benoît Verhaeghe, Nicolas Anquetil, Stéphane Ducasse, Abderrahmane Seriai,

Laurent Deruelle, Mustapha Derras

To cite this version:
Benoît Verhaeghe, Nicolas Anquetil, Stéphane Ducasse, Abderrahmane Seriai, Laurent Deruelle, et al..
Migrating GWT to Angular 6 using MDE. SATToSE 2019 - 12th Seminar on Advanced Techniques
& Tools for Software Evolution, Jul 2019, Bolzano, Italy. �hal-02304301�

https://hal.inria.fr/hal-02304301
https://hal.archives-ouvertes.fr

Migrating GWT to Angular 6 using MDE

Benoît Verhaeghe1,2,3, Nicolas Anquetil1,3, Stéphane Ducasse3,1, Abderrahmane Seriai2,
Laurent Deruelle2, Mustapha Derras2

1Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 – CRIStAL, 59650 Villeneuve d’Ascq, France
{firstname.lastname}@univ-lille.fr

2Berger-Levrault, France
{firstname.lastname}@berger-levrault.com

3RMod team, INRIA Lille Nord Europe, Villeneuve d’Ascq, France
{firstname.lastname}@inria.fr

Abstract

In the context of a collaboration with Berger-
Levrault, a major IT company, we are working
on the migration of a GWT application to Angu-
lar. We focus on the GUI aspect of this migration
which, even if both are web frameworks, is made
difficult because they use different programming
languages (Java for one, Typescript for the other)
and different organization schemas (e.g. different
XML files). Moreover, the new application must
mimic closely the visual aspect of the old one so
that the users of the application are not disturbed.
We propose an approach in three steps that uses a
meta-model to represent the GUI at a high abstrac-
tion level. We evaluated this approach on an ap-
plication comprising 470 Java (GWT) classes rep-
resenting 56 screens. We are able to model all the
web pages of the application and 93% of the wid-
gets they contain, and we successfully migrated
(i.e., the result is visually equal to the original) 26
out of 39 pages (66%). We give examples of the
migrated pages, both successful and not.

1 Introduction
During the evolution of an application, it is sometimes
necessary to migrate its implementation to a different pro-
gramming language and/or Graphical User Interface (GUI)
framework [2, 27]. Web GUI frameworks in particular
evolve at a fast pace. For example, in 2018 there were

Copyright © by the paper’s authors. Copying permitted for private and
academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop,
Location, Country, DD-MMM-YYYY, published at http://ceur-ws.org

two major versions of Angular, three major versions of Re-
act.js, four versions of Vue.js, and three versions of Em-
ber.js. This forces companies to update their software sys-
tems regularly to avoid being stuck in old technologies.

Our work takes place in collaboration with Berger-
Levrault, a major IT company selling Web applications de-
veloped in GWT. However, GWT is no longer being up-
dated with only one major release since 2015. As a con-
sequence, Berger-Levrault decided to migrate its GUI to
Angular 6.

The company developes 8 applications using GWT.
Each application has more than 1.5 MLOC and represents
more than 400 web pages. The applications are built from
more than 45 kind of widgets and 29 kind of attributes.
The company estimated the migration for one application
to 4 000 man-days. So, migrating automatically the visual
part of an application would already be a useful step for the
modernization of the company’s applications. Because of
fast evolution of GUI framework, the company also needs
a reusable solution for the migration to the next program-
ming language.

There are many published papers on supporting GUI mi-
gration (e.g. [11, 22, 24]). None of them discuss the case
of GUI migration of web-based applications.

We present an approach to help developers migrate the
GUI of their web-based software systems. This approach
includes a GUI meta-model, a strategy to generate the
model, and how to create the target GUI. To validate this
approach, we developed a tool which migrates Java GWT
applications to Angular. Then, we validated our approach
on an industrial project that is used to present all the wid-
gets and their usage. It is composed of 470 Java classes and
56 web pages. Our approach imported correctly 93% of the
widgets and 100% of the pages. Since not all the existing
widgets are re-implemented in Angular, we tried to migrate
39 pages and were successful (same visual appearance) for

1

26 of them (66%).
First, in Section 2, we review the literature on GUI meta-

modeling. We describe the context of our project in Sec-
tion 3. In Section 4, we describe our migration approach.
We present our implementation in Section 5. Section 6 de-
scribes the experiment we made to validate our approach.
In Section 7, we present our results. Finally, in Section 8
and Section 9 we discuss the results obtained with our tool
and future work.

2 State of the Art
Section 2.1 presents the techniques used to migrate an ap-
plication. In Section 2.2, we describe the user interface
meta-models found in the literature.

2.1 Existing migration strategies

To define a migration strategy, we identified research work
related to application migration. Some of the proposed ap-
proaches do not perform a full migration, but only a part of
it. Also, there are numerous publications dealing with pro-
gramming language migration. We do not, however, con-
sider them if they do not explicitly discuss the GUI migra-
tion. This is the case, for example, with the work of Brant
et al. [2] that reports on a large Delphi to C# migration.

We identified three techniques to create a representation
of the GUI: static, dynamic, or hybrid.

Static. The static strategy consists in analyzing the
source code and extracting information from it. It does not
execute the code of the analyzed application.

Cloutier et al. [3] analyzed directly the HTML, CSS,
and JavaScript files. The analysis builds a syntax tree of the
source code of the website and extracts the widgets from
the HTML files. The work consists mainly in the identifica-
tion of links between code source elements of the program
(JavaScript classes, HTML tags, etc.). The work presented
does not tackle the full migration of the GUI.

Lelli et al. [13], Silva et al. [25] and Staiger [26] used
tools that analyze source code of desktop applications. The
tools look for widget definition in the source code, then
they analyze the methods that invoked or are invoked by
the widgets and identify the relationships between widgets
and their visual properties.

Sánchez Ramán et al. [23] and Garcés et al. [8] devel-
oped approaches to extract the GUI of Oracle Forms appli-
cations. With this framework, developers define the user
interfaces in external files where the position of each wid-
get is specified. Their approaches consist in the creation
of the hierarchy of widgets from their position. However,
the case studies are simple with only few forms or labels.
The page layout is also simple because all the elements are
displayed below one another.

The static strategy allows one to analyze an applica-
tion without having to execute it or even compile it. Apart
from the classical problem of showing all the potential facts

rather than only the real one, another limitation appears for
example, with a client/server application, when a part of
the graphical interface depends on the result of a request to
a server.

Dynamic. The dynamic strategy consists in the analy-
sis of the graphical interfaces of an application while it is
running. It explores the application state by performing all
the actions on the user interface of the software system and
extracting the widgets and their information.

Memon et al. [15], Samir et al. [22], Shah and Tilevich
[24] and Morgado et al. [20] developed tools that imple-
ment a dynamic strategy. However, the solutions proposed
are only available for desktop rather than Web applications.

The dynamic analysis allows one to explore all the win-
dows of an application and to gather detailed information
about them. However, automatically running an application
to methodically capture all its screens might be a difficult
task depending on the technology used. Also, if a request is
done to build a GUI, the dynamic analysis does not detect
this information which may be essential for a full represen-
tation of a GUI.

Hybrid. The hybrid strategy tries to combine the advan-
tages of the static and dynamic analyses.

Gotti and Mbarki [9] used a hybrid strategy to analyze
Java applications. First they create a model from a static
analysis of the source code. The static analysis finds the
widgets and attributes of a user interface and how they are
structured. Then, the dynamic analysis executes all the pos-
sible actions linked to a widget and analyze if a modifica-
tion occurs on the interface.

Despite the usage of both static and dynamic analysis,
the hybrid strategy does not solve the request problem in-
herent to client/server applications. It also has the same
issues as the dynamic analysis of running automatically an
application and capturing its screens.

Fleurey et al. [7] and Garcés et al. [8] worked on full
migration of software systems. They developed a tool that
semi-automatically performs the migration. To do so, they
used the horseshoe process (Kazman et al. [12]). The mi-
gration is divided into the following four steps:

1. Generation of the model of the original application.

2. Transformation of this model into a pivot model. This
includes data structure, actions and algorithms, user
interface, and navigation.

3. Transformation of the pivot model into a target lan-
guage model.

4. Generation of the target source code.

None of the authors considered the migration from web
GUI to web GUI. Also, none had the constraint of keeping
similar layout except Sánchez Ramán et al. [23]; however,
they worked on Oracle Forms applications which are very

2

different from a web GUI. As a consequence, their work is
not directly applicable to our case study.

2.2 User Interface representation

In the previous section, many abstract representations of
a GUI are used. We looked to the proposed representa-
tions and compared them. We now present the two GUI
meta-models defined by the OMG. The Knowledge Dis-
covery Metamodel (KDM) allows one to represent any kind
of application. The Interaction Flow Modeling Language
(IFML) is specialized in applications with a GUI. Sec-
tion 2.2.2 presents other representations described in the
literature and compare them to the ones of the OMG.

2.2.1 OMG standards

The OMG defines the KDM standard to support the evo-
lution of software. The standard defined a meta-model to
represent a piece of software at a high level of abstraction.
It includes a UI package which represents the components
and behavior of a GUI.

AbstractUIElement

UIResource

UIFieldUIDisplay

ReportScreen

0..1

0..*

+UIElement

+owner

0..1

0..*+UIElement

+owner

UIAction

+ kind : String

UIEvent

+ kind : String

Figure 1: KDM - UIResources Class Diagram

Figure 1 represents the core of the UI part called UIRe-
sources Class Diagram. The main entity is UIResource.
It can be refined as UIDisplay or UIField. UIDisplay corre-
sponds to the physical support on which the interface will
be displayed, e.g. a computer screen, a printed report, etc.
UIField corresponds to a user interface widget, e.g. a form,
a text field, a panel, etc. The composition between UIRe-
source and AbstractUIElement is used to define the DOM
(Document Object Model). Each UIResource can contain
another one to represent a widget that contains another wid-
get.

A UIResource can have, through composition, an UIAc-
tion to represent the behavior of the user interface.

The aim of IFML [1] is to provide tools to describe the
visible parts of an application, with the components and
the containers, the state of the components, the logic of the
application and the binding between data and GUI.

Figure 2 represents the meta-model of the visual part of
an application. The visible elements of the GUI are called

+subView
ComponentPart

<<Metaclass>>
IFML::CORE::

ViewContainer

+ isLandmark : Boolean
+ isDefault : Boolean
+ isXOR : Boolean

<<Metaclass>>
IFML::Extensions::

Window

+ isModel : Boolean
+ isNewWindow :
Bollean

0..1

0..*
+viewContainer

+viewElements

0..*

0..*

+parentViewComponentPart

<<Metaclass>>
IFML::Extensions::

Slot

<<Metaclass>>
IFML::Extensions::

Field

<<Metaclass>>
IFML::Extensions::

Form

<<Metaclass>>
IFML::Extensions::

Menu

<<Metaclass>>
IFML::Extensions::

Details

<<Metaclass>>
IFML::Extensions::

List

<<Metaclass>>
IFML::CORE::

ViewComponentPart

<<Metaclass>>
IFML::CORE::

ViewComponent

<<Metaclass>>
IFML::CORE::
ViewElement

Figure 2: IFML - View Elements

ViewElement. A ViewElement can be refined as a ViewCon-
tainer or a ViewComponent.

A ViewContainer represents a container of other View-
Containers or ViewComponents. For example, it can be a
window, an HTML page, a panel etc. The composition be-
tween ViewContainer and ViewElement is used to define the
DOM.

A ViewComponent corresponds to a widget which dis-
plays its content, e.g. a form, a data grid, an image gallery
etc. It can be linked to multiple ViewComponentPart. A
ViewComponentPart represents an element of a ViewCom-
ponent. For example, an input field inside a form, a text
which is displayed inside a data grid, or an image element
of a gallery.

2.2.2 GUI meta-models

Other GUI meta-models have been proposed in the litera-
ture. We compare them to the OMG standards.

All the meta-models use the Composite pattern to rep-
resent the DOM of a GUI and define a kind of UIResource
entity to represent a graphical element of the interface.

Gotti and Mbarki [9] and Sánchez Ramán et al. [23] pro-
posed a meta-model inspired by the KDM models. The
meta-model has the main entities defined by KDM. Both
authors added the Attribute entity to the meta-model. They
also define different kinds of widgets such as Button, La-
bel, Panel, etc.

Fleurey et al. [7] did not explicitly describe the GUI
meta-model, but we extracted information from their nav-
igation model. They have at least two elements in their
UI model that represent a Window and a GraphicElement.
The Window corresponds to the Display entity of the KDM
model. And because the GraphicElement and the Window
are not linked, we can suppose that the GraphicElement is
a UIRessource. The GraphicElement has an Event.

Morgado et al. [20] used a UI meta-model but did not
describe it. We only know that the UI is represented as a
tree which is similar to the DOM.

The UI meta-model of Garcés et al. [8] differs a lot from
the previous ones. There are the attributes, the events, and

3

the screen but the notion of widget is present as a field
which displays data of a table. They also used an Event
entity to represent the interaction of the user with the user
interface. The Event entity corresponds to the Action and
the Event entities of the KDM model.

Memon et al. [15] represented a user interface with only
two entities. A UI window which is composed of a set of
widgets that can have attributes. Representing the DOM
was not in the scope of their work. It is not possible to
represent it with their meta-model.

Samir et al. [22] worked on the migration of Java-Swing
applications to Ajax Web applications. They created a
meta-model to represent the UI of the original application.
This meta-model is stored in a XUL (XML-based User in-
terface Language) file and represents the widgets with their
attributes and the layout. Those widgets belong to a Win-
dow and can fire events when a UI input is performed. The
input and the event correspond to the Action and the Event
entities of the KDM model. The XUL format has been dis-
continued.

Shah and Tilevich [24] used a tree architecture to repre-
sent the UI. It allows them to model the DOM. The root of
the tree is a Frame. It corresponds to the UIDisplay entity.
The root contains components with their attributes.

Joorabchi and Mesbah [11] represented a user interface
with a set of UI elements. Those elements correspond to the
definition of a UIField. For each UI element, the authors’
tool is able to handle the detection of multiple attributes
and actions.

Memon [16] used a UI Model to represent the state of
an application. A state is defined as the GUI’s widgets and
their properties.

Mesbah et al. [17] did not present directly their meta-
model for the user interfaces. However, they explain that
they use a DOM-tree representation to analyze different
web pages. They also used the notion of events that can
be fired. They used different instances of their UI meta-
model to represent the web pages of the application. Those
instances can be compared to multiple UIDisplay entities.

All the authors used the notion of widget that represents
a visual entity of the user interface. Most of them have an
entity attribute that represents a characteristic of a widget.
Finally, the navigation links are represented with an action
entity.

3 Context of the migration project
The goal of our work is to migrate the user interfaces from a
given graphical interface framework to another. This is an
industrial project, migrating web applications from GWT
to Angular. The objective is to produce a running user in-
terface in the target framework. We now present the condi-
tions of the projects. In Section 3.1 we list some constraints
that we must fulfill. In Section 3.2 we describe the main
differences between GWT applications and Angular ones.

In Section 3.3 we present a categorization of the front-end
source code.

3.1 Constraints

From the previous works of Moore et al. [18] and
Sánchez Ramán et al. [23], we identify the following con-
straints for our case study:

• From GWT to Angular. In the context of the collabo-
ration with Berger-Levrault, our migration approach
must work with Java GWT as source language and
TypeScript Angular as target one.

• Approach adaptability. Our approach should be as
adaptable as possible to different contexts. For ex-
ample, it can be used with different source and target
languages. This constraint includes the Source and
target independence and the Modularity constraints.

• Keep visual aspect. The migration must keep the vi-
sual aspect of the target application as close as pos-
sible to the original. This constraint includes the
Layout-preserving migration which it is in opposition
to the GUI Quality improvement.

• Code quality conservation. As a relaxed Code Qual-
ity improvement constraint, our approach should pro-
duce code that looks familiar to the developers of the
source application. As far as possible, the target code
should keep the same structure, identifiers and com-
ments. However, we will see in the next section that
there are strong differences in GWT and Angular or-
ganization schemas.

• Automatic. An automatic solution makes the approach
more accessible. It would be easier to use an auto-
matic approach on large system [18]. This constraint
corresponds to the Automation constraint of the litera-
ture.

3.2 Comparison of GWT and Angular

In this project, the source language and the target language
impose two different organization schemas. Their differ-
ences are syntactic and semantic.

GWT is a framework that allows developers to write
a web application in Java. The GUI code is compiled to
HTML, CSS and JavaScript code. Angular is a front-end
web application platform that allows developers to write a
web application with the TypeScript language. It is used to
create Single-Page Applications1.

Table 1 summarizes the differences between GWT ap-
plications and Angular ones, concerning: web page defini-
tion, their style and the configuration files. Before explain-
ing these three differences, we note one major similarity:

1Single-Page Applications (SPAs) are Web apps that load a single
HTML page and dynamically update that page as the user interacts with
the app.

4

Table 1: Comparison of GWT and Angular organization schema

GWT Angular
Web page definition One Java class One TypeScript file and one HTML file
Main visual aspect of the application One CSS file One CSS file
Specific visual aspect of a web page Included in the Java file One optional CSS file
Number of configuration files One file Two files

both GWT and Angular applications have a main CSS file
to define the general visual aspect of the application.

• Web Page Definition. In the GWT framework, only
one Java file is necessary to define a web page (an
excerpt is proposed in Figure 5, page 7). The Java
(GWT) file includes the main graphical components
(widgets) of the web page, their positions and hierar-
chical organization. In the case of an actionable wid-
get (as a button), the action is implemented in the same
file. In Angular, there is a file hierarchy for each web
page. Each web page is considered as a sub-project
independent of the others. A sub-project contains two
files: an HTML file, containing the widgets of the
web page and their organizations; and a TypeScript
file, containing the code to execute when an action is
performed.

• Visual Aspect. The visual aspect of a web page in-
cludes color or dimension of specific displayed ele-
ments. In the case of GWT, the specific visual aspect
is defined in the Java file of the web page definition.
In Angular, there is an optional distinct CSS file.

1 < a p p l i c a t i o n name="CORE−I n c u b a t o r ">
2 <module name="KITCHENSINK">
3 < phase codePhase ="KITCHENSINK_HOME"
4 className =" f r . b l . c l i e n t . k i t c h e n s i n k .

PhaseHomeKitchenSink "
5 t i t l e ="Home"/ >
6 </ module >
7 </ a p p l i c a t i o n >
8

Figure 3: Example of a GWT configuration file in XML

• Configuration Files. For the configuration files,
GWT uses one XML file that defines the binding
between a Java file, a web page and the URL of the
web page. Figure 3 presents a snippet of the XML
file of a Berger-Levrault application. The tag phase
(line 3) defines a web page of the GWT applica-
tion: The web page title is “Home”; it is defined
by the Java class PhaseHomeKitchenSink (in
package fr.bl.client.kitchensink);
and the URL to access the web page is
http://myserver.com/KITCHENSINK_HOME.
For Angular, there are two configuration files: mod-
ule, defines the components of the application, e.g.
web pages, distant services and graphical component;

and, routing, defines for each web page, its associated
URL.

3.3 Front-end application structure

As proposed by Hayakawa et al. [10], we divided the mi-
gration project in multiple sub-problems. To do so, we de-
fine three categories of source code: the visual code; the
behavioral code; and the business code.

• Visual Code The visual code describes the visual as-
pect of the GUI. It contains the elements of the in-
terface. It defines the inherent characteristics of the
components, such as the ability to be clicked or their
color and size. It also describes the position of these
components compared to others.

• Behavioral code The behavioral code defines the ac-
tion/navigation flow that is executed when a user inter-
acts with the GUI. The behavioral code contains con-
trol structures (i.e. loop and alternative).

• Business code The business code is specific to an
application. It includes the rule of the application,
the distant server address and the application-specific
data.

Because of the size and diversity of source code, mi-
grating one of this code category is already an important
problem.

4 Migration Approach
This section presents the migration approach we designed.
In Section 4.1, we describe the migration process we de-
signed. Section 4.2 presents our GUI meta-model.

4.1 Migration process

From the state of the art, the constraints and the decompo-
sition of the user interfaces, we designed an approach for
the migration.

The process, represented in Figure 4, is divided into the
three following steps:

1. Extraction of the source code model. We build a
model representing the source code of the original
application. In our case study, the source program
is written in Java GWT. The extraction produces a

5

Migrated
application

Source code model extraction

GUI model
extractionSource code model

Source
application

GUI model

Export

Figure 4: Our GUI migration process

FAMIX model [5] of the application using a meta-
model capturing Java concepts. We also need to parse
the XML configuration file described in Section 3.2.

2. Extraction of the GUI model. We analyze the source
code model to detect the Visual code elements describ-
ing the GUI and we build a GUI model from these ele-
ments. The GUI meta-model is described Section 4.2.

3. Export. We re-create the GUI in the target language.
This step exports the user interface files and the con-
figuration files of the application.

Note that currently we treat neither the Business code
nor the Behavioral code of the application. This will be the
focus of future work.

4.2 GUI meta-model

To represent the user interfaces of desktop or web-based
applications, we designed a GUI meta-model from the ones
presented in Section 2.2.2. In the rest of this section, we
present the entities of the meta-model.

Our meta-model is an adaptation of KDM meta-
model(see Figure 1). As many others, we separate the
graphical resources corresponding to the DOM from the
actions and events. In our meta-model, graphical resources
are called Widget. They can be refined as Leafs or Contain-
ers

In our context, the user interface will always be dis-
played on a screen. So we do not represent all the kind of
UIDisplay and define an entity Page. The Page represents
the main container of a graphical interface. It is either a
window of a desktop application or a web page. The Page
is a kind of Container.

As proposed by many other authors, we added the entity
Attribute in our GUI meta-model. An Attribute represents
the information of a widget and can change its visual aspect
or behavior. Some common attributes are the height and
the width to precisely define the size of a widget. There
are also attributes that contain data. For example, a widget
representing a button may have a text attribute that contains
the text of the button. An attribute can change the behavior

of a widget, this is the case of the attribute enable. A but-
ton with the enable attribute set to false represents a button
on which one cannot click. Finally, the widgets can have
attributes that impact the visual aspect of the application.
This type of attribute allows us to define a layout to be re-
spected by the widgets contained in the main one and po-
tentially the dimensions of the latter to respect a particular
layout.

5 Implementation
To test our approach, we implemented a migration tool. It is
implemented in Pharo2 and the meta-model is represented
using the Moose platform3.

5.1 Case Study

Applications at Berger-Levrault (our industrial partner) are
based on the BLCore framework. This framework consists
in 763 classes in 169 packages. It is developed by the com-
pany on top of GWT and defines the widgets that develop-
ers should use, the default visual aspect of the applications,
and Java classes to connect the front-end of the application
to the back-end. It also encourages some coding conven-
tions.

For the Berger-Levrault applications, we add a new en-
tity (Business Page) to the GUI meta-model presented Sec-
tion 4.2 to fit the company’s specific organization. It is a
kind of Container. One convention is that each Page has
one or more Business Pages represented as tabs in the
Page. The widgets (buttons, text fields, tables, . . .) are
included in the Business Pages, never directly in the Page.

5.2 Import

In part because of the complexity of setting up a tool to
run automatically and capture all screens of such large web
applications, we rely on static analysis to create our model.
The results so far seem to indicate that it will be sufficient.

As presented Section 4.1, the creation of the GUI model
is divided in two steps: the source code model extraction
and the GUI model extraction. For the source code meta-
model, we use the Java meta-model of Moose [5, 21] which
comes with a Java extractor4. Figure 5 presents a snippet of
the source code of a Berger-Levrault application. It shows
the method buildPageUi(Object object) that builds the GUI of
the business page SPMetier1 (a “simple business page”).

For the second step of the extraction, our tool creates the
GUI model from the source code model and an analysis of
the XML configuration file. The entities we want to extract
are, first, the Pages. We parse the XML configuration file
in which is defined the information about the pages (see

2Pharo is a pure object-oriented programming language inspired by
Smalltalk. http://pharo.org/

3Moose is a platform for software and data analysis. http://www.
moosetechnology.org/

4verveineJ : https://github.com/moosetechnology/verveineJ

6

http://pharo.org/
http://www.moosetechnology.org/
http://www.moosetechnology.org/
https://github.com/moosetechnology/verveineJ

1 c l a s s SPMet ie r1 e x t e n d s A b s t r a c t S i m p l e P a g e M e t i e r
{

2 @Override
3 p u b l i c vo id b u i l d P a g e U i (O b j e c t o b j e c t) {
4 BLLinkLabel l b l P g = new BLLinkLabel (" Next ") ;
5 l b l P g . a d d C l i c k H a n d l e r (new C l i c k H a n d l e r () {
6 p u b l i c vo id o n C l i c k (C l i c k E v e n t e v e n t) {
7 SPMet ie r1 . t h i s . f i r e O n S u c c e s s (" param ") ;
8 }
9 }) ;

10 l b l P g . s e t E n a b l e d (f a l s e) ;
11 vpMain . add (new Labe l (" < B u s i n e s s c o n t e n t >")) ;
12 vpMain . add (l b l P g) ;
13 s u p e r . s e t B u i l d (t r u e) ;
14 }
15 }

Figure 5: User interface creation in GWT

Section 3.2). It provides for each Page (called phase in the
XML file, Figure 3) its name and the name of the Java class
that defines it. Then, the tool looks for Widgets.

First, the tool determines the available widgets. To do
so, it collects all the Java subclasses of the GWT class Wid-
get. For the Buisiness pages, the tools looks for the classes
that implement the IPageMetier interface. Then, the tool
looks where the Widget constructors are called and creates
the links between the Widgets and their parent Widget. In
Figure 5, there are two calls to Widget constructors: line
4, the constructor of BLLinkLabel is called, and line 11, the
constructor of Label. The variable vpMain corresponds to
the main panel of the Business page. Lines 11 and 12 cor-
respond to adding a widget inside a panel widget thanks to
the method add().

Finally, to detect attributes and actions which belong to
a widget, the tool detects in which Java variable the wid-
get has been assigned. Then, it searches the methods in-
voked on this variable. If a widget invokes the method “ad-
dClickHandler”, it creates an event. If it invokes a method
“setX”, it creates an attribute. These heuristics were found
in the literature [22, 25]. In Figure 5, the BLLinkLabel,
whose variable is lblPg, is linked to one event and one at-
tribute. Lines 5 to 9 correspond to the creation of one event
with the executable code. Line 10 corresponds to adding
the attribute enabled with the value false.

5.3 Export

Once the GUI model is generated, it is possible to export
the application. To generate the code of the target appli-
cation, the tool includes an exporter. The exporter creates
the folders of the target application and the configuration
files. Then, it visits the pages. For each Page, the exporter
creates an Angular sub-project in the form of a directory
containing several configuration files and a default blank
web page. Then, for each business page of the current vis-
ited Page, the exporter generates one HTML file and one
TypeScript file. For the HTML file, the exporter builds

the DOM thanks to the Composite pattern used by the GUI
meta-model (see Section 4.2). Each widget provides its at-
tributes and actions to the exporter.

6 Validation
In this section, we describe the industrial application on
which we used our tool to validate our approach. Sec-
tion 6.1 presents the industrial application. Section 6.2
presents the metrics we used to evaluate our approach.

6.1 Industrial application

We experimented our strategy on Berger-Levrault’s
kitchensink application. This software system, dedicated to
developers, aims to gather inside a single simple applica-
tion all the components available for building a user inter-
face. This application is smaller than a production one but
still uses the BLCore framework. The company framework
guarantees us the kitchensink application works exactly the
same way as the industrial applications. It contains 470
Java classes and represents 56 web pages. Although it is
the sample and demo for developers, the kitchensink appli-
cation contains code misuses.

Note that the kitchensink application, as the other in-
dustrial applications of the company, does not have test.
Therefore, there is no possibility to use tests to validate the
migration.

6.2 Validation metrics

The validation is done in three steps: First, we check the
constraints defined in Section 3.1; Second, we validate that
all GUI entities of interest are extracted and correctly ex-
tracted; Third, we validate that we can re-export these enti-
ties in Angular and that the result is correct.

For the first validation, we manually identify and count
the entities in the kitchensink application and compare the
results of the tool to this count. Our analysis focuses on
the migration of three entities: Pages, Business Pages and
Widgets

• Pages. From the XML configuration file of the appli-
cation we manually count 56 pages. This configura-
tion file also provides the name of each page.

• Business Pages. As explained before, the business
pages correspond to a concept specific to Berger-
Levrault. They are defined in the BLCore frame-
work as a Java class which implements the interface
IPageMetier. Thanks to this heuristic, we manually
count 76 Business Page instances in the original ap-
plication.

• Widgets. In the literature survey, we did not find an
automatic way to evaluate the detection of widgets.
Checking all widgets in the application would be long

7

and error-prone as there are thousands of them. As
a fallback solution, we take a sample of the pages of
the kitchensink application and count the widgets in
the DOM of these pages. We consider a sample of 6
Pages which represents a bit more than 10% of the
Pages of the application. These Pages are of different
sizes and contain different kinds of widgets. In total,
we found 238 Widgets in these 6 Pages. To get a more
exact idea of the representativeness of our sample, we
also count the number of Widget creation (i.e. new
AWidgetClass()) in the code. There are 2,081
such creation. This may not represent the exact num-
ber of widgets in the entire application, but it is a good
estimate. We note that the number of Widgets in our
sample (slightly more than 10% of the pages) is also
slightly more than 10% of our estimate of the total
number of widgets.

For the evaluation, we also check that the Widgets are
correctly placed in the DOM of the interface (i.e., they
belong to the right Container in the GUI model).

In our results we consider only the recall of the tool be-
cause the precision is always 100% (there are no false pos-
itive). This is a sign that the BLCore framework provides
clear (if not complete) heuristics to identify the entities.

For the second validation, we check that the entities are
exported correctly. In the Angular application, each Page
corresponds to a sub-project and is represented by a folder.
The name of the folder must correspond to the name of the
Page. The Business pages are represented by a sub-folder
inside the Page project. The names must also match at this
level.

We also check visually that the exported Page “looks
like” the original one. This is a subjective evaluation, and
we are looking for options to automate it in the future.

7 Results
This section presents the results of the migration validation
on Berger-Levrault’s kitchensink application. Section 7.2
summarizes the extraction results. In Section 7.1, we con-
front the exported result with the constraints defined in Sec-
tion 3.1.

7.1 Satisfaction of constraints

We set the following constraints in Section 3.1: From GWT
to Angular, Approach adaptability, Code quality conserva-
tion, Keep visual aspect, and Automatic.

Our tool can use Java code as input and generate Angu-
lar code. The exported code is compilable and executable.
The target application can be displayed. We can thus con-
firm that our tool fulfill the GWT to Angular constraint.

Our tool is applicable on other source target technolo-
gies. Our heuristics have been designed to be easy to adapt,
a user of our tool can thus add a new kind of widget for the

import or the export phases. We shortly describe a small
experiment in that sense in Section 8.5. Those possibilities
satisfied the adaptability constraint.

The Code quality conservation and Keep visual aspect
constraints are discussed in Section 7.3, in the third valida-
tion results.

Finally, the results described here were obtained auto-
matically from application of our tool to the subject appli-
cation. This validates the last constraint.

7.2 Extraction results

Table 2 summarizes the extraction results.
Table 2: Extraction results

Pages Business Pages Widgets

(sample)
Number 56 76 238
Correctly imported 100% 100% 89%

The tool extracted 56 Pages from the original GUI. This
corresponds to the number of pages defined in the configu-
ration file of the kitchensink application.

The tool extracted 76 Business pages. This value cor-
responds exactly to the number of business pages in the
original application. Moreover, the tool correctly assigned
each Business page to its proper Page.

We got 100% of the Widgets on the evaluated sample
were correctly detected. However, 27 out of the 238 Wid-
gets of our sample (11%) were not correctly assigned to
their parent container. All these problems come from one
single Page (containing 75 Widgets in total).

7.3 Export results

We manually checked the name of all the 56 exported
pages. They all conserve their original name.

(a) GWT original (b) Angular migration

Figure 6: Visual comparison of a Page migration

Figure 6 presents the visual differences between the
original (GWT) version, left hand, and the migrated (An-
gular 6) one, right-hand. We can see that there are only
minimal differences. In the exported version, the color of
the header is a bit clearer, and the lines are a little more
distant.

Figure 7 presents the visual differences for the Page
Input box. Again on the left-hand side there is the orig-
inal Page and on the right-hand side the same Page af-
ter the migration. Because the two images are large, we

8

(a) GWT original

(b) Angular migration

Figure 7: Visual comparison of a Page migration: All the Widgets are migrated but with a wrong layout.
trimmed them to display this area of interest. Even though
the two images look completely different, all the widgets
are present in the migrated version. The visual differences
are due to a problem in the layout management. The visual
constraint is thus partially satisfied. This point is discussed
Section 8.1.

8 Discussion

Section 8.1 and Section 8.2 presents two parts of the user
interface we did not work on. Section 8.3 discusses the
impact of the choice of the kitchensink application as case
study. Section 8.4 highlights the difficulties in large scale
validation of our tool. Finally, Section 8.5 discusses the
impact of the BLCore framework.

8.1 Layout management

As shown in Section 7.3, the export may give incorrect
results because of layout issues (Figure 7). It is due to
the representation of the layout in our GUI meta-model.
Currently, layouts are represented in our GUI meta-model
as an attribute on a Container widget defining if the chil-
dren of this widget are placed ones beside the other or one
below the other (i.e. vertical or horizontal flow layouts).
However, many other layouts exist [14]. For example, the
BLCore framework offers BLGrid, a Widget inheriting
from the GWT Grid class and implementing a grid lay-
out. Currently, complex layouts are not considered in our
GUI meta-model.

A solution is proposed by Sánchez Ramán et al. [23].
They designed a layout meta-model. The idea consists in
linking widgets with a layout and combining the layouts
to create a precise representation. The authors defined a
subset of possible layout to connect to widgets.

Moreover, with such layouts, the position of the children
Widgets might be computed at run time. For example, in
a grid layout, the children may be positioned according to
the values of some row and col variable. Guessing these
values with a static analysis is not practical, and this is a
case where an hybrid approach might be necessary.

8.2 Managing behavioral and business code

Currently, only the visual part of the GUI is migrated. To
take into account the whole application, the migrations of
the Behavioral and Business code (see Section 3.3) are
needed. The Behavioral represent the user interactions (i.e.
click, drag-and-drop, hover, ...) and the control structures
(i.e. loop and alternative). In the case of a client/server
application, requesting a server is part of Behavioral code,
whereas the query in itself and the data belongs to Business
code.

8.3 Demo application

Although the results are encouraging, we only evaluated
our tool on the kitchensink application. The kitchensink ap-
plication is a good training ground for our tool as it contains
all kinds of widgets that developers have at their disposal
and the way to use them. However, it might diverge from
production applications as it should contain less irregulari-
ties or coding tricks than the later.

8.4 Validation tools

The automatic validation of the screens migration is cur-
rently an unsolved problem. It is possible to manually
check the result of the migration for a few pages but it
would be better to do it automatically for hundreds of pages
(more than 400 on Berger-Levrault applications).

We found, in the literature, only few approaches consid-
ering automatic visual validation. In two papers [11, 23],
the authors simply count the number of widgets in the
source application and target applications. But we saw in
Figure 7 that this not guarantee visual similarity. An other
article [19] propose to compare screenshots of the origi-
nal and the exported applications pixel by pixel. However,
we saw in Figure 6 that barely distinguishable screens may
have differences at the level of pixels.

8.5 Impact of BLCore

As explained in Section 5.1, the Berger-Levrault applica-
tions are based on the BLCore framework. By specializing
GWT, BLCore provides specific widgets and a dedicated

9

API. This may have an impact on our approach or not. To
evaluate this possible impact, and also to validate the gener-
ality of our approach, we performed two small experiments
considering (i) Spec (a desktop UI framework in Pharo [6])
as the source framework and, (ii) Seaside (a web frame-
work in Pharo [4] – also described at seaside.st) as the tar-
get framework. These experiments thus consider different
programming languages (Pharo instead of Java (GWT) and
TypeScript), different GUI frameworks, and desktop and
web applications. We experimented migrating the GUI of
small demo application from Spec to Angular, and migrat-
ing the Berger-Levrault kitchensink application to Seaside.

Some conclusions are:

• It was harder to import Spec code than GWT because
of a larger variability in defining the GUI. We con-
clude that the BLCore framework eased our work on
the import by standardizing how to build the pages.

• For Seaside, it was easy to migrate simple widgets
(e.g. Label, Button, Panel), but the BLCore frame-
work also defines complex widgets with no direct
equivalent in Seaside. A library similar to BLCore
should be defined in Seaside to ease the migration.

• the power of our GUI meta-model and the two steps
extraction (first, source code model extraction, then
GUI model extraction, see Figure 4) are validated by
the fact that we were able to migrate a Pharo desktop
application with little extra work.

9 Conclusion and Future works
We created a tool with promising results on the representa-
tion of GUI to migrate GWT applications toward Angular.
In the following, we conclude the presentation of this work
and propose some future research directions we want to ex-
plore.

9.1 Conclusion

In this paper, we exposed a preliminary work on the prob-
lem of visual preservation and respect of the target archi-
tecture during the GUI migration of an application. We
proposed an approach based on a GUI meta-model and a
migration process in three steps. We implemented this pro-
cess in a tool to perform the migration fof GWT applica-
tions to Angular 6. Then, we validated our tool with an
experiment on a kitchensink application. We were able to
extract correctly all pages of the application and 89% of
the widgets. The migration results are visualizing equiva-
lent as long as complex widgets (e.g. GridLayout) are not
used. Dealing with these layouts is our next challenge.

Our solution also allows us to respect the naming con-
ventions used in the source application as well as the struc-
ture of the code as far as the differences in the GUI frame-
works allow it.

9.2 Future work

To improve the migration of an application user interface,
we will enhance our meta-model and our tool to support the
management of the layout and the behavioral and business
code.

We did not find an approach or metrics to automati-
cally evaluate the validity of the migrated screens. So, it
is important to find a new way to evaluate that the migrated
screens conserve the visual aspect of the original ones.

Having a good GUI meta-model also opens the door for
a generic GUI builder that could export the GUI in several
different GUI frameworks.

References
[1] Marco Brambilla and Piero Fraternali. Interaction flow modeling

language: Model-driven UI engineering of web and mobile apps
with IFML. Morgan Kaufmann, 2014.

[2] John Brant, Don Roberts, Bill Plendl, and Jeff Prince. Extreme
maintenance: Transforming Delphi into C#. In ICSM’10, 2010.

[3] Jonathan Cloutier, Segla Kpodjedo, and Ghizlane El Boussaidi.
WAVI: A reverse engineering tool for web applications. In 2016
IEEE 24th International Conference on Program Comprehension
(ICPC), pages 1–3. IEEE, 2016.

[4] Stéphane Ducasse, Lukas Renggli, C. David Shaffer, Rick Zaccone,
and Michael Davies. Dynamic Web Development with Seaside.
Square Bracket Associates, 2010.

[5] Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, Andre Caval-
cante Hora, Jannik Laval, and Tudor Girba. MSE and FAMIX 3.0:
an Interexchange Format and Source Code Model Family. Technical
report, RMod – INRIA Lille-Nord Europe, 2011.

[6] Johan Fabry and Stéphane Ducasse. The Spec UI Framework.
Square Bracket Associates, 2017.

[7] Franck Fleurey, Erwan Breton, Benoit Baudry, Alain Nicolas, and
Jean-Marc Jezéquel. Model-Driven Engineering for Software Mi-
gration in a Large Industrial Context. In Gregor Engels, Bill
Opdyke, Douglas C. Schmidt, and Frank Weil, editors, Model
Driven Engineering Languages and Systems, volume 4735, pages
482–497, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[8] Kelly Garcés, Rubby Casallas, Camilo Álvarez, Edgar Sandoval,
Alejandro Salamanca, Fredy Viera, Fabián Melo, and Juan Manuel
Soto. White-box modernization of legacy applications: The oracle
forms case study. Computer Standards & Interfaces, pages 110–122,
October 2017.

[9] Zineb Gotti and Samir Mbarki. Java swing modernization approach
- complete abstract representation based on static and dynamic anal-
ysis:. In Proceedings of the 11th International Joint Conference on
Software Technologies, pages 210–219. SCITEPRESS - Science and
Technology Publications, 2016.

[10] Tomokazu Hayakawa, Shinya Hasegawa, Shota Yoshika, and Teruo
Hikita. Maintaining web applications by translating among different
ria technologies. GSTF Journal on Computing, page 7, 2012.

[11] Mona Erfani Joorabchi and Ali Mesbah. Reverse engineering iOS
mobile applications. In 2012 19th Working Conference on Reverse
Engineering, pages 177–186. IEEE, 2012.

10

seaside.st

[12] R. Kazman, S.G. Woods, and S.J. Carriére. Requirements for inte-
grating software architecture and reengineering models: Corum ii.
In Proceedings of WCRE ’98, pages 154–163. IEEE Computer So-
ciety, 1998.

[13] Valéria Lelli, Arnaud Blouin, Benoit Baudry, Fabien Coulon, and
Olivier Beaudoux. Automatic detection of GUI design smells:
The case of blob listener. EICS ’16 Proceedings of the 8th ACM
SIGCHI Symposium on Engineering Interactive Computing Sys-
tems, page 12, 2016.

[14] Simon Lok and Steven Feiner. A survey of automated layout tech-
niques for information presentations. Proceedings of SmartGraph-
ics, 2001:61–68, 2001.

[15] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping:
reverse engineering of graphical user interfaces for testing. In Re-
verse Engineering, 2003. WCRE 2003. Proceedings. 10th Working
Conference on, pages 260–269. IEEE, 2003.

[16] Atif M. Memon. An event-flow model of GUI-based applications for
testing. Software Testing, Verification and Reliability, 17(3):137–
157, 2007.

[17] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling
ajax-based web applications through dynamic analysis of user inter-
face state changes. ACM Transactions on the Web, 6(1):1–30, 2012.

[18] Moore, Rugaber, and Seaver. Knowledge-based user interface mi-
gration. In Proceedings 1994 International Conference on Software
Maintenance, pages 72–79. IEEE Comput. Soc. Press, 1994.

[19] Kevin Moran, Cody Watson, John Hoskins, George Purnell, and
Denys Poshyvanyk. Detecting and Summarizing GUI Changes in
Evolving Mobile Apps. arXiv:1807.09440 [cs], July 2018.

[20] I Coimbra Morgado, Ana Paiva, and J Pascoal Faria. Reverse en-
gineering of graphical user interfaces. In ICSEA 2011 : The Sixth
International Conference on Software Engineering Advances, 2011.

[21] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gîrba. The story of
Moose: an agile reengineering environment. In Michel Wermelinger
and Harald Gall, editors, Proceedings of the European Software En-
gineering Conference, ESEC/FSE’05, pages 1–10, New York NY,
2005. ACM Press.

[22] Hani Samir, Amr Kamel, and Eleni Stroulia. Swing2script: Migra-
tion of Java-Swing applications to Ajax Web applications. In 14th
Working Conference on Reverse Engineering (WCRE 2007), 2007.

[23] Óscar Sánchez Ramán, Jesús Sánchez Cuadrado, and Jesús Gar-
cía Molina. Model-driven reverse engineering of legacy graphical
user interfaces. Automated Software Engineering, 21(2):147–186,
2014.

[24] Eeshan Shah and Eli Tilevich. Reverse-engineering user inter-
faces to facilitate porting to and across mobile devices and plat-
forms. In Proceedings of the compilation of the co-located work-
shops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11,
\& VMIL’11, pages 255–260. ACM, 2011.

[25] João Carlos Silva, Carlos C. Silva, Rui D. Goncalo, João Saraiva,
and José Creissac Campos. The GUISurfer tool: towards a lan-
guage independent approach to reverse engineering GUI code. In
Proceedings of the 2Nd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, pages 181–186. ACM Press, 2010.

[26] Stefan Staiger. Reverse engineering of graphical user interfaces us-
ing static analyses. In 14th Working Conference on Reverse Engi-
neering (WCRE 2007), pages 189–198. IEEE, 2007.

[27] Christian Zirkelbach, Alexander Krause, and Wilhelm Hasselbring.
On the modernization of explorviz towards a microservice architec-
ture. In Combined Proceedings of the Workshops of the German
Software Engineering Conference 2018. CEUR Workshop Proceed-
ings, 2018.

11

	Introduction
	State of the Art
	Existing migration strategies
	User Interface representation
	OMG standards
	GUI meta-models

	Context of the migration project
	Constraints
	Comparison of GWT and Angular
	Front-end application structure

	Migration Approach
	Migration process
	GUI meta-model

	Implementation
	Case Study
	Import
	Export

	Validation
	Industrial application
	Validation metrics

	Results
	Satisfaction of constraints
	Extraction results
	Export results

	Discussion
	Layout management
	Managing behavioral and business code
	Demo application
	Validation tools
	Impact of BLCore

	Conclusion and Future works
	Conclusion
	Future work

