
HAL Id: hal-02308297
https://hal.inria.fr/hal-02308297

Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connecting Global and Local Agent Navigation via
Topology

Wouter van Toll, Julien Pettré

To cite this version:
Wouter van Toll, Julien Pettré. Connecting Global and Local Agent Navigation via Topology. MIG
2019 - ACM SIGGRAPH Conference Motion Interaction and Games, Oct 2019, Newcastle upon Tyne,
United Kingdom. pp.1-10, �10.1145/3359566.3360084�. �hal-02308297�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/233870641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02308297
https://hal.archives-ouvertes.fr

Connecting Global and Local Agent Navigation via Topology
Wouter van Toll

wouter.van-toll@inria.fr

Univ Rennes, Inria, CNRS, IRISA

Rennes, France

Julien Pettré

julien.pettre@inria.fr

Univ Rennes, Inria, CNRS, IRISA

Rennes, France

!

Figure 1: We define a navigation strategy as a set of decisions to pass obstacles and agents via the left (red) or right (blue). Left
image: A global path yields a long-term strategy for obstacles. Middle image: A local velocity yields a short-term strategy for
nearby agents and obstacles. For the obstacle marked with ‘!’, the global and local strategies are in conflict. Right image: Our
method detects these conflicts, and it allows the agent to plan a new global path that complies with its local strategy.

ABSTRACT
We present a novel topology-driven method for improving the

navigation of agents in virtual environments. In agent-based crowd

simulations, the combination of global path planning and local

collision avoidance can cause conflicts and undesired motion. These

conflicts are related to the decisions to pass obstacles or agents on

certain sides. In this paper, we define an agent’s navigation behavior

as a topological strategy amidst obstacles and other agents.We show

how to extract such a strategy from a global path and from a local

velocity. Next, we propose a simulation framework that computes

these strategies for path planning, path following, and collision

avoidance. By detecting conflicts between strategies, we can decide

reliably when and how an agent should re-plan an alternative path.

As such, this work bridges a long-existing gap between global and

local planning. Experiments show that our method can improve

the behavior of agents while preserving real-time performance. It

can be applied to many agent-based simulations, regardless of their

specific navigation algorithms. The strategy concept is also suitable

for explicitly sending agents in particular directions.

CCS CONCEPTS
•Computingmethodologies→Motion path planning; Intel-
ligent agents; Real-time simulation.

KEYWORDS
intelligent agents, path planning, navigation, crowd simulation

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom
© 2019 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in Motion, Interaction
and Games (MIG ’19), October 28–30, 2019, Newcastle upon Tyne, United Kingdom,

https://doi.org/10.1145/3359566.3360084.

ACM Reference Format:
Wouter van Toll and Julien Pettré. 2019. Connecting Global and Local Agent

Navigation via Topology. InMotion, Interaction and Games (MIG ’19), October
28–30, 2019, Newcastle upon Tyne, United Kingdom. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3359566.3360084

1 INTRODUCTION
Simulating the motion of human crowds is a research topic with

many real-world and entertainment applications [Pelechano et al.

2016; Thalmann and Musse 2013]. Many crowd-simulation tech-

niques are agent-based: they model each member of the crowd as

an intelligent agent with its own properties and goals. Within this

paradigm, it is common to split an agent’s navigation task into

global path planning (finding an overall route to the goal) and local
behavior (following this route while avoiding short-term collisions)

[van Toll et al. 2015]. Recently, mid-term planning has been pro-

posed as a step in-between [Bruneau and Pettré 2017]. As such,

agents combine navigation algorithms for different levels of detail.

This multi-level navigation approach often works well, but it

can have problems in scenarios with many agents or obstacles. The

algorithms of different levels may give conflicting commands, for

example when an agent’s global path runs through a passage that

turns out to be blocked by other agents (as in Figure 1(b)). The agent

is then likely to get stuck, unless the global and local algorithms

actively collaborate to plan a detour.

Although solutions (e.g. re-planning or waiting) may seem obvi-

ous to the human eye, it is difficult to detect automatically when

global and local planning are in conflict. We argue that this is due

to a design choice in local algorithms: in each simulation frame,

their outcome is simply a velocity that optimizes local criteria, and

not an explicit decision to pass agents or obstacles on a certain side.

https://doi.org/10.1145/3359566.3360084
https://doi.org/10.1145/3359566.3360084

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Wouter van Toll and Julien Pettré

1.1 Goals and Contributions
We present a novel topology-inspired approach to improve naviga-

tion in crowds. We model agents’ global and local navigation plans

as decisions to move around obstacles and other agents via the left

or right. With this unified representation, we can systematically

detect and resolve conflicts between the navigation decisions of

different levels. This can yield more responsive agents and more

efficient crowd motion. Figure 1 shows an example.

Planning a new global path (i.e. re-planning) is a relatively costly
operation that one would prefer to avoid unless it is necessary. A

conflict between global and local planning is an intuitive trigger

for re-planning. By detecting these conflicts, we contribute to an

efficient simulation where agents re-plan at the right time.

Our main contributions are the following:

• We formulate an agent’s navigation behavior as a topological

strategy amidst obstacles and other agents (Section 3.2).

• We show how to obtain such a strategy from a global path

(Section 4.1) and from a local velocity (Section 4.2). This

gives a global and a (dynamic) local strategy per agent.

• We suggest a simulation framework in which path planning,

path following, and collision avoidance collaborate to detect

and resolve conflicts between their strategies (Section 5).

• Via experiments (Section 6), we show that this conflict reso-

lution can improve the crowd’s behavior in several scenarios,

without sacrificing real-time performance.We also show that

our concepts can be used to easily guide agents in specific

directions, e.g. to simulate the effect of signage in buildings.

We emphasize that we do not propose a new algorithm for mid-

term planning or collision avoidance. Instead, we offer a funda-

mentally new way to harmonize agent-navigation algorithms, by

assigning a uniformmeaning to the choices made at each level. This

concept can be applied to many different navigation algorithms.

Thus, it can help improve a simulation regardless of its details.

2 RELATEDWORK
In an agent-based crowd simulation, each member of the crowd

plans a path to its own goal. While traversing their paths, agents use

local algorithms to adjust their motion when needed. This multi-
level simulation approach is the current state of the art, and many

such systems have been developed in recent years [Curtis et al.

2016; Kielar et al. 2016; Pelechano et al. 2007; van Toll et al. 2015].

2.1 Global and Local Path Planning
2.1.1 Global Planning. To facilitate path planning in a 2D or 3D

environment with obstacles, a navigation mesh subdivides the envi-

ronment into regions [van Toll et al. 2016]. Many types of navigation

meshes exist that can be computed automatically [Geraerts 2010;

Kallmann 2014; Oliva and Pelechano 2013].

Given a navigation mesh, agents plan a path on the dual graph of

the mesh regions, using graph search algorithms such as A* [Hart

et al. 1968]. This results in a sequence of regions for the agent to

move through. Within this sequence, agents can compute a specific

geometric curve to follow. We will use the term path for this curve.

2.1.2 Local Planning. In each frame of the simulation loop, agents

choose a point on their path to move to. This induces a preferred

velocity v
pref

per agent [Jaklin et al. 2013; Karamouzas et al. 2009].

Then, agents apply collision avoidance to find a velocity vnew that is

(ideally) close to v
pref

while avoiding nearby obstacles and agents.

Collision avoidance is a popular research topic, and increasingly

intelligent solutions have been proposed [Dutra et al. 2017; Helbing

and Molnár 1995; van den Berg et al. 2011; Wolinski et al. 2016].

Local planning can also entail other tasks, such as modelling social

groups [Kremyzas et al. 2016] and adapting an agent’s motion to

the local density [Best et al. 2014] or flow [van Goethem et al. 2015].

The term ‘crowd simulation’ is sometimes used for collision

avoidance alone. However, path following and global planning are

equally important, especially in environments with many obstacles.

Small obstacles could be handled purely locally, but this only works

up to a certain point that is hard to define. Therefore, we propose a

solution where local and global planning can coordinate.

2.2 Other Navigation Techniques
2.2.1 Adding Levels or Information. Sometimes, a crowd is shaped

in such a way that ‘regular’ global and local planning cannot bring

an agent to its goal. There have been several attempts to improve

the behavior in such cases. Examples are ‘long-range collision avoid-

ance’ [Golas et al. 2013] where an agent prepares a rough plan to

avoid agents that are far ahead, and ‘mid-term planning’ [Bruneau

and Pettré 2017] where an agent refines its path to include the

upcoming avoidance manoeuvres. The behavior of agents can also

be improved by adding local information to global planning, such

as the crowd density [Höcker et al. 2010; Pettré et al. 2007; van Toll

et al. 2012] or the motion of dynamic objects [Kapadia et al. 2013].

While this adds intelligence, the different planning algorithms are

still isolated processes that can produce conflicting strategies.

2.2.2 Hybrid Methods. Another option is to remove the global-

local distinction by adding the agents as ‘obstacles’ to the navigation

graph [Stüvel et al. 2016; Sud et al. 2007]. This is ideal for dense

and (nearly) stationary crowds, where an agent should actively

look for gaps between other agents. However, for other use cases,

a combination of global and local planning generally works better.

Alternatively to agent-based methods, flow-based simulations

model the crowd as a whole that moves along a flow field [Patil

et al. 2010; Treuille et al. 2006]. These methods do not suffer from

conflicts as much, but they cannot efficientlymodel crowds inwhich

all agents have individual properties and goals. In this paper, we

therefore focus on agent-based simulations.

2.2.3 Topology-Driven Navigation. All agent navigation methods,

at every level of detail, have one common trait: they compute how

an agent should move around objects (which can be agents or obsta-

cles). In this paper, we propose the concept of a navigation strategy
to formalize exactly this. It allows us to compare the navigation

plans of different levels, and to resolve conflicts between them.

Our idea of enriching navigation with topology is not new. Ro-

botics researchers have added topological constraints to global

[Bhattacharya et al. 2012] and local planning [Knepper et al. 2011],

and they have formulated multi-robot coordination in terms of topo-

logical decisions [Mavrogiannis and Knepper 2019]. Our work uses

similar ideas, but focuses on the synchronization between levels of

planning, and on the integration into real-time crowd simulations.

Connecting Global and Local Agent Navigation via Topology MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

Figure 2: An environment with two possible navigation
meshes. Passages are shown in green. Left: triangulation.
Right: local minima of the medial axis, used in this paper.

3 DEFINITIONS
As in most crowd-simulation research, we approximate agents by
disks. Let AG = {Aj }

m−1
j=0 be the set ofm agents being simulated.

All agents Aj are moving towards their individual goal positions

gj , using any combination of navigation algorithms.

3.1 Environment and Navigation Mesh
We assume that the simulation takes place in a two-dimensional

environment E with polygonal obstacles and a polygonal outer

boundary, for which we will use the term ‘obstacle’ as well. Let

OBS = {Oi }
n−1
i=0 be the set of n obstacles in E, and let N be the total

number of vertices for all obstacles. We assume that each obstacle

Oi is a simple polygon, the inner obstacles do not overlap, and

the outer boundary contains all inner obstacles. (If necessary, this

obstacle representation can be obtained from a navigation mesh.)

To represent the environment for navigation purposes, we re-

quire a navigation mesh M that subdivides the obstacle-free space

of E into non-overlapping polygonal regions REG = {Ri }
r−1
i=0 . For

any region Ri , all vertices should be on the boundary of an obsta-

cle. Consequently, each boundary segment of Ri either lies on an

obstacle boundary or is shared with another region Rj . We will use

the term passage for a boundary segment shared by two regions.

Each passage is a line segment that starts and ends at an obstacle.

Figure 2 shows two possible navigation meshes for an example

environment. Many types of navigation meshes exist, including

ones where the combined complexity of all regions is O(N).

3.2 Decisions and Strategies
We now formalize the concept of a navigation strategy: a set of

decisions to pass obstacles and agents on a certain side. Later, we

will use this definition to assign a common topological meaning to

the results of global and local planning.

3.2.1 Decision. During the simulation, any agent Aj that has not

yet reached its goal should navigate around obstacles and other

agents, to whichwewill collectively refer as objects.Aj can decide to

pass any object via the left or via the right. Formally, let D(Aj ,B) ∈
{L, R, X} be the decision of Aj with respect to an object B:

• D(Aj ,B) = L ifAj intends to pass B via the left (thus keeping
B on their right-hand side);

• D(Aj ,B) = R if Aj intends to pass B via the right (thus keep-
ing B on their left-hand side);

• D(Aj ,B) = X if Aj has not (yet) made a decision for B.

A0

O0

O1
O2

O3

A1

A2

A3 A4 A5

A6

Figure 3: A navigation strategy. The agent A0 will move to
its goal (green) by passing obstacles and other agents, either
via the right (outlined in blue) or via the left (outlined in red).
Undecided or irrelevant objects are outlined in gray.

In the figures of this paper, we will use the color red to denote

the decision L, blue to denote the decision R, and gray to denote X.
Decisions of X do not have to be stored explicitly.

3.2.2 Strategy. A navigation strategy for Aj is a set of decisions

with respect to all objects, according to a decision function DX :

S(DX ,Aj) = {DX (Aj ,B)}B ∈ OBS ∪AG−{Aj }

In terms of coloring, a strategy is an assignment of the colors red

and blue to the objects betweenwhich the agentwants to pass, while

leaving any irrelevant (or undecided) objects in gray. Figure 3 shows

an example of a strategy. Here, note that the decision regarding

a neighboring agent Ak also depends on the velocity of Ak . For
instance, the agent A4 is blue because it will have moved to the left

before A0 passes it. We will explain this further in Section 4.2.

In this paper, we will abbreviate S(DX ,Aj) to SX (for any sub-

script X). Thus, a strategy SX always has a corresponding decision

function DX , and it will implicitly always concern Aj .

In a typical crowd simulation, each agent Aj tries to follow a

global path. This path has a corresponding global strategy SG . It
usually does not yet describe how to avoid agents, i.e.DG (Aj ,Ak) =
X for all other agents Ak . Over time, local navigation algorithms

should determine how to move around agents. This results in one

or more local strategies (one for each algorithm) that change over

time. These local strategies and SG might be in conflict, as they also

impose their own decisions for nearby obstacles.

3.2.3 Comparing Strategies. To solve navigation problems, it is

useful to define consistency between strategies. First, we say that

two decisions D1(Aj ,B) and D2(Aj ,B) for a given object B are in-
consistent if one decision is L and the other is R. Otherwise (i.e. if
they are equal or if either decision is X), the decisions are consistent.
We will use =c to denote consistency and ,c for inconsistency.

Now, let S1 and S2 be two full strategies. For any object B where

D1(Aj ,B) ,c D2(Aj ,B), we say that S1 and S2 have a conflict. The
two strategies are consistent if and only if they have no conflicts,

i.e. S1 =c S2 iff D1(Aj ,B) =c D2(Aj ,B) for all objects B. Other-
wise, the strategies are inconsistent. We also introduce the notation

S1 =OBS S2 and S1 =AG S2 for when two strategies have no conflicts
regarding obstacles and agents, respectively.

The problem from Figure 1 occurs when the strategies of collision

avoidance and path following (say, SC and SF) have an obstacle-

related conflict. Our goal is to detect and resolve these situations.

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Wouter van Toll and Julien Pettré

4 OBTAINING NAVIGATION STRATEGIES
This section explains how to obtain navigation strategies from a

path and from a velocity. Section 5 will use this to handle conflicts

between path planning, path following, and collision avoidance.

4.1 Converting a Path to a Strategy
A global planning algorithm computes a path from a start position

s to a goal position g. This path is a curve π : [0, 1] → R2 through
the environment, where π (0) = s and π (1) = g. The curve does not
intersect any obstacles in OBS, but it may intersect the agents in

AG because agents are (usually) not yet considered in this phase.

We now describe how to obtain a navigation strategy S from a

path π . In other words, we show how π leads to a red/blue coloring

of obstacles. Figure 4 shows an example of a path and its strategy.

Note that the path keeps blue obstacles to its left and red obstacles

to its right, while irrelevant obstacles remain gray.

4.1.1 Overview. To convert π to a strategy S , the first step is to find
the sequence of passages that π traverses in the navigation mesh

M. In this paper, we assume that M was already used to compute

π in the first place. The sequence of passages for π can then easily

be constructed during the path-planning algorithm itself. (If π is an

arbitrary curve that was not computed usingM, one could compute

the passages that π intersects, and remove any duplicate entries

caused by backtracking or loops in the path.)

Let P = {pi }
k−1
i=0 be the sequence of k passages that π traverses.

The example path in Figure 4 visits nine passages. Recall that each

passage pi is a line segment with an obstacle at its left and right

endpoint; let us denote these obstacles byOi ,l andOi ,r respectively.

By traversingpi , the agent will passOi ,l via the right (blue) andOi ,r
via the left (red). To compute all relevant navigation decisions (i.e.

to define a decision function D), we check the traversed passages

one by one, and we perform the following steps for each pi :

(1) Try to set D(Aj ,Oi ,l) to R; that is, try to give Oi ,l the color

blue. (We will explain below what ‘trying to set’ means.)

(2) Try to set D(Aj ,Oi ,r) to L; that is, try to make Oi ,r red.

(3) If pi is not the last passage of P, let Ri be the region to which

pi leads. In the clockwise ordering of passages bounding Ri ,
visit all passages between pi and pi+1. The light-blue passage
in Figure 4 is an example of this case. For each such passage

p′, get its left obstacle O ′
l and try to set D(Aj ,O

′
l) to R.

(4) Symmetrically, visit all passages in the counter-clockwise or-

dering between pi and pi+1. Examples are the pink passages

in Figure 4. For each such passage p′, get its right obstacle
O ′
r and try to set D(Aj ,O

′
r) to L.

This results in a strategy S , implicitly augmented withD(Aj ,B) =
X for any undecided object B. If the boundaries of regions can be

traversed via pointers (next/prev/twin), we can compute S in O(N ′)

time, where N ′
is the total complexity of the regions that π visits.

4.1.2 Handling Ambiguities. We use the term ‘try to set’ instead

of ‘set’ because an obstacle O might occur as both a left and right

obstacle at different points along the path. The outer boundary of

Figure 4 is an example of this. In such cases, we want to setD(Aj ,O)
to X, as we cannot use either L or R along the whole path. So, in the

discussion above, ‘try to set D(Aj ,O) to R’ is defined as follows:

• If D(Aj ,O) has not yet been set before, set it to R.

p0

p1

p2

p3

p4

p5

p6
p7

p8O0,l

O1,r

O1,l

O2,l

O8,l

...

O8,r

O2,r

O0,r

O3,r

O7,r

...

Figure 4: A global path (the dashed curve) and its navigation
strategy, obtained from the relevant passages (in green) and
their neighboring passages (in light blue and pink).

• If D(Aj ,O) was already set to L, set it to X.
• If D(Aj ,O) was already set to R or X, then it stays that way.

The definition for the decision L is symmetric.

4.2 Converting a Velocity to a Strategy
In each simulation frame, every agent Aj performs path following

and collision avoidance to compute (respectively) a preferred ve-

locity v
pref

and a new velocity vnew. To detect conflicts, we need
to convert these velocities to strategies as well.

We now explain how to obtain a navigation strategy S for an

arbitrary velocity v. That is, we show how to compute a red/blue

coloring of nearby objects assuming that agent Aj uses the velocity

v for a certain amount of time. We focus on non-zero velocities.

If | |v| | = 0, the agent Aj does not really ‘navigate’, and we can

(implicitly) use D(Aj ,B) = X for all objects B.

In the following discussion, ab denotes the line segment between

two points a and b. Let p be the current position of agent Aj , and

let τ be the time window, a parameter that we will set in Section 5.

In τ seconds, the velocity v will send Aj to position p′ = p + v · τ .

4.2.1 Neighboring Objects. The short-term use of a velocity only

affects objects that are nearby. Similarly to collision-avoidance al-

gorithms, we consider nearby agents and nearby obstacle segments.
Thus, we treat the boundary segments of obstacles as separate enti-

ties. Appendix A specifies how we find these neighboring objects

in our implementation. For each neighboring object, we determine

a navigation decision. The final strategy S consists of all these deci-

sions, (again) implicitly augmented with X for unhandled objects.

4.2.2 Decision for an Agent. Figure 5(a) shows how the segment

pp′ divides the vicinity of Aj into four areas: back (aB), front (aF),
left (aL), and right (aR). For a neighboring agent Ak with position

pk and velocity vk , let p′k = pk + vk · τ be the predicted position

of Ak after τ seconds. We define the decision D(Aj ,Ak) as follows:

• If pk lies in aB , then Ak starts behind Aj , so Aj does not

actively pass it (anymore). Thus, D(Aj ,Ak) = X.
• If p′k lies in aF , then Ak ends up in front of Aj , so Aj does

not pass it (yet). Thus, D(Aj ,Ak) = X.

• Otherwise, if pp′ and pkp′k intersect at some point x, let t be
the time after which Aj will reach x. The decision depends

on the position of Ak at that time, i.e. on p′′k = pk + vk · t :

– If p′′k lies exactly on pp′, then D(Aj ,Ak) = X.

Connecting Global and Local Agent Navigation via Topology MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

p v p′

aB

aF

aL

aR

(a) Agent-Agent

O
a b

oL oR

oB

oM

(b) Agent-Obstacle

Figure 5: A velocity v and its navigation strategy, with re-
spect to (a) other agents, and (b) an obstacle segment.

– If p′′k lies in aL , then D(Aj ,Ak) = R.

– If p′′k lies in aR , then D(Aj ,Ak) = L.

• Otherwise, pkp′k lies fully or partly in either aL or aR .

– If pkp′k overlaps with aL , then D(Aj ,Ak) = R.

– If pkp′k overlaps with aR , then D(Aj ,Ak) = L.

Our definition ignores whetherAj andAk are on collision course.

Even if v would lead to a collision, it is useful to know which

navigation decision Aj is most likely to have in mind.

4.2.3 Decision for an Obstacle Segment. For obstacle segments,

different segments of the same obstacle O may give conflicting

decisions. When this happens, we would like to set D(Aj ,O) to X,
as we cannot decide uniformly for the entire obstacle. Therefore,

just like in Section 4.1, we treat each obstacle segment either by

ignoring it or by trying to set the decision for the corresponding

object O , where ‘trying to set’ is defined as before.

For a segment ab belonging to an obstacle O , assume (w.l.o.g.)

that a and b appear on O ’s boundary in counterclockwise order. ab
divides the space into four areas, as shown in Figure 5(b): back (oB),

left (oL), middle (oM), and right (oR). We treat ab as follows:

• If p lies in oB , ignore this segment: it is currently not visible

to the agent Aj .

• If pp′ stays entirely inside oL or oR , ignore this segment: Aj
does not make an active decision yet.

• If pp′ and ab intersect, Aj will collide with ab. The decision
depends on the angle θ between v and b − a:
– If θ < 90

◦
, try to set D(Aj ,O) to R.

– If θ > 90
◦
, try to set D(Aj ,O) to L.

– If θ = 90
◦
, ignore this segment.

• Otherwise, if pp′ moves into oB , let x be the first point where
this happens.

– If x is closer to a than to b, try to set D(Aj ,O) to L.
– Otherwise, try to set D(Aj ,O) to R.

• Otherwise, Aj moves along the segment without fully pass-

ing it. The decision then depends on θ as described earlier.

5 STRATEGY-DRIVEN SIMULATION
We now extend a generic crowd-simulation framework [van Toll

et al. 2015] with navigation strategies to detect and resolve conflicts.

In the existing framework, each agentAj has three navigation tasks:

• Path planning (performed once): Compute a global path π
to the agent’s goal position gj .

• Path following (performed in each frame): First compute a

reference point p
ref

that denotes the agent’s progress along π .
Then compute an attraction point patt on π , and a preferred

velocity v
pref

that sendsAj to patt at its preferred speed spref.
• Collision avoidance (performed in each frame): Compute a

velocity vnew close to v
pref

that avoids nearby collisions.

This framework is not restricted to specific algorithms for path

planning, path following, or collision avoidance. Our implementa-

tion uses the data structures and algorithms listed in Appendix A.2.

It is common to let an agent re-plan its path whenever the agent

cannot compute an attraction point patt, i.e. when it no longer

knows how to follow its current path [Jaklin et al. 2013]. We will

do this in our implementation as well.

5.1 Overview of the Strategic Level
In the standard framework with three tasks, agents always accept

the choices made by each algorithm. We propose to add a fourth

task –the strategic level– in which the agent analyzes the strategies

of each task and responds to conflicts.

In this paper, we focus on obstacle-related conflicts between path

following and collision avoidance. In future work, we intend to add

a form of mid-term planning, which will be another navigation level

with its own strategy SM . It will then make sense to also consider

agent-related conflicts between SM and the other strategies.

The strategic level first converts the agent’s preferred velocity

v
pref

to a strategy SF , and vnew to a strategy SC , using the method

from Section 4.2. We use a time window τ of
| |patt−p | |
spref ; this is the

time required to reach the attraction point at the preferred speed.

Next, we check if SC ,OBS SF . When this happens, collision

avoidance and path following disagree on how to pass one or more

obstacles. The agent is about to move around these obstacles dif-

ferently than prescribed by v
pref

. We compute two ways to resolve

the conflict: an alternative path π ′
that satisfies SC (instead of SF),

and an alternative velocity v′
new

that satisfies SF (instead of SC).
Section 5.2 will describe how to compute π ′

and v′
new

.

When π ′
and v′

new
have been computed, the agent can choose

one of the two, or it can decide to ignore the conflict and use the

velocity vnew that it already had in mind. There are many ways

to let an agent choose between these three options. We employ

a simple choice model with two parameters: a maximum detour

factorW , and a Boolean flag Strict. The agent decides as follows:
(1) Use π ′

if it exists and if it is ≤ W times longer than the

remainder of π . We define this remainder as the line segment

from p to patt, plus the subpath of π from patt to the goal gj .
(2) Otherwise, if Strict = True, use v′

new
.

(3) Otherwise, use vnew.

5.2 Finding an Alternative Path and Velocity
We now explain how to compute a path or a velocity under the topo-

logical constraints of another strategy. Let the constraint strategy
ST be a strategy that contains all constraints of our interest.

5.2.1 Path Planning with Constraints. To plan a global path whose

strategy SG′ is consistent with ST , we plan a path on the navigation

mesh M in the usual way, but with the additional rule that we

cannot traverse any passages that would lead to a conflict between

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Wouter van Toll and Julien Pettré

SG′ and ST . For any passage pi that we encounter during the search,
traversing pi would imply DG′(Aj ,Oi ,l) = R and DG′(Aj ,Oi ,r) = L.
Thus, if DT (Aj ,Oi ,l) = L or DT (Aj ,Oi ,r) = R, we do not search

further in this direction, as traversing pi would imply SG′ ,c ST .
(Technically, DG′(Aj ,Oi ,l) could be cancelled out to X elsewhere

on the path, but in this case, we assume that it is undesirable to

pass an obstacle on the wrong side at least once.)

5.2.2 Collision Avoidance with Constraints. To perform collision

avoidance such that the resulting strategy SC ′ is consistent with

ST , we should disallow the selection of any velocity that would

lead to conflicts. If the collision-avoidance algorithm uses sampling

(i.e. choosing the best velocity out of several candidates), then ST
is easy to incorporate. For each candidate velocity v′′, we compute

the navigation strategy SC ′′ and we discard v′′ if SC ′′ ,c ST . We

expect that a similar adaptation can be made for other types of

collision-avoidance algorithms, such as those based on velocity

obstacles [van den Berg et al. 2011].

5.2.3 Application. In the strategic level of our simulation frame-

work (Section 5.1), we apply these adapted algorithms as follows:

• To compute the alternative velocity v′
new

, we perform colli-

sion avoidance constrained by SF .
• To compute the alternative path π ′

, we perform path plan-

ning constrained by SC . To prevent an agent from backtrack-

ing, we augment SC with the navigation decisions from the

last 3 passages that the agent has traversed.

As mentioned in Section 1, global (re-)planning is a relatively

costly operation. By planning an alternative path only in case of a

conflict, we avoid re-planning when the current path is still attrac-

tive. Still, conflicts may occur often, and it is useful to let agents

re-plan at most once every few seconds. Therefore, we introduce

the re-planning time TR : an agent only looks for an alternative path

π ′
when its last path update was at least TR seconds ago. In any

frame where this is not the case, we consider π ′
to be non-existent.

6 EXPERIMENTS AND RESULTS
We have implemented our strategy-driven simulation framework

in C++. All relevant settings and implementation details can be

found in Appendix A. We perform all experiments on aWindows 10

device with an Intel Core i7-7920HQ CPU. Throughout this section,

we compare the following variants of the simulation framework:

• CA-Only: agents perform no path planning or path following,

and their v
pref

always points straight to the goal.

• Standard: agents perform the three standard navigation tasks,

but they do not compare any topological strategies.

• Strategic: the full strategy-driven framework from Section 5.

We will test different values of the parameters TR andW .

(Note that Strategic can reproduce the behavior of Standard
by using TR = ∞,W = 0, and Strict = False.)

Our main purpose is to show how the strategic level can improve

the behavior of agents compared to a standard simulation. We will

show this via several scenarios, and we will discuss the results per

scenario. Section 7 will discuss the advantages and limitations of

our method in general. To see all scenarios in motion, we encourage

the reader to watch this paper’s supplementary video.

6.1 Single-Agent Demonstration
6.1.1 Experiment. To demonstrate the advantages of the strategic

level, we show an agent navigating through an environment with

obstacles and other agents. Figure 6(a) shows our example scenario.

The red agent needs tomove from the top left to the top right, and its

initial path (computed by our path-planning method) runs through

several problematic areas. Some passages are blocked by stationary

agents (in purple and green), and the lower part contains agents

that are flowing to the left (in blue) and to the right (in orange).

These ‘other’ agents all use the CA-Only simulation variant.

6.1.2 Discussion of Results. Figure 6(b) shows the trajectories for
the red agent when using different simulation variants. When the

agent uses CA-Only (shown in pink), it gets trapped behind the first

wall on the straight path to the goal. When it uses Standard (shown

in brown), it gets stuck at the opening blocked by purple agents.

The red trajectory is the result for Strategic withTR = 2,W = ∞,

and Strict = False. That is, the agent re-plans at most every second,

it accepts detours of any length, and it is not forced to follow its path

locally. With these settings, the agent reaches the goal. Figure 6(c)

shows where the agent changes its global plan. In cases 1 and 4, the

agent chooses a detour because collision avoidance recognizes that

an area is blocked. In cases 2 and 3, the agent switches between

different openings and eventually chooses the lowest one, to join

the orange agents who are moving in the same direction.

Note that this is merely meant as a demonstration of how the

strategy-based simulation could be used. Many variations are pos-

sible. For example, if we usedW = 1 instead, the agent would

consider the last detour to be too large, and it would (deliberately)

keep trying to use the passage with the green agents. This may be

the desired behavior in certain scenarios.

6.2 Crowd Flows amidst Small Obstacles
6.2.1 Experiment. To show what happens when many agents use a

certain simulation variant, we simulate unidirectional crowd flows

in a U-turn corridor with small obstacles (UTurn, 40 × 24 m). We

compute start and goal positions via uniform random sampling

at the corridor’s far ends. We insert 3 agents per second, and we

remove an agent when it lies within 0.5m of its goal. To make the

crowd more diverse, we give each agent a (uniformly sampled) ran-

dom preferred speed s
pref

between 1.2 and 1.4m/s. Figure 7 shows

still images of this scenario with different simulation variants.

We measure the total number of agents (NrAgents) that are added
after t = 50s and that reach their goal before t = 300s. For each such

agent, we measure the distance travelled, the total travel time, the

average speed, and the time spent walking more slowly than 0.5m/s.

Of these metrics, we report the average and standard deviation over

all agents (Dist, Time, AvgSpeed, SlowTime). These are indicators
of how efficiently the crowd moves. We exclude the first 50s to

prevent distorting the results with a quiet ‘warm-up’ period.

6.2.2 Discussion of Results. Table 1 provides quantitative results.
As can be seen in Figure 7 as well, the CA-Only simulation variant

clearly fails in this corridor because global planning is required.

The Standard variant lets some agents pile up around an obstacle.

This is reflected by high averages and standard deviations for Time
and SlowTime. Also, parts of the corridor are under-utilized because

Connecting Global and Local Agent Navigation via Topology MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

they are not chosen by global planning. When using the Strategic
variant, agents make better use of alternative paths. Consequently,

they spread out over the corridor, they walk faster on average, and

they spend less time walking slowly. This shows that it can be useful

to let agents take global detours based on their local velocities.

We have tested both a ‘coarse’ version of Strategic (with TR = 2,

W = 1.2, and Strict = False) and a ‘fine’ version (with TR = 0.5,

W = 1.2, and Strict = True). Both versions improve upon the

Standard simulation, with only little differences between them. This

suggests that very frequent re-planning is not strictly necessary,

which is good news for the simulation’s computation time.

Density-based global path planning [van Toll et al. 2012] has

a similar purpose, but such a method does not recognize small

congestions in large areas of the navigation mesh, and it does not

consider the directions in which agents move. The method could be

combined with ours to further improve the crowd’s behavior.

6.3 Crowd Flows with Environmental Guidance
6.3.1 Experiment. In the same environment, we also simulate bidi-
rectional flows by sending every other agent in the opposite direc-

tion. We observe deadlocks in all simulations, both for the Standard
and Strategic variants (Figures 8(a) and 8(b)). Thus, the strategic

level does not compensate for poor coordination between agents.

However, an interesting ‘bonus’ application of topological strate-

gies is that we can now guide agents around specific obstacles in

specific ways, by enforcing certain navigation decisions for these

obstacles. Whenever an agent (re-)plans a global path, we include

these obstacle decisions in the constraint strategy.

6.3.2 Discussion of Results. Figure 8(c) shows what happens in

UTurn if we instruct agents to pass the blue-colored obstacles on

the right during global path planning. Directing the crowd in this

way prevents deadlocks in all simulation variants (except CA-Only).
As another example, Figure 9 shows a scenario in which 80

agents need to move to the opposite end of a circle with an inner

diameter of 15m, while avoiding four 2×2m obstacles in the middle.

In simulations without environmental guidance, some agents get

stuck between the obstacles. However, when we instruct agents to

pass these obstacles along the right, the problem is easily resolved.

Thus, navigation strategies provide an intuitive way to enforce

decisions in the crowd. This type of environmental guidance is

comparable to placing signage in a real-world environment to im-

prove pedestrian flows. The decisions could also be made agent-

dependent, e.g. to simulate how pedestrians respond to a sign when

they see it. We plan to further investigate this in future work.

6.4 Performance Measurements
6.4.1 Experiment. We measure the performance of our system

in the UTurn scenarios, for both the unidirectional flow and the

bidirectional flow with guidance. Between t = 50s and t = 300s,

we measure the average running time (over all frames) of each

simulation substep (as described in Appendix A.1). We test both the

‘coarse’ and the ‘fine’ variant of Strategic, as defined earlier.

6.4.2 Discussion of Results. Figure 10 plots our results. In all simu-

lations, computing visibility polygons (substep 2) is the most expen-

sive substep, followed by collision avoidance (substep 5). Computing

the local strategies SC and SF (substep 6) is about as costly as find-

ing neighboring objects (substep 3). The strategic level (substep 7)

is cheap in the coarse simulations. In the fine simulations, agents

re-plan more often and they occasionally re-run collision avoidance

with additional constraints. Generally, the performance of substep

7 depends on how often we allow agents to re-plan (which can be

controlled by TR), how often they actually re-plan in a certain sce-

nario, and how long each re-planning query takes (which depends

on the complexity of the environment).

Overall, the bidirectional fine simulation requires the most com-

putation time, with an average of 4.8ms per frame. (Note: each

frame simulates 100ms, so the simulation easily runs in real time.)

This scenario contains 194 agents on average throughout our time

window. These results suggest that our implementation can simu-

late over 4,000 agents in real time on 4 threads, although the exact

limit depends on the scenario at hand. Most of the computation

time is spent on visibility queries and collision avoidance.

For this paper, themost important observation is that the strategy-

related substeps are not expensive, unless we let agents re-plan very

often. Coincidentally, frequent re-planning does not necessarily

improve the behavior of agents, as shown earlier.

7 DISCUSSION
Our method offers a way to coordinate between the different levels

of agent navigation. Still, the overall ‘intelligence’ of agents depends

largely on the quality of the navigation algorithms themselves, and

on the parameters within each algorithm. It can even be desirable to

vary these settings per agent, to obtain a more varied crowd. Thus,

it is difficult to draw general conclusions from any experiment. Our

results at least indicate that topological strategies can improve a

simulation. However, as is usual in this research area, each scenario

may require careful visual inspection and parameter tuning.

On a related note, we can now detect strategic conflicts and find

possible solutions, but choosing the right solution at the right time

is difficult and highly scenario-dependent. Our suggested choice

model is only one of many possibilities. Even within this model,

each situation may impose its own optimal values of TR andW .

Also, global and local planning are still two separate steps that

use different information to determine a strategy. In theory, agents

could end up switching back and forth between paths, because

global planning ‘forgets’ any previous local constraints that have

moved out of sight. Preventing such problems requires more ad-

vanced rules and memory models for the individual agents.

Agents can still get stuck in cases that are not detected by the

strategic level. So far, we only handle obstacle-related conflicts

between path following and collision avoidance. As an example of a

problem that we cannot solve yet, imagine an agent that passes an

obstacle and then notices a congestion too late (because it was out
of sight for the collision-avoidance algorithm). Our strategic level

does not yet recognize this, nor does it explicitly offer the agent the

option to turn around. To solve problems such as this one, we need

to add more navigation algorithms to the framework, and enrich

these with the concept of topological decisions.

The framework from Section 5 can be augmented with many

other navigation techniques, such as mid-term planning [Bruneau

and Pettré 2017], detailed navigation in high-density crowds [Stüvel

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Wouter van Toll and Julien Pettré

(a) Overview (b) Trajectories (c) Re-planning actions for Strategic

Figure 6: Single-agent demonstration. (a) An agent is instructed to move from the top left to the top right. The curve is its
initial global path. (b) The agent’s trajectory using CA-Only (pink), Standard (brown), and Strategic (red, with TR = 2,W = ∞,
and Strict = False). (c) The Strategic agent changes its global path on several occasions, indicated by the black circles.

(a) CA-Only (b) Standard (c) Strategic (TR = 2,W = 1.2, Strict = False)

Figure 7: Screenshots of unidirectional crowd flows in the UTurn environment, with different simulation variants. Agents are
instructed to move from the top-left to the bottom-left.

Table 1: Quantitative results of the UTurn experiment from Section 6.2. Standard deviations are shown in square brackets.

Simulation variant NrAgents Dist Time AvgSpeed SlowTime

Standard 513 72.31 [3.47] 76.71 [9.53] 0.96 [0.13] 5.30 [7.53]

Strategic (TR = 2,W = 1.2, Strict = False) 555 74.11 [4.93] 63.83 [3.58] 1.16 [0.07] 0.12 [0.36]

Strategic (TR = 0.5,W = 1.2, Strict = True) 556 73.95 [5.15] 64.17 [3.39] 1.15 [0.07] 0.10 [0.29]

(a) Standard (b) Strategic (TR = 2,W = 1.2, Strict = False) (c) Standard + guidance

Figure 8: Screenshots of bidirectional crowd flows in the UTurn environment, with and without environmental guidance. The
orange agents move from the top-left to the bottom-left; the purple agents move in the opposite direction.

Figure 9: Results of a circle scenario using CA-Only (left), Standard (middle), and Standard with guidance (right).

Connecting Global and Local Agent Navigation via Topology MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

0.0

0.5

1.0

1.5

1-dir, Coarse 2-dir, Coarse 1-dir, Fine 2-dir, Fine

A
vg

. c
om

pu
ta

ti
on

 ti
m

e
(m

s) 1
2
3
4
5
6
7
8
9

Figure 10: Performance of the UTurn simulations. Labels 1–
9 refer to the simulation substeps described in Appendix A.

et al. 2016], and density-based adaptation of paths [van Toll et al.

2012] or velocities [Best et al. 2014]. It would not be meaningful to

directly compare our work against such techniques because they all

have different purposes. In fact, these algorithms can be combined
with our work, so that each algorithm suggests its own navigation

strategy for an agent. The strategic level can then be used to detect

and resolve conflicts between these strategies.

We have not yet considered scenarios where agents can choose

between multiple goals, such as an evacuation with multiple ways

to leave a building. This can cause situations where an agent may

not only update its path, but also change its goal. This is compatible

with our method if we extend global path planning to use multiple

possible goals. An agent will then automatically choose another

goal when nearby obstacle constraints make it more attractive.

Finally, a largely open research question is how to measure the

realism of a crowd simulation. Our method can solve navigation

problems that are easy to see in a top-down view, and it results in

trajectories that are objectively more efficient. However, in complex

scenarios with obstacles, it is unclear how real humans behave, how

to translate this to simulation settings, and how to properly compare

a simulation to reality. Overall, the research area is not yet ready to

make any general claims about how ‘human-like’ a simulation is.

8 CONCLUSIONS AND FUTUREWORK
We have presented a method for improving the navigation behavior

of autonomous agents in virtual environments. We have defined a

navigation strategy as a set of decisions to pass obstacles and agents

on certain sides. Such a strategy can be obtained from the result

of global navigation (path planning) and of local navigation (path

following and collision avoidance). With this uniform definition,

we can detect conflicts between the strategies produced by different

algorithms. For example, when path following and collision avoid-

ance disagree on how to pass an obstacle, an agent can attempt to

re-plan its global path, using its local strategy as guidance.

This concept can be implemented as an additional ‘strategic

level’ in existing crowd-simulation frameworks. Our experiments

show that this can improve the behavior of agents in real time. The

strategy concept is also suitable for explicitly sending agents in

certain directions, e.g. to simulate the effect of directional signs.

Asmentioned earlier, our simulation framework can be enhanced

with many more navigation algorithms. In future work, we first

intend to add mid-term planning and handle the agent-related con-

flicts between that and collision avoidance. Eventually, we envision

a simulation in which agents can use many navigation algorithms

for different occasions. The generic concept of a strategy makes

it easier to detect when two algorithms behave inconsistently, or

when certain algorithms are not sufficient for solving a problem.

To plan an alternative path, we currently run the A* search from

scratch. We can improve efficiency by re-using parts of the old path,

or perhaps by using a hierarchical approach in which the agent

starts with a coarse path and refines it during the simulation.

Our experiment with environmental guidance (Section 6.3) sug-

gests another promising direction for future work. We could extend

the simulation so that agents update their global strategy over time,

based on the directional hints that they observe. This could be used

to study the effectiveness of signage in urban environments.

We consider this work to be a first step towards looking at agent-

based crowd simulation in a fundamentally different way. By mod-

elling agent navigation via topological decisions, we can bridge

conceptual gaps between algorithms. On the long term, we hope

that this insight will lead to a fully hybrid simulation technique, in

which all aspects of agent navigation are merged into one process.

REFERENCES
Andrew Best, Sahil Narang, Sean Curtis, and Dinesh Manocha. 2014. DenseSense:

Interactive crowd simulation using density-dependent filters. In Proc. 13th ACM
SIGGRAPH / Eurographics Symp. on Computer Animation. 97–102.

Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Kumar. 2012. Topological con-

straints in search-based robot path planning. Autonomous Robots 33, 3 (2012),

273–290.

Boost. 2019. The Boost C++ library. http://www.boost.org/.

Julien Bruneau and Julien Pettré. 2017. EACS: Effective Avoidance Combination

Strategy. Comput. Graph. Forum 36, 8 (2017), 108–122.

Sean Curtis, Andrew Best, and Dinesh Manocha. 2016. Menge: A modular framework

for simulating crowd movement. Collective Dynamics 1, A1 (2016), 1–40.
Teofilo B. Dutra, Ricardo Marques, Joaquim B. Cavalcante-Neto, Creto A. Vidal, and

Julien Pettré. 2017. Gradient-based steering for vision-based crowd simulation

algorithms. Comput. Graph. Forum 36, 2 (2017), 337–348.

Roland Geraerts. 2010. Planning short paths with clearance using Explicit Corridors.

In Proc. IEEE Int. Conf. Robotics and Automation. 1997–2004.
Abhinav Golas, Rahul Narain, and Ming C. Lin. 2013. Hybrid long-range collision

avoidance for crowd simulation. In Proc. ACM SIGGRAPH Symp. Interactive 3D
Graphics and Games (I3D ’13). 29–36.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A formal basis for the

heuristic determination of minimum cost paths. IEEE Trans. Systems Science and
Cybernetics 4, 2 (1968), 100–107.

Dirk Helbing and Péter Molnár. 1995. Social force model for pedestrian dynamics.

Physical Review E 51, 5 (1995), 4282–4286.

John Hershberger and Jack Snoeyink. 1994. Computing minimum length paths of a

given homotopy class. Comput. Geom. Theory Appl. 4, 2 (1994), 63–97.
Mario Höcker, Volker Berkhahn, Angelika Kneidl, André Borrmann, andWolframKlein.

2010. Graph-based approaches for simulating pedestrian dynamics in building

models. In eWork and eBusiness in Architecture, Engineering and Construction. 389–
394.

Norman S. Jaklin, Atlas F. Cook IV, and Roland Geraerts. 2013. Real-time path planning

in heterogeneous environments. Computer Animation and Virtual Worlds 24, 3
(2013), 285–295.

Marcelo Kallmann. 2014. Dynamic and robust Local Clearance Triangulations. ACM
Trans. Graph. 33, 5, Article 161 (2014), 17 pages.

Mubbasir Kapadia, Alejandro Beacco, Francisco Garcia, Vivek Reddy, Nuria Pelechano,

and Norman I. Badler. 2013. Multi-domain real-time planning in dynamic envi-

ronments. In Proc. 12th ACM SIGGRAPH/Eurographics Symp. Computer Animation.
115–124.

Ioannis Karamouzas, Roland Geraerts, and Mark H. Overmars. 2009. Indicative routes

for path planning and crowd simulation. In Proc. 4th Int. Conf. Foundations of Digital
Games. 113–120.

Peter M. Kielar, Daniel H. Biedermann, and André Borrmann. 2016. MomenTUMv2: A
modular, extensible, and generic agent-based pedestrian behavior simulation frame-
work. Technical Report TUM-I1643. Technische Universität München, Institut für

Informatik.

Ross A. Knepper, Siddhartha S. Srinivasa, and Matthew T. Mason. 2011. Toward a

deeper understanding of motion alternatives via an equivalence relation on local

paths. Int. Journal of Robotics Research 31, 2 (2011), 167–186.

Angelos Kremyzas, Norman S. Jaklin, and Roland Geraerts. 2016. Towards social

behavior in virtual-agent navigation. Science China - Information Sciences 59, 11
(2016), 112102.

http://www.boost.org/

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Wouter van Toll and Julien Pettré

Christoforos I. Mavrogiannis and Ross A. Knepper. 2019. Multi-agent path topology in

support of socially competent navigation planning. Int. Journal of Robotics Research
38, 2–3 (2019), 338–356.

Ramon Oliva and Nuria Pelechano. 2013. NEOGEN: Near optimal generator of nav-

igation meshes for 3D multi-layered environments. Computers & Graphics 37, 5
(2013), 403–412.

Sachin Patil, Jur P. van den Berg, Sean Curtis, Ming C. Lin, and Dinesh Manocha.

2010. Directing crowd simulations using navigation fields. IEEE Trans. Vis. Comput.
Graphics 17 (2010), 244–254. Issue 2.

Nuria Pelechano, Jan M. Allbeck, and Norman I. Badler. 2007. Controlling individual

agents in high-density crowd simulation. In Proc. ACM SIGGRAPH/Eurographics
Symp. Computer Animation. 99–108.

Nuria Pelechano, Jan M. Allbeck, Mubbasir Kapadia, and Norman I. Badler. 2016.

Simulating Heterogeneous Crowds with Interactive Behaviors. CRC Press.

Julien Pettré, Helena Grillon, and Daniel Thalmann. 2007. Crowds of moving objects:

Navigation planning and simulation. In Proc. IEEE Int. Conf. Robotics and Automation.
3062–3067.

Sybren A. Stüvel, Nadia Magnenat-Thalmann, Daniel Thalmann, and A. Frank van

der Stappen. 2016. Torso crowds. IEEE Trans. Vis. Comput. Graphics 23, 7 (2016),
1823–1837.

Avneesh Sud, Russell Gayle, Erik Andersen, Stephen Guy, Ming C. Lin, and Di-

nesh Manocha. 2007. Real-time navigation of independent agents using adaptive

roadmaps. In Proc. ACM Symp. Virtual Reality Software and Technology. 99–106.
Daniel Thalmann and Soraia R. Musse. 2013. Crowd Simulation (2 ed.). Springer.

Adrien Treuille, Seth Cooper, and Zoran Popović. 2006. Continuum crowds. ACM
Trans. Graph. 25 (2006), 1160–1168. Issue 3.

Jur P. van den Berg, Stephen J. Guy, Ming C. Lin, and DineshManocha. 2011. Reciprocal

n-body collision avoidance. In Proc. 14th Int. Symp. Robotics Research. 3–19.
Arthur van Goethem, Norman Jaklin, Atlas F. Cook IV, and Roland Geraerts. 2015. On

streams and incentives: A synthesis of individual and collective crowd motion. In

Proc. 28th Conf. Computer Animation and Social Agents.
Wouter van Toll, Norman Jaklin, and Roland Geraerts. 2015. Towards believable

crowds: A generic multi-level framework for agent navigation. In ASCI.OPEN.
Wouter van Toll, Roy Triesscheijn, Roland Geraerts, Marcelo Kallmann, Ramon Oliva,

Nuria Pelechano, and Julien Pettré. 2016. A comparative study of navigation meshes.

In Proc. 9th ACM SIGGRAPH Int. Conf. Motion in Games. 91–100.
Wouter G. van Toll, Atlas F. Cook IV, and Roland Geraerts. 2012. Real-time density-

based crowd simulation. Computer Animation and Virtual Worlds 23, 1 (2012),

59–69.

David Wolinski, Ming C. Lin, and Julien Pettré. 2016. WarpDriver: Context-aware

probabilistic motion prediction for crowd simulation. ACM Trans. Graph. 35, 6,
Article 164 (2016), 164:1–164:11 pages.

A IMPLEMENTATION DETAILS
In our implementation of the framework, we model agents as disks

with a radius of 0.25m, a mass of 80kg, and a preferred speed s
pref

of 1.2m/s, unless specified otherwise for a specific experiment.

A.1 Simulation Loop
Our simulation loop uses fixed timesteps (frames) of ∆t = 0.1s. In

every frame, the program performs the following substeps:

(1) Build a kd-tree of the agents’ positions.

(2) Compute a visibility polygon for each agent’s position, using

the navigation mesh described in Section A.2.1.

(3) Compute the neighboring objects of all agents. For an agent

Aj , the neighboring agents are those that currently collide

with Aj , plus the 10 nearest agents that are in the visibility

polygon ofAj and in a 180
◦
cone centered atAj ’s viewing di-

rection d. The neighboring obstacles are all (partial) obstacle
segments within 5m of Aj that bound the visibility polygon.

(4) Perform path following for all agents (see Section A.2.2).

(5) Perform collision avoidance for all agents (see Section A.2.3).

(6) For each agent, convert the preferred velocity v
pref

to a

strategy SF and the new velocity vnew to a strategy SC .
(7) For each agent, re-plan if v

pref
could not be computed. Oth-

erwise, perform the strategic level described in Section 5.1

(i.e. check for strategic conflicts and respond to them).

(8) Compute contact forces [Helbing and Molnár 1995] for any

collisions that are currently happening. This yields a force

vector F for each agent.

(9) Update the positions of all agents as follows:

a := F/m + (vnew − v)/tr , v := v + a · ∆t, p := p + v · ∆t

where tr = 0.5s is a relaxation time. The viewing direction d
is updated similarly to v, but without the factor F/m, so that

agents do not rotate when they are pushed aside.

All substeps except the first contain an independent process per

agent, and their work can be distributed over parallel threads. We

use 4 threads for our performance experiments in Section 6.4.

A.2 Navigation Algorithms
A.2.1 Path Planning. As our navigation mesh, we use the Explicit

Corridor Map (ECM) [Geraerts 2010]: the medial axis (MA) of the

environment annotated with nearest-obstacle information. We con-

struct it using the Voronoi library of Boost [2019]. To obtain a set of

passages from the ECM, we compute its local minima: the points on
the MA where the distance to obstacles is locally smallest. For each

local minimum p, we define a corresponding passage as the line

segment between the two nearest obstacle points of p. There is at
most one local minimum per MA edge, so there are O(N) passages

in total, and they subdivide the environment into O(N) regions.

To plan a path using the ECM, we first use A* search [Hart et al.

1968] to find a shortest path on the medial axis. We then apply the

funnel algorithm [Hershberger and Snoeyink 1994] to compute a

shortest path (that keeps some distance to obstacles) in the same

homotopy class. The sequence of passages traversed by this path

can be obtained trivially during the A* search.

A.2.2 Path Following. We use the following path-following algo-

rithm. Let p−
ref

and p−
att

be an agent’s last used reference point and

attraction point on its path π . First, we compute the new reference

point p
ref

as the point on π between p−
ref

and p−
att

that is closest to

the agent [Jaklin et al. 2013]. Then, we compute the new attraction

point patt as the first point on π from the following options:

• the last point of π (i.e. the agent’s goal);

• the point that lies 5m ahead of p
ref

along π ;
• the first point on π that the agent cannot see, starting at p

ref
.

If patt = p
ref
, then the agent does not know how to follow its

path, and it will re-plan in substep 7. Otherwise, we compute the

preferred velocity v
pref

and the strategy SF as described in Section 5.

A.2.3 Collision Avoidance. We use a custom collision-avoidance

routine that yielded better behavior than existing methods. To com-

pute a new velocity vnew for an agent Aj , we sample 15 candidate

angles in a 180
◦
range around v

pref
, and 2 candidate speeds (s

pref

and 0.5 · s
pref

). Each combination leads to a candidate velocity.

For a candidate velocity v′′, let δ (v′′) be the distance to the first

collision with nearby objects if Aj would use v′′, clamped to a

maximum distance dmax = 5m. We choose the optimal velocity as:

argmin

v′′

(
dmax − δ (v′′) + ∠(v′′, v

pref
) + ∠(v′′, v) +

| |v′′ | | − s
pref

s
pref

)
where ∠ denotes the angle between two vectors (in radians), and v
is the agent’s last used velocity.

	Abstract
	1 Introduction
	1.1 Goals and Contributions

	2 Related Work
	2.1 Global and Local Path Planning
	2.2 Other Navigation Techniques

	3 Definitions
	3.1 Environment and Navigation Mesh
	3.2 Decisions and Strategies

	4 Obtaining Navigation Strategies
	4.1 Converting a Path to a Strategy
	4.2 Converting a Velocity to a Strategy

	5 Strategy-Driven Simulation
	5.1 Overview of the Strategic Level
	5.2 Finding an Alternative Path and Velocity

	6 Experiments and Results
	6.1 Single-Agent Demonstration
	6.2 Crowd Flows amidst Small Obstacles
	6.3 Crowd Flows with Environmental Guidance
	6.4 Performance Measurements

	7 Discussion
	8 Conclusions and Future Work
	References
	A Implementation Details
	A.1 Simulation Loop
	A.2 Navigation Algorithms

