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ABSTRACT
Super-resolution techniques for fluorescence microscopy are
invaluable tools for studying phenomena that take place at
sub-cellular scales, thanks to their capability of overcoming
light diffraction. Yet, achieving sufficient temporal resolution
for imaging live-cell processes remains a challenging prob-
lem. Exploiting the temporal fluctuations (blinking) of fluo-
rophores is a promising approach that allows employing stan-
dard equipment and harmless excitation levels. In this work,
we study a novel constrained tensor modeling approach that
takes this temporal diversity into account to estimate the spa-
tial distribution of fluorophores and their overall intensities.
We compare this approach with an also novel matrix-based
formulation which promotes structured sparsity via a continu-
ous approximation of the cardinality function, as well as with
other state-of-the-art methods.

Index Terms— fluorescence microscopy, super-resolution,
tensor, structured sparsity.

1. INTRODUCTION

Because of light diffraction, the response of an optical micro-
scope (point spread function, or PSF) forms a pattern known
as Airy disk with a few hundred nanometers in diameter [1]
which blurs nearby point sources together, limiting the spatial
(lateral) resolution of conventional modern microscopes to
around 200 nm. This limitation was first overcome in the 90’s
and 2000’s with the advent of several super-resolution fluo-
rescence microscopy techniques. Some of these techniques
use specialized excitation laser beams that either inhibit emis-
sions outside a small region of interest or display a periodic
illumination pattern which reveals high-frequency contents of
the sample [2,3]. Other approaches employ photoactivable or
photoswitchable emitters (i.e., fluorescent molecules) and a
careful manipulation of the excitation beam to acquire several
images, each containing only a subset of active emitters [4].

In particular, single molecule localization microscopy
(SMLM) techniques acquire many images with only a few
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active molecules per image. The observed emissions are
thus more likely to be isolated and can then be processed
for an accurate localization of their centers, thereby allowing
a fine reconstruction of the underlying sample [5]. SMLM
techniques can reach resolutions down to 20 nm, but em-
ploy high-power excitation, which can be harmful for living
cells [5]. Moreover, they require a precise operation of the
excitation beam and a very time-consuming acquisition (tak-
ing from a few to many minutes). This severely limits the
timescale of live-cell phenomena that can be investigated.

A less constraining approach consists in acquiring a tem-
poral sequence of images over a significantly shorter time
interval, so that each image displays a large subset of ac-
tive emitters. Sparse deconvolution algorithms such as those
of [6, 7] can then be leveraged to estimate emitters’ loca-
tions. Alternatively, one can exploit the temporal diversity
induced by the blinking and bleaching (permanent depletion)
of individual molecules. For instance, super-resolution op-
tical fluctuation imaging (SOFI) computes (temporal) high-
order cumulants of the sequence, effectively sharpening the
PSF thanks to the statistical independence of emitters [8].
Super-resolution radial fluctuations (SRRF) microscopy also
relies on computing statistics, but after performing a local (so-
called “radiality”) transformation of each image in order to
effectively reduce the PSF size [9]. However, these methods
typically perform poorly for short image sequences.

In this paper we study a novel constrained tensor model-
ing approach that exploits spatial and temporal diversities and
the knowledge of the PSF to estimate a map of local molecule
densities of a 2D image and their overall intensities. In par-
ticular, we discuss and illustrate some limitations of this ap-
proach. Moreover, it is compared with an also novel matrix-
based formulation which promotes structured sparsity via a
continuous approximation of the `0 regularizer [10], as well
as with other state-of-the-art methods [6, 9].

2. SPATIOTEMPORAL IMAGE STACK MODEL

2.1. Molecule emission model

We consider a 2D (x-y plane) sample model with R station-
ary fluorophores. Each emitter repeatedly and stochastically



switches among emitting, dark and bleached states. Hence,
by acquiring many image frames over an adequate timescale
(typically up to a few seconds), the photon emission fluctua-
tions exhibited by each molecule can be observed. Moreover,
as molecules are small (measuring a few nanometers in x and
y) relative to the image size, the resulting time-varying emis-
sion can be modeled as a sum of weighted Dirac measures

I0(x, y, k) =
∑R
r=1 sr(k) δ(x− xr, y − yr), (1)

where (xr, yr) is the (x, y)-position of the rth molecule and
sr(k) is its intensity at the kth frame.

For simplicity, we discretize molecule locations over a
high-resolution L × L grid of ∆ × ∆ pixels. Under this as-
sumption, the kth frame can be expressed as the L×L matrix

Xk :=
∑R
r=1 sr(k) ejr e

T
ir
, (2)

where (ir, jr) ∈ {1, . . . . , L}2 is the discretized position of
the rth molecule and {el}Ll=1 is the canonical basis of RL.

2.2. Matrix model of acquired stack

Assuming a linear time-invariant acquisition system is used,
the kth frame results from the two-dimensional convolution of
I0(x, y, k) with the PSF h(x, y) that characterizes the system.
For typical widefield microscopes, the 2D PSF in the radial
plane can be well approximated by the Gaussian function

h(x, y) = 1
2π σxσy

exp
(
− 1

2

(
x2

σ2
x

+ y2

σ2
y

))
. (3)

We will assume that σx = σy = σ.
Since the PSF satisfies h(x, y) = g(x)g(y), where g is a

zero-mean Gaussian of variance σ2, we can express the kth
acquired low-resolution N ×N frame in vectorized1 form as

ik = (G�G) vec(Xk)
(
∈ RN

2
)

(4)

= (G�G)
∑R
r=1 sr(k) (eir � ejr ) (5)

= (G�G)
(
ei1 � ej1 . . . eiR � ejR

)︸ ︷︷ ︸
:=W

s1(k)
...

sR(k)

 , (6)

where� denotes the Kronecker product andG ∈ RN×L, with
N := L/q and q > 1, is a matrix whose lth column satisfies

(g)n =
∫ nq∆

(n−1)q∆
1√

2π σ
exp

(
− (x−(l− 1

2 )∆)2

2σ2

)
dx (7)

and represents the spatial PSF profile along x or y of an emit-
ter centered at pixel l. From (7), (4) amounts to a convolution
of (2) with a discretized Gaussian PSF followed by integra-
tion of every q consecutive pixels along each dimension.

1We define the vectorization of an N×K matrix M as the stacking of its
columns mk into a long (column) vector vec(M) :=

(
mT

1 . . . mT
K

)T.

By adjoining all vectorized frames described by (6) in a
N2 ×K matrix, we get

I =
(
i1 . . . iK

)
= (G�G)W ST ∈ RN

2×K
+ , (8)

where (G�G) is N2 × L2, W is L2 ×R and S is a K ×R
matrix with components (S)k,r = sr(k).

2.3. Matrix-based formulation

Our problem boils down to estimating the nonnegative spatial
and temporal profile matrices W and S from the acquired
(noisy) data I and the knowledge of G. However, further
assumptions are required, because the factorization is not
unique. One can exploit the following priors: R is unknown
but should satisfy R � L2; W and S are both nonnegative;
and W has exactly one nonzero element per column. Re-
laxing the latter prior into a sparsity assumption leads to a
regularized least-squares formulation of the form

min
W≥0, S≥0

1
2‖I−(G�G)W ST‖2F+α‖W‖1+γ‖S‖2,1, (9)

where ‖S‖2,1 :=
∑R
r=1 ‖sr‖2, with sr denoting the rth col-

umn of S, and ‖W‖1 :=
∑L2

l=1

∑R
r=1 |wl,r|. The term ‖W‖1

encourages sparsity in W , as in the lasso problem [11]. Ow-
ing to its geometric properties, the `2,1-norm ‖S‖2,1 promotes
column-wise sparsity of S: as γ grows, whole columns of S
are nullified, reducing the effective number of molecules.

A major drawback of the above formulation is the number
of variables, which grows as O((L2 + K)R). This issue is
alleviated by using a tensor approach, as discussed next.

3. REGULARIZED TENSOR DECOMPOSITION
APPROACH

3.1. Tensor-based formulation

A natural way to reduce the number of unknowns in (8) is by
exploiting the tensor structure of the columns of W . Writing
wr = vr � ur with ur, vr ∈ RL+ leads to the tensor model

I =
∑R
r=1Gur ⊗Gvr ⊗ sr ∈ RN×N×K+ , (10)

where sr is the rth column of S and⊗ denotes the outer (ten-
sor) product [12]. Concretely, the rth summand of (10) is an
N×N×K tensor with components (Gur ⊗Gvr⊗ sr)ijk =
(Gur)i(Gvr)j(sr)k. Expression (10) is known as polyadic
(or PARAFAC) decomposition (PD) of tensor I, and is multi-
linear with respect to its matrix factorsU :=

(
u1 . . . uR

)
,

V :=
(
v1 . . . vR

)
, both of size L×R, and S. A recent ac-

count on this decomposition and its properties is given in [12].
Analogously to (9), model (10) leads to the formulation

minU,V,S≥0 f(U, V, S) +α(‖U‖1 +‖V ‖1) +γ‖S‖2,1 (11)

where f(U, V, S) , 1
2‖I −

∑R
r=1 Gur ⊗ Gvr ⊗ sr‖2. The

number of variables of this formulation grows as O((2L +



K)R). As in (9), the parameter γ allows trading data fidelity
for parsimony with respect to the number of molecules. We
note that `2,1-norm penalization has already been used in [13,
14] for promoting parsimony of tensor models.

3.2. Optimization algorithm

Problem (11) is nonconvex and nonsmooth, and thus consid-
erably difficult. We develop next a variant of the alternating
group lasso (AGL) algorithm [14], which is based on the ob-
servation that minimizing (11) with respect to only one of the
three variables U , V and Z is a convex (though still nons-
mooth) problem. Specifically, by fixing V = V̂ and S = Ŝ
and vectorizing the tensor model, one obtains the subproblem

minu∈RLR
+

1
2‖i(u) − [(Ŝ �GV̂ )�G]u‖2 + α ‖u‖1, (12)

where � is the Khatri-Rao (columnwise Kronecker) prod-
uct, i(u) is the vectorization of tensor I with elements
i
(u)
i+N(j−1)+N2(k−1) = (I)i,j,k and u = vec(U). Sub-

problem (12) is a standard lasso problem [11] and thus can
be solved by many existing algorithms. A formally iden-
tical subproblem in V can be derived by fixing U = Û
and S = Ŝ, but this time the data vector i(v) has elements
i
(v)
j+N(i−1)+N2(k−1) = (I)i,j,k and the matrix multiplying v

is (Ŝ �GÛ) �G. Similarly, the subproblem in S is a group
lasso problem [11] with disjoint groups, and can be written as

mins∈RKR
+

1
2‖i(s)−[(GV̂ �GÛ)�EK ] s‖2+γ

∑R
r=1 ‖sr‖2,

where EK is the K ×K identity matrix.
Hence, at each iteration one sequentially solves the three

described subproblems with the fixed variables set to their
current estimates. To guarantee convergence, one can add a
proximal term to the cost function of each subproblem. Then,
by using the same arguments as in [14], it can be shown that
this algorithm converges to a stationary point of (11).

3.3. Discussion

Without constraints, the tensor model in (10) is not identifi-
able: two molecules can have e.g. an identical x coordinate,
and thus Gur = Gup for some distinct indices r and p, im-
plying Gur⊗Gvr⊗ sr +Gup⊗Gvp⊗ sp = Gur⊗ (Gvr⊗
sr + Gvp ⊗ sp). As the matrix between parentheses in this
expression equalsG

(
vr vp

)
T T−1

(
sr sp

)T
for any 2×2

nonsingular matrix T , it follows that the corresponding spatial
and temporal profiles cannot be identified.

Identifiability can be potentially restored by enforc-
ing non-negativity and sparsity of ur, vr and incorporating
knowledge of G. To our knowledge, there are no theoretical
results confirming this observation (the closest ones seem to
be those in [15], where a PD with a dictionary is considered).
Nonetheless, our experiments indicate that molecule loca-
tions can indeed be recovered using the described algorithm.
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Fig. 1. Results of tensor approach for square-shaped distribu-
tions. Top left: molecule positions; top right: localization er-
ror as a function of the square side length; bottom: condition
number κ of matrix (GV̂ �GÛ)� EK at first iteration. The
colors used in all plots refer to their respective side lengths.
The circle in the top left plot shows the FWHM of the PSF.

However, its performance degrades as the super-resolution
factor q grows and the molecules get closer because then the
matrix (GV̂ �GÛ)� EK appearing in the subproblem in S
becomes severely ill-conditioned.

This behavior is illustrated by the results of Fig. 1, where
five stacks of 20 molecules uniformly distributed over the bor-
der of a square with varying side length are processed. The
temporal profiles were generated with the SOFI simulation
tool [16] and are discretized realizations of a continuous-time
Markovian process with emitting (average lifetime τon = 20
ms), dark (τoff = 40 ms) and bleached (average emitting time
until bleaching τbl = 80 s) states. The number of photons per
frame of an emitting molecule is a Poisson variable with mean
400. The PSF has a full width at half maximum (FWHM) of
about 261 nm. We set q = 6, initialize the molecule posi-
tions with their true values and start each iteration by solving
for S. The FISTA (fast iterative shrinkage-thresholding algo-
rithm) scheme of [17] was used to solve the subproblems. As
the molecules approach each other, localization precision is
compromised. This is explained by the condition number κ
(see Fig. 1) of (GV̂ �GÛ)� EK at the first iteration.

4. ROW-SPARSE MATRIX APPROACH

4.1. Convex and nonconvex formulations

Another approach for recovering the super-resolved image is
to estimate the product X := WST ∈ RL

2×K
+ from the data

while requiring that its number of nonzero rows be small,
which leads to the following convex group lasso problem:

minX
1
2 ‖I − (G�G)X‖2 + α‖X‖1,2, (13)



with ‖X‖1,2 :=
∑L2

l=1 ‖eTl X‖2. The price to pay for this “con-
vexification” is the larger number of variables, which now
grows as O(L2K). On the other hand, the conditioning of
G�G depends only on (σ, q), and not on molecule locations.

Alternatively, one can use a nonconvex regularizer to
overcome the typical bias of solutions of (13); namely, the
overall intensities of molecules (which correspond to the
`1-norms of rows of X) tend to be underestimated. A well-
suited option is to apply the continuous exact `0 (CEL0)
functional [10] defined as Φ(x̄, α) :=

∑L2

i=1 φ(x̄i, α), where

φ(x̄i, α) :=

α, |x̄i| ≤
√

2α
‖ḡl‖2 ,

α− ‖ḡi‖
2
2

2

(
|x̄i| −

√
2α

‖ḡi‖2

)2

, otherwise,

to the vector x̄ :=
(
‖eT1X‖2 . . . ‖eTL2X‖2

)T ∈ RL2

+ . CEL0
has the benefits of being continuous (unlike the cardinality
function2 ‖x̄‖0) and of preserving the global minima of the
(much harder) problem minX

1
2 ‖I−(G�G)X‖2 + α‖x̄‖0,

while eliminating some of its local minima [10].

4.2. Relation to existing approaches

Existing sparse deconvolution approaches such as FAL-
CON [6] and SPIDER [7] estimate molecule locations for
each frame separately. FALCON uses a `1 penalty and re-
fines the estimated positions with a gradient descent algo-
rithm; SPIDER uses ‖xk‖0. To our knowledge, no work has
yet employed a structured sparsity formulation to estimate
the whole super-resolved stack at once as described above.

5. NUMERICAL RESULTS AND DISCUSSION

We simulated the acquisition of K = 10 images of size N =
64 over 0.1 sec using the molecule distribution of the micro-
tubules dataset (MT0) from the SMLM challenge 2016,3 con-
taining 8 731 molecules. The temporal blinking profiles were
generated using the SOFI simulation tool [16], as described in
Section 3.3. The ground truth and observed image (with a 5×
zoom) of Fig. 2(a)–(b) were computed by summing the corre-
sponding frames. The PSF FWHM is approximately 261 nm.
Fig. 2(c)–(d) show the sum of frames produced by the tensor
and CEL0 approaches with q = 5 (the fine-grid pixel size is
∆ = 20 nm). The former is initialized by randomly placing at
every (coarse-grid) pixel a number of molecules proportional
to its intensity, and the latter by first solving (13) with a FISTA
algorithm. The solution of CEL0 is computed with an itera-
tive reweighted `1 algorithm [18] using FISTA at every step.
The outcomes of FALCON and SRRF4 (using second-order
statistics of the radiality maps) are shown in Fig. 2(e)–(f). Fi-
nally, Fig. 2(g) depicts the intensity profiles obtained for each

2Recall that ‖x‖0 is defined as the number of nonzero components of x.
3http://bigwww.epfl.ch/smlm/datasets/index.html.
4We have used the NanoJ SRRF plugin for ImageJ, available at:

https://github.com/HenriquesLab/NanoJ-SRRF.
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Fig. 2. Results for simulated microtubules dataset: (a) ground
truth; (b) integrated observed stack (5× zoom); (c) tensor ap-
proach; (d) CEL0; (e) FALCON; (f) SRRF; (g) intensity pro-
files along the shown blue line. The frame in the bottom right
corner shows a 2.66× zoom of the smaller yellow frame.

method along the line inside the small square; the curve for
SRRF has been rescaled to match the closest peak.

The tensor approach recovers the target structure but can-
not reconstruct close fluorophores, while CEL0 yields the
sharpest image. Computing times are 62.8, 87.9, 7.4 and <1
sec for respectively the tensor, CEL0, FALCON and SRRF
methods. The Jaccard index, which measures the accuracy
of molecule detection and is defined as the ratio of true pos-
itives to the sum of true positives, false positives and false
negatives, is respectively 0.27, 0.47, 0.33 and 0.35 for these
methods.5 In conclusion, despite the difficulty of this ex-
ample where only 10 frames are available, the tensor, CEL0
and FALCON methods are able to reveal the overall target
structure.

5We used the the Gale–Shapley algorithm [19] to match estimated and
true molecules; the preference order is determined by distance, within a 20
nm tolerance radius. In each estimated image, pixels with intensity below
1% the image peak were discarded before the matching.
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