
HAL Id: hal-02309919
https://hal.archives-ouvertes.fr/hal-02309919

Submitted on 22 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DRomics: A Turnkey Tool to Support the Use of the
Dose–Response Framework for Omics Data in Ecological

Risk Assessment
Floriane Larras, Elise Billoir, Vincent Baillard, Aurélie Siberchicot, Stefan

Scholz, Tesfaye Wubet, Mika Tarkka, Mechthild Schmitt-Jansen, Marie-Laure
Delignette-Muller

To cite this version:
Floriane Larras, Elise Billoir, Vincent Baillard, Aurélie Siberchicot, Stefan Scholz, et al.. DRomics:
A Turnkey Tool to Support the Use of the Dose–Response Framework for Omics Data in Ecological
Risk Assessment. Environmental Science and Technology, American Chemical Society, 2018, 52 (24),
pp.14461-14468. �10.1021/acs.est.8b04752�. �hal-02309919�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/233866671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02309919
https://hal.archives-ouvertes.fr


 

 

1 

 

This document is the unedited Author’s version of a Submitted Work that was subsequently 

accepted for publication in Environmental Science and Technology, copyright © American 

Chemical Society after peer review. To access the final edited and published work see 

https://pubs.acs.org/doi/10.1021/acs.est.8b04752 

  



 

 

2 

 

DRomics: a turnkey tool to support the use of the dose-response framework 

for omics data in ecological risk assessment 

Floriane Larras
1*

, Elise Billoir
2
, Vincent Baillard

2
, Aurélie Siberchicot

3
, Stefan Scholz

1
, Tesfaye Wubet

4,5
, 

Mika Tarkka
5,6

, Mechthild Schmitt-Jansen
1*

, Marie-Laure Delignette-Muller
3
 

1
 Helmholtz-Centre for Environmental Research UFZ, Department of Bioanalytical Ecotoxicology, 

Permoserstrasse 15, 04318 Leipzig, Germany 

2
 Université de Lorraine, CNRS, UMR 7360, LIEC, Laboratoire Interdisciplinaire des Environnements 

Continentaux, 57070 Metz, France 

3
 Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et 

Biologie Evolutive, 69622 Villeurbanne, France 

4
 Department of Community Ecology, Helmholtz-Centre for Environmental Research – UFZ, Theodor-

Lieser-Straße 4, 06120 Halle, Germany 

5 
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 

04103 Leipzig, Germany 

6
 Department of Soil Ecology, Helmholtz-Centre for Environmental Research – UFZ, Theodor-Lieser-

Straße 4, 06120 Halle, Germany 

 

 

 

 

 



 

 

3 

 

TOC 

 

 

ABSTRACT  

Omics approaches (e.g. transcriptomics, metabolomics) are promising for ecological risk assessment 

(ERA) since they provide mechanistic information and early warning signals. A crucial step in the 

analysis of omics data is the modelling of concentration-dependency which may have different trends 

including monotonic (e.g. linear, exponential) or biphasic (e.g. U shape, bell shape) forms. The diversity 

of responses raises challenges concerning detection and modelling of significant responses and effect 

concentration (EC) derivation. Furthermore, handling high-throughput datasets is time-consuming and 

requires effective and automated processing routines. Thus, we developed an open source tool (DRomics, 

available as an R-package and as a web-based service) which, after elimination of molecular responses 

(e.g. gene expressions from microarrays) with no concentration-dependency and/or high variability, 

identifies the best model for concentration-response curve description. Subsequently, an EC (e.g. a 

benchmark dose) is estimated from each curve and curves are classified based on their model parameters. 

This tool is especially dedicated to manage data obtained from an experimental design favoring a great 

number of tested doses rather than a great number of replicates and also to handle properly monotonic and 

biphasic trends. The tool finally restitutes a table of results that can be directly used to perform ERA 

approaches. 
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INTRODUCTION 

Ecological risk assessment (ERA) is defined as a procedure which estimates the probability that one or 

several stressors induce ecological adverse effects
1
, and which aims to support decision making

2
. ERA 

mainly relies on the estimation of effect concentration (EC, e.g. ECx, the concentration which affects an 

endpoint at x percent of the maximal effect, or BMD, the benchmark dose or concentration) obtained 

from concentration-response curves (CRC). Subsequently, the ECs can be used for further assessments 

such as Risk Quotients (PEC/PNEC)
3
 or sensitivity distributions

4
. Deriving ECs from raw data constitutes 

a critical step which requires dedicated approaches. Before the recent rise of omics (e.g. genomics, 

transcriptomics), ERA was mainly performed on the response of apical endpoints (e.g. mortality, growth, 

photosynthesis inhibition). Those endpoints mostly follow a sigmoidal CRC and appropriate approaches 

(PROAST software: www.rivm.nl/proast, DRC package
5
) were developed to model such responses and 

calculate ECs. In the recent years, toxicogenomics approaches were established to support the ERA-

processes. The data obtained from such approaches showed that the sigmoidal trend is rather the 

exception than the rule
6,7

. Molecular responses can be monotonic but following other than sigmoidal 

trends or even non-monotonic. Hence, estimating ECs from omics data requires a robust tool that can 

automatically handle high-throughput data, capture and model various and complex trends, and calculate 

ECs from such complex responses. Obtaining ECs based on omics data, comparable to those obtained 

from apical endpoints, is a challenge.  

Various attempts have been made to manage omics data in a dose-response framework by addressing 

the previously stated requirements
6–12

. These studies present interesting approaches but several crucial 

steps rely on methods presenting some limitations for a dose-response framework (e.g. normalization, 

preselection of data with concentration dependency and low variability, models) that can lead to a loss of 

meaningful biological information. For example, many routines begin with a step detecting the 

significantly responding data (e.g. genes showing a concentration-dependent change) using a one-way 

ANOVA-based selection or similar method
6–8,11

 aiming at comparing a small number of groups with 

many replicates in each group. Such methods are not powerful in case of a concentration-response design 
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(concentration series with a small number of replicates per concentration)
13

. Other methods proposed for 

analysis of concentration-response data
14,15

 only consider monotonic CRCs and hence, would miss/discard 

molecular responses displaying common biphasic (U shape, bell shape) CRCs. Often, the CRC modelling 

step compares different potential models by curve fitting based on non-linear regression and the model 

with the best fit is selected to describe the CRC
6–8,11

. However, not all of the approaches allowed deriving 

an EC, which would represent a crucial step in case of the use of toxicogenomics data for subsequent 

ERA. Furthermore, the robustness of an EC derivation from such data was never studied. 

 

The aim of this study was to develop a workflow and a tool to facilitate the use of high-throughput 

omics data in ERA by providing reliable ECs. This workflow was designed to handle the various steps of 

omics data processing in a concentration (as well as dose)-response framework and is already provided as 

an open source software (DRomics) via an online interface and an R package. Our objectives were to 

provide a tool that enables to (1) normalize data, (2) select both monotonic and biphasic responses, (3) 

model CRCs for significant responses and choose the best fitting model (based on a reduced, essential set 

of models with a limited number of parameters, but allowing to capture a great diversity of trends), (4) 

characterize the shape of CRCs and (5) derive an EC from each CRC whatever its shape is. The DRomics 

tool is inspired from a previous workflow developed by Smetanova et al.
7
, but proposes the improvement 

of steps 2 and 3 and the addition of steps 4 and 5. We especially paid attention to the repeatability of the 

results to assess the robustness of the whole approach. To exemplify our approach, we worked on a 

microarray-based transcriptomic dataset of the green algae Scenedesmus vacuolatus exposed to triclosan. 

 

DATA 

Scenedesmus vacuolatus transcriptomics response analysis 

Cultures of chlorophyte S. vacuolatus were exposed for 14 hours to five concentrations of triclosan in 

the range of 0.69- 6.63µg/L (SI section S1). After sampling, the RNA was extracted, labelled and 

hybridised to Agilent (Amadid #067797, Böblingen, Germany) microarrays (SI section S1). As no 
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commercial microarray was available for this species, the microarray was designed based on a former 

RNA sequencing (SI section S1). Briefly, 21,495 contigs (minimum length 100 bases) were selected to 

design an 8X60 K microarray using eArray (Agilent Technologies, Böblingen, Germany). Each contig 

was represented by one or two probes in the microarray and overall 18,562 probes were replicated. The 

final dataset contains the fluorescence value of 61,535 probes (18,562 probes present twice and 24,411 

present only once) for 6 treatments in 5 replicates.  

 

DEVELOPMENT OF THE DROMICS TOOL  

The TOC illustrates an overview of the main steps handled by the DRomics tool. DRomics has been 

released as an R package (https://lbbe.univ-lyon1.fr/-DRomics-.html) and a user-friendly online 

application is also available (http://lbbe-shiny.univ-lyon1.fr/DRomics-shiny/). Its workflow is organized 

in four steps described thereafter. 

 

Step 1: Inter-array normalization  

As a first step, the log2 fluorescence values of the microarray dataset were normalized (between arrays) 

in order to counterbalance for differences in hybridization efficacy. The limma R package
16

, which is 

dedicated to deal with microarray data, proposes three options to normalize single-channel data using the 

function “normalizeBetweenArrays”: quantile, scale and cyclic loess. Briefly, the quantile normalization 

forces the entire empirical distributions of each array to be identical while the scale method forces only 

the medians of each array to be the same. The cyclic loess method, which is more sophisticated and more 

time consuming, is based on the repetition on each pair of arrays of a loess regression between the 

difference of expression between the two arrays and the average expression
17

. We compared the three 

different approaches for Scenedesmus microarray data and the effect of normalization on the distributions 

of the gene expression values for each array (Figure S2). With the scale method high differences were 

observed for high fluorescence values, with some values clearly exceeding the maximum level of raw 

data in each array (around 20) which was considered as not acceptable given the potential impact of 
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extreme values on CRC trends. The cyclic loess and the quantile methods are known to reveal similar 

results. However, the cyclic loess was giving a less aggressive (i.e. weaker deformation) and more robust 

transformation of raw data
16,17

, as illustrated in Figure S2. The quantile method is sometimes preferred 

since it is less time consuming. Hence, as the normalization step was not the rate limiting step in the data 

analysis in comparison to the other steps of our workflow, the cyclic loess method was chosen for the 

following analysis. However, the DRomics tool would nevertheless offer the opportunity to apply one of 

the other methods. 

 

Step 2: Selection of the responsive molecular data  

Datasets obtained from omics-approaches are typically large, representing thousands of genes 

and not all them respond to a concentration gradient of an exposure chemical. Therefore, we implemented 

a filtering step which aimed to identify significantly responding genes to the stressor, in order to focus 

only on the genes of interest, to reduce computational effort for modelling CRCs, and as recommended by 

Webster et al. 
18

 to improve the biological relevance of derived EC values. Our purpose was to provide an 

approach adapted to handle dose or concentration-response data which (1) does not require many 

replicates for each tested concentration (and hence was more powerful than the classically used ANOVA-

based method
13

) and (2) is able to detect both monotonic and biphasic CRCs. Tukey et al.
19

 proposed a 

trend test to detect monotonic trends by testing the significance of a regression line linking the response to 

the concentration in raw scale, log-scale or rank-scale. Assuming that the tested concentrations are well 

placed within the design, we favored the rank scale. Furthermore, in order to extend Tukey’s trend test to 

the detection of biphasic trends, we tested the global significance of a first order polynomial curve 

(regression line) and of a second order polynomial curve (quadratic curve). The 3 approaches (ANOVA-

test, linear trend test and quadratic trend test) were implemented in DRomics using the limma R package 

and compared. A Benjamini-Hochberg correction on the p-values was applied in order to control the false 

discovery rate associated to such a big dataset. A default threshold value of 0.05 was fixed for the false 

discovery rate.  
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Based on the microarray dataset consisting of 61,535 probes with 5 replicates per condition, the 

quadratic trend test detected the highest number of responsive probes (n=13,182) compared to the 

ANOVA test (n=8,755) and the linear trend test (n=5,790) (Figure 1A). In Figure 1 the numbers of 

selected genes are reported in the caption. More than ninety percent of the probes which were detected by 

both ANOVA and linear trend test were also detected by the quadratic trend test. In contrast, the quadratic 

trend test allowed detecting a considerably higher number of probes if compared to the two other tests. In 

order to compare the three approaches in situations with a low number of replicates per condition, the 

same procedure was applied but on only three or two out of the total of five replicates (Figure 1B and 

Figure 1C). The superiority of the quadratic trend test on the two other methods clearly appears when the 

number of replicates is low (Figure 1B and 1C). With only 2 replicates, the ANOVA test method was 

unable to select any responsive probe. In the present study, the preselection of genes responsive to 

triclosan was conducted based on the quadratic model alone for the following analysis, but the DRomics 

tool proposes the three described methods. 

 

Step 3: Response modelling and selection of the best model 

In order to select appropriate approaches for CRC modelling, we first visually examined a random set 

of probes (ca. a thousand) in order to detect the major trend models. Considering monotonic CRCs, we 

found only a minority of increasing or decreasing sigmoid curves that could be described using the 

classical Hill model (Table 1 and Figure 2, panels H.inc and H.dec). We did not consider any other 

sigmoid model in the set of models as it was already demonstrated that the different models result in very 

similar fits
7,20

 and that the choice of the sigmoid model had not a great impact on the determination of 

ECs
21

.  The other observed monotonic trends were increasing or decreasing linear curves (Figure 2, panels 

L.inc and L.dec - simply described by a linear model) or increasing or decreasing curves with an 

asymptote only at low (Figure 2,  panels E.inc.convex and E.dec.concave) or high concentrations (Figure 

2, panels E.inc.concave and E.dec.convex). We chose to describe those four trends by the exponential 
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model (Table 1). Depending of the signs of its parameters b and e this model is able to describe the four 

observed trends with a flexible curvature controlled by both parameters b and e. 

For biphasic CRCs, our objective was to be able to describe all type of observed biphasic trends in a 

robust way, with models strictly increasing (or descreasing, respectively) before reaching the maximal 

(resp. minimal) signal and then strictly decreasing (or increasing,  respectively) (Figure 2 panels GP.bell 

and lGP.bell and GP.U and lGP.U, respectively). We also wanted to be able to describe asymptotes at low 

and/or high concentrations with potentially different levels for both asymptotes (Figure 2 panel GP.bell). 

For modelling of biphasic concentration-response curves many complex models were already proposed, 

usually outside the context of omics data and often associated with limitations. This is due to their 

complexity and too high flexibility, indicating a need to develop new mathematical models
22

. In the 

context of omics data, mainly second and third order polynomial models and Gaussian type models were 

proposed to describe biphasic trends. We used a Gaussian type model since polynomial models cannot 

describe asymptotes. Moreover, third polynomial models have more than two phases and may thus take 

unwanted forms (non-biphasic). However, available Gaussian models have the same asymptotic levels at 

low and at high concentrations. Therefore, two new 5-parameter models (Gaussian-probit and log-

Gaussian-probit models, Table 1) were built by addition of a probit component with two asymptotic 

levels d and c to a Gaussian part (in log-scale for the log-Gaussian-probit model) of amplitude f, with 

parameters b and e shared by both parts (see a schematic description of the Gaussian-probit model in 

Figure S3). For equal c and d values those two models respectively correspond to classical 4-parameter 

Gaussian and log-Gaussian models as used in Smetanova et al.
7
. For different c and d values they provide 

a simple extension enabling two different asymptotic levels as often encountered in our data set as in 

Figure 2, panels GP.U, GP.bell, lGP.U). As done by Smetanova et al.
7
 , we used two versions of this new 

Gaussian-probit model, for raw or log-scale data, in order to be able to describe symmetrical (models in 

raw scale) or asymetrical (models in log scale) shapes of curves around the local extremum. 

Models were fitted to each previously selected probe by nonlinear regression using the R function 

“nls”. Gaussian-probit and log-Gaussian-probit models were fitted both in their complete form with 5 
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parameters and in their simplified form with 4 parameters (with d = c). The best-fit model was identified 

by the lowest Akaike Information Criterion (AIC). Probes for which the AIC value of the best model was 

not lower than the AIC value of the null model (constant model) minus 2 were considered as not 

exhibiting a concentration dependent trend and were eliminated from the probe set that was subjected to 

CRC modelling, as recommended by EFSA Scientific Committee
12

. Another filter was implemented to 

eliminate fits considered as not reliable. The filter was based on the test of global significance of a 

quadratic trend of the residuals as a function of the tested concentrations in rank-scale (similarly to the 

quadratic test used for the selection of responsive probes). If the trend on residuals is significant the 

model is not considered as reliably fitting the data and the probe is eliminated. On the 13,182 initially 

fitted CRCs, 1,116 (8.5%) failed to pass this significance test. Those 1,116 eliminated probes mainly 

correspond to very noisy data sets that would have been eliminated by the selection step if the false 

discovery rate was fixed to a smaller value (0.01 or 0.001 instead of 0.05) and to data sets for which the 

significant response was observed only at the highest tested concentration (two typical examples are given 

in Figure S4). In the latter case an exponential model could theoretically describe the curve, but there is 

not enough information in the data to estimate its curvature.  

For the other 12,066 fitted CRCs, the Gaussian-probit model was chosen as the best fit model for 

29.3% of the CRCs, followed by the linear model (26.5%), the exponential model (28.1%), the log-

Gaussian-probit model (14.6%) and the Hill model (1.5%). The distribution of those fits among the 12 

shapes described in Figure 2 (and supported by the models in the Table 1) is reported in the legend of 

Figure 2. From this classification in 12 shapes, the CRCs can be classified in four rough trends, increasing 

(30.7%), decreasing (25.4%), U-shape (24.7%) and bell-shape (19.2%) curves. The visual examination of 

each curve showed a good fit of the best-fit model. The fit is reported in Figure S5 for the first 49 selected 

probes (those with the most significant response).  

 

Step 4: EC calculation 
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In this part, our objective was to define ECs consistent and commensurable for all previously selected 

probes accounting for all type of CRCs (sigmoidal, linear, exponential, biphasic (U or bell shape)).  

 

Effective Concentrations (which affect the endpoint at x% of the maximal effect, ECx) have now 

largely supplanted No Observed Effect Concentrations (NOEC), after decades of statistical criticisms 

towards the latter
23

. ECx has a simple definition which sounds unambiguous. However, depending on the 

CRC shape, its derivation is not trivial and must be paid attention. When using a sigmoidal CRC, the ECx 

is calculated as the concentration leading to x% of effect compared to the control and relatively to the 

amplitude of the response level between control and highest concentrations. For example, the EC50 in a 

Hill/log-logistic model is the abscissa of the inflection point of the CRC, but it is does not necessarily 

corresponds to half the control response level, unless the response level tends to zero at very high 

exposure concentrations. The derivation of an ECx does make sense only if an asymptotic response is 

observed at high exposure concentrations. For non-sigmoidal CRCs, as observed for gene expression, the 

calculation of such ECx is not possible and hence not suitable. 

 

Alternatively to ECx, the Benchmark Dose (BMD) has been proposed in the field of toxicology for 

setting ECs
24

. The BMD approach described in the EFSA guidance
12

 proposes two options. The first 

option considers an x-fold change of the control response which makes it equivalent to a x% 

inhibition/enhancement concentration. The so-called BMD-xfold was calculated as the concentration 

corresponding to a Benchmark Response (BMR-xfold) defined as follows: BMR-xfold = y0 +/- y0*x/100, 

where y0 is the mean control response and x is the percentage of change. However, such BMD-xfold 

seems hazardously sensitive to the signal level: if the control response is zero or a very low value, so will 

be the x-fold change. The BMD-xfold approach will lead to ECs closer to the control in contrast to cases 

with similar responses but high control levels. This is illustrated in Figure S6: both probes were described 

by the same CRC (linear with almost the same slope) whereas the BMD-10%fold is much lower in case 

(A) where y0 has a low value, than in case (B) where y0 has a higher value. The second option defines a 
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critical response level accounting for the standard deviation of data around the mean CRC. This feature 

makes it more robust and usable whatever the CRC model chosen, hence this method was favored in our 

study. The so-called BMD-zSD detects the concentration leading to a level of change compared to the 

control response that takes data variability around the modelled curve into account. It was calculated as 

the concentration corresponding to a Benchmark Response (BMR-zSD) defined as follows: BMR-zSD = 

y0 +/- z*SD, where y0 is the mean control response, SD is the residual standard deviation of the 

considered CRC and z is the factor of SD. For linear, exponential and Hill CRCs, the BMD-xfold/BMD-

zSD can be analytically calculated by inversing model equations (Table 1). For biphasic CRCs, there may 

be two concentrations corresponding to the BMR. The BMD-xfold/BMD-zSD was defined as the lowest 

concentration corresponding to the BMR and it was sought numerically using the “uniroot” R function, 

first in the first increasing (resp. decreasing) phase and if not found in the first phase it was sought in the 

second decreasing (resp. increasing) phase. Both situations are illustrated in Figure S7.  

BMD-zSD for z=1 (value proposed in EFSA guidance
12

) and z=2 and BMD-xfold for x=5, 10 and 20% 

were calculated for every fitted CRC. In some cases the BMD cannot be estimated because it was beyond 

the tested concentration range or because the BMR stood outside the range of response values defined by 

the model. Hence BMD-5%fold (resp. -10%fold and -20%fold) could not be determined for 7.2% (resp. 

34.1% and 65.7%) of fitted CRCs and BMD-1SD (resp. -2SD) could not be determined for 0.5% (resp. 

37.3%) of fitted CRCs. On our data set, BMD-1SD corresponded to an average xfold change of 8.7% 

(interquartile range 3.4-11.4]%) (min-max [0.8-63.8]%), BMD-2SD to an average xfold change of 14.3% 

(interquartile range [5.9-17.4]%) (min-max [1.6-127.7]%). The distribution of all of the BMD-1SD values 

(as provided by the tool) is globally represented in Figure 3 and by model typology in Figure S8. Given 

the shape of models (Figure 2), we logically obtained high BMD-1SD values for decreasing concave and 

increasing convex exponential CRCs and low BMD-1SD values for decreasing convex and increasing 

concave exponential CRCs. Log-Gauss CRCs mostly corresponded to low BMD-1SD values, 93.1% of 

them being below the extremum For Gauss CRCs, 63.5% of BMD-1SD are below the extremum, which 

explain the observed bimodal distribution of BMDs. For Hill models, we also observed two modes, hard 
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to visualize in the Figure because of a low occurrence. The second mode, about 6 µg/L, probably 

corresponded to Hill CRCs where the model fitting was mostly driven by the response at the highest 

exposure concentration (6.63 µg/L). For linear models, BMD-1SD distributions were bell-shaped and 

spread across the tested concentration range. 

 

Repeatability of the results 

In the studied data set, 18,562 probes were represented twice on the microarray, which enabled us to 

analyze the repeatability of the results of the workflow by comparison of the results obtained for two 

same probes. Using the quadratic selection with an FDR of 0.05, 71.6 % of the probes selected using 

replicate 1 were also selected using replicate 2 of those probes. This proportion is increasing when the 

FDR is decreased and is stabilizing around 78% for FDR values inferior or equal to 0.001. The two other 

selection methods (linear trend test and ANOVA test) gave very similar results (respectively 75% and 

76% for an FDR of 0.001). Using quadratic selection and an FDR of 0.05 the proportion of probes 

classified in the same trend (U, bell, increasing, decreasing) is 89%. This proportion is not much 

influenced by the FDR. 36% of the observed discordances correspond to replicates classified in bell or 

decreasing trend depending on the replicate (example of probe “13613” in Figure S9) and  50% of the 

discordances correspond to replicates classified in U or increasing trend depending on the replicate 

(example of probe “39905” in Figure S9). Strong differences between BMD values could be observed in 

such cases (probe “13613” and “39905” in Figure S9), but also with responses described with the same 

bi-phasic model: in few cases (see probe “23384” in Figure S9) the BMR can be reached in the first phase 

with one replicate and in the second for the other one. Globally, the Root Mean Square Error (RMSE: root 

mean squared differences between BMD-1SD values estimated for both replicates of each probe) was 

estimated at 1.198 for an FDR of 0.05 and 0.882 for an FDR of 0.001. This RMSE is increasing when the 

FDR is decreasing and is stabilizing below 0.9 for FDR values inferior to 0.001. For comparison, the 

repeatability of BMD-1SD values derivated from the same data set (replicated probes both selected with 

an FDR inferior to 0.001) using BMDExpress was globally poorer (RMSE of 1.215), especially for CRCs 
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classified as biphasic by DRomics (RMSE of 1.803 for BMDExpress in comparison to 1.079 for 

DRomics) (see section S8 for details).    

 

DISCUSSION 

Recommendation for experimental design 

The quality of modelling a concentration-response curve is dependent of the information provided by 

the data set. Replicates enable to characterize the variability around the mean concentration-response. If 

resources are limited, one should favor the number of concentrations rather than the number of replicates, 

and try to equally spread a maximal number of concentrations on the whole range of the expected 

response.  This would not impair the precision of the residual standard deviation required for the BMD-

zSD calculation that only depends on the total number of points on the CRC. In our example, the design 

(6 concentrations with 5 replicates per concentration) was minimal to model the CRC, and it may have 

been advantageous to have a greater number of concentrations with two or three replicates per 

concentrations only. While building our workflow, we paid attention not to presuppose a great number of 

replicates, to ensure its applicability to typical dose-response designs. One perspective of this work will 

be to evaluate the impact of the number of concentrations on the workflow results, from data sets initially 

designed with more tested concentrations, in a purpose of design optimization. 

 

Recommendation regarding the use of the workflow 

At each step of the DRomics workflow, the user is free to choose several options (all the options tested 

within this work), both in the R package and the online version. However, we wish to provide some 

recommendations. For the selection step, the power of the ANOVA-based selection will increase with the 

number of replicates, which should not be favored in a concentration-response framework as explained 

before. In order to select only monotonic dose-response trends, a linear trend test may be a relevant 

choice. In contrast, a quadratic trend test proved efficient in our study where we wanted to select both 

monotonic and biphasic trends. With a very large dataset like ours (e.g. 60,000 probes), a selection of data 
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(e.g. probes) is necessary not only to reduce the amount of information to be further processed (fitting and 

post-treatment/interpretation) but also to eliminate too noisy signals that may impair the quality and 

biological relevance of results
18

. We recommend the use of a selection step with a low FDR value (lower 

than 0.05 and ideally at 0.001) that ensures a good repeatability of the workflow results. For the choice of 

derived ECs, we already discussed a number of shortcomings regarding ECx (calculable only for sigmoid 

CRCs) and BMD-xfold which is equivalent to an ICx (hazardously sensitive to the control response 

level). We recommend using BMD-zSD that highlights a “critical” change compared to control, taking 

data variability into account. This approach has interesting features:  it is calculable whatever the 

concentration-response shape is and does not depend on the experiment design like does the 

NOEC/LOEC. Instead of choosing x for ECx or BMD-xfold, one has to choose z for BMD-zSD, the 

number of SD considered as “critical” change. EFSA
12

 proposed to set z=1. Setting z=2 would define the 

“critical” change as the theoretical upper or lower bound of the 95% coverage interval of control data. 

Note that the corresponding xfold change can be calculated afterwards.  

 

 Contribution of DRomics outputs for ERA process 

In ERA, OMICs approaches are rarely used in a concentration-response framework but to compare 

responses between 2 different conditions (e.g. upstream vs. downstream). This kind of designs present a 

high interest for biomarkers identification
25

 or environmental monitoring
26,27

 but used in a concentration-

response framework, omics might also support regulatory issues (i.e. point of departure determination) 

and improve our mechanistical understanding regarding stressors impact on the biota. For example, some 

studies have already shown the interest of omics dose-responses for ERA by providing for example a 

metabolites effect index
28

 or to highlight proteins response dynamics to chemicals
6
. The outputs of the 

DRomics tool (e.g. BMD, typology, and sensitivity distribution of the probes) allow supporting those 

goals. The derivation of an EC from non-sigmoidal curves is also handled by other tools, such as the 

BMDExpress
8
 (with an ANOVA-based selection step) and PROAST (without any molecular data 

selection step and in a far less automated workflow). In comparison to BMDExpress, DRomics is 
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dedicated to typical concentration-response designs and so compatible with a low number of replicates 

per treatment. Moreover, DRomics ensures a more efficient selection of biphasic CRCs and a better 

description of them, with a non-negligible mean difference in AIC values of 3.09 (Figures S10 and S11). 

As a consequence, DRomics gives more repeatable results for such biphasic CRCs, and a more 

conservative BMD distribution (Figures S11 and S12) in comparison to BMDExpress which seems to 

underestimate BMD values for biphasic CRCs. 

Our tool provides as an output the cumulated distribution of the BMD of the data of interest (here 

probes, Figure 3). This sensitivity distribution echoes the species sensitivity distribution concepts and thus 

exemplifies a first step (among the various possibilities of the tool) toward the use of omics data in ERA. 

Effect concentrations could also be a common language between biological level and omics. That might 

promote the establishment of links between levels and support mechanistical understanding using for 

example the functional annotation of the data. In this context, the tool can run on any other type of data 

that can be fitted directly by least-square regression and do not require a normalization step or that have 

been adequately processed in advance (e.g. metabolome data). Thus, DRomics provides comparable 

management for various omics data and facilitates multi-omics analysis. In the future, this tool will also 

be able to process RNA-seq data for which we plan to adapt the two first steps of the workflow taking 

into account the nature of RNA-seq data
29

. It will thus offer a simple way to compare the results obtained 

from different genomics platforms and evaluate their respective biological relevance as done by Webster 

at al.
18

 in toxicogenomics. The developed procedure is now available both as an R package named 

DRomics (https://lbbe.univ-lyon1.fr/-DRomics-.html) and as an online Shiny application (http://lbbe-

shiny.univ-lyon1.fr/DRomics-shiny/) also named DRomics based on the previous package.  
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FIGURES  

 

Figure 1. Venn diagram of the probes selected by the quadratic trend test, linear trend test and ANOVA 

test methods based on the datasets composed of A) 5 replicates, B) 3 replicates and C) 2 replicates. The 

number N of probes selected by the quadratic trend test (resp. linear trend test and ANOVA test) methods 

are A) N= 13,182 (resp N= 5,790 and N= 8,755) with 5 replicates, B) N= 7,616 (resp. N= 1,692 and N= 

3,376) with 3 replicates and C) N=593 (resp N=59 and N=0) with 2 replicates. 
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Figure 2. Illustration of various trends observed among the data set: selected data sets with corresponding 

best-fit models and associated percentages of CRCs for each shape : the Hill model with d c<  (coded 

H.inc for increasing - 0.8% of curves) or  d c>  (coded H.dec for decreasing - 0.6% of curves), the linear 

model with 0b >  (coded L.inc for increasing - 14.6% of curves) or 0b <  (coded L.dec for decreasing - 

12.0% of curves), the exponential model with 0e >  and 0b >  (coded E.inc.convex for increasing 

convex - 11.8% of curves) or 0e >  and 0b <  (coded E.dec.concave for decreasing concave - 9.4% of 

curves) or 0e <  and 0b <  (coded E.inc.concave for increasing concave - 3.5% of curves) or 0e < and 
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0b >  (coded E.dec.convex for decreasing convex - 3.4% of curves), the Gaussian-probit model with 

0f <   (coded GP.U for U-shape - 16.8% of curves) or  0f >  (coded GP.bell for bell-shape - 12.5% of 

curves) and the log-Gaussian-probit model with 0f <  (coded lGP.U for U-shape - 7.9% of curves) or 

0f >  (coded lGP.bell for bell-shape - 6.7% of curves). Fitted curves are reported in red against the 

observed response with replicates represented in open circles and means of replicates at each dose 

represented by solid circles. 
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Figure 3. Cumulative distribution of probe sensitivities (BMD) provided and exported from the DRomics 

tool. The x axis represents the BMD values (here, in µg/L). The y axis represents the Empirical 

Cumulative Distribution Function (here, proportion of probes). 
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Table 1. Set of models where x represents the concentration, y the observed signal and Φ the Cumulative Distribution Function (CDF) of the 1 

standard normal distribution. 2 
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Name Equation Parameters 

linear y d bx= +   b  slope  

d  mean signal at control 

Hill 

1

b

d c
y c

x

e

−= +
 +  
 

  
b (> 0)  shape parameter  

c  asymptotic signal for high concentrations  

d  mean signal at the control 

e  concentration at inflection point (> 0) 

exponential 
exp 1

x
y d b

e

  = + −  
  

 
b  shape parameter  

d  mean signal at the control 

e  shape parameter 

when 0e >  the CRC is increasing if 0b >  (decreasing if 

0b < )  with no asymptote for high concentrations  

when 0e <  the CRC is increasing if 0b <  (decreasing if 

0b > )  with an asymptote at d b−   for high concentrations 

Gauss-probit 
( )

2

exp 0.5
x e x e

y f d c d
b b

 − −   = − + + − Φ         

 

 

 

 

b  (> 0) shape parameter corresponding to standard deviation of 

the Gaussian part  

c  asymptotic signal for high concentrations  

d  asymptotic signal on the left of the CRC (reached at the 

control only for the Log-Gauss-probit model) 

e  (> 0) shape parameter corresponding to mean of the 

Gaussian part (for lne   in case of the log-Gaussian-probit 

model) 

log-Gauss-

probit 

( ) ( ) ( )2

ln ln
exp 0.5

x e x e
y f d c d

b b

    
 = − + + − Φ        
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f amplitude of the Gaussian part (U shape if 0f <  and 

Umbrella shape if 0f > ) 
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S1) MATERIAL AND METHODS 

This section introduces the methods used to design the microarray and to assess the transcriptomics 

response of the chlorophyte Scenedesmus vacuolatus. 

 

Microarray design 

As no commercial microarray was available for S. vacuolatus a microarray was designed based on a 

former RNA sequencing experiment. In brief, synchronized cultures of the chlorophyte were challenged 

by 18 treatments of different stressors such as chemicals, high ionic concentrations, heat and nutrient 

deficiencies. Algae from these treatments were harvested at different steps of the cell cycle by 

centrifugation (22°C, 10 min, 3300 g). Total RNA was isolated from algal pellets using Trizol (Invitrogen 

Carlsbad, CA) according to the manufacturer’s instruction with minor modifications. Quality and quantity 

of the extracted RNA were analysed by a Nanodrop Spectrophotometer (ND-1000, Peqlab, Erlangen, 

Germany) and an Experion 
TM

 RNA Highsens Analysis Kit (BioRad). mRNA was isolated from total 

RNA extracts using the Dynabeads® mRNA purification kit (ThermoFischer, Germany) according to the 

manufacturer’s instructions resulting in 1.9 µg L
-1

 pooled mRNA from all exposure conditions. 

Preparation of cDNA library was conducted according to the manufacturer’s instruction of the Roche 454 

GS-FLX Titanium platform. Briefly, 0.5 µg pooled mRNA was converted to double-stranded cDNA 

using a cDNA synthesis system Kit and a cDNA Rapid Library Prep Kit (Roche) and sequenced 

afterwards using the Roche 454 GS-FLX Titanium platform. The sequencing resulted in 934,866 reads 

with a length of up to 400 bps. 97% of the reads could be assembled into 22,000 contigs using Newbler 

software
1
. Out of this data set 21,495 contigs were selected to design a 8X60 K microarray using eArray 

(Agilent Technologies, Böblingen, Germany). Remaining gaps on the array were filled randomly with 

already represented probes. The probes sequences and the related contigs are presented in an excel file. 

Genome information (cDNA sequences) have been deposited in NCBI’s Sequence Read Archive and are 

accessible through the SRA accession number PRJNA498405 

(https://www.ncbi.nlm.nih.gov/sra/PRJNA498405). 

S. vacuolatus exposure to triclosan and RNA extraction 

Synchronized cultures of the chlorophyte S. vacuolatus (Shih. et Krauss strain 211-15, culture collection 

Pringsheim (SAG Göttingen, Germany)) were grown in a sterile inorganic medium (pH 6.4) at 28°C by 

using a 14:10 h light:dark cycle
2
. Chlorophytes were exposed for 14 hours to seven concentrations (0.69, 

1.22, 2.15, 3.77, 6.63, 11.65, 20.47 µg/L) of triclosan (CalbioChem, Germany, CAS: 3380-34-5, purity of 

99.8 %) and one solvent control (final DMSO concentration of 0.1 %) for 5 replicates in 500mL flasks 

containing 10
6
 cells/mL. Concentrations were chosen according to pre-studies, using 7 concentrations of 
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triclosan in the range of 0.69 – 20.5 µg/L covering a full concentration response curve from no inhibition 

to 100% inhibition of algal growth and revealing an EC50 of 6.6 µg/L. Additionally, the quality of 

exposure conditions was analysed revealing a recovery of triclosan in the media of 81% during the 

exposure duration of 14h. With a focus on mode-of-action-related responses in the transcriptome at low 

concentrations we chose an exposure range below the EC50 value, hence the two highest exposure 

concentrations (11.65 and 20.47 µg/L) were not considered for the transcriptome analysis.  

Two times 80 mL suspensions of triclosan-exposed cultures were then harvested by centrifugation (22°C, 

10 min, 3300 g). Culture pellets were resuspended in 500µL TRIZOL and stored at -80°C until further 

analysis. After cell lysis and RNA extraction using a FastPrep®24 homogenizer system (Biomedicals, 

Santa Ana, USA) and Phase LockTM Gele Tubes (5 Prime GmbH, Hamburg, Germany), total RNA was 

further purified using a RNeasy®Plant Mini Kit (Quiagen, Hilden, Germany) according to the 

manufacturer’s instructions. RNA quantity and quality were analyzed using a NanoDrop 

Spectrophotometer (ND-1000, Peqlab, Erlangen, Germany) revealing an absorption coefficient of 

260/280 nm of 1.9 on average, which is within the quality criteria for purity of extracted RNA of 1.8-2.1 

requested by the manufacturer.  

 

Microarray analysis 

In total, 40 microarrays were used in this study. The microarrays were disposed on 5 slides, meaning that 

each slide was composed of 8 microarrays (Figure S1).  On each slide, each microarray was associated to 

one of the different treatments (from the control to the highest concentration tested). Thus, each slide 

represented one replicate.  

Fifty ng of purified RNA were labeled using the Low Input Quick Amp Labeling Kit, one color (Agilent 

Technologies). Finally 40 µL cy3-labeled fragmented cRNA per sample were hybridized to each 

microarray for 17h at 65°C. Then, the 40 microarrays were washed and scanned, using an Agilent DNA 

Microarray scanner. Fluorescence intensities were extracted using the Agilent Feature Extraction 

software. One of the criteria used to assess the quality of microarray analysis was based on the spot 

finding at the four corners of the arrays (on image per array=40 images) and the Agilent SpikeIns 

concentration-response. Quality criteria were satisfying for each array (Table S1). The fluorescence data 

have been deposited in NCBI’s Gene Expression Omnibus
3
 and are accessible via GEO Series accession 

number GSE122159 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122159). 
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Figure S1: Microarray experimental design.  

 

Table S1. Quality control metrics related to each microarray included in the tool development (=without 

2.2 and 2.3, the two highest concentrations). For array numbers, 1.1:  concentration 1; 1.2: concentration 

2; 1.3: concentration 3; 1.4: concentration 4; 2.1: concentration 5, 2.4: control).  

Slide Array Aligned to grid  SpikeIns Slope SpikeIns R² 

1 1.1 1 1.08 1 

  1.2 1 1.05 0.99 

  1.3 1 1.07 1 

  1.4 1 1.07 0.99 

  2.1 1 1.08 1 

  2.4 1 1.1 0.99 

2 1.1 1 1.07 0.99 

  1.2 1 1.08 1 

  1.3 1 1.08 1 

  1.4 1 1.05 0.99 

  2.1 1 1.09 0.99 

  2.4 1 1.05 0.99 

3 1.1 1 1.09 1 

  1.2 1 1.07 0.99 

  1.3 1 1.05 0.99 

  1.4 1 1.06 1 

  2.1 1 1.07 0.99 

  2.4 1 1.09 0.99 

4 1.1 1 1.08 1 

  1.2 1 1.04 1 

  1.3 1 1.08 1 

  1.4 1 1.06 1 

  2.1 1 1.08 1 

  2.4 1 1.06 1 

5 1.1 1 1.05 0.99 

  1.2 1 1.06 0.99 

  1.3 1 1.04 0.99 

  1.4 1 1.06 1 

  2.1 1 1.07 1 

  2.4 1 1.08 1 
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S2) COMPARISON OF INTER-ARRAY NORMALIZATION METHODS  

Here, are presented the graphical outputs (also provided in the DRomics tool) of the normalization step 

for each proposed method. 

 

Figure S2. Boxplots of fluorescence values (in log2) for each array, before and after normalization by 

each proposed method. 
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S3) DESCRIPTION OF THE BIPHASIC MODELS 

Description of the 5-parameter Gauss-probit and log-Gauss-probit models. 

The 5-parameter Gauss-probit model is defined as the sum of a Gauss part and a probit part as illustrated 

in Figure S3: 

( )
2

1
exp

2

x e x e
y f d c d

b b

 − −   = − × + + − Φ           

See also Table 1 of the manuscript for parameter description. 

From this formulation one can calculate its first derivative as below: 

( ) ( )2 2

2

21 1 1
' exp exp

2 2 22

x e c dx e x e
y f

b b bb π
   − − − −   = − × × − × + − ×                 

 

( ) ( )2

2

1
exp

2 2

f x e c dx e

b b b π
  − × − − − = − × +        

 

( ) ( )2

2

21
exp

2 2

f x e b c dx e

b b

π
π

   − × × − + × −− = − ×         

 

This derivative is null for a unique value of x: 

( )
2

b c d
x e

f π
−

= +  . 

 The Gauss-probit model thus describes a biphasic model if 0f ≠ , with the maximum (if 0f >  ) or the 

minimum (if 0f <  ) reached at
( )

2

b c d
x e

f π
−

= + . 

The log-Gauss-probit model is the same model in log-scale, obtained by replacing x  by ( )ln x  and e  by

( )ln e : 

( ) ( ) ( ) ( ) ( )2

ln ln ln ln1
exp

2

x e x e
y f d c d

b b

 − −   
 = − × + + − Φ        

 

It is thus also a biphasic model if 0f ≠ , with the maximum (if 0f >  ) or the minimum (if 0f <  ) 

reached at ( ) ( ) ( )
ln ln

2

b c d
x e

f π
−

= +  , so at 
( )

exp
2

b c d
x e

f π
− 

= ×  
 

. 
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Figure S3. Schematic description of the 5-parameter Gauss-Probit model, as an addition of a Gaussian 

part and a probit part, with realistic values of parameters (such as some encountered in our data sets):

1.5b =  , 3c =  , 6d =  , 3e =  , 2f = . 
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S4) MODELLING COMPLEMENTARY RESULTS 

This part presents complementary results for the modelling step: examples of probes first 

selected in the selection step and secondly eliminated in the modelling step (Figure S4) and the 

fit of the concentration-response curve for the first 49 probes selected (Figure S5). 

 

 

Figure S4. Typical examples of probes first selected in the selection step and secondly eliminated in the 

modelling step: a very noisy data set (on the left) and a data set for which the significant response was 

observed only at the highest tested concentration (on the right). 
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Figure S5. Fit of the concentration-response curve for the first 49 probes selected (ordered by decreasing 

adjusted p-values). Fitted curves are reported in red against the observed response with replicates 

represented in open circles and means of replicates at each dose represented by solid circles. 
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S5) BMD DERIVATION 

This part exemplifies how the control level influences the value of the derived BMD-xfold 

(Figure S6) and illustrates the calculation of the BMD on a biphasic model (Figure S7).  

 

 

Figure S6. Illustration of BMD-10%fold. Both probes are modelled by linear CRCs with the same slope 

but different intercept (y0). A situation with a low y0 value (A) leads to a lower BMD-xfold value than a 

situation with high y0 value (B), all other parameter remain equal. BMD-10%fold are highlighted by blue 

lines. 
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Figure S7. Illustration of situations where the BMD-1SD is found before the model extremum (on the 

left) and after the model extremum (on the right). BMD-1SD are highlighted by blue lines. 
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S6) CUMULATIVE DISTRIBUTION OF PROBE SENSITIVITIES PER TYPOLOGY 

Presentation of one of the graphical output of the DRomics tool based on the BMD values of 

all the probes selected by the previous steps of the workflow. 

  

  

Figure S8. Distribution of the BMD-zSD values (with z = 1) of each probe associated specifically to each 

typology of curves (typology defined in the legend of Figure 2). 
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S7) ILLUSTRATION OF TYPES OF DISCORDANCES IN THE REPEATABILITY 

STUDY 

The following figure gives examples of rare probes for which a great discordance was 

observed between both replicates.  

 

 

Figure S9. Examples of discordances between results for replicated probes. 
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S8) COMPARISON OF DROMICS AND BMDEXPRESS RESULTS  

BMDExpress is often used to model dose-response curves for omics data and to derivate BMD values. 

Therefore, we compared DRomics and BMDExpress results on the same data set. We especially 

compared their ability to describe observed responses (using AIC values), BMD values and their 

repeatability. For that purpose, we ran BMDExpress on a subset of 1814 probes (= 2*907), corresponding 

to 907 probes that were replicated and both selected using an FDR value of 0.001. For this set of samples, 

we used BMDExpress for the modelling and BMD calculation step. A value of a BMR of 1 SD was used 

in order to obtain BDM values comparable to DRomics BMD-1SD values. As BMDExpress is far more 

time consuming than DRomics, it is necessary using BMDExpress to properly define options to optimize 

the calculation on the used computer. Using a Toshiba Portege laptop (Intel Core i7 with 4 cores, 2.5 

GHz, 8GB RAM, Windows 7 pro) we fixed the number of threads to 16 (four times the number of 

available cores on the computer, as recommended in the online tutorial) and kept the model execution 

time out at its default value of 600 seconds (it corresponds to the maximal time the software can run a 

model for an individual probe).  Using those parameters, the run of BMDExpress on the subset of data 

took around two hours while it took around one minute using the DRomics package with the parallel 

computation implemented in the modelling step. 

BMDExpress was used with its default choice of proposed models: linear, Hill, power, exponential and 

second and third order polynomial models. BMDExpress and DRomics provided the AIC value for each 

fitted model and the best AIC value (AIC value of the chosen model) for each CRC. As AIC values are 

calculated up to a constant, those AIC values were put on the same scale by equalling AIC values of the 

linear model given by both tools.  We can see on Figure S10 that if best AIC values are rather similar for 

responses characterized by DRomics as monotonic (“inc” or “dec” DRomics trend), a great number of 

responses characterized by DRomics as biphasic (“U” or “bell” DRomics trend) are better fitted by 

DRomics, with a smaller AIC value. For 4.43% (resp. 0.52%) of the probes, the best model proposed by 

BMDExpress revealed a higher (resp. lower) AIC than the one proposed by DRomics (absolute difference 

in AIC greater than 10). The mean differences of AIC values (BMDExpress – Dromics) is of 0.955, with 

a great heterogeneity due to trend of responses: the models chosen by BMDExpress reveal slightly lower 

AICs than by DRomics for monotonic responses (mean difference in AIC of - 0.38) but higher AICs for 

biphasic responses (mean difference in AIC of 3.09). 
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Figure S10. Scatter plot of AIC values of the best model chosen by DRomics (x-axis) and BMDExpress 

(y-axis), with the color of each point coding for the trend of the CRC as characterized by DRomics. 



S15 

 

Figure S11 corresponds to the scatter plot of BMD values estimated by DRomics (x-axis) and 

BMDExpress (y-axis). We can see on this plot that the tools gave well correlated values for monotonic 

CRCs, but not for biphasic responses, for which DRomics tends to give smaller BMD values. It seems 

that BMDExpress, which only proposes second and third polynomial models as non-monotonic models, 

has some difficulties to describe biphasic CRCs. DRomics made the choice of a biphasic model 6.4 times 

more than BMDExpress on this subset of data. This difficulty has a clear consequence on the BMD 

distribution (Figure S12) as BMDExpress may overestimates BMD values for biphasic CRCs. 

 

Figure S11. Scatter plot of the BMD-1SD values estimated by DRomics (x-axis) and BMDExpress (y-

axis), with the color of each point coding for the trend of the CRC as characterized by DRomics. 
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Figure S12. Distribution of the BMD-1SD values as estimated by DRomics (left) and by BMDExpress 

(right). 

 

Concerning the repeatability of the results obtained per probe, the method described in part “Repeatability 

of the results” in the main manuscript was also applied to BMDExpress on the subset of data. The 

repeatability of BMDExpress was globally lower than the one of DRomics, based on values of root mean 

square error (RMSE: root mean squared differences between BMD-1SD values estimated for both 

replicates of each probe) of 0.882 for DRomics and 1.215 for BMDExpress. DRomics gave a slightly 

higher RMSE for biphasic responses (1.079) than for monotonic responses (0.733) while BMDExpress 

gave less repeatable results for probes with a biphasic response (respective RMSE values of 1.803 and 

0.615). This last result confirms the difficulty to give a relevant and repeatable estimation of the BMD 

value for biphasic responses using BMDExpress. 
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