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rial Sloan Kettering Cancer Center, with special mention to David Kuo from his lab, who

is always willing to help; Antonio Artés from University Carlos III, and Kristel van Steen

from University of Liege, with special mention to Kirill Bessonov and Ramouna Fuladi

from her group, which were very helpful.
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Abstract

As a result of the recent trend towards digitization, an increasing amount of information

is recorded in clinics and hospitals, and this increasingly overwhelms the human decision

maker. This issue is one of the main reasons why Machine Learning (ML) is gaining

attention in the medical domain, since ML algorithms can make use of all the available

information to predict the most likely future events that will occur to each individual

patient. Physicians can include these predictions in their decision processes which can lead

to improved outcomes. Eventually ML can also be the basis for a decision support system

that provides personalized recommendations for each individual patient.

It is also worth noticing that medical datasets are becoming both longer (i.e. we have

more samples collected through time) and wider (i.e. we store more variables). There-

fore we need to use ML algorithms capable of modelling complex relationships among a

big number of time-evolving variables. A kind of models that can capture very complex

relationships are Deep Neural Networks, which have proven to be successful in other ar-

eas of ML, like for example Language Modelling, which is a use case that has some some

similarities with the medical use case.

However, the medical domain has a set of characteristics that make it an almost unique

scenario: multiple events can occur at the same time, there are multiple sequences (i.e.

multiple patients), each sequence has an associated set of static variables, both inputs and

outputs can be a combination of di↵erent data types, etc. For these reasons we need to

develop approaches specifically designed for the medical use case.

In this work we design and develop di↵erent kind of models based on Neural Networks

that are suitable for modelling medical datasets. Besides, we tackle di↵erent medical tasks

and datasets, showing which models work best in each case.

The first dataset we use is one collected from patients that su↵ered from kidney failure.

The data was collected in the Charité hospital in Berlin and it is the largest data collection

of its kind in Europe. Once the kidney has failed, patients face a lifelong treatment and
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periodic visits to the clinic for the rest of their lives. Until the hospital finds a new kidney

for the patient, he or she must attend to the clinic multiple times per week in order to

receive dialysis, which is a treatment that replaces many of the functions of the kidney.

After the transplant has been performed, the patient receives immunosuppressive therapy

to avoid the rejection of the transplanted kidney. Patients must be periodically controlled

to check the status of the kidney, adjust the treatment and take care of associated diseases,

such as those that arise due to the immunosuppressive therapy. This dataset started being

recorded more than 30 years ago and it is composed of more than 4000 patients that

underwent a renal transplantation or are waiting for it. The database has been the basis

for many studies in the past.

Our first goal with the nephrology dataset is to develop a system to predict the next

events that will be recorded in the electronic medical record of each patient, and thus to

develop the basis for a future clinical decision support system. Specifically, we model three

aspects of the patient evolution: medication prescriptions, laboratory tests ordered and

laboratory test results.

Besides, there are a set of endpoints that can happen after a transplantation and it

would be very valuable for the physicians to be able to know beforehand when one of these

is going to happen. Specifically, we also predict whether the patient will die, the transplant

will be rejected, or the transplant will be lost. For each visit that a patient makes to the

clinic, we anticipate which of those three events (if any) will occur both within 6 months

and 12 months after the visit.

The second dataset that we use in this thesis is the one collected by the MEmind

Wellness Tracker, which contains information related to psychiatric patients. Suicide is

the second leading cause of death in the 15-29 years age group, and its prevention is one of

the top public health priorities. Traditionally, psychiatric patients have been assessed by

self-reports, but these su↵er from recall bias. To improve data quantity and quality, the

MEmind Wellness Tracker provides a mobile application that enables patients to send daily

reports about their status. Thus, this application enables physicians to get information

about patients in their natural environments. Therefore this dataset contains sequential

information generated by the MEmind application, sequential information generated during

medical visits and static information of each patient. Our goal with this dataset is to predict

the suicidal ideation value that each patient will report next.

In order to model both datasets, we have developed a set of predictive Machine Learning

models based on Neural Networks capable of integrating multiple sequences of data with
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the background information of each patient. We compare the performance achieved by

these approaches with the ones obtained with classical ML algorithms.

For the task of predicting the next events that will be observed in the nephrology

dataset, we obtained the best performance with a Feedforward Neural Network containing a

representation layer. On the other hand, for the tasks of endpoint prediction in nephrology

patients and the task of suicidal ideation prediction, we obtained the best performance

with a model that combines a Feedforward Neural Network with one or multiple Recurrent

Neural Networks (RNNs) using Gated Recurrent Units. We hypothesize that this kind

of models that include RNNs provide the best performance when the dataset contains

long-term dependencies.

To our knowledge, our work is the first one that develops these kind of deep networks

that combine both static and several sources of dynamic information. These models can

be useful in many other medical datasets and even in datasets within other domains. We

show some examples where our approach is successfully applied to non-medical datasets

that also present multiple variables evolving in time.

Besides, we installed the endpoints prediction model as a standalone system in the

Charité hospital in Berlin. For this purpose, we developed a web based user interface that

the physicians can use, and an API interface that can be used to connect our predictive

system with other IT systems in the hospital.

These systems can be seen as a recommender system, however they do not necessarily

generate valid prescriptions. For example, for certain patient, a system can predict very

high probabilities for all antibiotics in the dataset. Obviously, this patient should not take

all antibiotics, but only one of them. Therefore, we need a human decision maker on top of

our recommender system. In order to model this decision process, we used an architecture

based on a Generative Adversarial Network (GAN). GANs are systems based on Neural

Networks that make better generative models than regular Neural Networks. Thus we

trained one GAN that works on top of a regular Neural Network and show how the quality

of the prescriptions gets improved. We run this experiment with a synthetic dataset that

we created for this purpose.

The architectures that we developed, are specially designed for modelling medical data,

but they can be also useful in other use cases. We run experiments showing how we train

them for modelling the readings of a sensor network and also to train a movie recommen-

dation engine.





Chapter 1

Introduction

As a result of the recent trend towards digitization, an increasing amount of information

is recorded in clinics and hospitals, and this increasingly overwhelms the human decision

maker. This issue is one of the main reasons why Machine Learning (ML) is gaining

attention in the medical domain, since ML algorithms can make use of all the available

information to predict the most likely future events that will occur to each individual

patient. Physicians can include these predictions in their decision processes which can lead

to improved outcomes. Eventually ML can also be the basis for a decision support system

that provides personalized recommendations for each individual patient.

However this large amounts of medical data are rarely exploited with Machine Learning

algorithms. This happens due to two reasons that will be detailed later in this chapter, but

they can be summarized in two facts: on one hand analyzing medical data usually requires

a huge preprocessing e↵ort, and on the other hand there is a lack of Machine Learning

models tailored to suit the features of medical data. In this thesis we will contribute to

improve both aspects, explaining the preprocessing steps that we took in our datasets, and

presenting models specifically designed to tackle some of the challenges present in medical

data.

We will work with two datasets, each of them representing a di↵erent use case. The

first one was collected by the nephrology department of the Charité hospital in Berlin and

contains information about patients that su↵ered from kidney failure. This dataset contains

the full Electronic Health Record of each patient, including tests performed, medications

prescribed, background information about the patients, etc. The second dataset we use is

composed of psychiatric patients. It was collected by the Fundación Jimenez Dı́az Hospital

in Spain and the MEmind Wellness Tracker. In this dataset each patient is composed
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of some static information combined with two sequences of data: one recorded by the

physicians during the visits of the patient to the clinic, and another sequence reported by

the patients using the web application provided by the wellness tracker. These datasets

will be explained in more detail in the next chapters.

It is worth noticing that medical datasets are becoming both longer (i.e. we have more

samples collected through time) and wider (i.e. we store more variables). Therefore we

need to use ML algorithms capable of modelling complex relationships among a big number

of time-evolving variables. A kind of models that can capture very complex relationships

are Deep Artificial Neural Networks, which have proven to be successful in other areas of

ML.

Artificial Neural Networks, from now Neural Networks (NNs), are a type of Machine

Learning algorithm that was developed in the 80s. This thesis assumes that the reader

is familiarized with this type of algorithms, and in the following paragraphs we provide a

very brief introduction to NNs with references to their most basic concepts.

The main component of a NN is the Perceptron, which corresponds to a linear combina-

tion of the inputs followed by an activation function, which is usually a non-linear function

such as a sigmoid or an hyperbolic function. Perceptrons can be stacked forming layers,

and such layers can be also stacked forming what is known as a Multi-layer Perceptron or

an Artificial Neural Network. The simplest NNs are the ones composed of a single hidden

layer, which mathematically can be represented as:

h = � (Wi x + bi) (1.1)

ŷ = � (Woh + bo) (1.2)

where x is a vector that contains the input variables, ŷ is a vector containing the outputs

of the model, Wi and Wo are matrices that contain the parameters of the input and output

layers respectively, bi and bo are vectors that contain the bias or o↵set also of the input

and output layers respectively and � is a non linear function such as the sigmoid function.

The intermediate variable h is a vector usually referred as “hidden layer”, since its value

is usually not observed by the user of the model.

The most common strategy to train NNs is the backpropagation optimization algo-

rithm [51], which consist of propagating the gradient of the prediction error to each param-

eter of the network, and subsequently adapt each of them into the direction that decreases

the error. These models can contain a very large amount of parameters, and therefore they
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can potentially model very complex processes. There are mainly three constraints that

make it hard for NNs to learn complex tasks:

• Data: The more parameters a model has, the more data it is needed to train it.

Thus, in order to learn a model with many parameters such as a NN, large amounts

of data are needed. Unfortunately, a theoretical framework to evaluate the amount of

parameters that can be learned with certain dataset is currently missing. However,

the recent trend in healthcare towards digitization is resulting in big databases that

are suitable for training large NNs.

• Computing power: Fitting a large amount of parameters requires a high amount of

computing power. Thanks to the rapid improvements in GPU technologies, they

have become a much more a↵ordable alternative than CPUs. Thus, GPUs enable

researchers and engineers to train much more complex models.

• Vanishing gradients: As previously mentioned, the Backpropagation algorithm con-

sists of propagating the gradient of the error until each parameter of the network.

However, such gradient tend to 0 when it is passed through many of the layers that

compose a NN. Thus, this mathematical constraint prevents us from training NNs

composed of many layers. During the last years, researchers have developed algo-

rithmic improvements that enable us to partially overcome this limitation in order to

train large networks. Further details on this matter will be provided in Chapter 3.

The term “Deep Learning” is often associated with NNs with more than one hidden

layer. State of the art models for some applications such as Computer Vision are currently

composed of up to 70 layers [40]. These Deep Neural Networks have provided notable

improvements with respect to other techniques in many applications such as computer

vision [40] and natural language processing [61, 26].

There is a notable parallelism among the prediction of clinical events and the field of

Language Modelling, where Deep Learning has also proven to be very successful [61, 8].

One could imagine that each word of a text represents an event. Therefore a text would be

a stream of events and the task of Language Modelling is to predict the next event in the

stream. For this reason, we can get inspired by Language Modelling to create models that

predict clinical events. In the clinical setting each patient would be a stream of events,

and our task would be to predict the next events that will occur.

However, the medical domain has a set of characteristics that make it an almost unique

scenario. The main ones are:
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• Multiple events can occur at the same time: For example, multiple medications can

be prescribed simultaneously; or multiple lab results can be ordered at the same time.

• Clinical datasets are composed of multiple sequences: Each patient in the dataset is

composed of, at least, one sequence of data. It is also possible that each patient is

composed of multiple sequences recorded from di↵erent sources of data, with di↵erent

periodicities, time resolutions, etc.

• Each patient has an associated set of static data: Aside from the sequential data, each

patient is also often represented by a set of static variables containing background

information such as: age, gender, blood type, etc.

• Clinical datasets are usually composed of several variable types. We can find boolean

variables (i.e. medication prescriptions), categorical variables (i.e. blood type), in-

teger variables (i.e. age) and real numbers (i.e. calcium amount in blood). Medical

datasets can also contain images, free text, etc.

Therefore, it is critical to develop Machine Learning algorithms that are capable of

finding complex relationships among all those sources of information in order to predict

future events. For these reasons we need to develop approaches specifically designed for

the medical use case. Particularly, in this thesis, we focus in developing Machine Learning

models based on Neural Networks that are capable of exploiting several sources of dynamic

and static information. These approaches enable us to easily integrate additional sources

of information and to model complex relationships between all the variables.

Aside from these characteristics, medical datasets also present a distinct set of issues:

• Hetereogenity / inconsistencies: Medical databases are usually collected in a col-

laborative manner, where many physicians take part in the process. The collection

process is often not properly constrained and validated, which leads to physicians

recording the information in diverse ways.

• Repeated entities: Often we find elements (medications, diagnosis, etc.) that are

present multiple times in the database but with slightly di↵erent names.

• Incomplete timestamps: Some medical datasets contain the date when certain event

happened, but the time is missing. In these situations it is not possible to extract

the exact sequence in which the events took place.
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• Complex domain: Due to the complexity of the medical scenario, it is very hard

for an outsider to make sense out of a database without additional explanations by

the physicians. Therefore, lots of interactions with the physicians are needed to

understand the data and define the specific task that can be solved with Machine

Learning algorithms.

• Lots of free text: A huge amount of information is usually stored in form of free

text. In order to make use of this information one has to convert the free text into

structured data. Such conversion process is not trivial and often just a small portion

of the information is retrieved.

• Data quality changes with time: Data quality can change over time due to improve-

ments in the data collection process, change of instruments and machines, etc.

• Database entries not treated as immutable: Sometimes physicians are allowed to

modify elements in the database, such as diagnostics, which leads to a loss of infor-

mation concerning the real sequence of events that occurred.

Due to these issues, data cleaning and preprocessing is a tough and very time consum-

ing process. It is also mandatory to work closely with the physicians that have collected

the information and the IT people that designed the database. This fact may seem contra-

dictory to one of the main goals of Artificial Intelligence, which is to make computers learn

from a dataset without any human intervention. However, considering the limitations of

current Machine Learning models, it is essential to include expert knowledge in healthcare

data preprocessing pipelines.

The rest of the thesis is organized as follows:

In Chapter 2 we tackle the problem of predicting which events will be observed next for

each patient in the Nephrology dataset. For this purpose we develop a Feedforward Neural

Network that contains a representation layer. We use this model to predict the events that

will be observed next in the patients. The content of this chapter is based on the following

publication:

• Cristóbal Esteban, Danilo Schmidt, Denis Krompaß and Volker Tresp. (2015, Octo-

ber). Predicting sequences of clinical events by using a personalized temporal latent

embedding model. In Healthcare Informatics (ICHI), 2015 International Conference

on (pp. 130-139). IEEE.
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In Chapter 3 we provide a brief explanation of Recurrent Neural Networks. We explain

why it is di�cult for Recurrent Neural Networks remember events that happened far in

the past and we show what are the current solutions for this problem. Recurrent Neural

Networks will be the main model used in this thesis.

In Chapter 4 we focus on predicting a set of endpoints for Nephrology patients. Specif-

ically, we try to anticipate whether if in the next 6 or 12 month there will be a rejection of

the kidney, the graft will be lost and/or the patient will die. For this purpose, we develop a

Neural Network architecture that combines static and dynamic information using a regular

Feedforward Neural Network and a Recurrent Neural Network. The content of this chapter

is based on the following publication:

• Cristóbal Esteban, Oliver Staeck, Stephan Baier, Yinchong Yang, and Volker Tresp

(2016, October). Predicting clinical events by combining static and dynamic informa-

tion using recurrent neural networks. In Healthcare Informatics (ICHI), 2016 IEEE

International Conference on (pp. 93-101). IEEE.

In Chapter 5 we try to anticipate the future suicidal ideation value of the patients in the

MEmind Wellness Tracker. In this case, we extend the architecture presented in Chapter 4

in order to combine multiple sequences of data with static data. For this purpose we will

include in our model multiple Recurrent Neural Networks.

This thesis is not meant to be just theoretical work, but also applied work. Thus, it was

our goal to actually integrate a prototype of one of the developed models into a hospital.

In Chapter 6 we show how we developed a software architecture that was deployed in the

Charité hospital of Berlin.

In Chapter 7 we show how the models we presented so far can provide good recommen-

dations but not valid decisions. We show how Generative Adversarial Networks [38] can

be used to model the human decision process.

Chapter 8 shows a generalization of the presented models that can also be useful in

other use cases where there is static data combined with dynamic data. The content of

this chapter is based on the following publication:

• Cristóbal Esteban, Volker Tresp, Yinchong Yang, Stephan Baier, and Denis Krompaß.

(2016, July). Predicting the co-evolution of event and knowledge graphs. In Informa-

tion Fusion (FUSION), 2016 19th International Conference on (pp. 98-105). IEEE.

Finally in Chapter 9 we present the conclusion for this thesis.



Chapter 2

Predicting Sequences of Clinical

Events by using a Personalized

Temporal Latent Embedding Model

2.1 Towards Machine Learning-based Clinical Deci-

sion Support Systems

It is well known that data observed in clinical practice can lead to important insights and

can complement information gathered from controlled clinical studies [80]. One argument

is that data from clinical practice reflects the natural mix of patients whereas patients

participating in clinical studies typically have another composition: they are carefully

selected, they should not have other problems as the one under study, and they should not

receive any other treatment. Also, a future personalized medicine needs to be based on

many attributes from a large number of patients, information that can be collected from

data recorded during the clinical practice [64, 97].

In this chapter we focus on the prediction of clinical events, such as decisions, pro-

cedures, measurements and other observations. We model the whole evolution of each

individual patient, which is composed of thousands of single events. A good predictive

system could have many applications, for example, as part of a decision support system

that predicts common practice in a clinical setting and which could alert in case of unusual

orders. Eventually, a predictive system could also be used to optimize decisions, although

here, confounding variables can be a problem. If many dimensions are measured, the avail-



8
2. Predicting Sequences of Clinical Events by using a Personalized Temporal

Latent Embedding Model

able information might include direct or indirect information on important confounders,

alleviating the problem [81, 97].

We are addressing the issue from a “Big Data” perspective and use a large dataset

collected from patients that su↵ered from kidney failure. The data was collected in the

Charité hospital in Berlin and it is the largest data collection of its kind in Europe. Once

the kidney has failed, patients face a lifelong treatment and periodic visits to the clinic for

the rest of their lives. Until the hospital finds a new kidney for the patient, the patient

must attend to the clinic multiple times per week in order to receive dialysis, which is a

treatment that replaces many of the functions of the kidney. After the transplant has been

performed, the patient receives immunosuppressive therapy to avoid the rejection of the

transplanted kidney. The patient must be periodically controlled to check the status of

the kidney, adjust the treatment and take care of associated diseases, such as those that

arise due to the immunosuppressive therapy. The usual procedure at the Charité University

Hospital of Berlin for these periodic evaluations is that the visiting patient undergoes some

laboratory testing in the morning, followed by the prescription of pertinent medications in

the afternoon based on the results of the test.

The dataset contains every event that happened to each patient concerning the kidney

failure and all its associated events: medications prescribed, hospitalizations, diagnoses,

laboratory tests, etc. [54, 82]. The dataset started being recorded more than 30 years ago

and it is composed of more than 4000 patients that underwent a renal transplantation or are

waiting for it. For example, the database contains more than 1200 medications that have

been prescribed more than 250000 times, and the results of more than 450000 laboratory

analysis. The database has been the basis for many studies in the past [42, 20, 19, 15]. In

this work we study if future events for a patient can be predicted given the past events of the

same patient. This is particularly important for the estimation of drug-drug interactions

(DDI) and adverse drug reactions (ADR) in patients after renal transplantation.

Note that the data is extremely high-dimensional (there are thousands of diagnosis,

procedures, lab results to consider) and sparse, since most combinations are unobserved.

In recent years a number of approaches for this type of data situation have been developed

in other application fields. These approaches are based on the concept of a low-dimensional

latent embedding of the entities and events of interest in combination with Neural Network

models and showed superior predictive performance in their respective domains. Exam-

ples are leading language models in natural language processing [8], the winning entries

in the Netflix competition for the development of movie recommendation systems [47] and
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approaches for learning in knowledge graphs [65]. A new aspect here is that the temporal

sequence of events plays an important role. In this chapter we extend these models to

be applicable towards temporal sequential models for the prediction of events in a clinical

setting and we develop a new model that extends the Markov property of language mod-

els towards a personalized model and a long-term memory. We compare the prediction

accuracy of these approaches with other leading modelling approaches such as a nearest

neighbor methods, Naive Bayes classifier and Logistic Regression models.

There have been e↵orts within the medical domain to simultaneously predict a reduced

number of events [55, 71] and also to detect patterns within a larger amount of events [100].

Our dataset consists of sequences of high-dimensional sparse data and in this situation

latent embedding approaches as used in language models [8], collaborative filtering [47]

and knowledge graph models [65] have been very successful. In these models, the latent

embeddings represent general entities such as users, items, or simply words, and the idea

is that the embeddings represent the essence of the entities in form of low-dimensional

real-valued representations. Latent embeddings were introduced as a suitable strategy for

clinical data in [48] by predicting hospital readmissions. In this work we will show how to

predict the sequence of a large amount of clinical events by developing a temporal latent

embedding model.

The chapter is organized as follows. In the next two sections we introduce the proposed

models for this work. In Section 2.4 we describe details of the nephrology use case and

describe the data structure in detail. In Section 8.5 we explain the experimental set ups

and present its results. In Section 2.6 we explain how we successfully applied our model

to an additional medical dataset consisting of breast cancer patients. Section 8.6 contains

our conclusions and an outlook.

2.2 Representation Learning

Representation learning is a subfield of Machine Learning that consists of learning alter-

native representations of the entities that compose a dataset. These representations are

usually real numbered vectors which are called “latent embeddings” or “latent represen-

tations”. A typical use case for representation learning are movie recommender systems.

Using representation learning techniques, we can use a database containing movie ratings

in order to learn a latent representation for each movie and for each user. Then we can, for

example, take the latent representation of a movie and find its nearest neighbors in order
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to identify similar movies. Moreover, some of the dimensions of the learned representations

can have interpretable meanings, representing features as comedy, terror, etc. Thus, this

latent representations can also be used to display interesting visualizations that wouldn’t

be possible with the raw data.

Besides, by computing low rank latent representations, one can obtain a sort of com-

pressed version of the original data, meaning that the model learns to generalize over the

raw input data. This feature is of course essential in any Machine Learning model and

leads to improved predictions. For example, another field where representation learning

has been widely used is Language Modelling. The task to be solved in Language Modelling

is that of predicting the next word of a text given the previous ones. Historically, this

has been accomplished by training probabilistic models that learn how likely is to observe

each tuple or triplet in the dataset. However, after training such type of model, it is not

possible to predict the probability of observing a tuple or triplet that is not present in the

training dataset. On the other hand, if we used a model based on representation learning,

it would learn a generalized latent representation for each word in the text, and therefore

it would be able to make predictions about combinations of words that are not present in

the training dataset.

Representation Learning can be also a good fit for modelling medical datasets, since as

it happens with movies and words, there are for example multiple medications and patients

that share certain features.

2.3 Temporal Latent Embeddings for Predicting Clin-

ical Events

In this section we extend latent embedding models to be applicable to clinical data which

consist of temporal sequences of high-dimensional sparse events. In particular, in our

approach the latent embeddings describe the state of the patient at a given time. Another

extension is that we complement the short-term memory of language models with a long-

term memory by including a representation of the complete clinical history of the patient.

2.3.1 The Basic Data Structures

A recorded event in our data is based on the schema event(Time, Patient, EventType,

Value). Time stands for the time of the event and is represented as the day of the event.
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Note that several events can happen at the same time. Patient stands for the patient ID

and EventType for the type of the event, such as a specific diagnosis, a specific prescribed

medication, a specific laboratory result and so on. For events like prescribed medications

the value is equal to 1 if this particular event happens for the patient at time Time=t

and is equal to 0 otherwise. For laboratory results such as Calcium or Blood count,

we used a binary encoding and represented each measurement as three event types, i.e.,

LabValueHigh, LabValueNormal and LabValueLow.

These events can be stored in a three-way tensor X with dimensions Time, Patient,

and EventType. The tensor entry xt,i, j with t = 0, . . . ,T , i = 0, . . . , I, j = 0, . . . , J is the

value of the tuple event(Time=t, Patient=i, EventType=j, Value). The tensor is extremely

sparse and is stored in form of a sparse data structure. The task of the learning approach

is to predict tensor entries for patients in the test set. In particular we predict entries in a

second tensor ⇥, with the same dimensions as X , that contains the patients in the test set.

The relationship between both is defined by the sigmoid function P(xt,i, j = 1) = sig(✓t,i, j ).

There are a number of interesting challenges in the dataset. Time plays an essential

role and we are dealing with sequences of events but absolute time is of little value and a

patient-specific normalization of time is non-trivial. Also the tensor X initially contains

only data about the patients in the training dataset; our real goal of course is to obtain valid

predictions for test patients which are not part of the training data without an expensive

retraining of the model.

In the next subsections we will describe the Temporal Latent Embedding models we

have used in the experiments. In the next subsection we describe the model which is based

on the complete patient history up to time t. Subsection 8.4 then describes a Markov

model that is based only on a recent history and Subsection 2.3.4 describes a combination

of both.

2.3.2 Patient History Embedding

We define an aggregation tensor X̃ with entries x̃t,i, j . Here, x̃t,i, j is an aggregation of

{xt 0,i, j }t 0=1,...,t , i.e., of all events that happened to patient i up to time t. In the experi-

ments we used di↵erent aggregation functions (see Section 8.5). x̃t,i, j is supplemented with

dimensions encoding background patient information such as age, gender and so on.

We then model

✓t,i, j = f j (hhist

t�1,i).
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Here, hhist

t,i is an r-dimensional real vector that represents the embedding of patient i at

time t, based on all information observed for that patient until time t. We call r the rank

of the embedding.

Since we want to apply the learned model easily to new patients, we assume that the

embeddings can be calculated as a linear function of the events that are associated with

patient i up to time t, with

hhist

t,i = Ax̃t,i,:

where x̃t,i,: is a J-dimensional vector and A 2 Rr⇥J is a matrix of learned weights. Thus

hhist

t,i is a latent representation of the history of the patient i until time t. In a related but

slightly di↵erent interpretation, we can also think of the j-th column of A as the latent

embedding representation of event type j. As in other embedding approaches, the model

has the ability to form similar latent representations for event types which have a similar

semantics, i.e. for medications with comparable e↵ects.

Note, that if f j (·) is a linear map, we obtain a factorization approach, as used in

collaborative filtering. In our experiments, the functions f j (·) are nonlinear maps and are

modelled by a multi-layer Perceptron (MLP) with J outputs, as also used in [8] and [65].

2.3.3 Markov Embeddings

In a K-th order Markov model, the events in the last K time steps are used to predict the

event in the next time step. Markov models are used in language models where an event

would correspond to an observed word [8]. Some of the leading approaches in computa-

tional linguistics [27, 61] are then using learned word embeddings to realize a number of

applications and we will also pursue this approach in this chapter.

More precisely, our model is

✓t,i, j = f j (hMar

t�1,i, h
Mar

t�2,i, . . . , h
Mar

t�K,i).

Note that in this model h Mar

i,t is an an r-dimensional embedding of all the observed events

for patient i at time t. Note also that, in contrast to the situation in language models,

several events can happen at the same time.

As before, we assume that there is a linear map of the form

h Mar

t,i = Bxt,i,:

where xt,i,: is a J-dimensional vector that contains all observed events for patient i at time

t.
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Figure 2.1: Markov embedding model for predicting sequences of clinical events by taking

the previous time steps as inputs.

We can think of h Mar

t,i as the latent representation of patient i at time t based on all

events that happened to the patient at time t. In contrast, hhist

t,i was the presentation of all

events that happened to patient i until time t.

Again the j � th column of B is representing latent embedding of event type j. The

overall architecture in shown in Figure 2.1.

2.3.4 Personalized Markov Embeddings

The Markov model so far is independent of the individual patient history but it makes

sense to assume that this history would be relevant for predicting events. Thus, we include

hhist

t,i in the Markov model in the form

✓t,i, j = f j (h hist

t,i , h
Mar

i,t�1, h
Mar

i,t�2, . . . , h
Mar

i,t�K ).
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Figure 2.2: Personalized Markov embedding model. It predicts the observed events within

the next time step given the patient history and the previous time steps as inputs.

The overall architecture is shown in Figure 2.2.

2.3.5 Modelling the Function

In the language models of [8], f j (·) was modelled as a standard multi-layer Perceptron neu-

ral network (MLP) with one hidden layer. A similar representation was used in modelling

knowledge graphs as described in [65]. We use the same MLP structure here, where we

also experimented with di↵erent numbers of hidden layers. In the following, the set of all

MLP parameters is denoted by W = {w}.
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2.3.6 Cost Function

We derive a cost function based on the Bernoulli likelihood function, also known as Binary

Cross Entropy, which has the form:

cost(A, B,W ) =
X

t,i, j2Tr
�xt,i, j log(sig(✓t,i, j )) � (1 � xt,i, j ) log(1 � sig(✓t,i, j ))

+�w
X

w2W
w2 + �a

rX

l=1

JX

j=1

a2i, j + �b

rX

l=1

JX

j=1

b2i, j

Note that we added regularization terms to penalize large MLP parameters w and large

embedding parameters ai, j and bi, j . Here, �w, �a, and �b are regularization parameters.

Tr stands for the training dataset and sig is the sigmoid function.

2.4 The Use Case

2.4.1 Kidney Diseases and their Treatments

Kidney diseases are causing a significant financial burden on all health systems worldwide.

Here we describe the situation in Germany. It is estimated that alone the treatment of

end-stage renal disease (ESRD) with chronic renal replacement therapies accounts for more

than 2.5 billion Euros annually, and the incidence of dialysis-dependent renal insu�ciency

is rising by 5-8% each year [57]. Despite progress in diagnosis, prophylaxis and therapy

of chronic kidney diseases, renal transplantation remains the therapy of choice for all

patients with ESRD. Kidney transplantation leads to a significant improvement of quality

of life, to substantial cost savings and most importantly to a significant survival benefit

in relation to all other renal replacement therapies. Only approximately 2300 kidney

transplantations were performed in Germany in 2013 but more than 8000 patients are

registered on the waiting list for a kidney transplant [70]. With excellent short term success

rates, nowadays the reduction of complications and the increase of long-term graft survival

are the main goals after transplantation, especially on the background of the dramatic

organ shortage. It is not only important to reduce - or better avoid - severe and/or life-

threatening complications such as acute rejection, malignancy and severe opportunistic

infections, but it is also of utmost importance to ameliorate the many other serious side
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e↵ects, which increase cardiovascular risk, decrease renal function, necessitate costly co-

medication or hospitalisations and also have an impact on the quality of life after successful

transplantation.

Despite the fact that renal transplantation is much cheaper than regular dialysis treat-

ment it is a complex and costly procedure. Due to the outlined complexities, patients

should remain in life-long specialized posttransplant care. Patients have not only to take

immunosuppressants, but also have to take numerous drugs for prophylaxis and treatment

of pre-existing and/or concomitant diseases, which are at least in part aggravated by the

immunosuppressants. As a consequence most patients have to take 5-10 di↵erent medi-

cations every day during their entire life. The many drugs and the multiple side e↵ects

of the routinely administered medication are causing a substantial cost burden. There

is not only a medical need but also a financial necessity to reduce side e↵ects, diagnos-

tic procedures, therapeutic interventions, hospitalisations and ultimately improve patient

safety. This will directly lead to a better quality of life, cost savings and better allocation

of medical resources.

2.4.2 Relevance of Event Modelling

The long-term goal of the research described in this chapter is to improve patient treat-

ment by, e.g., prescribing the most e↵ective drugs to the patient my minimizing side e↵ects.

Particularly in focus are drug-drug interaction (DDI) and adverse drug reactions (ADR)

in patients after renal transplantation. Of high interest are the e↵ects of decisions on key

outcome parameters such as patient and graft survival, renal function as well as hospitali-

sations. Lastly, the goal is to implement a clinical decision support system directly into the

electronic patient file, in order to prevent dangerous DDI, reduce dosing errors and provide

the physician and patient with timely and adequate information on new prescriptions.

2.4.3 TBase R�

In close collaboration with the department of Artificial Intelligence of the Humboldt Uni-

versity, the Charité - Universitätsmedizin Berlin developed an electronic patient record

(TBase R�) for renal allograft recipients in 1999. The main idea was to combine a database

for the daily patient care on the one hand with a validated database for medical research

of the other hand. The combination of daily medical routine with a research database was

the key concept, in order to collect data of high quality, which are constantly validated by
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Figure 2.3: TBase R�architecture

the user. Due to clinical needs only accurate and reliable data can be used in daily routine

practice. By this means, we have created a continuous internal validation process and

almost completely avoid missing data. Since 2000 TBase R�is used in the clinical routine of

the Charité and all relevant patient data is automatically transferred. Due to the increase

of the options of medical diagnostics, the extent of the information of the clinical data

has also increased dramatically. The elaborate and flexible structure (see Figure 2.3) of

the patient record and the database made it possible to integrate a large number of elec-

tronic data of several subsystems with di↵erent data structures over the years. Currently

TBase R�automatically integrates essential data from the laboratory, clinical pharmacology,

nuclear medicine, findings from radiology and administrative data from the SAP-system

of the Charité. TBase R�is now under patronage of Deutsche Transplantationsgesellschaft

(DTG) and Eurotransplant, Leiden, The Netherlands, and was implemented in 8 German

transplant centres. Figure 2.4 provides an impression of the schema of TBase R�.

2.5 Experiments

2.5.1 Setup of the Experiments

The data contains every event that happened to each patient concerning the kidney failure

and all its associated e↵ects, including prescribed medications, hospitalizations, diagnosis,

laboratory tests and so on. In this chapter we will consider events from year 2005 and
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Figure 2.4: View on the TBase R�Schema

onwards due to the improvement of the data quality from that year. Also, in order to have

a better control of the experiments, we will work with a subset of the variables available

in the dataset. Specifically, we will try to model three aspects of the patient evolution:

1. Medication prescriptions: which medications are prescribed in each situation.

2. Ordered laboratory tests: which laboratory tests are ordered in each situation.

3. Laboratory test results: which will be the outcome of the ordered laboratory tests.

Each entry in the database is labelled with the date in which the event happened. Our

task will consist in predicting all the events that will happen to a patient on his or her

next visit to the clinic given his past visits, as illustrated in Figure 2.5.

A very common situation is that the patient gets some laboratory tests done during the

morning, and then based on the results of those tests, the doctor prescribes some medica-

tions to the patient in the afternoon. Therefore, we can define a second type of experiment

by only considering days that have both laboratory tests performed and medications pre-

scribed, and assuming that the laboratory tests always happen before the medications.

Specifically, we will try to predict which will be the medications prescribed in the after-

noon given the results of the laboratory tests performed in the morning and the events that

happened in the previous visits. This way we can see how the model behaves in intra-day

predictions. Figure 2.6 shows a representation of the experiment.
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Figure 2.5: Full visit predictions. We predict all the events that will happen within the

next visit given the previous visits.

Figure 2.6: Intra-day predictions. We predict the medications that will be prescribed in

the afternoon given the laboratory analysis that were performed in the morning and the

previous visits.

After selecting the subset of the dataset that we will use and performing the binary

encoding, our pre-processed dataset consists of a table where each row represents one visit

to the clinic. Each of these rows belongs to a patient, has an associated date and contains

all the events that occurred during that visit in binary format. An example of how our

pre-processed data look like can be found in Figure 2.7.

2.5.2 Hyperparameter Fitting

The model contains several hyperparameters that need to be optimized, being the most

relevant ones the rank r of the embeddings, the order of the Markov model K , the number

of hidden units in the Neural Network, the learning rate and the regularization parameters.
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Figure 2.7: Example of pre-processed data.

In order to fit these hyperparameters, we randomly split the data into three subsets: 60%

of the patients were assigned to the training set with totally about 100 thousand visits, 20%

of the patients were assigned to the validation set and another 20% to the test set, with

approximately 33 thousand visits each. Note that, under this configuration, we evaluate

the performance of the model by predicting the future events of patients that the model

has never seen before, and therefore increasing the di�culty of the task.

In Figure 2.8 we can see how the area under the Precision-Recall curve on the validation

set improves as we increase the order of the Markov model K . We observe that the

performance stabilizes with an input window of size six. A 6-th order Markov model

(without the personalization) has around 28 thousand inputs (4666 input events multiplied

by 6 time steps). The number of outputs of the Neural Network is 2383, i.e. 2383 events

are predicted.

2.5.3 Baseline Models

We will compare the performance of our model with various classic Machine Learning algo-

rithms. Specifically, our baseline models will be: Naive Bayes classifier, K-nearest neighbor

classifier and Logistic Regression. Additionally, we will also use what we named “constant

predictor”, which consists in predicting always for each event the occurrence rate of such

event (thus the most common event is given the highest probability of happening, followed

by the second most common event, and so on). Random Forests were also considered to

be included in this work, but after some trials they were discarded due to the excessive

amount of time they required to be trained with this dataset, due to the large number

of events to be predicted (nevertheless in the few experiments we performed with them,

they never got to outperform our proposed models). When comparing the performance
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Figure 2.8: Area Under the Precision Recall Curve improves as we increase the number of

past visits (order of the Markov model K) used to predict the events that will be observed

in the next visit.

between these models, we report for each model the mean area under the Precision-Recall

curve (AUPRC) and mean area under Receiver Operating Characteristics curve (AUROC)

together with their associated standard errors after repeating each experiment ten times

with di↵erent random splits of the data. We made sure that these ten random splits

were identical for each model. Most of these baseline models were taken from Scikit-learn

[74], which is the main open source machine learning library for the Python programming

language.

2.5.4 Model Training and Evaluation

We trained the proposed models by using mini-batch Adaptive Gradient Descent (Ada-

Grad) [30] combined with an early stopping strategy and using a mini-batch size of 128

samples. Our main goal will be to maximize the area under the Precision-Recall curve

(AUPRC) of our predictions. We chose this score due to the high sparsity of the data (the

density of ones is around 1%) and because we are mainly interested in predicting the very

small amount of events that will happen, as opposed to the task of predicting which events

will not be observed. Nevertheless, we will also report the area under Receiver Operating

Characteristics curve (AUROC) because it is often reported in related scenarios.

The proposed models were implemented in Theano [12, 5], which is a graph-based
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computation library, especially well suited for training Neural Networks. The experiments

were conducted using a Intel(R) Xeon(R) CPU E7-4850 v2 processor with 1TB of RAM

and 48 cores at 1.2 Ghz with 2 threads per core. The reported computation times were all

achieved using one thread.

2.5.5 Full Visit Predictions

As explained earlier in this section, our first experimental setting consists in predicting all

the events that will happen to the patients during their next visit to the clinic given the

events that were observed in their previous visits, as it is illustrated in Figure 2.5.

Therefore, we predict the events that will happen to a patient in her or his next visit to

the clinic given the events that were observed in her or his six previous visits to the clinic,

i.e. K = 6. Table 8.1 shows the results obtained after repeating the experiments with ten

di↵erent random splits of the data. We can see that the Markov embedding model, which

corresponds to the architecture shown in Figure 2.1, outperforms all our baseline models.

Our proposed Markov embedding model obtained an AUPRC score of 0.574, being Logistic

Regression the second best model with an AUPRC score of 0.554. We can also see how the

random predictor achieved a very low AUPRC score due to the high sparsity of the data,

which means that optimizing the AUPRC for this dataset is a hard task.

In the last column of Table 8.1 we also report the time that it took to train for each

model with the best set of hyperparameters in the first random split. Note that one

of the advantages of the proposed model is that the rank of the embeddings matrix B

can always be reduced in order to decrease the computational cost required to train the

model. Besides, given constant hyperparameters, the parameters of the model will increase

linearly with the amount of di↵erent event types present in our dataset (e.g. number of

medications, number of diseases...), whereas the parameters of other models such us the

Logistic Regression will grow quadratically in this situation since for every additional event

that we include we are adding both one input and one output.

We repeated the same experiment with the Personalized Markov Embedding model

as represented in Figure 2.2. The additional information that we input to the model is

composed of the aggregated history and general information of each patient. In order to

create the aggregated history, for each sample that we input to the model we create a vector

composed of the sum of all the events that are recorded for that particular patient until the

date of the visit we want to predict. Our experiments showed that instead of directly using

this count of the data as long term memory, we have two options that work better. The first
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Table 2.1: Scores for full visit predictions. AUPRC stands for Area Under Precision-Recall

Curve. AUROC stands for Area Under ROC Curve.

AUPRC AUROC Time (hours)

Markov Embeddings 0.574 ± 0.0014 0.977 ± 0.0001 6.11

Logistic Regression 0.554 ± 0.0020 0.970 ± 0.0005 4.31

KNN 0.482 ± 0.0012 0.951 ± 0.0002 17.74

Naive Bayes 0.432 ± 0.0019 0.843 ± 0.0015 39.1

Constant predictions 0.350 ± 0.0011 0.964 ± 0.0001 0.001

Random 0.011 ± 0.0001 0.5 -

option consists in computing the frequency of appearance of each event by dividing each

row of the memory by the number of visits used to make the count. The second option

consists in normalizing the count between 0 and 1. We will use both the appearance

frequency of each event and the normalized count as our long term memory. Regarding

the background information, it is composed of static or slow changing variables that we

also converted to a binary format. Specifically, the background information is composed

of the following variables: age, gender, blood type, time from first dialysis, time from the

first time the patient was seen, weight and primary disease. We can see in Table 8.2 how

the personalization of the Markov embedding model improved its performance. During

our experiments, we observed that among all the variables that compose the additional

information used in this experiment, the inclusion of the frequency of appearance of each

event is the factor that contributed most to the improvement of the performance of the

model. Last row in 8.2 shows the performance of the model when making the predictions

using just the aggregated patient history as input, as described in Section 2.3.2.

Regarding the architecture of the personalized Markov embedding model, we also tested

the option of having just one embeddings matrix shared between the long term memory

and the visits within the time window, i.e. A = B, but we found that the best strategy

for our use case is to use separate embeddings matrix for the long term memory and the

background information as it is shown in Figure 2.2.

We also tried to initialize the embedding matrices by using an autoencoder. This

brought a speed up of around 30% to the optimization process of the model. However,

this advantage vanished when we considered both the model optimization time and the
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Table 2.2: Scores for full visit predictions with and without long term memory and back-

ground information. AUPRC stands for Area Under Precision-Recall Curve. AUROC

stands for Area Under ROC Curve.

AUPRC AUROC

Personalized Markov embeddings 0.584 ± 0.0011 0.978 ± 0.0001

Markov embeddings 0.574 ± 0.0014 0.977 ± 0.0001

Patient history embedding 0.487 ± 0.0016 0.974 ± 0.0002

training time of the autoencoder.

2.5.6 Intra-day Predictions

Our second experiment type consists in predicting which medications will be prescribed

in the afternoon given the results of the laboratory tests performed in the morning and

the events that happened in the six previous visits. Figure 2.6 shows a representation of

the experiment. The architecture of the model will be similar to the one for the Markov

embedding model (Figure 2.1), but including one more time step in the input window that

will contain the information regarding all the observed events in the present day. Therefore,

for this experiment the order of the Markov model K will be equal to seven, instead of six as

it was in the case of full visit predictions. We can see the result of the experiment in Table

5.3, which shows that also in this setting our proposed model outperforms the baseline

models. The Markov embedding model for intra-day predictions achieved an AUPRC

score of 0.277, which is lower than the score achieved when doing full visit predictions

because the dataset is even more sparse when we only take into account the medications.

Logistic Regression is again the second best result, and we can also observe how in this

case the performance of the constant predictor is almost as bad as the random predictor,

which means that this is even a harder task than the full visit predictions.

Another interesting experiment is to compare this result with the one obtained when

doing full visit predictions. That is, we will measure the performance of predicting medi-

cation prescriptions both considering the laboratory tests performed in the same day and

not considering them. Table 5.4 shows that incorporating intra-day information actually

improves the performance of the predictions.
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Table 2.3: Scores for intra-day predictions. AUPRC stands for Area Under Precision-Recall

Curve. AUROC stands for Area Under ROC Curve.

AUPRC AUROC

Markov embeddings intra-day 0.277 ± 0.0026 0.935 ± 0.0007

Logistic Regression intra-day 0.238 ± 0.0041 0.916 ± 0.0014

KNN 0.184 ± 0.0027 0.873 ± 0.0002

Naive Bayes intra-day 0.231 ± 0.0013 0.686 ± 0.0020

Constant predictions intra-day 0.008 ± 0.0013 0.564 ± 0.0064

Random intra-day 0.006 ± 0.0064 0.5

Table 2.4: Scores for intra-day predictions with and without considering the present day.

AUPRC stands for Area Under Precision-Recall Curve. AUROC stands for Area Under

ROC Curve.

AUPRC AUROC

Markov embeddings intra-day 0.277 ± 0.0026 0.935 ± 0.0007

Markov embeddings 0.250 ± 0.0022 0.931 ± 0.0006

Besides, as we did with full visit predictions, we will make intra-day predictions in-

corporating a long term memory and background information of the patients. Table 2.5

shows how we improved the performance of the predictions with the personalized Markov

embedding model.

2.5.7 Sensitivity Analysis

We performed a sensitivity analysis in order to evaluate how the model reacts to changes in

the inputs. We performed this analysis using the medication named Tacrolimus, because

it is one of the main immunosuppressants used in our database but it is not as frequent as

other immunosuppressants such as Cyclosporin.

When doing the intra-day predictions as illustrated in Figure 2.6, and if we look ex-

clusively at the score obtained in the prediction of Tacrolimus prescription (i.e. predicting

whether or not Tacrolimus prescription will be observed next), we obtain an AUPRC score
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Table 2.5: Scores for intra-day predictions with and without memory and background

information. AUPRC stands for Area Under Precision-Recall Curve. AUROC stands for

Area Under ROC Curve.

AUPRC AUROC

Personalized Markov embeddings

intra-day
0.289 ± 0.0027 0.938 ± 0.0005

Markov embeddings intra-day 0.277 ± 0.0026 0.935 ± 0.0007

of 0.629, whereas the random prediction score 0.160. The sensitivity analysis will consist

in suppressing one by one the events in the input and check how the absence of such input

a↵ects to the AUPRC score.

After performing this analysis we rank our input variables according to how much the

AUPRC score of predicting Tacrolimus prescription was degraded when suppressing each

of them. Even though this is a simplified analysis since we do not analyze how each variable

influences the output when combined with other variables, we can infer that the higher a

variable is ranked, the higher is the importance that has been assigned to it by our model

for this task.

Most of the prescriptions of Tacrolimus present in our database correspond to an in-

crease or decrease of the amount of medication that a patient is taking. The dosage of

Tacrolimus that a patient takes has to be adjusted when certain criteria are met. The fac-

tors that the physicians take into account to decide whether or not the dosage of Tacrolimus

has to be changed are the amount of Tacrolimus in blood and the excess of Creatinine in

blood. Out of almost 5000 events, the laboratory results for “Low Tacrolimus”, “High

Tacrolimus” and “Normal Tacrolimus” occupy the positions second, third and fourth re-

spectively in our sensitivity ranking. The laboratory result of “High Creatinine” occupies

the position number 27. Therefore we can see how the model has learnt to predict the

prescription of Tacrolimus giving a very high importance to the same observations that

the physicians use. Moreover, other factors that are also correlated with the prescription

of Tacrolimus are also present in the top 10 entries of the sensitivity ranking. For example

in the position number 8 we find “High C-reactive protein”, which is an infection marker

that, when observed, indicates that the Tacrolimus dosage has to be reduced. Also in

position 10 we find “High Glucose” which is a side e↵ect of Tacrolimus that often leads to
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Figure 2.9: Data sample.

the reduction of the Tacrolimus dosage.

2.6 Breast Cancer Dataset

2.6.1 The Dataset

As we mentioned already, one of the main issues when working with medical data, is that

there is a huge amount of information that is stored in form of unstructured data. Vogt

et al. [99] developed an algorithm that allows to generate sentence clusters out of a set of

clinical notes composed of free text. Thus, this algorithm converts the unstructured data

if the clinical notes into structured data. As a result of the process, we will have for each

patient a binary matrix indicating which clusters has been observed on each visit. Figure

2.9 shows an example of how the final dataset looks like.

For our work, in collaboration with the Memorial Sloan Kettering Cancer Center of New

York, we took a set of breast cancer patients, composed of 11000 patients approximately.

The total number of medical notes was 180000. After the clustering process, a total of 679

clusters were found.

2.6.2 Experimental setting

The experiment will consist of predicting which sentence clusters will be observed on the

next visit to the clinic, given the previously observed cluster.

We randomly split the data into three sub sets: 60% for training, 20% for validation

and 20% for test. Adagrad optimization method was used to fit the Markov Embeddings

Model. Cross validation was used for setting the rest of the hyperparameters such as

number of units in the hidden layer, rank of the latent embeddings, learning rate, etc.
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2.6.3 Results

Table 2.6 shows the results of the experiment. KNN stands for K Nearest Neighbors. We

can see how the Markov Embeddings Model outperformed the other models, although its

AUPRC score is very close to the one obtained by the Logistic Regression.

Table 2.6: Scores for the task of predicting which sentence clusters will be observed on the

next visit to the clinic.

AUROC AUPRC

Markov embeddings 0.952 0.533

Logistic Regression 0.929 0.532

KNN 0.950 0.484

Random 0.5 0.0049

It must be noted that in this experiment we did not used static information of patients,

but just the dynamic information, composed of the sequence clusters that has been pre-

viously observed. Due to the nature of the scenario, the hospital is also storing genetics

information concerning these patients, and therefore it would be possible to integrate such

data into the model.

2.7 Potential Extensions

We will try to improve the model by introducing other elements that proved to be successful

in deep Neural Networks such as drop out regularization and temporal convolutional layers.

We will also explore the possibility of including additional information in the model such

as the size of the time gap between the visits.

Besides, [61] showed that Recurrent Neural Networks provide the best performance in

the task of language modelling. Therefore we will explore such models for our use case.

Regarding the data, we will extend our model to predict more event types within this

dataset, and we will also apply our model to other datasets and use cases.

Our project also serves to encourage the TBase system to collect more information that

would be valuable for decision support, such as patient symptoms and a precise time stamp

for each event. Future work will also include the incorporation of textual information as
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present in pathology reports and information from molecular tests, e.g., genetics. Finally,

we plan to make more extensive use of background ontologies which for example can be used

to map di↵erent medications with identical active components to a common representation.

2.8 Chapter summary

In this chapter we presented a model capable of predicting clinical events that is scalable

and provides an acceptable performance for our current use case, which consist of modelling

a subset of the variables that compose the evolution of the patients in our dataset.

Our work already lead to new requirements for improving the medical documentation.

For example a detailed documentation of the patients symptoms would be a very valuable

information for improving the model.

We showed how the proposed model performed better than our baseline models both

making full visit predictions and intra-day predictions. We also showed how to integrate

both the background information of each patient and a long term memory in order to

improve the performance of the model.

The model presented currently predicts common practice in a clinic which can already

be useful in many ways, for example in alerting sta↵ in case of unusual decisions. Of course

the ultimate goal of a clinical decision support system should be not just replicating the

decisions that are most often taken by the physicians in each situation, but to provide

recommendations that lead to the best outcome possible. The basis for achieving this goal

is a predictive model as presented in this chapter.





Chapter 3

Review of Recurrent Neural

Networks

Recurrent Neural Networks (RNNs) are a type of Neural Network specifically designed to

model sequential, and therefore we will make use of it in the next chapters of this thesis.

In RNNs, the hidden state of one time step is computed by combining the current input

with the hidden state of the previous time step. This way they can learn to remember

events from the past that are relevant to predict future outcomes. In Figure 3.1 we can

see the architecture of an RNN, whereas Figure 3.2 shows the unfolded representation of

an RNN.

Figure 3.1: Recurrent Neural Network.
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Figure 3.2: Unfolded representation of a Recurrent Neural Network.

As opposed to the models based on Feedforward Neural Networks, when sequential

data is modelled using RNNs, we do not need to specify how many time steps from the

past we want to consider to predict future events. Therefore, RNNs can theoretically learn

to remember any event (or combination of events) that occur in the life of the patient that

is useful to predict future events. This feature can be very valuable when our clinical data

set presents such kind of long term dependencies.

Another advantage of using RNNs for learning with sequences is that, given a new

patient, we can start predicting future events for such patient right after his or her first

visit to the clinic. On the other hand, if we model our data with a Feedforward Neural

Network and we have decided to use the “n” previous visits to predict future events, we will

have to wait until we have accumulated at least “n” visits for a patient to start predicting

his or her future events. In some scenarios, it can be very useful to have a system with the

ability of making predictions with sequences of di↵erent length.

More formally, the output of an RNN is computed as:

ŷt = � (Woht ) (3.1)

where � is some di↵erentiable function, usually the logistic sigmoid function or the

hyperbolic tangent, and h is the hidden state of the Neural Network.

Given a sequence of vectors x = (x
1

, x
2

, · · · , x
T

), the hidden state of an RNN is computed

the following way:

ht = f (ht�1, xt ) (3.2)
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We will summarize the most common options for the f function in the next sections.

3.1 Standard Recurrent Neural Network

This is the classic way of updating the hidden state in RNNs:

ht = � (W xt +Uht�1) , (3.3)

In order to compute the value of the hidden state at time t, we perform a linear

combination of the hidden state of the previous time step ht�1 with the current input

to the network xt . This way the Neural Network can learn to remember specific events

observed in the past by encoding them in the hidden state, in order to use such information

to improve the predictions in the present time step.

3.2 Vanishing Gradient Problem

As we mentioned earlier, one of our main interests for using RNNs is to capture long-

term dependencies. The ability to remember events that occurred a long time ago can be

specially useful for some medical applications where events observed at any point in the

life of the patient can be very informative about future events that will be observed.

However, it was observed by Bengio et al. [9] that it is not possible for standard

RNNs to capture such long-term dependencies due to the vanishing gradient problem. The

vanishing gradient problem shows that, as we propagate the error through the network

to earlier time steps as represented in 3.3, the gradient of such error with respect to the

weights of the network will tend to 0.

One of the reasons that cause this issue is that, for each additional time step that we go

into the past, we multiply the gradient of the error by the derivative of the sigmoid. This

derivative has a maximum value of 0.25, as seen in Figure 3.4. Other non linear functions

often used in NNs such as the hyperbolic tangent also present similar small gradients.

Thus, as after a few time steps, we have multiplied the gradient multiple times by very

small numbers and therefore it tends to 0. Pascanu et al. recently published a thorough

study on the subject [72]. Besides, in RNNs, the hidden state is repeatedly multiplied by

the same matrix on each time step. This recurrent behavior often makes RNNs unstable,

and the gradients tend to either explode or vanish [10].
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Figure 3.3: Simplified representation of backpropagation through a Recurrent Neural Net-

work. “hiddenX” represents the internal state of the network on the Xth temporal state.

Figure 3.4: Sigmoid derivative.

3.3 Long Short-Term Memory units

In order to alleviate the gradient vanishing problem, Hochreiter et al. [41] developed a

gating mechanism that dictates when and how the hidden state of an RNN has to be

updated.

There are di↵erent versions with minor modifications regarding the gating mechanism



3.4 Gated Recurrent Units 35

in the long short-term memory units (LSTM) units. We will use in here the ones defined

by Graves et al.[39].

it = � (Wxi xt +Whiht�1 +Wcict�1 + bi) (3.4)

rt = � (Wxr xt +Whr ht�1 +Wcr ct�1 + br ) (3.5)

ct = rt � ct�1 + it � tanh (Wxc xt +Whcht�1 + bc) (3.6)

ot = � (Wxoxt +Whoht�1 +Wcoct�1 + bo) (3.7)

ht = ot � tanh(ct ) (3.8)

where � is the element-wise product and i, r and o are the input, forget and output

gates respectively. As it can be seen, the gating mechanism regulates how the current

input and the previous hidden state must be combined to generate the new hidden state.

The main di↵erences between this implementation of the LSTM units and the first one

published by Hochreiter et al., is that the original implementation didn’t include forget

gates and the activation function was the sigmoid function instead of tanh.

LSTM units have been successfully used many times before [21, 103]. Indeed they have

become the de facto standard for RNN implementations. The only downside of LSTM

units with respect standard RNN updates is the increase of network parameters, which

makes them more computationally expensive. However, the improvement they bring in

the quality of the predictions makes them the preferred choice in most applications.

3.4 Gated Recurrent Units

Another gating mechanism named Gated Recurrent Units (GRUs) was introduced by Cho

et al. [22] with the goal of making each recurrent unit to adaptively capture dependencies

of di↵erent time scales. We follow the equations as defined by Chung et al. [25]:

rt = � (Wr xt +Ur ht�1) (3.9)

h̃t = tanh (W xt +U (rt � ht�1)) (3.10)

zt = �
�
Wz xt +Uzht�1

�
(3.11)

ht = (1 � zt )ht�1 + zt h̃t (3.12)

where z and r are the update and reset gates respectively.
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As it can be seen, GRUs present an architecture less complex than LSTM units, and

the former usually perform at least as good than the latter.

In [25], Chung et al. compare the performance provided by standard RNNs, LSTM

units and GRU units, using multiple datasets. In our experiments, GRU units outperform

the other models most of the times.



Chapter 4

Predicting Clinical Events by

Combining Static and Dynamic

Information Using Recurrent Neural

Networks

4.1 Exploiting Long Term Temporal Dependencies in

Medical Data

In chapter 2, we used an approach based in Feedforward Neural Networks which did not

exploit the sequential nature of clinical data. Therefore, in this chapter, we will explore

alternatives in order to model the long term temporal correlations that may exist on the

data together with its static features.

Particularly, there is a notable parallelism among the prediction of clinical events and

the field of Language Modelling, where Deep Learning, a class of Neural Networks with

multiple hidden layers, has also proven to be very successful. One could imagine that each

word of a text represents an event. Therefore a text would be a stream of events and the

task of Language Modelling would be to predict the next event in the stream. For this

reason, we can get inspired by Language Modelling to create models that predict clinical

events. However, the medical domain has a set of characteristics that make it an almost

unique scenario: multiple events can occur at the same time, there are multiple sequences

(i.e. multiple patients), each sequence has an associated set of static variables and both
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inputs and outputs can be a combination of Boolean variables and real numbers. For these

reasons we need to develop approaches specifically designed for the medical use case.

For this work we use the same dataset that was used in chapter 2. As explained, it is a

large dataset collected from patients that su↵ered from kidney failure. In this chapter we

will make use of a piece of information that we didn’t consider before: endpoints. There

are a set of endpoints that can occur after a transplantation and it would be very valuable

for the physicians to be able to know beforehand when one of these is going to happen.

Specifically we will predict whether the patient will die, the transplant will be rejected,

or the transplant will be lost. For each visit that a patient makes to the clinic, we will

anticipate which of those three events (if any) will occur both within 6 months and 12

months after the visit.

In order to accomplish the prediction of these endpoints, we developed a new model

based on Recurrent Neural Networks (RNNs). The main advantage of our model is its

ability to combine static and dynamic information from patients. This capability is very

important for medical applications, since most of the clinical datasets present some back-

ground information about the patients (e.g. gender, blood type, main disease, etc.) com-

bined with dynamic information that is recorded during the multiple visits to the clinic

(e.g. results of the laboratory tests, prescribed medications, etc.).

The chapter is organized as follows. In the next section we discuss alternative ap-

proaches for endpoint predictions. One example is a Feedforward Neural Network that is

also able to deal with dynamic and static information. This model will be used as our main

benchmark. In Section 4.2 we describe details of the nephrology use case and explain why

anticipating these endpoints could be of great value for physicians. Section 4.3 introduces

the proposed models for this work, starting with a brief overview on RNNs followed by the

specific details of our work. In Section 4.4 we explain the experimental set ups and present

our results. Section 4.5 contains our conclusions and an outlook.

In 2 we introduced the Temporal Latent Embeddings model which is based on a Feed-

forward Neural Network. This model outperforms its baselines for the task of predicting

which events will be observed next given the previous events recorded (i.e. the goal was

to predict which laboratory analyses and medication prescriptions will be observed in the

next visit for each patient).

Overall, the Temporal Latent Embeddings resembles an n-th order Markov model,

and due to its architecture, it requires to explicitly define the number of time steps in

the past that we want to consider in order to predict the next step. In some scenarios,



4.2 Kidney Transplantation Endpoints 39

this constraint can actually be an advantage since many recent papers have shown how

attention mechanisms do actually improve the performance of the Neural Networks [21,

103]. The Temporal Latent Embeddings model puts all its attention on the last n samples

and therefore it provides an advantage over RNNs for datasets where the events that we

want to predict are dependent just on the n previous events. However, in order to capture

long term dependencies on the data with this model, we have to aggregate the whole

history of each patient in one vector (e.g. computing the mean values of each laboratory

measurement), and therefore many long-term dependencies can be lost in this aggregation

step (e.g. a very high value in one measurement followed by a very low value).

In recent work, Choi et al. [24] used an RNN with Gated Recurrent Units (GRUs)

combined with skip-gram vectors [60] in order to predict diagnosis, medication prescription

and procedures. However in this work they follow a standard RNN architecture that

takes sequential information as input, whereas the static information of the patients was

not integrated into the Neural Network. However, due to its nature, medical data will

always contain both static and dynamic features, and therefore it is fundamental to develop

algorithms that can combine and exploit both types of data.

Outside of the medical domain, there are multiple examples where RNNs have been

successfully applied to sequential datasets in order to predict future events. For example,

in Natural Language Processing RNNs are commonly used to predict the next word in a

text or even full sentences [61, 93]. However to the best of our knowledge none of them

includes both sequential and static information, which is the typical setting in sequences

of clinical data.

4.2 Kidney Transplantation Endpoints

Chronic kidney disease is a worldwide health burden with increasing prevalence and inci-

dence. It a↵ects multiple organ systems and may result in end-stage renal disease. The

growing number of patients with end-stage renal disease requiring dialysis or transplanta-

tion is a major challenge for health-care systems around the world [28]. For most patients,

kidney transplantation is the treatment of choice o↵ering lowest morbidity, significant sur-

vival benefit, lowest costs and highest quality of life. The main goals after transplantation

are the reduction of complications and the increase of long-term graft and patient survival.

However, kidney transplant recipients are at high risk of severe complications like rejec-

tions, infections, drug toxicity, malignancies and cardiovascular diseases. The majority of
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patients have to take 5-10 di↵erent medications every day during their entire life. Due to

complexities of post-transplant management, kidney transplant recipients should remain in

life-long specialized care. The medical records of kidney transplant recipients mostly cover

a very long history of disease (years to decades) and include a vast number of diagnoses,

symptoms, results, medications and laboratory values.

Due to this complexity of medical data, decision making is complex and di�cult in the

clinical practice of kidney transplantation. Considering the load of treating 20-40 patients

per day, it is generally not possible for the medical practitioner to review all available

medical information during every bed side visit or outpatient consultation. Early prediction

of clinical events on the base of current data, as proposed in our proposed solution, can

lead to informed decision making on how to best choose future therapy and identify current

problems. Thus our proposed solution can help to avoid complications and improve survival

of the patient and graft, reduce morbidity and improve health related quality of life.

Assessing the risk of graft failure or death in renal transplant recipients can be crucial

for the individual patient management by detecting patients that need intensified medical

care. Integrating a computerized tool to predict relevant end points (deteriorating of the

graft function, infections, rejections, graft loss, death) on the base of all available medical

data may be of great benefit in the clinical routine and provide medical professionals with

significant decision support.

Detecting a higher risk of graft failure or death 6-12 months in advance may timely

allow identifying toxicities, side e↵ects, interactions of medications, infections, relevant

comorbidities and other complications. Early detection permits timely intervention with

a chance of improved outcome. Furthermore, predicting future rejections during consul-

tations enables the medical practitioner to change immunosuppressive medications and

thus prevent deterioration of the graft function. In summary, computerized prediction of

relevant events has the potential to significantly change daily medical practice in patient

care.

There are three major endpoints that can happen after a kidney transplantation: re-

jection of the kidney, graft loss and death of the patient. A rejection means that the

body is rejecting the kidney. In such situation, physicians try to fight the rejection with

medications and if they are not able to stop the rejection, the kidney will eventually stop

working.

Our goal with this work is to predict which of these endpoints (if any) will occur

to each patient 6 months and 12 months after each visit to the clinic, given the medical



4.3 Recurrent Neural Networks for Clinical Event Prediction 41

Figure 4.1: Recurrent Neural Network with static information. i stands for the index of

the patient.

history of the patient. Our predictions are based on information from the patient’s medical

history, the sequence of medications prescribed for the patient, the sequence of laboratory

tests performed together with their results, and static information, as for example age,

gender, blood type, weight, primary disease, etc. Therefore each patient is represented as

a sequence of events (medications prescribed and laboratory tests performed) combined

with static data. We will use both static and dynamic data to predict the explained

endpoints.

4.3 Recurrent Neural Networks for Clinical Event Pre-

diction

It often happens that Electronic Health Records (EHRs) contain both dynamic information

(i.e. new data is recorded every time a patient visits the clinic or hospital) and static or

slowly changing information (e.g. gender, blood type, age, etc.).

Therefore, we modified the RNN architecture to include static information of the pa-

tients, such as gender, blood type, cause of the kidney failure, etc. The modified architec-

ture is depicted in Figure 4.1.

As it can be seen, we process the static information on an independent Feedforward
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Neural Network whereas we process the dynamic information with an RNN. Afterwards

we concatenate the hidden states of both networks and provide this information to the

output layer.

We feed our network with the latent representation of the inputs, as it is often done in

Natural Language Processing [23, 93]. In this case we compute such latent representation

applying a linear transformation to the raw input.

More formally, we first compute the latent representation of the input data as

x̃e
i = Ax̃i (4.1)

xe
t,i = Bxt,i (4.2)

where x̃i is a vector containing the static information for patient i being x̃e
i its latent

representation, and xt,i is a vector containing the information recorded during the visit

made by patient i at time t, where xe
t,i is its latent representation.

Then we compute the hidden state of the static part of the network as

h̃i = f̃ ( x̃e
i ) (4.3)

where we are currently using the input and hidden layers of a Feedforward Neural Network

as f̃ .

In order to compute the hidden state of the recurrent part of the network we update:

ht,i = f (xe
t,i, ht�1,i) (4.4)

where f can be any of the update functions explained above (standard RNN, LSTM or

GRU).

Finally, we use both hidden states in order to predict our target:

ŷt,i = g(h̃i, ht,i). (4.5)

In this work we concatenate h̃i and ht,i, and then the function g is computed as

g = �(Wo(h̃i, ht,i) + b). (4.6)
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We derive a cost function based on the Bernoulli likelihood function, also known as

Binary Cross Entropy, which has the form

cost(A, B,W,U) =
X

t,i2Tr
�yt,i log( ŷt,i) � (1 � yt,i) log(1 � ŷt,i) (4.7)

where Tr stands for the training dataset, yt,i stands for the true target data and ŷt,i stands

for the predicted data.

It is worth mentioning that we tried other architectures for combining static data with

dynamic data using RNNs. For example we experimented with the approach of using an

RNN to compute a latent representation of the whole history of the patient, in order to

use such representation together with the latent representations of the last n visits as the

inputs of a Feedforward Neural Network. We thought it could be an interesting approach

since the network would put a higher attention on the most recent visits and would still

have access to the full history of the patient. We also tried an attention mechanism similar

to the ones shown in [21, 103], which also has the advantage of providing an interpretable

model (i.e. it provides information about why a prediction was made). However none

of these approaches was able to improve the performance of the models presented in this

article.

4.4 Experiments

4.4.1 Data Pre-processing and Experimental Setup

We have three groups of variables in our dataset: endpoints, prescribed medications and

laboratory results. Both endpoints and prescribed medications are binary data. On the

other hand, the laboratory results are a set of real numbers.

Not every possible laboratory measurement is performed each time a patient visits the

clinic (e.g. some times a doctor may order to measure calcium if it is suspected that the

patient might have low calcium, otherwise the doctor will not order such measurement). In

order to deal with such missing data, we experimented with mean imputation and median

imputation. Also, we experimented with both scaling and normalizing the data before

inputting it to the Neural Network.
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Figure 4.2: Sample of pre-processed data that we use as input for our models. Each row

represents a visit to the clinic.

It turned out that encoding the laboratory measurements in a binary way by rep-

resenting each of them as three event types as shown in chapter 2, i.e., LabValueHigh,

LabValueNormal and LabValueLow, provided a better predictive performance than the

approach of doing mean or median imputation and normalizing or scaling the data. This

improvement was around 5% for the area under the ROC curve score and 3% for the area

under the precision-recall curve score. In order to encode the laboratory measurements

into High, Normal and Low values, we calculated the mean and standard deviation for

each of them. Then, measurements greater than the mean plus the standard deviation

were encoded as high, values below the mean minus the standard deviation were encoded

as low, and values in between were encoded as normal. If a certain measurement was not

done, its corresponding three events are all set to 0, which removes the need of imputing

missing data. We believe that this improved performance provided by the discretization

of the inputs, is due to the increase in the number parameters of the model and due to the

fact that with this strategy we remove the need of doing data imputation, which can add

a significant noise to the dataset.

The final aspect of the pre-processed data that we will use as input for our models can

be found in Figure 4.2, where each row represents a visit to the clinic. The target data (i.e.

the data we want to predict) will be a matrix that contains a row composed of 6 binary

variables for each row on the input matrix. This 6 binary variables specify which of the 3

endpoints (if any) occurred 6 and 12 months after each visit. The possible endpoints are:

kidney rejection, kidney loss and death of the patient.

Another option for performing this binary encoding would be to somehow normalize
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the measured values using demographic data of each patient (e.g. gender, age, weight) or

to use normal and limit values according to the medical literature. We will explore those

options in future work.

In this article we consider events from the dataset that occurred on the year 2005 and

onwards due to the improvement of the data quality from that year on. After cleaning the

data the total number of patients is 2061, which in total have made 193111 visits to the

clinic. The density of end-points (target matrix) is 7.3%, and 38.4% of the patients have

su↵ered at least one end-point event.

The dynamic information that is generated on each visit to the clinic is composed of

1061 medications that can be prescribed and 1835 substances that can be measured in the

laboratory. Thus, given that we encode each laboratory measurement into three binary

variables as explained earlier, the dynamic information is composed of a total of 6566

variables. On the other hand, the static information is composed of 342 features that

remain constant for each patient.

The model contains several hyperparameters that need to be optimized. The most

relevant ones are the rank of the latent representations, the number of hidden units in the

Neural Network, the learning rate and the dropout regularization parameter [85]. Besides

we will test our models with two optimization algorithms, which are Adagrad [30] and

RMSProp [94].

In order to fit these hyperparameters, we randomly split the data into three subsets:

60% of the patients were assigned to the training set, 20% of the patients were assigned to

the validation set and another 20% to the test set. Under this configuration, we evaluate

the performance of the model by predicting the future events of patients that the model

has never seen before, and therefore increasing the di�culty of the task.

When comparing the performance of these models, we report for each model the mean

area under the Precision-Recall curve (AUPRC) and mean area under Receiver Operat-

ing Characteristics curve (AUROC) together with their associated standard errors after

repeating each experiment five times with di↵erent random splits of the data. We made

sure that these five random splits were identical for each model.

It is worth noting that in use cases where the target event we want to predict is very

infrequent, and where we are more interested in knowing when such event is going to happen

(as opposed to when it is not going to happen), then the AUPRC is a more interesting

score to evaluate the quality of the predictions than the AUROC. This is because getting

high sensitivity and specificity can be fairly easy in these problems. However, obtaining a
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high precision in the predictions is a very hard challenge. Indeed, we will show in the next

section how making random predictions provides a very low AUPRC, much lower than

the AUROC for random predictions. Therefore, the most interesting score to compare the

models presented in this work is the AUPRC.

We will also report results on the Logistic Regression, since it provided the second best

performance in the task of predicting sequences of clinical data with the Temporal Latent

Embeddings shown in 2.

4.4.2 Results

Table 8.1 shows the results of predicting endpoints without considering di↵erent types of

them (i.e. we concatenate all the predictions of the set and evaluate all of them together).

“GRU + static”, “LSTM + static” and “RNN + static” stand for the architectures pre-

sented in this chapter that combine an RNN with static information. TLE stands for the

Temporal Latent Embeddings model [33]. Random stands for the scores obtained when

doing random predictions.

We can see how the recurrent models outperform the other models both in the AUROC

score and AUPRC score. The best performance is achieved by the GRUs with an AUPRC

of 0.345 and an AUROC of 0.833. The AUPRC scores are pretty low compared to its

maximum possible value (i.e. 1), but are fairly good compared to the random baseline of

0.073, which is that low due to the high sparsity of the data.

Table 4.1: Scores for full visit predictions. AUPRC stands for Area Under Precision-Recall

Curve. AUROC stands for Area Under ROC Curve.

AUPRC AUROC

GRU + static 0.345 ± 0.013 0.833 ± 0.006

LSTM + static 0.330 ± 0.014 0.826 ± 0.006

RNN + static 0.319 ± 0.012 0.822 ± 0.006

TLE 0.313 ± 0.010 0.821 ± 0.005

Logistic Regression 0.299 ± 0.009 0.808 ± 0.005

Random 0.073 ± 0.002 0.5

Since we repeated the experiment five times with di↵erent splits of the data, we have
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slight variations on the configuration of the winning model. However, the most repeated

configuration was composed of 100 hidden units, a rank size of 50 for the latent representa-

tion, a dropout rate of 0.1, a learning rate of 0.1 and the Adagrad optimization algorithm.

In Table 5.3 we show the performance achieved for each specific endpoint. It can be

seen how the it gets the best score for predicting the death of a patient whereas it obtains

the worse AUPRC in the task of predicting kidney loss within the next 6 months.

Table 4.2: Scores for full visit predictions. AUPRC stands for Area Under Precision-Recall

Curve. AUROC stands for Area Under ROC Curve.

AUPRC AUROC

Rejection 6 months 0.234 ± 0.010 0.778 ± 0.006

Rejection 12 months 0.279 ± 0.014 0.768 ± 0.009

Loss 6 months 0.167 ± 0.017 0.821 ± 0.009

Loss 12 months 0.223 ± 0.019 0.814 ± 0.009

Death 6 months 0.467 ± 0.018 0.890 ± 0.004

Death 12 months 0.465 ± 0.020 0.861 ± 0.004

4.4.3 Additional experiments

As we mentioned earlier, the Temporal Latent Embeddings model outperformed the base-

lines presented in [33] for the task of predicting the events that will be observed for each

patient in his or her next visit to the clinic (i.e. which laboratory analyses will be made

next, which results will be obtained in such analyses and what medications will be pre-

scribed next). However none of those baselines were based on RNNs.

Thus we reproduced the experiments presented in [33] including the models based on

RNNs introduced in this article. Table 5.4 shows the result of such experiment, where we

can appreciate that the Temporal Latent Embeddings model still provides better scores

than the other models. We also included in Table 5.4 an entry named “Static embeddings”

which corresponds to the predictions made with a Feedforward Neural Network using just

the static information of each patient. We hypothesize that the reason that Temporal

Latent Embeddings model provides the best performance is due to the lack of complex

long term dependencies that are relevant for this task. Thus it would be an advantage to
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use a model that puts all the attention on the most recent events in situations where all

the relevant information to predict the target was recorded during the previous n visits.

Table 4.3: Scores for full visit predictions. AUPRC stands for Area Under Precision-Recall

Curve. AUROC stands for Area Under ROC Curve.

AUPRC AUROC

TLE 0.584 ± 0.0011 0.978 ± 0.0001

LSTM + static 0.571 ± 0.0048 0.975 ± 0.0002

GRU + static 0.566 ± 0.0034 0.975 ± 0.0002

Static embeddings 0.487 ± 0.0016 0.974 ± 0.0002

Random 0.011 ± 0.0001 0.5 -

4.5 Chapter Summary

We developed and compared novel algorithms based on RNNs that are capable of combining

both static and dynamic clinical variables, in order to solve the task of predicting endpoints

on patients that underwent a kidney transplantation. This is an application that will

provide critical information to physicians and will support them to make better decisions.

We found that an RNN with GRUs combined with a Feedforward Neural Network

provides the best score for this task.

We also compared these recurrent models with other models for the task of predicting

future medications and laboratory results. We found that for such use case the RNNs do

not outperform a model based on a Feedforward Neural Network. We hypothesize that

this is due to the lack of complex long term dependencies in the data that are relevant for

this task, and therefore it is an advantage to use a model that puts all the attention to the

most recent events.

We also found that binary encoding input variables that are composed of real numbers

provides a better performance than normalizing the input data and performing imputation

to deal with missing data.
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4.6 Potential Extensions

We explained the gradient vanishing problem in Section 4.3, and later showed how LSTM

and GRU units solve this problem. Interestingly, Deep Feedforward Neural Networks

also su↵er from this problem, also due to the several multiplications by the derivative of

the sigmoid (or hyperbolic tangent) function that are accumulated in the first layers of

the network. Recently there have been some e↵orts to solve this problem with a gating

mechanism [86], similar to what is done in RNNs. However, the most common solution

to solve this problem in Feedforward Neural Networks is to use Rectified Linear Units

[37], whose derivative is 1 for positive input values, and therefore mitigate the gradient

vanishing problem. It turns out that there have been also e↵orts to train standard RNNs

with Rectified Linear Units in order to prevent the gradient vanishing problem, without

the extra computational cost of the gating mechanisms. The results of this approach seems

promising and we will add this option to our benchmark, as part of future work.

The key feature of a Clinical Decision Support System is its ability to consider as much

patient information as possible and combine it in a meaningful and scalable way to predict

future events. We are already capable of combining static information with a sequence of

structured data. We plan to integrate more sources of data into our model with the goal

of improving the quality of our predictions.

Also, having more powerful models that can deal with more data and more complex

data, will allow us to tackle more di�cult problems. For example, in the second experiment

we predict prescribed medications, but we do not provide information regarding the doses

of medications or the intake patterns. As our models improve, we will try to predict this

kind of complex targets.

Finally, concerning our specific dataset composed of patients that su↵ered from kidney

failure, there is a lot of information that we are not using yet, as for example biopsies and

its results. We will keep adding to our models additional sources of information.





Chapter 5

Deep Learning for Suicidal Ideation

Prediction

5.1 Mental Health and Data Analysis

According to the [101], over 800,000 people die from suicide every year1 and the number

of suicide attempts has been estimated to be 10 and 20 times this number. Suicide is the

second leading cause of death in the 15-29 years age group, and its prevention is one of the

top public health priorities [68]. Current suicide prevention goals include the development,

implementation, and monitoring of programs that detect and prevent suicide and related

behaviors.

Suicidal ideation is one type of suicidal behaviours and it is considered a major risk

factor. Traditionally, suicidal ideation has been assessed by self-reports in which recall

bias of autobiographical memory was present [87]. This issue can be overcome by Eco-

logical Momentary Assesment (EMA) ([88]; [83]), which focuses on capturing symptoms

and experiences at the moment they occur or very shortly thereafter, thus reducing retro-

spective recall biases associated with traditional medical visits. EMA also allows patients

to assess themselves in their natural environments, rather than in an institutional setting,

thus maximizing ecological validity. EMA has been used to investigate di↵erent psychiatric

disorders and, in particular, suicidal risk [43].

Nowadays, the most common tools for implementing EMA are smartphone apps [2], in

so-called Mobile Mental-Health Apps. Another term that is being used is e-Mental Health.

1However, since suicide is a sensitive issue, and attempts are illegal in some countries, it is very likely

that incidents are under-reported.



52 5. Deep Learning for Suicidal Ideation Prediction

Most of the current apps are able to track the evolution of patients but do not make use

of advanced information extraction techniques; they let the clinicians interpret the raw

or mild-processed data ([104]; [95]). There exists even studies based on a single patient

assessment [36]. On the other hand, most of the applied Machine Learning research on

suicide, from the early work of [4] to the most recent from [79], extract information from

static, data-curated databases or consider single domain information like in [50]. To the

best of our knowledge, there are no Machine Learning based methods tailored for making

predictions from the dynamic, heterogeneous EMA data.

In our work, we make use of the dataset captured by the MEmind Wellness Tracker,

an electronic EMA tool available at www.memind.net. The MEmind application has two

interfaces, one for health care providers (the electronic health record view) and another for

patients (the EMA view). The electronic health record view is used by physicians to store

data observed during medical visits, including a standard psychiatric assessment, sociode-

mographic variables, diagnoses and treatments. The EMA view is used by the patients in

order to submit self-reported data in real time captured in their natural environments.

In this work, we develop a Machine Learning model based on Neural Networks capable

of exploiting several sources of dynamic and static information to anticipate suicidal related

variables, with the ultimate goal of enabling physicians to take action when a patient is

at risk of committing suicide. Our model fits perfectly well with the EMA strategy, since

it is able to integrate the self-reported data captured in the natural environment of each

patient with the information recorded by the doctor on each patient visit to the clinic and

the background information of each patient. Besides, our approach enables us to easily

integrate additional sources of information and to model complex relationships between all

the variables.

There are other works in non-medical scenarios that integrate multiple sequences of data

[56]. In these articles the output is another sequence instead of a value and they do not

integrate static information in their models. There has been recent work aimed to predict

suicides after psychiatric hospitalization in US Army soldiers [45], but in this case the

variables of the study were obtained from the US administration: sociodemographic, US

Army career, criminal justice, and medical or pharmacy. Therefore in this case researchers

could not rely on self-reported EMA data captured within the natural environment of the

patients.
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5.2 MEmind Wellness Tracker Dataset

The MEmind Wellness Tracker dataset is composed of two tables. We call the first one

the “EMA table” and it contains the self-reported data submitted by the patients. We call

the second table the “healthcare provider table” and it contains the data collected by the

physicians during the patient visits to the clinic and hospital.

5.2.1 EMA Table

The EMA table contains the information submitted by patients through the web applica-

tion. It is designed to capture real-life data within the environment of the patient. This

way, we obtain detailed information about the experiences of the patient while avoiding

recall biases.

Patients can submit reports at any time and with the periodicity that they desire, with

a maximum periodicity of one submission per day. Besides, patients are not required to

answer all the questions presented in the form, although they are encouraged to do so.

Such irregularity in the submissions can make the data analysis harder to accomplish.

However, the adherence to the program can also contain very useful information regarding

the phenotype of patients and their actual situation.

Our dataset is currently composed of 19347 submissions made by 3016 patients. The

mean number of submissions per patient is 57.02, with a median of 29 and a standard

deviation of 74.88.

The web application user interface for patients consists of three sections. The first

one titled “How are you today?” contains questions on appetite, sleep, happiness, anger,

suicidal thoughts, adherence to treatment and the WHO-5 Well-Being Index. The WHO-5

Well-Being Index measures current mental well-being with five items asking about subjec-

tive quality of life based on positive mood, vitality and general interest rate. The second

tab consists of the 12-Item General Health Questionnaire (GHQ), which is probably the

most common assessment tool of mental well-being. Developed as a screening tool to detect

those likely to have or to be at risk of developing psychiatric disorders, GHQ is a measure

of the common mental health problems/domains of depression, anxiety, somatic symptoms

and social withdrawal. Finally, there is a third tab named “Notes that was not used for

this work and contains free text that the patient can use for personal notes.

All these questions are answered by the patients with numerical values between 0 and

100.
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5.2.2 Healthcare Provider Table

These records are generated by the physicians when patients visit the hospital or clinic.

It is designed to capture data from standard psychiatric assessment, including sociode-

mographic, diagnostic and treatment information and nurse practitioner annotations (vital

signs and anthropometric measurements). Some of the variables that we find in this dataset

are: gender, birthdate, civil state, weight, height, heart rate, breath rate, assessment of

suicidal ideation, assessment of violent behavior, environment, etc.

As it can be seen, some of this variables are constant (e.g: gender, information about

about the family of the patient, etc.). Since it does not make sense to repeat this static

values on every sample that belongs to certain patient, we will take this variables out of

this sequential dataset and store them in a static vector.

This dataset currently contains 42262 records that correspond to 15362 patients. Each

patient has on average 8.2 records with a standard deviation of 11.5.

5.3 Data preprocessing

Numeric variables were normalized to have zero mean and a standard deviation of one.

Missing values were imputed with the corresponding mean value.

Categorical variables were encoded using one-hot encoding. That is, each state of a

categorical variable was converted into a binary variable.

We also categorized one of the target variables. Specifically, we categorized into “high”,

“medium” and “low” the suicidal ideation value reported by the patients through the web

application. In order to accomplish such categorization, we calculated threshold values that

left approximately the same amount of observations on each of those three buckets. Thus,

samples with a reported suicidal ideation of less than 59 were classified as “low”, those

with reported suicidal ideation greater than 97 were classified as “high”, and otherwise it

was classified as “medium”.

5.4 Model

As we explained before, the MEmind Wellness Tracker generates two sequential datasets:

one composed of submissions made by the patients through the web application, and the

other one generated by the physicians containing information concerning the visits that
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Figure 5.1: Combining multiple RNNs and static data.

each patient makes to the clinic or hospital. Indeed, due to the raise of e-health and

telemedicine, it will be soon very common to have multiple sequences of data for each

patient in a wide variety of medical applications.

Therefore, for this work we have developed a model that integrates these two sources of

sequential data together with the static information of each patient. Besides, this approach

is easily extendable to integrate additional sources of information.

5.4.1 Combining Multiple RNNs and Static Data

The model we have developed for this work is a combination of both Feedforward Neural

Networks and multiple Recurrent Neural Networks. Figure 5.1 shows its architecture. It

can be seen how we process each sequential dataset on an independent RNN. We also

process the static data with a Feedforward Neural Network. Subsequently, we concatenate

the hidden states of these two RNNs and the Feedforward Neural Network. Finally, we

add an output layer in order to compute the output of the network.

More formally, we first compute the values of the input layer for each sub-network:

is
c = Wis xs

c (5.1)

ip
t,c = Wipxp

t,c (5.2)

id
t,c = Wid xd

t,c (5.3)

where xs
c is a vector containing the static information for patient c, xp

t,c is a vector containing

the self-reported information using the web application by patient c at time t and xd
t,c is a
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vector containing the information recorded by the doctor during the visit made by patient

c at time t. In general, s is the identifier of the sub-network that processes the static

data, p is the identifier of the sub-network that processes the information submitted by

the patients, and d is the identifier of the network that processes the information submitted

by the doctors.Wis, Wip and Wic are matrices containing the parameters of the input layer

of each sub-network.

We then compute the hidden state of each subnetwork as:

hs
c = Whsis

c (5.4)

hp
t,c = f p(ip

t,c, h
p
t�1,c) (5.5)

hd
t,c = fd (id

t,c, h
d
t�1,c) (5.6)

where f p and f p can be any of the RNN update functions explained above (standard RNN,

LSTM or GRU).

Finally, we use all three hidden states in order to predict our target:

ŷt,c = g(hs
c, h

p
t,c, h

d
t,c). (5.7)

In this work the function g consists of passing the concatenated hidden states through

an output layer:

g = �(Wo(hs
c, h

p
t,c, h

d
t,c) + b). (5.8)

For regression problems we will optimize the mean squared error (MSE) whereas for

classification problems we derive a cost function based on the Bernoulli likelihood function,

also known as Binary Cross Entropy, which has the form:

cost(W,U) =
X

t,c2Tr
�yt,c log( ŷt,c) � (1 � yt,c) log(1 � ŷt,c) (5.9)

where Tr stands for the training dataset, yt,c stands for the true target data and ŷt,c stands

for the predicted data.

Note that even though we combine multiple sequences of data, such sequences doesn’t

have to be of the same length. Each RNN of the network will independently compute its

hidden state by using its corresponding full sequence.
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5.5 Experimental Setup

The model contains many hyperparameters that need to be optimized: number of units on

the input layer of each sub-network, number of hidden units of each sub-network, learning

rate and the drop out regularization parameter [85]. In order to fit these hyperparameters,

we randomly split the data into three subsets: 60% of the patients were assigned to the

training set, 20% of the patients were assigned to the validation set and another 20% to

the test set. Therefore we evaluate the performance of the model by predicting the future

events of patients that the model has never seen before, which increases the di�culty of

the task.

In order to calculate the confidence intervals of the reported scores, we will train each

model with 5 di↵erent random splits of the data. We will made sure that these 5 splits are

identical for all models. In order to train the models, we will use the Adagrad algorithm

[31] and we will report the mean value of the scores achieved and their associated standard

error.

As part of the static information, we will include the number of days since the last

report. Therefore, we will be conditioning each prediction to the number of days between

the date of the predicted report and the date of the last report observed.

We perform each experiment with our proposed model using both GRUs and LSTM

units.

We also include as benchmark Logistic Regression applied to the concatenated last

samples of each sequence together with the static information of each patient. Finally, we

include a naive prediction that consists of just predicting as next suicidal ideation value

the reported suicidal ideation in the previous submission.

5.6 Results

5.6.1 Predicting Suicidal Ideation

Our first experiment consists of predicting the suicidal ideation value that will be reported

in each submission. In other words, for each submission available, we try to anticipate

which suicidal ideation level will be observed next.

Table 8.2 shows the mean squared error (MSE) for each model. It can be seen how

our model using GRU units (“GRUs + static”) performs best for this problem. “LSTMs

+ static” represent our model using LSTM units. “Predicting mean” represents the MSE
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achieved when we just always predict the mean suicidal ideation value.

Table 5.1: Mean squared error for suicidal ideation prediction.

Mean Squared Error

GRUs + static 0.0340 ± 0.0004

LSTMs + static 0.0357 ± 0.0004

Logistic Regression 0.0372 ± 0.0007

Predicting mean 0.2248 ± 0.0091

The architecture of the winning model varies slightly among the di↵erent splits of the

data, but the most common configuration is composed of 25 GRU units on each RNN, 10

units to process the static information, and 500 units in the output layer. Furthermore,

0.01 was the best value found for the drop-out regularization parameter and 0.01 was also

the best value found for the learning rate.

5.6.2 Predicting Suicidal Ideation Level

As explained in Section 5.3, we categorized the suicidal ideation reported by the patients

into “high”, “medium” and “low” as part of the web application. Our task consists of

predicting which of these states will be observed in the next submission that each patient

makes. In other words, for each submission available, we try to anticipate which suicidal

ideation level will be observed next.

This categorization of the suicidal ideation will allow physicians to define customized

thresholds to, for example, get an automatic alarm when some patient gets into the high

suicidal ideation level. Also, it allows us to evaluate our models with classification scores

such as Area under the ROC curve (AUROC) and Area under the Precision-Recall curve

(AUPRC). Note that the AUPRC for random predictions decreases with the sparsity of

the data, meaning that achieving a high AUPRC is harder for sparse datasets. However,

AUPRC is the most interesting score when you are also interested in the precision of the

predictions. We also report the BCE (Binary Cross Entropy) error, which is the cost (the

lower the better) that we are optimizing during training.

Table 8.1 shows the BCE cost, AUPRC and AUROC for the combined predictions of

the three classes. It can be seen how our model using GRU units performs best for this
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problem. “Repeating previous” represents the scores achieved when we just predict that

the future reported ideation level will be the same than the present suicidal ideation level.

Table 5.2: Combined scores. BCE the lower the better.

BCE AUPRC AUROC

GRUs + static 0.265 ± 0.010 0.903 ± 0.007 0.945 ± 0.004

LSTMs + static 0.279 ± 0.010 0.892 ± 0.007 0.941 ± 0.004

Logistic Regression 0.296 ± 0.009 0.858 ± 0.007 0.924 ± 0.004

Repeating previous 1.517 ± 0.007 0.882 ± 0.005 0.894 ± 0.005

Random 1 0.333 ± 0.001 0.5

In this case, the most common configuration is composed of 50 GRU units on each RNN,

10 units to process the static information, and 150 units in the output layer. Besides, 0.01

was the best value found for the drop-out regularization parameter and 0.01 was also the

best value found for the learning rate.

We show also the specific scores achieved for each predicted class: low suicidal ideation,

medium suicidal ideation and high suicidal ideation. Table 5.3 shows the AUPRC for each

class, whereas 5.4 shows the AUROC for each class.

Table 5.3: Area under Precision-Recall curve class wise (Suicidal ideation low, medium

and high).

AUPRC Low AUPRC Medium AUPRC High

GRUs + static 0.872 ± 0.011 0.871 ± 0.006 0.940 ± 0.005

LSTMs + static 0.866 ± 0.009 0.856 ± 0.008 0.931 ± 0.008

Logistic Regression 0.830 ± 0.025 0.794 ± 0.006 0.897 ± 0.080

Repeating previous 0.862 ± 0.005 0.863 ± 0.004 0.920 ± 0.008

Random 0.306 ± 0.001 0.359 ± 0.004 0.332 ± 0.001
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Table 5.4: Area under the ROC curve class wise (Suicidal ideation low, medium and high).

AUROC Low AUROC Medium AUROC High

GRUs + static 0.943 ± 0.004 0.922 ± 0.005 0.963 ± 0.004

LSTMs + static 0.940 ± 0.005 0.913 ± 0.006 0.959 ± 0.004

Logistic Regression 0.926 ± 0.006 0.893 ± 0.005 0.939 ± 0.006

Repeating previous 0.888 ± 0.004 0.867 ± 0.004 0.927 ± 0.005

Random 0.5 0.5 0.5

5.7 Sensitivity analysis

We performed a univariate sensitivity analysis in order to find out which input variables

contain more information for the task of predicting the next suicidal ideation value. Table

5.5 shows the relevance score for the 10 most informative variables.

Table 5.5: 10 most informative variables to predict suicidal ideation.

Variable Score

suicidal ideation 1.1973

apetite hyporexia 1.1113

apetite regular 1.0956

apetite hyperexia 1.0936

apetite 1.0893

sleep hypersomnia (>8.4h) 1.0887

sleep regular (6-8.4h) 1.0847

sleep quality regular 1.0840

agressivity no agressivity 1.0792

sleep insomnia (<6h) 1.0776

who 5 1.0737

ghqsStress 1.0726

The relevance score associated to each variable is computed as the ratio between the

MSE achieved when such variable was remove and the less informative variable. Thus,
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when suicidal ideation variable is discarded, the MSE to predict the next suicidal ideation

is 1.19 times higher than when the less informative variable is removed. It can be seen that

the present time is the most informative variable to predict the suicidal ideation in the

future. It is followed by the variables related to appetite and the ones related to sleep. The

relationship between suicidal behaviour and eating ([92]) and sleeping patterns ([16];[89];

[98]) has been been studied multiple times before.

5.8 Chapter Summary

We have developed a model capable of aggregating multiples sequences of data and static

data. Thus, it is a great fit for the EMA approach followed by physicians in the field of

psychiatry. We compared di↵erent versions of the proposed model and included Logistic

Regression as benchmark. Our main result is that the version of our model using GRU

units provides the best performance. More importantly, we have presented a framework

specifically suited for sequential data that can be extended with additional sources of data.

Finally, even though Neural Networks are considered “black box models” that provide

no insight, we have performed a sensitivity analysis which shows how, aside the present

suicidal ideation, the appetite and sleep amount are the most informative variables to

predict future suicidal ideation. This finding supports the current observations made by

the doctors in their daily practice.





Chapter 6

Deployment

So far we have described the theoretical challenges that we had to overcome in order to use

Deep Learning to model medical datasets. However this thesis pursues a very pragmatical

goal, which is helping doctors to provide a better care of their patients. For this reason, it

is essential to actually integrate the this kind of algorithms into healthcare institutions so

that physicians can take advantage of Machine Learning models on their daily activities.

In this chapter we will provide a description of the software developed in this thesis to

deploy the one of our models into a server located at the Charité University Hospital in

Berlin as a prototype clinical decision support system.

The model selected to be deployed is the endpoint prediction algorithm explained in

Chapter 4. We chose to deploy this model for several reasons: the quality of its predictions

is good enough to be tried in the clinic, the fact that the output prediction is composed of

just 6 numbers makes it easier to be visualized and understood by the doctors, and it is a

system that could provide very relevant information whereas in the clinic there is currently

no other system that provides similar information.

The system was programmed in the Python programming Language, using the Deep

Learning framework named Theano[1] combined with Python scientific libraries such us

numpy[44], scipy[44], pandas[59], etc.

The deployed system is composed of two main parts: the front end and the back end.

The back end is where the trained model is located, whereas the front end contains the

user interface that physicians can use to make predict future endpoints. Figure 6.3 shows

a high level schema of the architecture of the system.
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Figure 6.1: Architecture of the clinical decision support system.

6.1 The task queue

The task queue is a directory where tasks are stored. A task is a prediction that a physician

has put on the queue, and they can be in one of the following states: waiting to be processed,

in process, or completed. Each of these tasks is stored in the form of a directory within the

task queue folder. Each task’s directory contains the set of CSV (comma separated value)

files need for computing such prediction. Specifically, in order to compute the endpoints

predictions, we make use of the following five tables of the hospital’s database: patients,

transplantations, medications, ordered laboratory analysis and laboratory analysis results.

Thus, each task folder will contain five CSV files, each of them composed of the rows

associated to the patient for which we want to compute the endpoint predictions.

6.2 The front end

The first step in the prediction process is to provide physicians with a user interface where

they can introduce the ID of the patient for which they would like to compute the endpoint

predictions.

For this purpose, we programmed a web user interface and set up a web server using

Python, a library named Flask for website generation and serving, and the Tornado web
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Figure 6.2: Web user interface for endpoint prediction.

server. In this website, which is only accessible from within the Charité intranet, doctors

find a form where they input the ID of the patient whose endpoints prediction they would

like to obtain. Finally, they click on the “Predict” button and, after a couple of seconds,

a table displaying the predictions for each of the six endpoints will appear in the web

browser.

Internally, once a doctor clicks on the “Predict” button, there is a Python script that

connects to the database, retrieves the rows of the corresponding patient in the five tables

of interest, and stores them as CSV files. These five files are stored inside a new folder

within the task queue directory. In order to indicate that all CSV files have been saved

successfully and the task is ready to be processed, the script in the front end also generates

an empty file named “ready for predictor”.

After the “ready for predictor” file has been generated, the back end will continue with

the process and eventually it will generate a “predictions.json” file containing the output

of the computation. Thus, the front end will wait until such “predictions.json” file is

generated, and once it detects such file, it will load the predictions and render a website

showing them to the doctor that launched the prediction. To make the system easier to

maintain, the whole back end is stored in a single Python program that can be easily

replaced or updated.
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Figure 6.3: Hypothetical results for a kidney transplantation patient.

6.3 The back end

The back end is the part of the system in charge of running the Machine Learning model

in order to compute the predictions.

For now, the system works only with pre-trained models. Therefore we must first train

the model before using in the clinic. For this purpose, the back end contains both a

JSON (JavaScript Object Notation) file describing the architecture of the model (number

of layers, units in each layer, etc.) and an additional file containing the weights of the

model. Therefore, as soon as the back end is started, it will load the JSON files, then it

will instantiate a Neural Network with the loaded parameters, and finally it will load the

weights of the network.

Once the model is loaded in memory, the back end will permanently monitor the task

queue, in order to detect when a new task has been located in the queue. When it finds

a task where the “ready for predictor” file is present, it will load the data from such task,

compute the prediction, and store the results in a JSON file named “prediction.json”,

which contains the probability of each endpoint happening in the next 6 months and 1

year.



Chapter 7

Generative Adversarial Networks for

Medical Decision Modelling

If we use Neural Networks and backpropagation to model processes that present multiple

mutually exclusive valid outcomes, they learn to predict the average of such valid outcomes.

There are applications for which this is not the desired behavior. For example, let’s imagine

that we use a Neural Network in order to color black and white images. Given a good

training set, the Neural Network will probably learn to correctly color objects such as

mountains or human faces, since the model can find features on those objects that are

highly correlated with their colors. However, what about cars? The color of a car is

mostly completely independent of its shape, brand, model, etc. Thus, the network will

learn that any color is valid for any car. It will subsequently predict a high probability for

every color and all cars will end up appearing grey in the pictures produced by our model.

The same issue occurs in medical data. Lets suppose we train a Neural Network for

predicting the medications that will be prescribed in each situation. For every patient, the

model will yield a high probability for each potential medication that could be prescribed.

For example, if the patient needs an antibiotic, the model will probably yield a high

probability for every antibiotic in the database that is regularly prescribed for that disease.

Thus, this set of predictions cannot be considered a correct prescription, since the model

is suggesting to prescribe many equivalent medications. Therefore, this model can be

understood as recommender system whose predictions need to be interpreted by a human

expert that subsequently generates the right prescription.

However, Neural Networks are the most suitable Machine Learning models for mod-

elling complex processes. Thus, e↵orts have been made to overcome the aforementioned
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Figure 7.1: The recommendations generated by a Neural Network need to be interpreted

by a physician. In this chapter we will present an additional model that can play the role

of the physician and turn the recommendations into valid decisions.

problem and to be able to use them to generate data that looks realistic. One of the most

relevant models that have been developed for this purpose are Generative Adversarial Net-

works (GANs). Our goal in this section is to analyze how GANs can be used in order to

create a decision layer that works on top of the recommender systems we built in previous

chapters. This decision layer will model the behavior of the human decision maker that

takes recommendations as inputs and then decides which action to take. The schema of

the whole system is depicted in Figure 7.1.

In order to experiment with these models in a controlled environment, we will generate

a synthetic dataset with which we will run our experiments. Real data will be of course

much more challenging than the simulated one, but running experiments on synthetic data

is the first step that needs to be taken before moving to a real scenario.

7.1 Generative Adversarial Neural Networks

GANs are a type of Neural Network architecture introduced in [38] which is specifically

designed to build generative models. GANs are composed of two elements: a generator



7.1 Generative Adversarial Neural Networks 69

Figure 7.2: Architecture of a Generative Adversarial Network. The discriminator is trained

to classify if the data samples are real or synthetic. The generator tries to generate synthetic

data that looks realistic.

and a discriminator.

The generator is an Neural Network that can have any kind of internal architecture.

Its goal is to generate synthetic samples of data that look like the ones collected in the real

world. The generator receives a randomly initialized vector as input, which is the source

of randomness that enables it to generate di↵erent samples of data by using the same

internal parameters. On the other hand, the discriminator is a binary classifier whose goal

is to distinguish between samples collected in the real world and samples generated by the

generator. The GAN architecture is depicted in Figure 7.2

The learning process consists of these two elements playing a sort of game against

each other. The discriminator tries to learn to di↵erentiate real world samples from the

synthetic samples generated by the generator. On the other hand, the generator can see

what strategy the discriminator is following to tell the di↵erence between real and synthetic

samples. The generator subsequently modifies its parameters in order to generate samples

that trick the classifier into label them as real. This training process is explained in more

detail in the next paragraphs.
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Figure 7.3: During the training of the discriminator, synthetic samples are labeled with a

“0”, whereas real samples are labeled with a “1”.

7.1.1 Discriminator Training

As it was previously mentioned, both the generator and the discriminator can have any

internal NN architecture, which normally depends on the type of data that we want to

generate, and its parameters are randomly initialized as in any other NN model.

The learning process can start either by training the discriminator or the generator. In

order to train the discriminator, we first generate a set of synthetic data with our generator.

Ideally we will generate as many samples as we have in our real dataset, which is the data

we are trying to replicate, so that the discriminator can see the same number of samples

of each type. Afterwards, we label each synthetic data sample with a “0” and each real

data sample with a “1”, as depicted in Figure 7.3.

Once the data is labeled, we merge both datasets (synthetic data and real data), and

we train the discriminator. The discriminator is just a binary classifier that will learn to

assign a “0” to the synthetic data and a “1” to the real data. Therefore, during this part

of the process, we temporarily ignore the generator, as we show in Figure 7.4.

More formally, the discriminator is trained to minimize the average negative cross-

entropy between its predictions and the labels of the data. If we denote by NN(X ) the
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Figure 7.4: During the training of the discriminator, the generator is ignored.

vector or matrix comprising outputs from a NN receiving a vector or matrix X and by

CE(A, B) the averaged cross-entropy between two matrices A and B , then the discriminator

loss for a pair {Xn, yn} (with Xn 2 Rd and yn 2 {1, 0}) is:

D
loss

(Xn, yn) = �CE(NN
D

(Xn), yn)

When X is composed of synthetic inputs, yn is a vector of 0s, while it is a vector of

1s when X is composed of real inputs. In each training mini-batch, the discriminator sees

both real and synthetic inputs.

After training the discriminator we proceed to train the generator. In the experiments

that will be presented in this chapter, we train the generator after training the discriminator

with one mini-batch of 128 samples.

7.1.2 Generator Training

In order to train the generator, we ignore the real data. The goal in this part of the process

is to train the generator to generate samples that the discriminator labels as “1”. Note

that we previously trained the classifier to label real samples as “1” and synthetic ones

as “0”. Therefore, we now train the generator to generate samples that are di�cult to

di↵erentiate from real data.



72 7. Generative Adversarial Networks for Medical Decision Modelling

Figure 7.5: During the training of the generator, we try to adapt its internal parameters

so that the discriminator labels its generated samples as real.

In order to do this, we consider the generator plus the discriminator as one single

network. We train this network to always predict “1”s, but we only update the parameters

of the generator. The optimization process is carried out as with any other Neural Network

using stochastic gradient descent. Essentially, during this part of the process, we are finding

the parameters of the generator that make its generated samples be classified as real data

by the discriminator. This process is depicted in Figure 7.5.

More formally, the generator tries to minimize the following cost function:

G
loss

(Zn) = D
loss

(NN
G

(Zn), 1) = �CE(NN
D

(NN
G

(Zn)), 1)

Here Zn is a set of vectors sampled independently from the latent/noise space Z , thus

Zn 2 Rm since Z = Rm.

After training the generator with this strategy, we go back to train the discriminator.

We can keep iterating between both for a fixed number of epochs or until the generated

samples look real enough. As shown in [38], it can be shown that this process is equivalent

to minimizing the Jensen-Shannon divergence between the real distribution of the data

and the synthetic distribution.
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7.2 Conditional Generative Adversarial Networks for

Medication Prescriptions

Some of the models presented earlier in this thesis play the role of recommender systems and

their outcome is a vector that contains the probability of each medication being prescribed.

As we explained earlier in this chapter, such vectors are not always valid prescriptions. For

example, there can be a situation were multiple medications are valid but just one can be

prescribed. In that case, providing a high probability to each valid medication cannot be

considered as a valid prescription, but as a recommendation that some human expert has to

interpret. The human expert can then use the recommendations provided to issue a valid

prescription. Our goal in this chapter is to add a new layer, on top of the recommender

system, aimed to model the behavior of the human decision maker. Thus, the decision layer

will take as input a vector containing a recommendation for medication prescriptions, and

it will generate another vector with a valid prescription.

However, the GAN architecture shown in Section 7.1 takes only two inputs: the data

we want to replicate, and a random seed. Therefore, this architecture does not enable the

possibility of conditioning the generated data to some additional input. Since we need

our GAN to generate a valid prescription given a specific recommendation, we will use the

conditional version of the GAN, as presented in [62]. Figure 7.6 shows how we use the

conditional GAN in order to convert a set of recommendations into valid medication pre-

scriptions. As represented in the figure, medication probabilities provided by an external

recommendation system are fed both to the generator and to the discriminator. By in-

putting this information to the generator, we are asking it to generate a valid prescription

for the provided recommendation vector. On the other hand, by providing this information

to the discriminator, we are letting it know that the prescription that it is trying to classify

should correspond to the recommendations provided.

As suggested in [62], the conditioning input is appended to each layer of both the dis-

criminator and the generator. This process is depicted in Figure 7.7, where the conditioning

input is labeled as “input 2”.

7.3 Synthetic Medication Prescription Dataset

There is a fundamental di�culty that prevents us from training generative models for med-

ical decisions, which is that when multiple options are equally correct for certain decision
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Figure 7.6: Conditional GAN arquitecture to turn a set of recommendations into valid

medication prescriptions.

Figure 7.7: Conditional GAN architecture.

process, our ground truth will only indicate one of them. For example, lets imagine that

for a given situation, a patient can be prescribed with any of three medications, being

all of them equally suitable for his or her disease. The physician will prescribe one of

the medications and such decision will be stored in our dataset. Afterwards, if we use our



7.3 Synthetic Medication Prescription Dataset 75

model to replicate such decision process, it may happen that our model prescribes a correct

medication for the situation, but still a di↵erent one than the doctor prescribed. In such

scenario, when we evaluate the prediction made by our model, it will be considered as a

failed prediction, since our ground truth indicates that the right medication is a di↵erent

one.

Thus, in order to be able to correctly model the prescription generation process, our

ground truth must include all the correct options for every sample in the dataset. However,

if we are working with real medical data, getting such complete ground truth can be really

hard to get, if not impossible. No hospital or clinic is currently storing all possible correct

decisions for each situation. Thus, getting a complete ground truth would involve getting

help from physicians in order to label each sample with all the correct decisions that could

have been taken.

For this reason, we decided to generate a simplified dataset, where we simulate a set of

diseases each of which can be treated with multiple medications. This simulated dataset

consists of the information described in the following subsections.

7.3.1 Diseases Vector

It is a randomly generated vector of length d that is composed of integer numbers, where

each position represents a disease, and the integers represent the number of medications

that are equally appropriated to treat each disease. For example, the vector [3, 2, 4] would

represent a dataset where there are 3 possible diseases, and the number of medications to

treat each disease are 3, 2 and 4 respectively.

For our experiments, we use a vector length d equal to 5 which we randomly initialize

following a Gaussian distribution with mean 10 and standard deviation 2. The specific

diseases vector used in our experiments is the following: [9.0, 10.0, 6.0, 13.0, 6.0]. Therefore,

there will be a total of 44 medications in our dataset.

Such disease vector does not look as one that can be find in real datasets very often.

However, it has been designed to clearly show the issues that can arise when non-generative

models are used to generate medication prescriptions. It has been also designed to be able

to prove this point with a small dataset where Neural Network models can be trained in a

short period of time.
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Figure 7.8: Diagnosis matrix sample.

7.3.2 Diagnosis Matrix

This is a binary matrix with size v ⇥ d, where each row represents a visit to the clinic

and each column corresponds to one of the diseases available in the dataset. For example,

a 1 located in the position (2, 4) would indicate that during the second recorded visit a

physician diagnosed the diseases number 4 to the patient.

For our experiments, in order to create this matrix, we first generate a sparse matrix

with 1 million rows and a sparsity of 0.01. Afterwards, we remove the rows that contain no

1s, since we assume that every visit contains at least a diagnosed disease. After running

this procedure, we kept 49043 rows in our diagnosis matrix. Since we are working with

5 potential diseases, the shape of our diagnosis matrix is 49043 ⇥ 5. Figure 7.8 shows a

sample of this matrix.

7.3.3 Medications Prescriptions Matrix

The medications prescription matrix contains a simulation of the medication that a doctor

would prescribe for each visit, assuming he or she always chooses one of the correct medi-

cations for each disease. This is a binary matrix with size v⇥m, where each row represents

a visit to the clinic and each column corresponds to one of the medications available in the

dataset.

In order to simulate such decision process, we randomly select one of the valid medica-

tions for each disease present on each visit.
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Figure 7.9: Medications prescriptions matrix sample.

For our experiments we simulated 49043 visits and 44 medications, therefore the med-

ications prescription matrix will have a size of 49043 ⇥ 44. Figure 7.9 shows a sample of

this matrix.

7.4 Experiments

7.4.1 Training the Recommender System

Since we want to simulate the whole system depicted in Figure 7.1, we start by using

a regular Feedforward NN that serves as a recommender system. This NN will take the

diagnosis matrix as input and will predict the values of the medication prescription matrix.

In order words, it will predict the medications prescribed for each visit given the observed

diseases. Thus, it has 5 inputs, which is the number of diseases in our dataset, and 44

outputs, which is the number of medications in our dataset. We will use 80% of the

samples in our dataset for training, 20% for validation and 20% for test. We train it using

Adagrad[30] and perform early stopping using the validation set.

After the training, we evaluate the model by using the test set, and we obtain an Area

under the ROC curve (AUROC) of 0.923 and an Area under the Precision-Recall curve

(AUPRC) of 0.158. The AUPRC for random predictions is 0.0231.

However, we know that the prescriptions contained in the medication prescription ma-
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trix, are not the only valid choice for each visit. Therefore, we developed a method that

dynamically takes the ground truth that will generate the best AUROC and AUPRC scores

for each prediction. That is, among all the right prescriptions that could be issued to a

patient, we evaluate our model with the prescription that will provide the best score for

the predictions provided by the model. We will refer to this evaluation method as “com-

plete ground truth”. Note that the main reason for using simulated data is to be able to

perform this kind of evaluation, since using real data it is hard to obtain all the medication

prescriptions that would have been valid on each visit.

After applying the “complete ground truth” evaluation strategy, we achieve an Area

under the ROC curve (AUROC) of 0.958 and an Area under the Precision-Recall curve of

0.506. The AUPRC for random predictions is 0.0233.

7.4.2 Training the GAN

The next step is to take the outcome of this NN and use it to train a GAN. Following

the architecture presented in Figure 7.6, the “Real data” box is the data we are trying to

mimic, in our case the Medication Prescription Matrix. On the other hand, the “Medication

probabilities” box contains the probabilities generated by the recommender system. In

order words, we want to train a generator that, given the output probabilities of the

Feedforward NN, generates a valid prescription as a physician would do. Both the generator

and the discriminator are Feedforward Neural Networks with two hidden layers following

the architecture shown in 7.7.

The generator takes as input a randomly initialized vector and the vector of probabilities

produced by the recommender system, which in our case will be composed of 44 real

numbers, since that is the number of medications available in our dataset. The output of

the generator, will be another vector with 44 real numbers, representing the probability of

each medication being prescribed. Thus, as we explained before, the goal of the generator

is to transform the recommendations provided by a regular NN into valid prescriptions, as

depicted in Figure 7.1.

After each epoch, we use the “complete ground truth” evaluation method and the

validation set in order to check the quality of the prescription generated by the generator.

We stop the training when the validation error of the prescriptions doesn’t improve for seven

consecutive epochs. Concerning the hyperparameters, the configuration that provided the

best results had a generator composed of 100 units in the first hidden layer and 10 units

in the second one. The discriminator was composed of 10 hidden units in the first hidden
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layer and 500 in the second one. For both networks the best learning rate was 0.05 and

the L2 regularization parameter was 0.1. Besides, the random seed vector used in the

discriminator had a length of 2, and the optimization algorithm used to train the whole

system was Adagrad.

After training, the generator achieved an AUROC of 0.990 and AUPRC of 0.704 on

the test set. Thus, it can be seen how the GAN actually improved the performance of

the predictions provided by the first NN. In other words, the decision layer is actually

taking the probabilities of the recommender system and converting them to more valid

prescriptions. Table 7.1 summarizes all the results obtained in the experiment.

Table 7.1: AUROC stands for Area Under ROC Curve. AUPRC stands for Area Under

Precision-Recall Curve. FNN stands for Feedforward Neural Network. CGT stands for

Complete Ground Truth. GAN stands for Generative Adversarial Networks.

AUROC AUPRC

FNN 0.923 0.158

FNN CGT 0.958 0.506

GAN CGT 0.990 0.704

7.5 Conclusion and Future Work

In this chapter we took a first step towards building fully autonomous clinical decision

systems. We created a synthetic dataset to run our experiments and showed how a GAN

architecture can be used to build a decision layer than improves the performance of a

regular NN.

There is currently a lot of research going on the field of generative models based on

deep learning architectures. It will be interesting to see how the new methods perform in

our synthetic dataset. Eventually, these methods must be tested with real data, since it

will be a much more complex task than modelling synthetic data. However, this task will

require to find a dataset where all potential valid actions are known.





Chapter 8

Predicting the Co-Evolution of Event

and Knowledge Graphs

8.1 Data Modelling with Knowledge Graphs

In this chapter, we present an approach using knowledge graphs (KG) that can be consid-

ered a general case of the models presented earlier in this thesis, and which can be applied

to other domains aside from healthcare. In previous publications it was shown how a KG

composed of triplets can be represented as a multiway array (tensor) and how a statistical

model can be formed by deriving latent representations of generalized entities. Successful

models are, e.g., RESCAL [67], Translational Embeddings Models [18] and the multiway

neural networks as used in [29]. In these publications KGs were treated as static: A KG

grew more links when more facts became available but the ground truth value associated

with a link was considered time invariant. In this chapter we address the issue of KGs

where triple states depend on time. In the simplest case this might consider simple facts

like “Obama is president of the United States”, but only from 2008-2016. Another example

is a patient whose status changes from sick to healthy or vice versa. Most popular KGs like

Yago [90], DBpedia [3] Freebase [17] and the Google Knowledge Graph [84] have means to

store temporal information.

Without loss of generality, we assume that changes in the KG always arrive in form

of events, in the sense that the events are the gateway to the KG. For a given time step,

events are described by a typically very sparse event triple graph, which contains facts that

change some of the triples in the KG, e.g., from True to False and vice versa. KG triples

which do not appear in the event graph are assumed unchanged.
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An example might be the statement that a patient has a new diagnosis of diabetes,

which is an information that first appears as an event in the event graph but is then also

transmitted to the KG. Other events might be a prescription of a medication to lower the

cholesterol level, the decision to measure the cholesterol level and the measurement result

of the cholesterol level; so events can be, e.g., actions, decisions and measurements. In a

similar way as the KG is represented as a KG tensor, the event graphs for all time steps can

be represented as an event tensor. Statistical models for both the KG tensor and the event

tensor can be derived based on latent representations derived from the tensor contents.

Although the event tensor has a representation for time, it is by itself not a prediction

model. Thus, we train a separate prediction model which estimates future events based on

the latent representations of previous events in the event tensor and the latent representa-

tions of the involved generalized entities in the KG tensor. In this way, a prediction can,

e.g., use both background information describing the status of a patient and can consider

recent events. Since some future events will be absorbed into the KG, by predicting future

events, we also predict likely changes in the KG and thus obtain a model for the evolution

of the KG as well.

There is a wide range of papers on the application of data mining and machine learning

to KGs. Data mining attempts to find interesting KG patterns [11, 77, 73]. Some machine

learning approaches attempt to extract close-to deterministic dependencies and ontological

constructs [58, 35, 52]. This chapter focuses on statistical machine learning in KG where

representation learning has been proven to be very successful.

There is considerable prior work on the application of tensor models to temporal data,

e.g., EEG data, and overviews can be found in [46] and [63]. In that work, prediction

is typically not in focus, but instead one attempts to understand essential underlying

temporal processes by analyzing the derived latent representations.

Some models consider a temporal parameter drift. Examples are the BPTF [102], and

[32]. Our model has a more expressive dynamic by explicitly considering recent histories.

Markov properties in tensor models were considered in [75, 76]. In that work quadratic

interactions between latent representations were considered. The approach described here

is more general and also considers multiway neural networks as flexible function approxi-

mators.

Our approach can also be related to the neural probabilistic language model [8], which

coined the term representation learning. It can be considered an event model where the

occurrence of a word is predicted based on most recent observed words using a neural
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network model with word representations as inputs. In our approach we consider that

several events might be observed at a time instance and we consider a richer family of

latent factor representations.

There is considerable recent work on dynamic graphs [53, 69, 91, 78] with a strong focus

on the Web graph and social graphs. That work is not immediately applicable to KGs but

we plan to explore potential links as part of our future work.

8.2 The Knowledge Graph Model

With the advent of the Semantic Web [14], Linked Open Data [13], Knowledge Graphs

(KGs) [90, 17, 84], triple-oriented knowledge representations have gained in popularity.

Here we consider a slight extension to the subject-predicate-object triple form by adding

the value (es, ep, eo; Value) where Value is a function of s, p, o and can be the truth value

of the triple or it can be a measurement. Thus (Jack, likes, Mary; True) states that Jack

likes Mary, and (Jack, hasBloodTest, Cholesterol; 160) would indicate a particular blood

cholesterol level for Jack. Note that es and eo represent the entities for subject index s

and object index o. To simplify notation we also consider ep to be a generalized entity

associated with predicate type with index p.

A machine learning approach to inductive inference in KGs is based on the factor

analysis of its adjacency tensor X where the tensor element xs,p,o is the associated Value

of the triple (es, ep, eo). Here s = 1, . . . , S, p = 1, . . . , P, and o = 1, . . . ,O. One can

also define a second tensor ⇥KG with the same dimensions as X . It contains the natural

parameters of the model and the connection to X . In the binary case one can use a

Bernoulli likelihood with P(xs,p,o |✓KG
s,p,o) ⇠ sig(✓KG

s,p,o), where sig(arg) = 1/(1 + exp(�arg))
is the logistic function. If xs,p,o is a real number than we can use a Gaussian distribution

with P(xs,p,o |✓KG
s,p,o) ⇠ N (✓KG

s,p,o,�
2).

In representation learning, one assigns an r-dimensional latent vector to the entity e

denoted by ae = (ae,0, ae,1, . . . , ae,r )T . We then model using one function

✓KG
s,p,o = f KG (ae

s

, ae
p

, ae
o

)

or, using one function for each predicate,

✓KG
s,p,o = f KG

p (ae
s

, ae
o

).
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For example, the RESCAL model [67] is

✓KG
s,p,o =

rX

k=1

rX

l=1

Rp,k,l ae
s

,k ae
o

,l,

where R 2 RP⇥r⇥r is the core tensor. In the multiway neural network model [29] one uses

✓KG
s,p,o = NN(ae

s

, ae
p

, ae
o

)

where NN stands for a neural network and where the inputs are concatenated. These

approaches have been used very successfully to model large KGs, such as the Yago KG, the

DBpedia KG and parts of the Google KG. It has been shown experimentally that models

using latent factors perform well in these high-dimensional and highly sparse domains. For

a recent review, please consult [66].

We also consider an alternative representation. The idea is that the latent vector

stands for the tensor entries associated with the corresponding entity. As an example, ae
s

is the latent representation for all values associated with entity es, i.e., xs,:,:. 1 It is then

convenient to assume that one can calculate a so-called M-map of the form

ae
s

= Msubjectxs,:,:. (8.1)

Here Msubject 2 Rr⇥(PO) is a mapping matrix to be learned and xs,:,: is a column vector of size

PO.2 For multilinear models it can be shown that such a representation is always possible;

for other models this is a constraint on the latent factor representation. The advantage

now is that the latent representations of an entity can be calculated in one simple vector

matrix product, even for new entities not considered in training. We can define similar

maps for all latent factors. For a given latent representation we can either learn the latent

factors directly, or we learn an M-matrix.

The latent factors, the M-matrices, and the parameters in the functions can be trained

with penalized log-likelihood cost functions described in the Appendix.

8.3 The Event Model

Without loss of generality, we assume that changes in the KG always arrive in form of

events, in the sense that the events are the gateway to the KG. For a given time step,

1If an entity can also appear as an object (o : e
o

= e
s

), we need to include x:,:,o.
2The M matrices are dense but one dimension is small (r), so in our settings we did not run into storage

problems. Initial experiments indicate that random projections can be used in case that computer memory

becomes a limitation.
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events are described by a typically very sparse event triple graph, which contains facts

that change some of the triples in the KG, e.g., from True to False and vice versa. KG

triples which do not appear in the event graph are assumed unchanged.

Events might be, e.g., do a cholesterol measurement, the event cholesterol measurement,

which specifies the value or the order take cholesterol lowering medicine, which determines

that a particular medication is prescribed followed by dosage information.

At each time step events form triples which form a sparse triple graph and which

specifies which facts become available. The event tensor is a four-way tensor Z with

(es, ep, eo, et ;Value) and tensor elements zs,p,o,t . We have introduced the generalized entity

et to represent time. Note that the characteristics of the KG tensor and the event tensor

are quite di↵erent. X is sparse and entries rarely change with time. Z is even sparser and

nonzero entries typically “appear” more random. We model

✓event
s,p,o = f event (ae

s

, ae
p

, ae
o

, ae
t

).

Here, ae
t

is the latent representation of the generalized entity et .

Alternatively, we consider a personalized representation of the form

✓pers-event,s=i
p,o = f pers-event(ae

p

, ae
o

, ae
s

=i,t ).

Here, we have introduced the generalized entity es,t for a subject s = i at time t which

stands for all events of entity s = i at time t.

Since representations involving time need to be calculated online, we use M-maps of

the form

ae
s,t = Msubject, timezs,:,:,t

The cost functions are again described in the Appendix.

8.4 The Prediction Model

8.4.1 Predicting Events

Note that both the KG-tensor and the event tensor can only model information that was

observed until time t but it would not be easy to derive predictions for future events,

which would be of interest, e.g., for decision support. The key idea of this chapter is that

events are predicted using both latent representations of the KG and latent representations

describing recently observed events.
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In the prediction model we estimate future entries in the event tensor Z . The general

form is

✓predicts,p,o,t = f predict(args) or ✓predicts,p,o,t = f predictp,o (args)

where the first version uses a single function and the latter uses a di↵erent function for

each (p, o)-pair.3 Here, args is from the sets of latent representations from the KG tensor

and the event tensor.

An example of a prediction model is

✓predicts,p,o,t = f predictp,o (ae
s

, ae
s,t, ae

s,t�1, . . . , ae
s,t�T ).

where the prediction is based on the latent representations of subject, object and predicate

from the KG-tensor and of the time-specific representations from the event tensor.

Let’s consider an example. Let (es, ep, eo, et ;Value) stand for (Patient, prescription,

CholesterolMedication, Time; True). Here, ae
s

is the profile of the patient, calculated from

the KG model. Being constant, ae
s

assumes the role of parameters in the prediction model.

ae
s,t describes all that so far has happened to the patient at the same instance in time t

(e.g., on the same day). ae
s,t�1 describes all that happened to the patient at the last instance

in time and so on.

We model the functions by a multiway neural network with weight parameters W

exploiting the great modeling flexibility of neural networks. The cost function for the

prediction model is

costpredict = �
X

z
s,p,o,t2Z

log P(zs,p,o,t |✓predicts,p,o,t (A,M,W )) (8.2)

+�AkAk2F + �W kW k2F + �M kM k2F .
A stands for the parameters in latent representation and M stands for the parameters in

the M-matrices. For a generalized entity for which we use an M-matrix, we penalize the

entries in the M-matrix; for a generalized entity for which we directly estimate the latent

representation we penalize the entries in the corresponding latent terms in A. Here, k · kF
is the Frobenius norm and �A � 0, �M � 0 and �W � 0 are regularization parameters.

8.4.2 Predicting Changes in the KG

In our model, each change in the status of the KG is communicated via events. Thus each

change in the KG first appears in the event tensor and predictions of events also implies

3The di↵erent functions can be realized by the multiple outputs of a neural network.
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predictions in the KG. The events that change the KG status are transferred into the

KG and the latent representations of the KG, i.e., ae
s

, ae
p

, ae
o

, are re-estimated regularly

(Figure 8.1).

Figure 8.1: The figure shows an example where the event tensor is predicted from the

representations of the events in the last two time steps and from the KG representation.

The dotted line indicate the transfer of observed events into the KG.

8.4.3 More Cost Functions

Associated with each tensor model and prediction model, there is a cost function (see

Appendix). In our experiments we obtained best results, when we used the cost function

of the task we are trying to solve. In the most relevant prediction task we thus use the

cost function in Equation 8.2. On the other hand, we obtained faster convergence for the

prediction model if we initialize latent representations based on the KG model.

8.5 Experiments

8.5.1 Modelling Clinical Data

The study is based on the same dataset as chaperts 2 and 4. It is a large dataset collected

from patients that su↵ered from kidney failure. As explained earlier, the dataset contains
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Figure 8.2: The prediction model for the clinical data.

Table 8.1: Scores for next visit predictions. AUPRC stands for Area Under Precision-

Recall Curve. AUROC stands for Area Under ROC Curve. ET stands for our proposed

model that uses only past event information but no information from the KG.

AUPRC AUROC Time (hours)

ET 0.574 ± 0.0014 0.977 ± 0.0001 6.11

Logistic Regression 0.554 ± 0.0020 0.970 ± 0.0005 4.31

KNN 0.482 ± 0.0012 0.951 ± 0.0002 17.74

Naive Bayes 0.432 ± 0.0019 0.843 ± 0.0015 39.1

Constant predictions 0.350 ± 0.0011 0.964 ± 0.0001 0.001

Random 0.011 ± 0.0001 0.5 -

every event that happened to each patient concerning the kidney failure and all its as-

sociated events: prescribed medications, hospitalizations, diagnoses, laboratory tests, etc.

[54, 82]. It is composed of dozens of tables with more than 4000 patients that underwent a
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Figure 8.3: The prediction model for the recommendation data.

renal transplant or are waiting for it. For example, the database contains more than 1200

medications that have been prescribed more than 250000 times, and the results of more

than 450000 laboratory analyses.

This is particularly important for the estimation of drug-drug interactions (DDI) and

adverse drug reactions (ADR) in patients after renal transplant.

We work with a subset of the variables available in the dataset. Specifically, we model

medication prescriptions, ordered lab tests and lab test results. We transformed the tables

into an event oriented representation where the subject is the patient and where time

is a patient visit. Also in this chapter, we encoded the lab results in a binary format

representing normal, high, and low values of a lab measurement, thus Value is always

binary.

The prediction model is

✓predict
s,p,o,t = f predict

p,o (ae
s

, ae
t

, ae
s,t, ae

s,t�1, . . . , ae
s,t�T ).

Note that we have a separate function for each (p, o)-pair. ae
s

are patient properties as

described in the KG. ae
s,t represents all events known that happened at visit t for the
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Figure 8.4: The prediction model for the sensor data. ae
s

is directly estimated without

using an M-mapping.

patient (e.g., the same visit for which we want to make a prediction). ae
s,t�1 represents all

events for the patient at the last visit, etc. ae
t

stands for the latent representation of all

events at visit t for all patients and can model if events are explicitly dependent on the

time since the transplant. Regarding the input window, we empirically found that T = 6

is optimal. The architecture is shown in Figure 8.2.

The first experiment consisted of predicting the events that will happen to patients

in their next visit to the clinic given the events that were observed in the patients’ pre-

vious visits to the clinic (i.e. by using the events that occurred to the patient from ae
s,t

until ae
s,t�6). The experiment was performed 10 times with di↵erent random splits of the

patients. Thus we truly predict performance on patients which were not considered in

training! Table 8.1 shows how our proposed model outperforms the baseline models. The

“constant predictor” always predicts for each event the occurrence rate of such event (thus

the most common event is given the highest probability of happening, followed by the sec-

ond most common event, and so on). Note that we are particularly interested in the Area

Under Precision-Recall Curve score due to the high sparsity of the data and our interest
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in predicting events that will actually happen, as opposed to the task of predicting which

events will not be observed. In the last column of Table I we also report the time that it

took to train for each model with the best set of hyperparameters in the first random split.

Next we repeat the experiment including the KG-representation of the patient, which

contains static variables of the patient such as blood type and gender, i.e., ae
s

, and also used

ae
t

. Table 8.2 shows the improvement brought by the inclusion of the KG representation.

The last row in Table 8.2 shows the result of making the predictions just with the KG

representation of the patient (i.e. without the past event information), demonstrating

clearly that information on past events is necessary to achieve best performance.

Table 8.2: Scores for full visit predictions with and without the information in the KG.

AUPRC stands for Area Under Precision-Recall Curve. AUROC stands for Area Under

ROC Curve. ET+KG stands for our proposed model that uses past event information and

information from the KG. ET only uses past event data and KG only uses KG data.

AUPRC AUROC

ET+KG 0.586 ± 0.0010 0.979 ± 0.0001

ET 0.574 ± 0.0014 0.977 ± 0.0001

KG 0.487 ± 0.0016 0.974 ± 0.0002

8.5.2 Recommendation Engines

We used data from the MovieLens project with 943 users and 1682 movies.4 In the KG

tensor we considered the triples (User, rates, Movie; Rating). For the event tensor, we con-

sidered the quadruples (User, watches, Movie, Time; Watched) and (User, rates, Movie,

Time; Rating). Here, Rating 2 {1, . . . , 5} is the score the user assigned to the movie and

Watched 2 {0, 1} indicates if the movie was watched and rated at time t. Time is the

calendar week of the rating event. We define our training data to be 78176 events in the

first 24 calender weeks and the test data to be 2664 events in the last 7 weeks. Note that

in both datasets there are only 738 users since the remaining 205 users watched and rated

their movies only in the test set.

4http://grouplens.org/datasets/movielens/
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It turned out that the movie ratings did not show dependencies on past events, so they

could be predicted from the KG model alone with

✓predict
s,rates,o,t = f predict

rates,o (ae
s

).

We obtained best results by modeling the function with a neural network with 1682 outputs

(one for each movie). The user specific data was centered w.r.t. to their average and a

numerical 0 would stand for a neutral rating. We obtain an RMSE score of 0.90 ± 0.002

which is competitive with the best reported score of 0.89 on this dataset [75]. But note that

we predicted future ratings which is more di�cult than predicting randomly chosen test

ratings, as done in the other studies. Since we predict ordinal ratings, we used a Gaussian

likelihood model.

Of more interest in this chapter is to predict if a user will decide to watch a movie at

the next time step. We used a prediction model with

✓predict
s,watches,o,t =

f predict
watches,o(ae

s

, ae
t

, aes, t, ae
s,t�1, . . . , ae

s,t�T ).

Here, ae
s

stands for the profile of the user as represented in the KG. ae
t

stands for the

latent representation of all events at time t and can model seasonal preferences for movies.

ae
s,t stands for the latent representation of all movies that the user watched at time t. The

architecture is shown in Figure 8.3. When training with only the prediction cost function

we observe an AUROC an score of 0.728 ± 0.001. We then explored sharing of statistical

strength by optimizing jointly the M-matrices using all three cost functions costKG, costevent

and costpredict and obtained a significant improvement with an AUROC score of 0.776 ±
0.002.

For comparison, we considered a pure KG-model and achieved an AUROC score of

0.756 ± 0.007. Thus the information on past events leads to a small (but significant)

improvement.

8.5.3 Sensor Networks

In our third experiment we wanted to explore if our approach is also applicable to data

from sensor networks. The main di↵erence is now that the event tensor becomes a sensor

tensor with subsymbolic measurements at all sensors at all times.

Important research issues for wind energy systems concern the accurate wind profile

prediction, as it plays an important role in planning and designing of wind farms. Due to
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Table 8.3: Mean Squared Error scores for predicting multivariate sensor data 20 time steps

ahead.

Model MSE

Pred1 0.135 ± 0.0002

Pred2 0.139 ± 0.0002

Pred3 0.137 ± 0.0002

Feedforward Neural Network 0.140 ± 0.0002

Linear Regression 0.141 ± 0.0001

Last Observed Value 0.170

the complex intersections among large-scale geometrical parameters such as surface con-

ditions, pressure, temperature, wind speed and wind direction, wind forecasting has been

considered a very challenging task. In our analysis we used data from the Automated

Surface Observing System (ASOS) units that are operated and controlled cooperatively in

the United States by the NWS, FAA and DOD5. We downloaded the data from the Iowa

Environmental Mesonet (IEM)6. The data consists of 18 weather stations (the Entities)

distributed in the central US, which provide measurements every minute. The measure-

ments we considered are wind strength, wind direction, temperature, air pressure, dew

point and visibility coe�cient (the Attributes).

In the analysis we used data from 5 months from April 2008 to August 2008. The

original database consists of 18 tables one for each station.

The event tensor is now a sensor tensor with quadruples (Station, measurement, Sen-

sorType, Time; Value), where Value is the sensor measurement for sensor SensorType at

station Station at time Time. The KG-tensor is a long-term memory and maintains a track

record of sensor measurement history.

As the dataset contains missing values we only considered the periods in which the data

is complete. This results in a total of 130442 time steps for our dataset. In order to capture

important patterns in the data and to reduce noise, we applied moving average smoothing

using a Hanning window of 21 time steps. We split the data into train-, validation- and

test set. The first four months of the dataset where used for training, and the last month

5http://www.nws.noaa.gov/asos/
6https://mesonet.agron.iastate.edu/request/asos/1min.phtml
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as test set. 5 % of the training data where used for validation.

We considered three di↵erent prediction models with Gaussian likelihood functions,

each with di↵erent latent representations at the input. The first model (Pred1) is

✓predict
s,p,o,t = f predict

p,o (ae
s

, ae
s,t�1, ae

s,t�2, . . . , ae
s,t�T )

where ae
s,t stands for all measurements of station es at time t and ae

s,t�1, ae
s,t�2, . . . , ae

s,t�T

can be considered a short term memory. ae
s,t�1 represents all measurements for station s

between t � T � 1 and t � 1, i.e., and can represent complex sensor patterns over a longer

period in time. Since measurements take on real values, a Gaussian likelihood model was

used.

The second model (Pred2) is

✓predict
s,p,o,t = f predict

p,o (ae
s,t�1, . . . , ae

s,t�T , ae
t�1, . . . , ae

t�T ).

Here, ae
t

stands the latent representation of all measurements in the complete network at

time t.

And finally the third model (Pred3) combines the first two models and uses the com-

bined sets of inputs. The architecture of Pred3 is shown in Figure 8.4.

In our experiments we considered the task of predicting 20 time steps into the future.

All three models performed best with T = 10 and the rank of the latent representations

being 20. Table 8.3 summarizes the results of the three prediction models together with

three baseline models. The most basic baseline is to use the last observed value of each time

series as a prediction. More enhanced baseline models are linear regression and feedforward

neural networks using the previous history zs,:,:,t�1, zs,:,:,t�2, . . . , zs,:,:,t�T of all time series of

a station s as input. The experiments show that all three prediction models outperform

the baselines. Pred1, which adds the personalization term for each sensor shows the best

results. Pred2 performs only slightly better than the feedforward neural network. However,

we assume that in sensor networks with a stronger cross correlation between the sensors,

this model might prove its strength. Finally, the result of Pred3 shows that the combination

of the multiple latent representations is too complex and does not outperform Pred1.

8.6 Conclusions and Extensions

We have introduced an approach for modeling the temporal evolution of knowledge graphs

and for the evolution of associated events and signals. We have demonstrated experi-

mentally that models using latent representations perform well in these high-dimensional
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and highly sparse dynamic domains in a clinical application, a recommendation engine

and a sensor network application. The clinical application is explored further in a funded

project [34]. As part of future work we plan to test our approach in general streaming

frameworks which often contain a context model, an event model and a sensor model,

nicely fitting into our framework. In [96] we are exploring links between the presented

approach and cognitive memory functions.

In general, we assumed a unique representation for an entity, for example we assume

that ae
s

is the same in the prediction model and the semantic model. Sometimes it makes

sense to relax that assumption and only assume some form of a coupling. [49, 7, 6] contain

extensive discussions on the transfer of latent representations.

Appendix: Cost Functions

We consider cost functions for the KG tensor, the event tensor and the prediction model.

The tilde notation X̃ indicates subsets which correspond to the facts known in training. If

only positive facts with Value = True are known, as often the case in KGs, negative facts

can be generated using, e.g., local closed world assumptions. We use negative log-likelihood

cost terms. For a Bernoulli likelihood, � log P(x |✓) = log[1+exp{(1�2x)✓}] (cross-entropy)
and for a Gaussian likelihood � log P(x |✓) = const + 1

2�2
(x � ✓)2. We use regularization as

described in Equation 8.2.

We describe the cost function in terms of the latent representations A and the M-

mappings. W stands for the parameters in the functional mapping.

KG

The cost term for the semantic KG model is

costKG = �
X

x
s,p,o2 ˜X

log P(xs,p,o |✓KG
s,p,o(A,M,W ))

Events

costevent = �
X

z
s,p,o,t2 ˜Z

log P(zs,p,o,t |✓events,p,o,t (A,M,W ))
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Prediction Model

The cost function for the prediction model is

costpredict = �
X

z
s,p,o,t2 ˜Z

log P(zs,p,o,t |✓predicts,p,o,t (A,M,W ))



Chapter 9

Conclusion

Along this thesis, we have shown multiple applications of Neural Networks with the goal

of providing predictions and recommendations tailored to the specific profile and history

of each patient. We have put special attention to one of the main challenges that araised

when pursuing our goal, which is the ability to merge multiple source of static and dy-

namic information, and to be able to find complex patterns among all those variables. To

tackle these challenges, we developed new Neural Network architectures and preprocessing

pipelines to exploit the main characteristics of medical datasets.

In Chapter 2 we presented our Temporal Embeddings Model which shows how to inte-

grate both temporal and medical features by using a Feedforward Neural Network. This

model provides an acceptable performance for the task of modelling the next laboratory

analysis and medication prescriptions, outperforming the other models that we tried. We

showed how this Neural Network can perform intra-day recommendations (i.e. given the

laboratory results obtained in the morning for a given patient, what medications should

be prescribed in the afternoon), as well as full-visit recommendations (i.e. for any given

patient, what laboratory tests should be made in the next visit, what are the expected

results of such analysis and what medications should be prescribed next).

Interestingly, we found that the discretization of continuous variables into “high”, “nor-

mal” and “low” categories, improved the performance of the model. We hypothesized that

such improvement is a result of reducing the noise caused by imputation strategies and an

increase of the parameters of the network.

Another interesting piece of information presented in Chapter 4 is the sensitivity anal-

ysis. It shows how our model learnt to predict the prescription of Tacrolimus, one of the

medications that appears more frequently in the dataset, giving a very high importance to
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the same observations that the physicians use to decide if this drug should be prescribed.

In Chapter 4, we show how an architecture based in Recurrent Neural Networks, which

also integrated static information from the patients, outperforms the Temporal Embeddings

Model in the task of predicting a set of endpoints after a kidney transplantation. In this

chapter we predict the probability of observing a rejection, a graft loss or the death of a

patient, both 6 and 12 month after the transplantation. The results obtained seem good

enough to be useful in real life applications.

There is still room to improve the performance of the models in all the use cases

presented in this thesis, specially in terms of false positive rate, which is usually the hardest

aspect to improve in highly imbalanced datasets. Chapter 5 shows how some of these

methods can be generalized to other use cases outside of the medical sector.

As stated before, this thesis pursues a very pragmatical goal, which is bringing Machine

Learning technology into the daily clinical practice. For this reason, we also explored two

fundamental aspects related with this purpose: how to integrate the models into a clinic

or hospital, and how to create fully autonomous decisions systems.

Concerning the integration of ML models in hospitals, we designed and implemented a

software architecture to enable physicians to interact with the developed models. Chapter 6

shows how we deployed the endpoint predictor at the Charité hospital in Berlin. We present

the architecture the system designed for this purpose, as well as the software stack that

we used.

Regarding the fully autonomous decision making model, in Chapter 7 we showed how

Generative Adversarial Networks can be used to fully automate the process of drug pre-

scriptions. This model converts the recommendations provided by a Neural Network into

valid medical decisions. We showed with simulated data the benefits and limitations of

this approach. The main downside of the method presented is that, in order to train such

model, one would require a training dataset that includes all the valid prescriptions that a

doctor could have made for each data sample.

Nevertheless, we consider that this kind of fully automated decision system could be

highly useful due to the population ageing observed in many countries. The so called “silver

tsunami” can translate into a saturation of the healthcare systems, and fully autonomous

digital systems could be the solution for creating scalable healthcare services that solve

this problem. This kind of system could for example start taking care of chronic patients

su↵ering from certain diseases, where the spectrum of decisions that need to be taken could

be pretty narrow. For this purpose, we proposed a system based on Generative Adversarial
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Networks which is capable of modelling the behavior of an hypothetical human decision

maker.

We live in a time in which the “big data” we generate is constantly exploited for

commercial purposes. However, healthcare information systems have fallen behind. Very

frequently the only exploitation of our healthcare records is made by physicians, who use

their intuition, know-how and simple statistical models to do so. This is obviously an

unacceptable situation and it is beyond any doubt that in the near future, physicians

will be, at least, assisted by electronic systems that automatically process big amounts of

clinical data. With our work we took the first steps towards this goal, and we believe that,

with the e↵ort of scientists and engineers, these systems will soon have a huge positive

impact in our society.
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[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic web,

pages 722–735. Springer, 2007.

[4] Enrique Baca-Garcia, Maria de las Mercedes Perez-Rodriguez, Ignacio Basurte-
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