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Boundary Element Method for 3D Conductive Thin Layer in
Eddy Current Problems

Mohammad ISSA, Jean-René POIRIER, Olivier CHADEBEC, Victor PÉRON, and
Ronan PERRUSSEL

Abstract

Purpose - Thin conducting sheets are used in many electric and electronic devices. Solving numerically
the eddy current problems in presence of these thin conductive sheets requires a very fine mesh which
leads to a large system of equations, and it becomes more problematic in case of higher frequencies. The
purpose of this paper is to show the numerical pertinence of equivalent models for 3D eddy current prob-
lems with a conductive thin layer of small thickness e based on the replacement of the thin layer by its
mid-surface with equivalent transmission conditions that satisfy the shielding purpose, and by using an
efficient discretization using the Boundary Element Method (BEM) in order to reduce the computational
work.
Design/methodology/approach - These models are solved numerically using the BEM and some nu-
merical experiments are performed to assess the accuracy of our models. The results are validated by
comparison with an analytical solution and a numerical solution by the commercial software Comsol.
Findings - The error between the equivalent models and the analytical and numerical solutions confirms
the theoretical approach. In addition to this accuracy, the time consumption is reduced by considering a
discretization method that requires only a surface mesh.
Originality/Value - Based on an hybrid formulation, we present briefly a formal derivation of impedance
transmission conditions for 3D thin layers in eddy current problems where non-conductive materials are
considered in the interior and the exterior domain of the sheet. BEM is adopted to discretize the problem
as there is no need for a volume discretization.
Keywords - Eddy Current Problems, Thin Conducting Layers, Transmission Conditions, Boundary Ele-
ment Method

1 Introduction
Many magnetic components are surrounded by conductive thin layers for shielding purpose. Modelling
these conducting regions requires very fine volume discretizations because the fields decay rapidly through
the surface due to the skin depth. Also, it leads to a large system of equations and then to a prohibitive
computational time especially for 3D structures. To overcome this difficulty, the conductive sheet can be
replaced by a mid-surface with equivalent transmission conditions. These transmission conditions can be
derived asymptotically for vanishing sheet thickness e where the skin depth is kept less than or equal to the
thickness e, see e.g. (K. Schmidt and A. Chernov, 2013, 2014; Victor Péron, 2017; Victor Péron, Kersten
Schmidt, Marc Duruflé, 2016).

In (K. Schmidt and A. Chernov, 2014) two families of Transmission Conditions for Eddy Current Model
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in 2D have been derived using asymptotic expansions, ITC-1-N based on scaling the conductivity with the
sheet thickness e like 1/e and ITC-2-N based on scaling the conductivity with the sheet thickness e like
1/e2, where N +1 is the order of convergence for these families. The robustness of the ITC-2-N family of
transmission conditions is validated in (K. Schmidt and A. Chernov, 2013) and it shows a higher accuracy
in comparison with ITC-1-N. The ITC-2-N family thus adopted in (Victor Péron, Kersten Schmidt, Marc
Duruflé, 2016) to derive an equivalent transmission conditions for the full time-harmonic Maxwell equa-
tions in 3D, where curved thin sheets are considered, and the material constants can take different values
inside and outside the sheet.

In this work, the family ITC-2-N is considered, We present briefly a formal derivation of impedance
transmission conditions for 3D eddy current problems, where curved thin sheets are considered, and the
materials inside and outside the sheet are non-conductive. There are several differences between this work
and the work in Ref. (Victor Péron, 2017). First, the work in (Victor Péron, 2017) is concerned essentially
with theoretical objectives (well-posedness, stability and convergence results for the asymptotic models)
whereas this work is concerned essentially with numerical objectives. Second, in (Victor Péron, 2017), the
derivation of asymptotic models is based on a magnetic field formulation and a multi-scale expansion for
the magnetic field and then impedance conditions are identified for the electric field, whereas, in this work,
we proceed with an hybrid (electric and magnetic fields) formulation.

We also study a discretization that can be the numerical relevant for ITCs. We avoid the volume mesh
required in many numerical methods, e.g. in the Finite Element Method (FEM), by discretizing the problem
using the Boundary Element Method (BEM) that uses only a mesh on the surface (S. Rjasanow, O. Stein-
bach, 2007). In addition, BEM is well adapted to general field problems with unbounded structures because
no artificial boundaries are needed, this is not the case for FEM. The BEM becomes a powerful tool for
numerical studies in computational electromagnetism, In (J.M. Schneider and S.J. Salon, 1980) BEM has
been used in some applications for eddy current problems based on the electric vector potential formulation.
Using the same formulation, a BEM is developped for calculating induced eddy current flows in conducting
plates with cracks in (M. Morjaria, S. Mukherjee, F.C. Moons, 1982). A direct boundary element method
for the computation of eddy currents in a linear homogeneous conductor is presented in (R. Hiptmair and J.
Ostrowski, 2005).

1.1 Eddy Current Approximation of Maxwell equations
We denote by Ω⊂ R3 the domain of study, which is itself composed of three sub-domains

Ω = Ω
e
−∪Ωe

0∪Ω
e
+

where Ωe
− is the interior domain that corresponds to any non-conductive linear material, Ωe

+ is the exterior
domain (air), and the subdomain Ωe

0 is a conductive thin layer of constant thickness e surrounding the sub-
domain Ωe

−. Let Γe
− and Γe

+ be the two smooth boundaries of the subdomains Ωe
− and Ωe

−∪Ωe
0 respectively.

And let Γ be the mid-surface of the thin layer Ωe
0 (see Figure 1).

As the three subdomains have different properties, we define µe(magnetic permeability) and σ e(conductivity)
as piecewise constant functions

(1.1) µe =

 µ− in Ωe
−,

µc
0 in Ωe

0,
µ+ in Ωe

+,
and σ e =

 0 in Ωe
−,

σ0 in Ωe
0,

0 in Ωe
+.
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Figure 1: A cross section of the domain Ω

We are interested in the case where the skin depth δ =
√

2
ωµc

0σ0
is smaller than e or of the same order. For

that, we assume an explicit dependence of the layer conductivity σ0 on e

(1.2) σ0 = e−2
σ̄ ,

which comes from the fact that, in the asymptotic limit, as the layer is thinner, the conductivity is larger
and δ remains less than or equal to e. For simplicity, we assume that the source current term J0 is smooth
enough and its support does not meet the layer Ωe

0 (JJJ000 === 000 iiinnn ΩΩΩ
eee
000), and we denote J± = J0 in Ωe

±. Let us
now recall the general model of the eddy current problem (Ana Alonso Rodriguez, and Alberto Valli, 2010)

curlHe = J in Ω,(1.3)
curlEe− iωµ

eHe = 0 in Ω,(1.4)
Be = µ

eHe in Ω,(1.5)
J = σ

eEe + J0 in Ω,(1.6)
divEe = 0 in Ω

e
±,(1.7) ∫

Γe
±

Ee
± ·ndS = 0 on Γ

e
±,(1.8)

Ee = O(
1
|x|

) as |x| → ∞,(1.9)

where ω is the angular frequency.

The paper is organized as follows. Section 2 presents the hybrid formulation of the eddy current problem,
the procedure for deriving the transmission conditions, and the equivalent models up to order 2. In section
3 we provide the Boundary Element Method with special basis functions to solve the problem. The integral
equations, variational formulations, and Galerkin discretisations are given for the terms of the expansion and
the equivalent models. Numerical results are provided in section 4, we validate our models and assumptions,
and we study the computational time using the BEM. Details about the calculation of the analytical solution
and the postprocessing to calculate the external magnetic field are given in the Appendix.
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2 Transmission Conditions
In section 2.1, we state the hybrid formulation which is considered as a problem of departure in order to
find the equivalent models presented in section 2.2. In the same section, we present briefly the multiscale
expansion and the steps to derive the transmission conditions.

2.1 Ee
±/He

0 Hybrid Formulation
In (Victor Péron, 2017) the formulations in H and E are adopted but that it is also possible to do all the
calculations in a hybrid formulation. Let u be a vector field on Γ, we denote by [u] and {u} respectively the
jump and mean of u across Γ

[u]Γ = u|
Γ+
−u|

Γ−
, and {u}Γ =

1
2
(u|

Γ+
+u|

Γ−
).

An E-based formulation is considered in the air region Ωe
± which reads

(2.1) curlcurlEe
± = iωµ

e
±J0.

And an H-based formulation is considered in the conductor Ωe
0

(2.2) curlcurlHe
0 − iωµ

e
0σ

e
0 He

0 = 0.

The continuity of the tangential component of the magnetic field and the normal component of the induction
field across the two conductor surfaces Γe

+ and Γe
− are considered

[He×n]Γe
± = 0 on Γ

e
±,(2.3)

[µHe ·n]Γe
± = 0 on Γ

e
±.(2.4)

Finally, the hybrid eddy current model can be reduced to the following

(2.5)



curlcurlEe
± = iωµe

±J0 in Ωe
±,

curlcurlHe
0 − (ke

0)
2He

0 = 0 in Ωe
0,

iω(He
0 ×n) = 1

µe
±

curlEe
±×n on Γe

±,

µc
0He

0 ·n = 1
iω curlEe

± ·n on Γe
±,

divEe
± = 0 in Ωe

±,∫
Γe
±

Ee
± ·ndS = 0 on Γe

±,

Ee = O( 1
|x| ) as |x| → ∞,

where ke
0 is the complex wave number given by

(2.6) (ke
0)

2(x) = iωσ
e
0(x)µ

e
0(x),

Ee
+, Ee

− and He
0 denote the restriction of Ee and Heto the respective domains Ωe

+, Ωe
− and Ωe

0.

2.2 Multiscale Expansion and Equivalent Models with Transmission Conditions
We propose replacing the thin layer by its mid-surface Γ, on which appropriate conditions are set. Therefore,
we have to approximate new models defined in e-independent domains Ω− and Ω+ (see Figure 1) where

Ω− = lime→0 Ωe
−, and Ω+ = lime→0 Ωe

+.
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In the approximate model and structure, we can redefine the magnetic properties in the new subdomains by
a simple extension of µe and σ e outside the sheet. To obtain the new values:

(2.7) µ =

{
µ− in Ω−,
µ+ in Ω+,

and σ =

{
σ− = 0 in Ω−,
σ+ = 0 in Ω+.

2.2.1 Steps to derive the Transmission Conditions

Assuming that Γ is a smooth surface, it is possible to derive a multiscale expansion for the solution of the
problem: It possesses an asymptotic expansion in power series of the small parameter e.

(2.8) Ee
±(x)≈ E±0 (x)+ eE±1 (x)+ e2E±2 (x)+ ...+O(ek),

(2.9) He
0(x)≈H0(yα ,

h
e
)+ eH1(yα ,

h
e
)+ ...+O(ek),

where O(ek) means the remainder is uniformly bounded by ek.
Here, x ∈ R3 are the cartesian coordinates, and (yα ,h) is the local normal coordinate system where
h ∈ (− e

2 ,
e
2 ) and yα for α = 1,2 are the normal and tangential coordinates to Γ, respectively.

The term H j is a profile defined on Γ× (− 1
2 ,

1
2 ) and is smooth in all variables.

The derivation is based on (Victor Péron, 2017):

1. The expansion of the differential operators inside the thin layer Ωe
0

(2.10) L(yα ,h;Dα ,∂
h
3 ) = curlcurl− (ke

0)
2I in Ω

e
0.

2. The Taylor expansion of the component E j|Γe
± of the expansion (2.8) around the mid–surface Γ

curlE±j ×n|h=± e
2
= curlE j×n|0±±

e
2

∂hcurlE j×n|0±+ ...,(2.11)

curlE±j ·n|h=± e
2
= curlE j ·n|0±±

e
2

∂hcurlE j ·n|0±+ ....(2.12)

3. Collecting the same terms of e in the PDE inside and outside the sheet, and the conditions for the
Dirichlet and normal traces on Γe

±.

4. In order to simplify the problem, we introduce a problem satisfied by an approximation Ek
e of the

expression E0(x)+ eE1(x)+ e2E2(x)+ ...+ ekEk(x) up to a residual term in O(ek+1).

2.2.2 Equivalent Model of Order 1

The first order approximate solution E0 satisfies the perfect electric conductor (PEC) boundary conditions
on Γ. In this case, the two domains Ω− and Ω+ are perfectly isolated. E0 solves

(2.13)



curlcurlE−0 = 0 in Ω−,
n× (E−0 ×n) = 0 on Γ,
curlcurlE+

0 = iωµ+J0 in Ω+,
n× (E+

0 ×n) = 0 on Γ,
divE±0 = 0 in Ω±,∫

Γ± E±0 ·ndS = 0 on Γ±,

E0 = O( 1
|x| ) as |x| → ∞.
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2.2.3 Equivalent Model of Order 2

Let u be a vector field on Γ, we denote by

γDu = n× (u×n), γNu = curlu×n, and γnu = u ·n,

here n is the unit normal vector on Γ which is oriented from the inner domain towards the outer domain.
The term E1 satisfies the following problem:

(2.14)



curlcurlE1 = 0 in Ω±,
divE1 = 0 in Ω±,
E1 = O( 1

|x| ) as |x| → ∞,(
[γDE1]Γ
{γDE1}Γ

)
= −

( C1 C3
C3 C2

)( { 1
µ
(γNE0)}Γ

[ 1
µ
(γNE0)]Γ

)
on Γ,

where (Victor Péron, 2017)

C1 = {µ}−2 µc
0

γ
tanh( γ

2 ) , C2 =
{µ}

4 −
µc

0
2γ

coth( γ

2 ),

C3 =
1
4 [µ].

Adding (2.14) multiplied by e to the conditions for E0 and by replacing E0 + eE1 on the left side by the E1
e

and by replacing eE0 on the right hand side by eEe
1 . We obtain the second order approximate solution E1

e
that solves the system

(2.15)



curlcurlE1
e = iωµJ0 in Ω±,

divE1
e = 0 in Ω±,

E1
e = O( 1

|x| ) as |x| → ∞,(
[γDE1

e ]Γ
{γDE1

e }Γ

)
= −e

( C1 C3
C3 C2

)( { 1
µ
(γNE1

e )}Γ

[ 1
µ
(γNE1

e )]Γ

)
on Γ,

Symmetric case with permeability µc
0 = µ+ = µ− = µ0 leads to

(2.16)


curlcurlE1

e = iωµJ0 in Ω±,
divE1

e = 0 in Ω±,
E1

e = O( 1
|x| ) as |x| → ∞,(

[γDE1
e ]Γ

{γDE1
e }Γ

)
= −e

( K1 0
0 K2

)( {(γNE1
e )}Γ

[(γNE1
e )]Γ

)
on Γ,

where
K1 = 1−2 1

γ
tanh( γ

2 ) , K2 =
1
4 −

1
2γ

coth( γ

2 ).

3 Boundary Element Method
As out of the layer we mainly consider a non-conductive linear homogeneous domain and an open boundary
problem, we can avoid the volume mesh using BEM that requires only 2D elements on the surfaces. After
introducing the functional spaces, the potentials, and the general representation formula in sections 3.1, 3.2
and 3.3 respectively, we formulate the integral equations, the variational formulations, and the Galerkin
discretisation using special basis functions of the terms of expansion E0 in section 3.4, E1 in section 3.5,
and the equivalent model of second order E1

e in section 3.6. Note that we consider µ− = µ+ = µ0 all over
this section.
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3.1 Functional Spaces
The spaces that are related to the traces of vector fields in H(curl,Ω±) onto Γ must be considered using
Boundary Integral Equations. We will use the following spaces of tangential vector fields on Γ, defined in
(A. Buffa and M. Fortin, 1999),

• H
1
2
‖ (Γ) represents the tangential surface vector fields that are in H

1
2 (Γi) for each smooth component

Γi of Γ, and provides the weak tangential continuity across the edges of Γi.

• H
1
2
⊥(Γ) provides the weak normal continuity.

For a smooth boundary Γ, these spaces coincide with that of tangential surface vector fields in H
1
2 (Γ). We

denote by H
− 1

2
‖ (Γ), and H

− 1
2

⊥ (Γ) the dual spaces of H
1
2
‖ (Γ) and H

1
2
⊥(Γ), respectively.

We denote by curlΓ the tangential rotational operator and by curlΓ the surface rotational operator:

∀φ ∈C∞(Γ), curlΓφ = (∇Γφ)×n,

∀v ∈ (C∞(Γ))3, curlΓv = divΓ(v×n),

where ∇Γ and divΓ are respectively the tangential gradient and the surface divergence on Γ.

These surface differential operators are used to define the spaces H
− 1

2
⊥ (curlΓ,Γ), and H

− 1
2

‖ (divΓ,Γ) intro-
duced in (A. Buffa and M. Fortin, 1999) by

H
− 1

2
⊥ (curlΓ,Γ) = {v ∈ H

− 1
2

⊥ (Γ),curlΓv ∈ H−
1
2 (Γ)},

H
− 1

2
‖ (divΓ,Γ) = {w ∈ H

− 1
2

‖ (Γ),divΓw ∈ H−
1
2 (Γ)}.

Another property in (A. Buffa and M. Fortin, 1999, sec. 4) is that H
− 1

2
⊥ (curlΓ,Γ) and H

− 1
2

‖ (divΓ,Γ) are

dual of each others, when the space of L2-integrable vector fields L2(Γ) is used as pivot space. According

to (R. Hiptmair, 2002, sec. 3), H
− 1

2
⊥ (curlΓ,Γ), H

− 1
2

‖ (divΓ0,Γ) and H
1
2 (Γ) are the suitable spaces for the

Dirichlet data γD·, the Neumann data γN ·, and the normal data γn· respectively, where H
− 1

2
‖ (divΓ0,Γ) =

Ker(divΓ,H
− 1

2
‖ (divΓ,Γ)).

3.2 Potentials
We recall the definition of the green function for laplace operator (kernel)

G(x,y) =
1

4π

1
|x− y|

, x,y ∈ R3, x 6= y.

The scalar single-layer potential is given by

ΨV (Φ)(x) =
∫

Γ

Φ(y)G(x,y)dS(y), x 6∈ Γ.
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For any tangential vector field λ on Γ we define the vectorial single-layer potential by

ΨA(λ )(x) =
∫

Γ

λ (y)G(x,y)dS(y), x 6∈ Γ,

the vectorial Newton potential

N(λ )(x) =
∫
R3

λ (y)G(x,y)dy,

and the vectorial double-layer potential

ΨM(u) = curlΨA(Ru), Ru = n×u.

3.3 Boundary Integral Equations
Theorem 3.1 (R. Hiptmair, 2002; R. Hiptmair and J. Ostrowski, 2005) Let E ∈ L2(R3) with curlE ∈
L2(Ω±). If a vector field E : Ω± −→ C3 satisfies

curlcurlE = 0 in Ω±,
divE = 0 in Ω±,
E(x) = O( 1

|x| ) as |x| → ∞,

then it satisfies the following transmission formula

(3.1) E = ΨM([γDE]Γ)+ΨA([γNE]Γ)−gradΨV ([γnE]Γ).

Applying the trace operators γD· to the representation formula leads to a boundary-integral equation. For
this reason we define the following operators,

K = {γDΨM}Γ , V = {γDΨA}Γ,
Q = {γDΨV}Γ.

3.4 Equivalent Model of Order 1
Recall that E0 satisfies (2.13).

3.4.1 Integral Equations for E0

In order to write the integral equation in the case where we have an excitation by J0, we introduce the
Newton potential representing the source term

(3.2) Es(x) = iωµ

∫
R3

J0(y)G(x,y)dy,

It is sufficient to consider the representation formula of E0 in Ω+, using Theorem 3.1 we state the represen-
tation formula as

(3.3) E0 =−ΨM(γ+D E0)−ΨA(γ
+
N E0)−gradΨv(γ

+
n E0)+Es.

Applying γ
+
D to the representation formula, we find for E0

(3.4) γ
+
D E0 =

(1
2
I−K

)
(γ+D E0)−V (γ+N E0)−gradQ(γnE0)+ γ

+
D Es,

this equation is set in H
− 1

2
⊥ (curlΓ,Γ) which is the appropriate space of Dirichlet data.
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3.4.2 Variational Formulation for E0

We obtain an equivalent variational formulation by testing against function from the dual space of H
− 1

2
⊥ (curlΓ,Γ).

The dual space of H
− 1

2
⊥ (curlΓ,Γ) being the space H

− 1
2

‖ (divΓ,Γ), we have to solve

Find γ
+
N E0 ∈ H

− 1
2

‖ (divΓ,Γ), such that

<V (γ+N E0),B1 >Γ=< γ
+
D Es,B1 >Γ,(3.5)

for every B1 ∈ H
− 1

2
‖ (divΓ0,Γ).

Since

(3.6) < gradQ(Φ),λ >Γ= 0 for every λ ∈ H
− 1

2
|| (divΓ0,Γ), (R. Hiptmair, 2002)

(3.7) γ
+
D E0 = 0,

where < f ,g >Γ=
∫

Γ
f (x)g(x)dΓ(x).

3.4.3 Galerkin Discretization

The Neumann data λ = γ
+
N E0 requires an approximation by means of solenoidal divΓ-conforming surface

elements. They are supplied by the space of divergence-free lowest order Raviart- Thomas elements RT(Γ)
on Γ (P. A. Raviart and J. M. Thomas, 1977). If Γ is simply connected, then RT(Γ)=curlΓN1(Γ), where
N1(Γ) is the space of nodal functions of degree 1.

λ is approximated by the discrete field :

(3.8) λh =
N

∑
i=1

λ
iW i

curlN ,

where N is the number of nodes, the coefficients λ i’s are the values of λh at node i, and W i
curlN is the surface

rotational operator of nodal shape function of degree 1 corresponds to the node i.
Applying Galerkin Method, the test functions B1 should be replaced by W j

curlN . We can now state the
discretised formulation as:

Find λ i ∈ Rn, such that

N

∑
i=1

λ
i <V (W i

curlN),W
j

curlN >Γ=< γ
+
D Es,W

j
curlN >Γ,(3.9)

for j = 1..N.
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3.5 Strong Formulation for E1

Recall that E1 satisfies in the symmetric case (see section 2.2.3)

(3.10)


curlcurlE1 = 0 in Ω±,
divE1 = 0 in Ω±,
E1 = O( 1

|x| ) as |x| → ∞,(
[γDE1]Γ
{γDE1}Γ

)
=

( K1 0
0 K2

)( {(γNE0)}Γ

[(γNE0)]Γ

)
on Γ,

where
K1 =−1+2 1

γ
tanh( γ

2 ) , K2 =− 1
4 +

1
2γ

coth( γ

2 ).

3.5.1 Variational Formulation for E1

We write the representation formula of E1 in Ω+ as

(3.11) E1 =−ΨM(γ+D E1)−ΨA(γ
+
N E1)−gradΨv(γ

+
n E1).

Applying the Dirichlet trace, we arrive at

(3.12) γ
+
D E1 =

(1
2
I−K

)
(γ+D E1)−V (γ+N E1)−gradQ(γnE1).

By the transmission conditions of the E1 model (3.10), we can write:

(3.13) γ
+
D E1 =

K1

4
γ
+
N E0 +K2γ

+
N E0.

Substitute (3.13) in (3.12) we obtain the variational formulation

Find γ
+
N E1 ∈ H

− 1
2

‖ (divΓ,Γ), such that

<V (γ+N E1),B1 >Γ=< (−1
2
I−K)(

K1

4
γ
+
N E0 +K2γ

+
N E0),B1 >Γ,(3.14)

for every B1 ∈ H
− 1

2
‖ (divΓ0,Γ).

3.5.2 Galerkin Discretization

Let α = γ
+
N E1, α is discretized by αh = ∑

N
i=1 α iW i

curlN where N is the number of nodes, the coefficients α i’s
are the values of αh at node i. Applying Galerkin Method, we can state the discretised formulation as:

Find α i ∈ Rn, such that

N

∑
i=1

α
i <V (W i

curlN),W
j

curlN >Γ=< (−1
2
I−K)(

K1

4
γ
+
N E0 +K2γ

+
N E0),W

j
curlN >Γ,(3.15)

for j = 1..N.
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3.6 Equivalent Model of Order 2
Recall that E1

e satisfies (2.16).

3.6.1 Variational Formulation for E1
e

For E1
e ∈ L2(R3), the representation formulas can be given by

(3.16) E1
e = −ΨM(γ+D E1

e )−ΨA(γ
+
N E1

e )−gradΨV (γ
+
n E1

e )+Es in Ω+,

(3.17) E1
e = ΨM(γ−D E1

e )+ΨA(γ
−
N E1

e )+gradΨV (γ
−
n E1

e ) in Ω−.

Applying the Dirichlet trace on (3.16) and (3.17), we obtain the following integral equations

(3.18) V (γ+N E1
e )+( 1

2 I+K)(γ+D E1
e ) = γ

+
D Es−gradΓQ(γ+n E1

e ),

(3.19) −V (γ−N E1
e )+( 1

2 I−K)(γ−D E1
e ) = gradΓQ(γ+n E1

e ).

Using the transmission conditions, we obtain the following equalities

(3.20) γ
+
D E1

e = D0γ
+
N E1

e +D1γ
−
N E1

e ,

(3.21) γ
−
D E1

e =−D1γ
+
N E1

e −D0γ
−
N E1

e ,

where D0 = e(K1
4 +K2), and D1 = e(K1

4 −K2).
Substitute the transmission conditions (3.20) and (3.21) in the integral equations (3.18) and (3.19), we find
the variational formulation

Find γ
+
N E1

e ,γ
−
N E1

e ∈ H
− 1

2
‖ (divΓ,Γ), such that

< (V +
1
2

D0I+D0K)(γ+N E1
e ),B1 >Γ +< (

1
2

D1I+D1K)(γ−N E1
e ),B1 >Γ=< γ

+
D Es,B1 >Γ,(3.22)

< (−1
2

D1I+D1K)(γ+N E1
e ),B2 >Γ +< (−V − 1

2
D0I+D0K)(γ−N E1

e ),B2 >Γ= 0,(3.23)

for every B1,B2 ∈ H
− 1

2
‖ (divΓ0,Γ).

3.6.2 Galerkin Discretization

Let β = γ
+
N E1

e and β
′
= γ

−
N E1

e . β and β
′

are approximated as βh = ∑
N
i=1 β iW i

curlN and β
′
h = ∑

N
i=1 β

′i
W i

curlN

respectively, the coefficients β i’s and β
′i
’s are the values of βh and β

′
h respectively at node i. Applying

Galerkin Method, we can state the discretised formulation as:
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Find β i,β
′i ∈ Rn, such that

N

∑
i=1

β
i < (V +

1
2

D0I+D0K)(W i
curlN),W

j
curlN >Γ +

N

∑
i=1

β
′i
< (

1
2

D1I+D1K)(W i
curlN),W

j
curlN >Γ=< γ

+
D Es,W

j
curlN >Γ,

(3.24)

N

∑
i=1

β
i < (−1

2
D1I+D1K)(W i

curlN),W
j

curlN >Γ +
N

∑
i=1

β
′i
< (−V − 1

2
D0I+D0K)(W i

curlN),W
j

curlN >Γ= 0.

(3.25)

for j = 1..N.

3.7 Implementation
We implement our model in the platform «MIPSE » of the G2Elab. For actual implementation, we need
integral representations for the boundary integral operators. In particular, we explicit the following results.

Proposition 3.1 (R. Hiptmair and J. Ostrowski, 2005) For λ ∈ L∞(Γ)

• V (λ ) = {γD}◦ΨA(λ ) =
∫

Γ
λ (y)G(x,y)dS(y)

• K̃(λ ) = {γN}◦ΨA(λ ) =
∫

Γ
( ∂G(x,y)

∂n(x) λ (y)−gradxG(x,y)(λ (y) ·n(x)))dS(y)

Theorem 3.2 (R. Hiptmair and J. Ostrowski, 2005) If Re(k2)≥ 0, the boundary operators K̃ and K satisfy

< K̃µ,v >Γ=−< µ,Kv >Γ

for every µ ∈ H
− 1

2
‖ (divΓ0,Γ) and v ∈ H

− 1
2

⊥ (curlΓ,Γ)

4 Numerical Results
In this section we validate the accuracy of the integral equations, and we provide three examples to validate
our model. Examples 1 and 2 satisfy the theoretical condition where closed curved thin layer is considered.
However, "Example 3" is provided to show the effectiveness of our model even in open domains that does
not satisfy the theoretical condition.

4.1 Validation of Integral Equations
To verify the efficiency of the integral equations, we consider a sphere of radius r = 1m that satisfies the
conditions of (PEC) which is the case for the model of order 1. The frequency f = 100kHz, the source field
is excited by a uniform magnetic field in z− direction. We compare the numerical solution calculated on an
arc of a circle of radius 1.3m to an analytical solution, we obtain an error ||Hanalytic−H0||2 = 2.6×10−6. It
validates the accuracy of the integral equations.

12



4.2 Example 1
We consider a sphere with radius 0.99m, surrounded by a conductive sheet of thickness e = 2cm with
σ̃ = 10+3 and f = 1kHz. The skin depth δ = 0.0010m and the source is excited by a uniform magnetic
field Hs

0 = 1~z.
We calculate the external magnetic field on an arc of circle at radius 1.3m using a mesh of 384 elements. In

Figure 2: The magnetic fields H0 and H1
e on the arc of radius 1.3m compared to the analytical solution

figure 2, we plot on the arc the magnetic field calculated by the model of order 1, and the model of order 2.
We compare the results to the analytical solution to obtain the following errors

||Hanalytic−H0||2 = 0.0196,

||Hanalytic−H1
e ||2 = 7×10−4,

which shows a good agreement, and confirms the theoretical approach.

4.3 Example 2
The aim of this example is to show the robustness of the equivalent models versus the parameter σ̃ . we
consider a sphere of radius r = 0.98m surrounded by a conductive sheet of thickness e = 4cm, the skin
depth is a function of σ̃ . In figure 3 we show the relative L2-errors of the solutions H0 and H1

e of the
equivalent models of order 1 and 2 versus the parameter σ̃ for f = 10kHz, where the source field is excited
by a uniform magnetic field Hs

0 = 1~z. Similarly the error is calculated on an arc of circle at radius 1.3m.
The equivalent model of order 1 shows a good agreement, we observe a small error in a wide range of

skin depths, the interval where the skin depths is small compared to e or of the same order, this result
corresponds to the theoretical assumption. Adding the term eH1 improves the result only in the interval of
high conductivity i.e. where δ ≤ e, that is because H1 depends on H0 (see 2.14). The equivalent model of
order 2 gives very small errors for all ranges of the skin depth, from very small to very large. This result
demonstrates the effectiveness of the model of order 2.
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Figure 3: Relative L2 errors of the solutions H0 and H1
e of the equivalent models of order 1 and 2 versus the

parameter σ̃ for e = 4cm

4.4 Example 3
In this example we provide an open boundary problem, where a cylindrical sheet of radius=1m, height=3m,
thickness e = 2cm, and frequency f = 10kHz is considered. The source is excited by a spire of radius
R = 1.1m and a current of 10A, note that both the cylinder and the spire have the same central axis, and
their center is the origin of the coordinate system. We compute the norm of the magnetic field on a segment
that connect the two points (1.3,0,−2) and (1.3,0,+2) and we compare the results to the 2d axisymmetric
formulation in Comsol that discretized using the Finite Element Method. The corresponding errors are
presented in Table 1, we observe that the model of order 2 still works well, that improves the effectiveness
of the second order model even in open domains. The errors obtained are strongly lower than the amplitude
of the components of the reduced magnetic field H1

eReduced (reaction field), see Fig. 4 for the x-component
and see Fig. 5 for the z-component. This seems to indicate that, in this configuration, no particular care
have to be taken even if the surface is not simply connected.
Comparing the time consumption and the number of elements of the mesh used by each method (see Table
1), we deduce that the boundary element method reduces the time consumption as it needs a reduced number
of elements for discretisation.

Table 1: The L∞-errors, the time consumption and the number of elements of the mesh used in simulations
done by Comsol, the model of order 1, and the model of order 2.

Nb of elements Time ||.||∞
Comsol (Reference) 1771542 132s

Model Order 1 544 25s 0.128
Model Order 2 544 56s 0.021
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Figure 4: The x−component of the real part of the total
magnetic fields H1

e , the reduced magnetic fields H1
eReduced

and the source field HSource.
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Figure 5: The z−component of the real part of the total
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e , the reduced magnetic fields H1
eReduced

and the source field HSource.

5 Conclusion
A second order equivalent model for eddy current problems with a thin layer in 3D is proposed and dis-
cretized using the Boundary Element Method. The model is validated and shows a good agreement. The
high order model provides more precision than the classical model, it is robust and can be used from low to
very high conductivity. The discretization method shows a great success in the precision of results and in
reducing the number of unknowns and the time consumption.
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6 Appendix

6.1 Calculation of the External Field
The representation formula of any vector field E(x) for all x ∈Ω±:

E(x) = ΨM([γDE]Γ)(x)+ΨA([γNE]Γ)(x)−gradΨV ([γnE]Γ)(x).

However
H(x) =−(iωµ0)

−1curlE(x),

then

H(x) = −(iωµ0)
−1
(

curlcurl
∫

Γ
(n× [γDE]Γ)G(x,y)dS(y)+ curl

∫
Γ
[γNE]ΓG(x,y)dS(y)

)
,

= −(iωµ0)
−1
(∫

Γ
−curlΓ([γDE]Γ)∇xG(x,y)dS(y)+

∫
Γ
(∇xG(x,y)× [γNE]Γ)dS(y)

)
.

6.2 Analytical Solution of a 3D Eddy-Current Problem for a Sphere with a Thin
Layer

Consider a thin layer made of an inner sphere of radius r2 and an outer spherical shell of radius r1. We
introduce the spherical coordinates system (r,θ ,φ) with center at O, where θ and φ stands for the azimuthal
and polar angle respectively.
We consider the three regions R0, R1, and R2 defined as follows:
R0 : {r > r1,0≤ θ ≤ 2π,0≤ φ ≤ π}, containing air,
R1 : {r2 < r < r1,0≤ θ ≤ 2π,0≤ φ ≤ π}, conducting medium where σ ans µ are constants,
R2 : {0≤ r < r2,0≤ θ ≤ 2π,0≤ φ ≤ π}, non-conducting medium.

We consider the vector potential formulation with a source term excited by a uniform magnetic field Hs
0 =

1~z. Hs
0 can be represented by the magnetic vector potential As

As =
µ

2
rsin(φ)~θ

satisfying

(6.1) ∆As + k2As =−µJ0

where k2 =−iσωµ.
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Using the fact that A has only one non-zero component in θ direction due to the axial symmetry, we obtain
in spherical coordinates

(6.2)
∂ 2A
∂ r2 +

2
r

∂A
∂ r

+
cotφ

r2
∂A
∂φ

+
1
r2

∂ 2A
∂φ 2 −

A
r2sin2φ

+ k2A =−µ0J0,

with the transmission conditions:

(6.3) A0|r=r1
= A1|r=r1

, A1|r=r2
= A2|r=r2

,

(6.4)
∂A0

∂ r |r=r1

=
∂A1

∂ r |r=r1

,
∂A1

∂ r |r=r2

=
∂A2

∂ r |r=r2

,

where Ai(r,φ) denotes the θ component of the vector potential in region Ri, for i = 0..2.
We introduce the following integral transform:

(6.5) Āi(r,n) =
1

Dn

∫ −1

−1
Ai(r, t)P

(1)
n (t)dt,

where t = cosφ , P(1)
n (t) is an associated Legendre function of first kind, and

Dn :=
∫ −1

−1
(P(1)

n (t))2dt =
2n(n+1)

2n+1
.

Replacing the magnetic properties in (6.2), using this integral transform (6.5), and the fact that A0 =Ar
0+As,

we obtain

(6.6)
∂ 2Ār

0
∂ r2 +

2
r

∂ Ār
0

∂ r
− n(n+1)

r2 Ār
0 = 0,

(6.7)
∂ 2Ā1

∂ r2 +
2
r

∂ Ā1

∂ r
− n(n+1)

r2 Ā1 + k2Ā1 = 0,

(6.8)
∂ 2Ā2

∂ r2 +
2
r

∂ Ā2

∂ r
− n(n+1)

r2 Ā2 = 0.

The general solution of (6.6) is:
Ār

0 =C1r−1−n +C
′
1rn,

but Ar
0 should vanish as r→ ∞, so

(6.9) Ār
0 =C1r−1−n.

The general solution of (6.7) is expressed in terms of Bessel functions:

(6.10) Ā1 =C2r−1/2Jn+ 1
2
(kr)+C3r−1/2Yn+ 1

2
(kr).

The general solution of (6.8) is:
Ā2 =C4rn +C

′
4r−1−n,
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but the solution must remain bounded as r→ 0, so

(6.11) Ā2 =C4rn.

Inverting the integral transform (6.5), we obtain the solution to the problem in the form

(6.12) Ai(r,φ) =
∞

∑
n=1

Āi(r,n)P
(1)
n (cosφ) i = 1..2.

The sinφ dependence of the excitation source requires that only n = 1 be present, with

P(1)
1 (cosφ) = sinφ .

Therefore, the solution for the vector potential is

Aθ (r,φ) =


A0(r,φ) = C1r−2sinφ + µ

2 rsinφ R0,

A1(r,φ) = (C2r−1/2J 3
2
(kr)+C3r−1/2Y3

2
(kr))sinφ R1,

A2(r,φ) = C4rsinφ R2.

Using the boundary conditions (6.3)-(6.4), we can determine the constants Ci for i = 1..4.
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