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a b s t r a c t 

When two graphs have a correlated Bernoulli distribution, we prove that the alignment strength of their 

natural bijection strongly converges to a novel measure of graph correlation ϱT that neatly combines 

intergraph with intragraph distribution parameters. Within broad families of the random graph parameter 

settings, we illustrate that exact graph matching runtime and also matchability are both functions of ϱT , 

with thresholding behavior starkly illustrated in matchability. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Overview 

Suppose G and H are any two graphs with the same number 

of vertices. For any positive integer n , define [ n ] := { 1 , 2 , 3 , . . . , n } , 
and let 

(
[ n ] 
2 

)
denote the set of all 2-element subsets of [ n ]. For sim- 

plicity, suppose that the vertex sets of G and H are both [ n ]. Let 

Πn denote the set of bijections from [ n ] to [ n ]. For each φ ∈ Πn , 

we define the number of disagreements between G and H under φ to 

be 

d(G, H, φ) := 

∑ 

{ i, j}∈ ( [ n ] 2 ) 

1 

(
1 
(
i ∼G j 

)
� = 1 

(
φ(i ) ∼H φ( j) 

) )
, (1) 

where 1 (·) denotes the indicator function, and ∼ G denotes adja- 

cency of vertices in G . 

For each φ ∈ Πn , we define the alignment strength of φ as 

str (G, H, φ) := 1 − d(G, H, φ) 
1 
n ! 

∑ 

φ′ ∈ Πn 
d(G, H, φ′ ) 

. (2) 

The denominator in this definition of alignment strength serves as 

a normalizing factor; in particular, if φ is an isomorphism between 

G and H then the alignment strength of φ is 1, and if the num- 

ber of adjacency disagreements for φ is merely average among 

the bijections in Πn then the alignment strength of φ is 0. (Of 

� Conflict of interest: None 
∗ Corresponding author. 

E-mail address: def@jhu.edu (D.E. Fishkind). 

course, if G and H are both edgeless or both complete graphs then 

str (G, H, φ) is not defined.) 

If φ ∈ Πn happens to be a known “natural alignment” be- 

tween G and H (for example, if G and H are social networks 

with the same members, and φ maps each member to them- 

selves; e.g. an email network and a Twitter network with the same 

users) then str (G, H, φ) can be viewed as a numerical measure 

of the structural similarity between G and H . However, if a nat- 

ural alignment between G and H is not known, then we can use 

the graph matching problem solution , which is defined as φGM 

∈ 

arg min φ′ ∈ Πn 
d(G, H, φ′ ) ; specifically, str (G, H, φGM 

) can be viewed 

as a numerical measure of the structural similarity between G 

and H . 

Two practical notes regarding computation: Although the de- 

nominator 1 
n ! 

∑ 

φ′ ∈ Πn 
d(G, H, φ′ ) in the definition of alignment 

strength ( Eq. (2) ) involves an exponentially sized summation, 

nonetheless it can be computed efficiently using Eq. (5) from 

Section 3 . Also, although the computation of the graph matching 

problem solution φGM 

is intractable [4] , nonetheless there are ef- 

fective, efficient approximate graph matching algorithms that can 

be used [8,25] , one of which we discuss and use later in this 

paper. 

A brief outline of this paper is as follows. 

In Section 2 we describe a very general random graph setting; G 

and H are random graphs with a correlated Bernoulli distribution. 

In particular, G and H share the same vertex set, and the iden- 

tity bijection I ∈ Πn is the natural alignment between G and H . 

https://doi.org/10.1016/j.patrec.2019.05.008 

0167-8655/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.patrec.2019.05.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.05.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:def@jhu.edu
https://doi.org/10.1016/j.patrec.2019.05.008
http://creativecommons.org/licenses/by-nc-nd/4.0/


296 D.E. Fishkind, L. Meng and A. Sun et al. / Pattern Recognition Letters 125 (2019) 295–302 

Each pair of vertices is assigned its own probability of adjacency 

(“Bernoulli parameter”) in G and H , and the indicator Bernoulli 

random variable for adjacency of the pair in G and the indicator 

Bernoulli random variable for adjacency of the pair in H have Pear- 

son correlation coefficient ϱe . Inherent to this model is the inter- 

graph (i.e. between G and H ) statistical correlation ϱe and the intra- 

graph heterogeneity correlation parameter ϱh , which is a function of 

the Bernoulli coefficients that measures their variation. Then we 

define the key parameter ϱT as 1 − � T := (1 − � e )(1 − � h ) ; we call 

ϱT the total correlation . 

In Section 3 we state and prove our main theoretical result, 

Theorem 4 , which asserts that for G and H with a correlated 

Bernoulli distribution we have that the alignment strength of the 

identity bijection str (G, H, I) is asymptotically equal to the total 

correlation parameter ϱT . This suggests that the total correlation ϱT 

is a meaningful measure of the structural similarity between the 

graphs G and H realized from the correlated Bernoulli distribution. 

Of note is that the total correlation is nicely and cleanly partitioned 

by the defining formula 1 − � T = (1 − � e )(1 − � h ) ; this illustrates a 

symmetry in the effect of (inter-graph parameter) edge correlation 

ϱe and the affect of (intra-graph parameter) heterogeneity correla- 

tion ϱh . 

The subsequent sections, Sections 4 and 5 , follow up with em- 

pirical illustrations that total correlation ϱT is a meaningful mea- 

sure. As we vary the edge correlation ϱe together with the hetero- 

geneity correlation ϱh for correlated Bernoulli graphs G and H in 

broad families of parameter settings, it turns out that the value of 

ϱT dictates (in Section 4 ) how successful the approximate seeded 

graph matching algorithm called SGM [8,16] is in recovering the 

identity bijection (which is the natural alignment here) and (in 

Section 5 ) ϱT dictates how much time it takes to perform seeded 

graph matching exactly via binary integer linear programming. 

The seeded graph matching problem is the graph matching prob- 

lem wherein we seek to compute φGM 

∈ arg min φ′ ∈ Πn 
d(G, H, φ′ ) , 

except that part of the natural alignment is known; having these 

“seeds” can substantially help recover the rest of the natural 

alignment correctly. In Section 4 , we utilize the SGM Algorithm 

[8,16] for approximate seeded graph matching on moderately sized 

graphs, on the order of 10 0 0 vertices, since, unfortunately, ex- 

act seeded graph matching can only be done on very small, toy- 

size graphs (a few tens of non-seed vertices). In Section 5 , where 

we are interested in comparing runtime, the approximate seeded 

graph matching algorithms are not appropriate to use, since their 

run times tend to be monolithic (given the number of vertices) 

and less sensitive to the parameters of the random graph dis- 

tribution. So we do exact seeded graph matching, but only on 

small enough examples. 

2. Random graph setting: correlated Bernoulli graphs 

In this section we describe the correlated Bernoulli random 

graph distribution, and three important associated parameters/ 

functions of parameters; namely ϱe , ϱh , and ϱT . 

For any positive integer n , the distribution parameters are any 

given real number ϱe (called the edge correlation ) from the interval 

[0,1], and any given set of real numbers { p i, j } { i, j}∈ ( [ n ] 2 ) 
(called the 

Bernoulli parameters ) from the interval [0,1] such that the Bernoulli 

parameters are not all equal to 0 and not all equal to 1. Random 

graphs G and H , each on vertex set [ n ], will be called ϱe -correlated 

random Bernoulli ({ p i, j } { i, j}∈ ( [ n ] 2 ) 
) graphs if, for each { i, j} ∈ 

(
[ n ] 
2 

)
, we 

have that 1 (i ∼G j) is a Bernoulli( p i,j ) random variable, and 1 (i ∼H 

j) is a Bernoulli( p i,j ) random variable, and, if 0 < p i,j < 1, then the 

two random variables 1 (i ∼G j) and 1 (i ∼H j) have Pearson corre- 

lation coefficient ϱe ; other than these specified dependencies, the 

random variables { 1 (i ∼G j) } { i, j}∈ ( [ n ] 2 ) 

⋃ { 1 (i ∼H j) } { i, j}∈ ( [ n ] 2 ) 
are col- 

lectively independent. 

Such G, H can be realized from this distribution as follows. 

For all { i, j} ∈ 

(
[ n ] 
2 

)
independently, first realize 1 (i ∼G j) from the 

Bernoulli( p i,j ) distribution. Then, conditioned on 1 (i ∼G j) , real- 

ize 1 (i ∼H j) from distribution Bernoulli (� e · 1 (i ∼G j) + (1 − � e ) ·
p i, j ) . It is easy to verify that 1 (i ∼H j) has a marginal distribu- 

tion Bernoulli( p i,j ) and, indeed, the random variables 1 (i ∼G j) and 

1 (i ∼H j) have Pearson correlation ϱe if 0 < p i,j < 1. Moreover, it 

easy to verify that, for any two Bernoulli( p i,j ) random variables 

such that 0 < p i,j < 1, the Pearson correlation coefficient uniquely 

determines their joint distribution. Also, it is easy to verify that 

P [ i ∼G j & i �∼H j] = (1 − � e ) p i, j (1 − p i, j ) . See Appendix A for more 

of all these details. 

The identity bijection I ∈ Πn is the natural alignment between 

G and H . When � e = 1 we have that G, H are almost surely isomor- 

phic (via isomorphism I), and when � e = 0 we have that G and H 

are independent (i.e. the indicators for all edges of both graphs are 

collectively independent). If all Bernoulli parameters p i,j are equal 

to each other then G and H are Erdos–Renyi random graphs. 

Associated with the Bernoulli parameters { p i, j } { i, j}∈ ( [ n ] 2 ) 
, denote 

their mean 

μ := 

1 (
n 
2 

) ∑ 

{ i, j}∈ ( [ n ] 2 ) 

p i, j 

and denote their variance 

σ 2 := 

1 (
n 
2 

) ∑ 

{ i, j}∈ ( [ n ] 2 ) 

(p i, j − μ) 2 . 

We define the heterogeneity correlation ϱh 

� h := 

σ 2 

μ(1 − μ) 
. (3) 

It is simple to show that 0 ≤ ϱh ≤ 1. Furthermore, � h = 0 if and only 

if all Bernoulli parameters p i,j are equal to each other (i.e. G and 

H are Erdos–Renyi random graphs), and � h = 1 if and only if all 

Bernoulli parameters are 0 or 1 (but, recall, the Bernoulli param- 

eters are not all 0 and are not all 1). See Appendix B for more 

details. Note that ϱh is a measure of heterogeneity within G (and 

within H ) by virtue of its numerator being the variance (a measure 

of spread) of the Bernoulli coefficients, although this variance is 

normalized through division by the denominator of ϱh , where this 

denominator is a function of the global graph density. (So, among 

distributions with a common global density, ϱh is just a multiple 

of the variance σ 2 .) 

Note that edge correlation ϱe is an inter-graph affect (between 

G and H ), whereas heterogeneity correlation ϱh is an intra-graph 

affect. Unlike edge correlation ϱe , heterogeneity correlation ϱh is 

not a statistical correlation. However, our results will demonstrate 

that ϱh is interchangeable with edge correlation ϱe with regard to 

creating alignment strength. We thus take the liberty of calling ϱh 

“correlation,” but we do so in a looser, nonstatistical sense, with 

the meaning that it generates similarity between G and H just like 

edge correlation does. 

Finally, define the total correlation ϱT such that ϱT satisfies 

1 − � T := (1 − � e )(1 − � h ) . (4) 

3. Alignment strength is total correlation, asymptotically 

In this section we state and prove our main theoretical result, 

Theorem 4 , that when G, H have a correlated Bernoulli distribution 

then the identity bijection I ∈ Πn (the natural alignment here) has 

alignment strength asymptotically equal to the distribution’s total 

correlation ϱT . 
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Let e G and e H denote the number of edges in G and H , respec- 

tively, and let d G := 

e G 

( n 2 ) 
and d H := 

e H 
( n 2 ) 

respectively denote the den- 

sities of G and H . 

Lemma 1. For any graphs G, H on common vertex set [ n ], and any 

φ ∈ Πn , it holds that 

str (G, H, φ) = 1 −
d(G,H,φ) 

( n 2 ) 

d G ( 1 − d H ) + ( 1 − d G ) d H 
. 

Proof. With G and H fixed, consider random ϕ ∈ Πn with a 

discrete-uniform distribution; the expected value of d ( G, H , ϕ) is 
1 
n ! 

∑ 

φ′ ∈ Πn 
d(G, H, φ′ ) . We next equivalently compute the expected 

value of d ( G, H , ϕ) using linearity of expectation over the sum of its 

indicators in Eq. (1) . Observe that, for any two vertices that form 

an edge in G , the probability that ϕ maps them to a nonedge of H 

is 
( n 2 ) −e H 

( n 2 ) 
, and, for any two nonadjacent vertices of G , the probabil- 

ity that ϕ maps them to an edge of H is 
e H 
( n 2 ) 

; the expected value 

of d ( G, H , ϕ) is thus 

1 

n ! 

∑ 

φ′ ∈ Πn 

d(G, H, φ′ ) 

= e G ·
(

n 
2 

)
− e H (
n 
2 

) + 

((
n 

2 

)
− e G 

)
· e H (

n 
2 

)
= 

(
n 

2 

)
·
[ 
d G ( 1 − d H ) + ( 1 − d G ) d H 

] 
. (5) 

The desired result then follows from substituting Eq. (5) into the 

definition of str (G, H, φ) in Eq. (2) . �

In the rest of this section we will state and prove limit re- 

sults for random correlated Bernoulli graphs G, H . This context re- 

quires us to consider a sequence of experiments —for each value of 

n = 1 , 2 , 3 , . . . —wherein the chosen edge correlation ϱe is a func- 

tion of n , and the chosen Bernoulli parameters { p i, j } { i, j}∈ ( [ n ] 2 ) 
are 

also functions of n , and thus ϱh and ϱT are also functions of n . 

For ease of notation, we do not explicitly write argument n in 

these functions. However, we will require that there exists a pos- 

itive lower bound for μ over all n , and as well that there exists 

an upper bound less than 1 for μ over all n . (Note that since μ
is a function of n , we have that the μ are a sequence, so the fol- 

lowing limit result is expressed as a difference that converges as 

stated, rather than convergence to μ, which would not make tech- 

nical sense. Similarly for the other results here.) 

Lemma 2. We have d G − μ
a.s. → 0 and d H − μ

a.s. → 0 . 

Proof. Clearly E (d G ) = μ. Also, e G is the sum of 
(

n 
2 

)
independent 

Bernoulli random variables, and thus its variance is bounded by (
n 
2 

)
, thus the variance of d G := 

e G 

( n 2 ) 
is of order O (n −2 ) . Next, by 

Chebyshev’s Inequality, for any ε > 0, P [ | d G − μ| ≥ ε] ≤ 1 
ε2 Var ( d G ) ; 

since this probability is O (n −2 ) when ε is fixed, it has finite sum 

over n = 1 , 2 , 3 , . . . . Thus, since ε is arbitrary, by the Borel–Cantelli 

Theorem d G − μ
a.s. → 0 , as desired. �

Theorem 3. We have d(G,H, I) 

( n 2 ) 
− 2(1 − � e ) 

(
μ(1 − μ) − σ 2 

)
a.s. → 0 

Proof. We begin by taking the expected value of d(G, H, I) ; 

E 

[ 
d(G, H, I) 

] 

= E 

⎡ 

⎣ 

∑ 

{ i, j}∈ ( [ n ] 2 ) 

1 

(
1 
(
i ∼G j 

)
� = 1 

(
i ∼H j 

) )⎤ 

⎦ 

= 

∑ 

{ i, j}∈ ( [ n ] 2 ) 

2(1 − � e ) p i, j (1 − p i, j ) 

= 2(1 − � e ) 

(
n 

2 

)(
μ(1 − μ) − σ 2 

)
, (6) 

thus E [ d(G,H, I) 

( n 2 ) 
] = 2(1 − � e )(μ(1 − μ) − σ 2 ) . 

Next, d(G, H, I) is the sum of 
(

n 
2 

)
independent Bernoulli ran- 

dom variables, and thus its variance is bounded by 
(

n 
2 

)
, thus the 

variance of d(G,H, I) 

( n 2 ) 
is of order O (n −2 ) . Next, by Chebyshev’s In- 

equality, for any ε > 0, P [ | d(G,H, I) 

( n 2 ) 
− 2(1 − � e )(μ(1 − μ) − σ 2 ) | ≥

ε] ≤ 1 
ε2 Var ( d(G,H, I) 

( n 2 ) 
) ; since this probability is O (n −2 ) when ε is 

fixed, it has finite sum over n = 1 , 2 , 3 , . . . . Thus, since ε is ar- 

bitrary, by the Borel-Cantelli Theorem 

d(G,H, I) 

( n 2 ) 
− 2(1 − � e )(μ(1 −

μ) − σ 2 ) 
a.s. → 0 , as desired. �

The following is the main result of this section, and is our main 

theoretical result. 

Theorem 4. It holds that str (G, H, I) − � T 
a.s. → 0 

Proof. By Lemma 2 , d G − μ
a.s. → 0 and d H − μ

a.s. → 0 . Because d G , d H 
and μ are bounded, we thus have that d G ( 1 − d H ) + ( 1 − d G ) d H −
2 μ(1 − μ) 

a.s. → 0 . Now, by Theorem 3 , we have that d(G,H, I) 

( n 2 ) 
−

2(1 − � e ) 
(
μ(1 − μ) − σ 2 

)
a.s. → 0 ; since the relevant sequences are 

bounded, and μ is bounded away from 0 and 1, we have that 

d(G,H, I) 

( n 2 ) 

d G ( 1 − d H ) + ( 1 − d G ) d H 
−

2(1 − � e ) 
(
μ(1 − μ) − σ 2 

)
2 μ(1 − μ) 

a.s. → 0 . 

Applying Lemma 1 and the definitions of ϱh and ϱT we thus have 

from above that (1 − str (G, H, I)) − (1 − � T ) 
a.s. → 0 , which proves 

Theorem 4 . �

4. Graph matchability and total correlation ϱT 

In this section we empirically demonstrate in broad families of 

parameter settings where ϱe and ϱh vary, that success of an ap- 

proximate seeded graph matching algorithm is a function of ϱT . 

Our setting is where G, H are correlated Bernoulli graphs 

on vertex set [ n ]. The graph matching problem is to compute 

φGM 

∈ arg min φ∈ Πn 
d(G, H, φ) . In the seeded graph matching prob- 

lem , there are s seeds , without loss of generality they are the ver- 

tices 1 , 2 , . . . , s, and there are m := n − s ambiguous vertices, which 

are the other vertices s + 1 , s + 2 , . . . , n . The meaning of seeded 

graph matching is that the feasible region φ ∈ Πn of the graph 

matching problem is restricted to φ ∈ Πn that satisfy φ(i ) = i for 

all seeds i = 1 , 2 , . . . , s . The graphs G and H are separately observed 

and the identities of the ambiguous vertices are unobserved for the 

optimization, so that the natural alignment, which is the identity 

bijection I, is only seen for the seeds. If the seeded graph match- 

ing solution is I then we say that G and H are matchable . 

Even a modest number of seeds can make a very significant in- 

crease in the likelihood that G and H are matchable [16] . Our illus- 

tration in this section will be for realistically sized graphs, on the 

order of a thousand vertices, and we utilize seeds because they 

will be quite helpful in obtaining reasonable probability of match- 

ability. Unfortunately, exact graph matching –even seeded graph 

matching– is intractable, only solvable on the smallest, toy exam- 

ples. So we utilize an approximate seeded graph matching algo- 

rithm; the specific one we use is the SGM Algorithm [8,16] , which 

has been demonstrated to have many nice theoretical properties, 
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Fig. 1. Matchability experiment for m = 850 , s = 150 , p = 

1 
2 

. 

and it is efficient and quite effective (see [8,15,16] ). In this sec- 

tion, we will say that G and H are matchable if the SGM-generated 

approximate seeded graph matching solution is the identity 

bijection I . 

In the experiments that we will perform, we will sample G, H 

from a correlated Bernoulli distribution for different values of ϱe 

and ϱh ; the values of the Bernoulli coefficients { p i, j } { i, j}∈ ( [ n ] 2 ) 
are 

selected as follows, in order to obtain specified values of ϱh . Given 

any real number p ∈ (0, 1) and real number δ ∈ [0 , min { p, 1 − p} ] , 
we independently randomly sample { p i, j } { i, j}∈ ( [ n ] 2 ) 

from the uni- 

form distribution on the interval (p − δ, p + δ) . Note that the afore- 

defined Bernoulli parameter variance σ 2 has expected value δ2 

3 , 

and σ 2 will be approximately δ2 

3 for large values of n . For a fixed 

p , as δ goes from 0 to min { p, 1 − p} , the value of � h = 

σ 2 

μ(1 −μ) 
≈

δ2 

3 p(1 −p) 
monotonically increases from 0 to 1 

3 · 1 −p 
p if p ≥ 1 

2 and 

1 
3 · p 

1 −p if p ≤ 1 
2 . In this section and in the next section, when we 

report values of ϱe and ϱh , we mean that we selected δ so that the 

approximate value of ϱh is as reported. 

We did three batches of experiments. In the first batch of ex- 

periments, for each value of � e = 0 , 1 
120 , 

2 
120 , 

3 
120 , . . . , 

1 
3 and � h = 

0 , 1 
120 , 

2 
120 , 

3 
120 , . . . , 

1 
3 , we did 60 replicates of obtaining random 

graphs G, H with m = 850 ambiguous vertices and s = 150 seeds 

from a correlated Bernoulli distribution with edge correlation ϱe 

and heterogeneity correlation ϱh based on p = 

1 
2 , and we per- 

formed seeded graph matching with the SGM algorithm. If all 60 

replicates were matchable then we plotted a green dot in Fig. 1 at 

the appropriate coordinates, if between 1 and 5 of the 60 repli- 

cates were not matchable then we plotted a yellow dot in the fig- 

ure, and if more than 5 of the 60 replicates were not matchable 

then we plotted a red dot. The blue curve in the figure is the set 

of all pairs of ϱe , ϱh such that � T = 

23 
120 . 

In these experiments and those below, the transition from 

matchable to anonymized (i.e., not matchable) occurs at a level 

set of ϱT . We note here that numerous results in the literature 

have studied this matchability phase transition as a function of 

edge correlation ϱe (see, for example, [5,6,16] ) and a few papers 

have considered the impact of network heterogeneity on matcha- 

bility (see, for example, [14,18] ). In the parameterized correlated 

Bernoulli distribution considered above, these empirical results 

novelly suggest the form by which matchability is impacted by 

within and across graph correlation structure. Further understand- 

ing this phase transition as a function of ϱT is a necessary next step 

to understand the dual roles that graph structure ( ϱh ) and graph 

pairedness ( ϱe ) play in network alignment problems both theoreti- 

cal and practical. 

Fig. 2. Matchability experiment for m = 850 , s = 9 , p = 

1 
2 

. 

Fig. 3. Matchability experiment for m = 850 , s = 22 , p = 

1 
3 

. 

The second batch of experiments differed just in that there 

were only s = 9 seeds (with m = 850 as before), and the range of 

values of ϱe was 1 
3 to 5 

6 in increments of 1 
120 ; the results are sim- 

ilarly displayed in Fig. 2 , and the blue curve in the figure is the 

set of all pairs of ϱe , ϱh such that � T = 

69 
120 . In these experiments, 

we again see the transition in matchability at a level set of ϱT , al- 

though the transition is looser due to fewer seeds being considered 

in this problem setup. 

The third batch of experiments differed just in that there were 

s = 22 seeds, and now p = 

1 
3 , the range of values of ϱe was 1 

4 to 
7 

12 in increments of 1 
120 , and the range of values of ϱh was 0 to 1 

6 

in increments of 1 
120 ; the results are similarly displayed in Fig. 3 , 

and the blue curve in the figure is the set of all pairs of ϱe , ϱh such 

that � T = 

49 
120 . In these experiments, we again see the transition in 

matchability at a level set of ϱT . 

We then repeated the above experiments for each combination 

of: total number of vertices 300 or 600, number of seeds 5% or 

10% of the vertices, and values of p being 1 
2 or 1 

3 . In all eight such 

combinations the result of the experiments were like the above; 

namely, matchability was a function of ϱT . 

Note that matchability is not universally a function of just ϱT . 

For example, the number of vertices and the number of seeds have 

a dramatic effect on matchability. The empirical demonstrations in 

this section of matchability as a function of ϱT are limited to fam- 

ilies of correlated Bernoulli distribution parameterizations of the 

type that we have used here. New work will be needed to ob- 

tain theorems that universally and fully account for matchability. 

But, nonetheless, we have empirically demonstrated in broad fam- 

ilies of parameter settings that the phase transition in matchability 
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occurs at a level set of ϱT , which supports the importance and util- 

ity of ϱT as a meaningful measure of graph correlation. 

5. Graph matching runtime and total correlation ϱT 

Similar to the previous section, in this section we empirically 

demonstrate, in broad families of parameter settings where ϱe and 

ϱh vary, that the running time of exact seeded graph matching via 

binary integer linear programming is a function of ϱT . 

We consider exact seeded graph matching here because the ap- 

proximate seeded graph matching algorithms have running times 

that are relatively monolithic (when the number of vertices are 

fixed) and not sensitive enough to the parameters in the ran- 

dom graph distribution. Unfortunately, exact graph matching is in- 

tractable [4] , and can only be done for small examples; we will 

work with graphs that have 20 ambiguous vertices. 

For this section, the random graphs G, H have correlated 

Bernoulli distributions, for various values of ϱe and ϱh . The 

Bernoulli parameters are chosen in exactly the manner of the pre- 

vious section, Section 4 ; there is a fixed value p , and then δ are 

selected to attain desired values of ϱh in the manner described in 

the previous section. 

We next formulate the binary integer linear program for seeded 

graph matching. For graphs G and H , say their adjacency ma- 

trices are A and B , respectively, and say that there are s seeds 

and m ambiguous vertices. We partition A = [ 
A 11 A 12 

A 21 A 22 
] and B = 

[ 
B 11 B 12 

B 21 B 22 
] , where A 11 , B 11 ∈ {0, 1} s × s , A 12 , B 12 ∈ {0, 1} s × m , A 21 , 

B 21 ∈ {0, 1} m × s , and A 22 , B 22 ∈ {0, 1} m × m . (Note that A 12 = A 

T 
21 and 

B 12 = B T 
21 

here, since A and B are symmetric, but we do not use this 

fact in the formulation below so that the formulation is expressed 

even more generally.) Let I denote the identity matrix (subscripted 

with its number of rows and columns), let 0 subscripted denote 

the matrix of zeros of subscripted size, let � 1 denote the column 

vector of ones with subscripted number of entries, let � 0 denote 

the column vector of zeros with subscripted number of entries, 

let � denote the Kronecker product of matrices, let ‖ · ‖ 1 denote 

the 	 1 vector norm for matrices (this norm is evaluated by tak- 

ing the sum of absolute values of the matrix entries), for any ma- 

trix N let vec N denote the column vector which is the concatena- 

tion of the columns of N (first column of N , then second column 

of N , etc., then last column of N ), and let P m 

denote the set of 

m × m permutation matrices. Clearly, the seeded graph matching 

problem is min P∈P m ‖ A − [ 
I s ×s 0 s ×m 

0 m ×s P 
] B [ 

I s ×s 0 s ×m 

0 m ×s P 
] T ‖ 1 . By per- 

muting columns of the matrix in the norm, we get an equivalent 

formulation of the seeded graph matching problem as: 

min 

P∈P m 
‖ A 

[
I s ×s 0 s ×m 

0 m ×s P 

]
−

[
I s ×s 0 s ×m 

0 m ×s P 

]
B ‖ 1 . 

Expanding this, we get an equivalent formulation of the seeded 

graph matching problem as: 

min 

P∈P m 

(
‖ A 12 P − B 12 ‖ 1 + ‖ A 21 − P B 21 ‖ 1 + ‖ A 22 P − P B 22 ‖ 1 

)
. (7) 

Now, because of the absolute values in ‖ · ‖ 1 , we add artificial vari- 

ables to obtain simple linearity. For example, (just) minimizing 

‖ A 22 P − P B 22 ‖ 1 subject to P ∈ P m 

is equivalent to minimizing the 

sum of the entries of E + E ′ subject to A 22 P − P B 22 + E − E ′ = 0 m ×m 

, 

P ∈ P m 

, E, E ′ ∈ {0, 1} m × m . Of course, there are additional ‖ · ‖ 1 
terms in the objective function in Eq. (7) , but the same approach 

can be used, so that seeded graph matching is equivalent to 

min 

[
�
 0 m 

2 

�
 1 2 m 

2 +4 ms 

]T 

x 

s.t. [ M| E] x = b 

x ∈ { 0 , 1 } 3 m 

2 +4 ms 

where the first m 

2 entries of x are vec P , and M and E and b are 

given by: 

M = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

I m ×m 

� A 22 − B 

T 
22 � I m ×m 

I m ×m 

� A 12 

B 

T 
21 � I m ×m 

I m ×m 

� �
 1 

T 
m 

�
 1 

T 
m 

� I m ×m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

E = 

[
I (m 

2 +2 ms ) ×(m 

2 +2 ms ) −I (m 

2 +2 ms ) ×(m 

2 +2 ms ) 

0 2 m ×(m 

2 +2 ms ) 0 2 m ×(m 

2 +2 ms ) 

]

b = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

�
 0 m 

2 

vec B 12 

vec A 21 

�
 1 m 

�
 1 m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

We solve the above binary integer linear program exactly using 

the optimization package GUROBI. The yardstick for runtime that 

we have chosen to adopt is the number of simplex iterations per- 

formed by GUROBI; this measure has the advantage of reducing 

many sources of platform variability. 

We performed three batches of experiments. In the first batch 

of experiments, for each value of � T = 

2 
9 , 

3 
9 , 

4 
9 , . . . , 

8 
9 , we selected 

various pairs of ϱe , ϱh which have 1 − � T = (1 − � e )(1 − � h ) for the 

given value of ϱT ; the values of ϱh are achieved based on p = 

1 
2 , 

and the chosen pairs ϱe , ϱh are the points plotted with a dot in 

Fig. 4 a. For each such pair ϱe , ϱh we did 60 replicates of obtaining 

random graphs G, H with m = 20 ambiguous vertices and s = 480 

seeds from a correlated Bernoulli distribution with edge correla- 

tion ϱe and heterogeneity correlation ϱh , and we solved the seeded 

graph matching problem for G, H exactly using GUROBI. The aver- 

age runtimes (measured by the number of simplex iterations per- 

formed by GUROBI) are printed above each pair ϱe , ϱh at the ap- 

propriate coordinates in Fig. 4 a. The smooth curves on the plot 

are the level sets of ϱT . 

These experiments, and those below, suggest that in this 

parametrized Bernoulli graph model the algorithmic runtimes are 

approximately constant on the level sets of ϱT . The results in 

Section 4 suggest that the phase transition of matchability occurs 

at a level set of ϱT , and these results further reinforce the novel 

overarching notion: that the theoretic and algorithmic difficulty of 

matching is a function of ϱe and ϱh only through ϱT . Alone, ϱe and 

ϱh are insufficient to capture this theoretic and algorithmic diffi- 

culty. 

The second and third batch of experiments are exactly like the 

first batch, except that for the second batch of experiments the 

values of ϱh are based on p = 

3 
5 and the results are displayed in 

Fig. 4 b, and for the third batch of experiments the values of ϱh are 

based on p = 

1 
3 and the results are displayed in Fig. 4 c. Note that 

the ranges of ϱh are different in Fig. 4 a–c because different values 

of p put different limitations on δ. 

Just like for matchability in the previous section, it must be 

pointed out that the runtime of exact seeded graph matching via 

binary integer linear programming is not universally a function of 

ϱT . Of course, the number of vertices —particularly the number 

of ambiguous vertices— has a dominant role in the runtime, and 

the above experiments show that the graph density likewise plays 

a very large role. Nonetheless, for families of correlated Bernoulli 

distributed graphs similar to the ones in the experiments above, 

we see within a family that the runtime is a function of ϱT . 
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Fig. 4. Runtime experiments for different settings. 

6. Discussion and future work 

The correlated Bernoulli random graph model considered herein 

contains many important families of random graph models as sub- 

families including stochastic blockmodels [1,11] , random dot prod- 

uct graphs [2,27] , and more general latent position random graph 

[10] . While the edge independent assumption inherent to these 

models is often not satisfied in real data applications, nonethe- 

less (conditionally) edge-independent random models have shown 

great utility in capturing statistically relevant structure in a host 

of real data applications from modeling connectomic structure 

[13,17,20] , to capturing community and user-level behavior in 

social networks [19,26] . Moreover, these models provide a theo- 

retically tractable environment in which to explore important sta- 

tistical concepts such as estimation consistency [3,21,22] , consis- 

tent hypothesis testing [12,23,24] , and network de-anonymization 

[6,7] , among others. Indeed, it is this appealing mix of theoretical 

tractability and practical utility that have made these graph models 

an increasingly popular option in the statistical network inference 

community. 

In this paper we prove in a very broad random graph 

setting—specifically, when G and H have a correlated Bernoulli 

distribution—that the alignment strength of the natural G, H align- 

ment is asymptotically equal to the total correlation ϱT in the 

distribution. After this, we empirically demonstrate, for types of 

families within the distribution, that both matchability and exact- 

solution-runtime for seeded graph matching of G , H are functions 

of the total correlation ϱT . 

Graph matching and seeded graph matching are extremely im- 

portant in many disciplines; see the surveys [4] and [9] . Unfor- 

tunately, these problems are intractable; in their full generality 

they are NP-hard. Obtaining a function of the distribution param- 

eters that universally predicts matchability via approximate algo- 

rithms would be a huge advance in theoretical understanding and 
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in practice. Likewise, it would be a huge advance to predict exact- 

solution-runtime from a function of the distribution parameters, 

and it would not just be the number of vertices—the other pa- 

rameters play a large role. The goals of obtaining these universal 

functions has not been achieved here; the families we use here 

are general but not universal. But a universal result will include 

our families as special cases, thus ϱT will play an important role. 

There are a number of matchability results already known, see 

[5,6,14–16,18] . However, for the most part these are asymptotic re- 

sults that do not specify the particular constants involved, and 

leave gaps in the parameter possibilities where the results are 

silent. In particular, the empirical matchability demonstrations in 

this paper are not predictable from the previously known matcha- 

bility asymptotics. Many of the known matchability results explic- 

itly or implicitly involve edge correlation ϱe . The formulation of ϱh 

is new to this paper, and ϱT is also new to this paper. Thus we are 

now opening a fertile new avenue for proof-of-matchability results 

based on ϱh and ϱT , in the spirit of the existing results for ϱe and 

also for more powerful types of results. 

Acknowledgments 

The authors are grateful to The Maryland Advanced Research 

Computing Center for use of their supercomputer to conduct the 

computational experiments. An anonymous contributor made a 

very useful observation which led to streamlining the main re- 

sult’s proof. The referees’ and editor’s feedback and remarks greatly 

strengthened this article, and are very much appreciated. Our re- 

search was sponsored by the Air Force Research Laboratory and 

DARPA , under agreement numbers FA8750-18-2-0035 and FA8750- 

17-2-0112 . The U.S. Government is authorized to reproduce and 

distribute reprints for Governmental purposes notwithstanding any 

copyright notation thereon. The views and conclusions contained 

herein are those of the authors and should not be interpreted as 

representing official policies or endorsements, expressed or im- 

plied, of Air Force Research Laboratory , DARPA , or the U.S. Govern- 

ment. 

Appendix A 

We here provide some details about correlated Bernoulli ran- 

dom graphs. Notation here is as defined in the article. 

Section A: For any { i, j} ∈ 

(
[ n ] 
2 

)
such that 0 < p i,j < 1, suppose 

that 1 (i ∼G j) is a Bernoulli( p i,j ) random variable and 1 (i ∼H j) is a 

Bernoulli( p i,j ) random variable, and suppose that the two random 

variables 1 (i ∼G j) and 1 (i ∼H j) have Pearson correlation coeffi- 

cient ϱe ; we derive the joint distribution of 1 (i ∼G j) and 1 (i ∼H j) 

as follows: 

� e = 

Cov [ 1 (i ∼G j) , 1 (i ∼H j) ] √ 

Var [ 1 (i ∼G j)] , 
√ 

Var [ 1 (i ∼H j)] 

= 

E [ 1 (i ∼G j) 1 (i ∼H j)] − E [ 1 (i ∼G j)] · E [ 1 (i ∼H j)] √ 

p i, j (1 − p i, j ) 
√ 

p i, j (1 − p i, j ) 

= 

P [ i ∼G j & i ∼H j] − p 2 
i, j 

p i, j (1 − p i, j ) 
, 

from which we obtain P [ i ∼G j & i ∼H j] = p 2 
i, j 

+ � e p i, j (1 −
p i, j ) . Because 1 (i ∼G j) and 1 (i ∼H j) are each marginally 

Bernoulli( p i,j ), we obtain that P [ i ∼G j & i �∼H j] = P [ i �∼G j & i ∼H 

j] = p i, j −
(

p 2 
i, j 

+ � e p i, j (1 − p i, j ) 
)

= (1 − � e ) p i, j (1 − p i, j ) , and also 

that P [ i �∼G j & i �∼H j] = (1 − p i, j ) − (1 − � e ) p i, j (1 − p i, j ) = (1 −
p i, j ) 

2 + � e p i, j (1 − p i, j ) . 

Importantly, note that the joint distribution of 1 (i ∼G j) 

and 1 (i ∼H j) is uniquely determined by ϱe . Also note that 

P [ 1 (i ∼G j) � = 1 (i ∼H j)] = 2(1 − � e ) p i, j (1 − p i, j ) . Also note that, 

conditioned on 1 (i ∼G j) , the random variable Bernoulli (� e · 1 (i ∼G 

j) + (1 − � e ) · p i, j ) results in the joint distribution above, which 

justifies the method in the article of sampling 1 (i ∼G j) and 1 (i ∼H 

j) with marginal Bernoulli( p i,j ) distribution and Pearson correlation 

coefficient ϱe . �
Section B: We show that ϱh ≤ 1, with equality holding if and 

only if, for all { i, j} ∈ 

(
[ n ] 
2 

)
, it holds that p i,j is 0 or 1. Indeed, 

1 − � h 

= 1 − σ 2 

μ(1 − μ) 

= 

μ(1 − μ) −
(∑ 

{ i, j}∈ ( [ n ] 2 ) 
p 2 

i, j 

( n 2 ) 
− μ2 

)

μ(1 − μ) 

= 

∑ 

{ i, j}∈ ( [ n ] 2 ) 
(p i, j − p 2 

i, j 
) (

n 
2 

)
μ(1 − μ) 

is clearly nonnegative and equals 0 if and only if, for all { i, j} ∈ 

(
[ n ] 
2 

)
it holds that p i, j = p 2 

i. j 
, i.e. it holds that p i,j is 0 or 1. Thus ϱh ≤ 1 

with equality holding if and only if, for all { i, j} ∈ 

(
[ n ] 
2 

)
, it holds 

that p i,j is 0 or 1. (Except, recall, the Bernoulli parameters are not 

all 0 and are not all 1, since ϱh would then not be defined.) �
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