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This work addresses the problem of a compact and easily comparable representation of multi-
exponential relaxation data. It is often convenient to describe such data in a few parameters, all being
of physical significance and easy to interpret, and in such a way that enables a model-free comparison
between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a
set of parameters which are related to the characteristic relaxation time on the log-scale, the width
and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of
LMs does not require knowing the actual distribution function and is reduced to a numerical integration
of original data. The performance of this method has been tested on both synthetic and experimental
NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate.
The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust
against deficiencies of the experiment such as scattered data point and incomplete sampling. One may
consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation,
vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in
interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to
fast exchange between populations. The third LM was found to be a less reliable quantity due to its sus-
ceptibility to the noise and must be used with caution.
� 2017 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A non-exponential NMR relaxation behavior is often attributed
to dynamically heterogeneous systems with distinguishable popu-
lations characterized by individual relaxation times, si’s. Mathe-
matically, it is expressed in terms of relaxation time distribution,
g(s), or relaxation spectrum. The concept of the relaxation time
distribution has been employed since the early 1990, mostly in
connection with pore size distribution in rocks [1,2]. More recently,
it has been studied with regard to its correlation with a chain
length distribution in crude oils [3]. A quasi-continuous g(s) is
obtained through the Inverse Laplace Transform (ILT) of a relax-
ation function u(t) representing either decaying or recovering
magnetization curves. While often criticized for non-unique solu-
tion and an inherent broadening of the resultant g(s), ILT becomes
a standard practice for multi-exponential relaxation data presenta-
tion, all the more so as reliable ILT algorithms reach the NMR
community [4,5].
For intrinsically non-exponential relaxation in a homogeneous
medium, one has to use another approach and fit to data a func-
tion, either empirical or derived within an appropriate dynamics
model, the parameters of which are related to a characteristic time
of relaxation and its deviation from an exponential. Kohlrausch and
log-normal fit functions are but two of the examples. It has been
shown, however, that a monotone non-exponential u(t) can be
always approximated arbitrarily closely by a sum of exponentials
with an appropriate g(s) [6]. This makes the description of relax-
ation in terms of g(s) a general concept on the understanding that
it underlies a non-exponential u(t) of a particular kind.

ILT provides an ultimate description of multi-exponential data
in the sense that g(s) uniquely determines u(t). It is often the case,
however, that one utilizes thus-obtained g(s) only to measure a
certain numerical quantity, in order to relate it to another sample’s
property, or to monitor the change of relaxation upon varying
experimental conditions and to assess a trend in the relaxation
behavior, or merely to catalog a sample according to this quantity.
What is often considered in such a case are the average relaxation
time, the width of g(s), and the skewness of g(s). Zorn [7] has
advocated the presentation of these properties of g(s) through
lower-order moments of the relaxation time. He has shown, on
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the example of dielectric relaxation, that the moments can be eval-
uated directly from the relaxation function, that is, without know-
ing g(s) from data inversion, when the function is sampled in
logarithmically equispaced steps.

The demand for skipping data inversion in numerical relaxation
analysis, thus avoiding ambiguities that may accompany such
inversion, was met earlier in [8] in the context of computations
of different average NMR relaxation times.

Ref. [7] provides necessary basis for calculating the moments on
the log-scale (hereafter called logarithmic moments) and gives
analytical expressions for a number of empirical fit functions used
in dielectric relaxometry (both in time and frequency domain).
Here we adapt this approach for the analysis of experimental relax-
ation functions in time-domain NMR. Among the chief challenges
of applying this approach to experimental data is a proper normal-
ization of u(t), which relies on both the signal-to-noise ratio (SNR)
and sampling completeness. Hence we validate this approach by
testing its performance on relaxation functions (both synthetic
and experimental) of various SNRs and numbers of sampling points
acquired over different time intervals. To be concrete, we hereafter
assume that u(t) is an explicit sum of exponentials such that par-
ticular time constants in u(t) are associated with distinct relax-
ation populations. This permits a further discussion as to the use
of the logarithmic moments in the analysis of structural hetero-
geneity and how they can assist in interpretation of temperature
and frequency dependences of T1 relaxation.
2. The k-th central logarithmic moment of s

2.1. Definition

In the following derivation, the nomenclature by Zorn is being
used [7]. The k-th logarithmic moment of s is defined as

hðln sÞki ¼
Z 1

0
ðln sÞk gðlnsÞd ln s ð1Þ

where s is generally assumed dimensionless which can be achieved
by normalization by a reference time unit. The first moment (k = 1)
represents the arithmetic mean time on the logarithmic scale. The
second central moment (k = 2), or the variance of s on the logarith-
mic scale,

r2
lns ¼ hðln sÞ2i � hlnsi2 ð2Þ

is related to the width of g(lns). And the third central moment
(k = 3),

l3 ln s ¼ hðlnsÞ3i � 3hðlnsÞ2ihlnsi þ 2hlnsi3; ð3Þ
measures skewness, or asymmetry of g(lns), with a positive value
corresponding to a right-skewed (right-tailed) and a negative value
to a left-skewed (left-tailed) distribution.

The geometric mean, hsig , and the geometric standard devia-
tion, rg , of s are related to respective logarithmic moments as
follows:

hsig ¼ expðhlnsiÞ ð4Þ

rg ¼ exp
ffiffiffiffiffiffiffiffiffi
r2

ln s

q� �
ð5Þ

The skewness on the logarithmic scale is defined as

c1 lns ¼ l3 ln s=r
3
ln s ð6Þ

Finally, when measuring the relaxation rate r instead of the

relaxation time s, (r = s�1), one applies hðln rÞki ¼ ð�1Þkhðln sÞki.
As emphasized in the Introduction, the logarithmic moments of
s can be calculated directly from the relaxation function u(t), that
is, without knowing g(s). This is made possible by transforming u
(t) to a convolution of g(s) with one of well-known functions, f(t),
such that a moment for g can be calculated from the respective
moments for u and f [7].

2.2. Derivation

Let u(t) be a superposition of exponential relaxation decays
with a relaxation time distribution g(lns) such that g(lns) d lns is
a weight of the components with relaxation times from s to
exp(lns + d lns):

uðtÞ ¼
Z 1

�1
expð�t=sÞgðln sÞd ln s ð7Þ

Following Ref. [7], we differentiate (7) with respect to ln t,

� du
d ln t

¼
Z 1

�1
expðln t � ln s� expðln t � ln sÞÞgðln sÞd lns; ð8Þ

to represent the relaxation data as a convolution of g(lns) with
f ¼ expðx� expðxÞÞ. This, in turn, allows us to calculate the
moments of g via those of �du=d ln t and f using the moment rule
for convolution. The rule states that the k-th moment of the convo-
lution ðg � f ÞðxÞ can be expressed in terms of moments of g and f as
[9]:

hxkig�f ¼
Xk

j¼0

k!
j!ðk� jÞ! hx

jighxk�jif ð9Þ

Applying this rule to the convolution (8), one writes for the
above-defined moments [7]:

hln si ¼ 0:5772þ hln ti ð10aÞ

r2
ln s ¼ hðln tÞ2i � hln ti2 � p2=6 ð10bÞ

l3 lns ¼ hðln tÞ3i � 3hðln tÞ2ihln ti þ 2hln ti3 þ 2:404 ð10cÞ
Here, the integral

hðln tÞki ¼ �
Z 1

�1
ðln tÞk du

d ln t
d ln t ð11Þ

is the k-th moment calculated with �du=d ln t taken as a distribu-
tion function while the numerical values 0.5772 and 2.404 are anal-
ogous integrals for f [7]. When dealing with experimental data, the
integral (11) is defined on the closed interval ½ln t1; ln tN �, where t1
and tN are the first and the last of N sampling points of u. Integrating
(11) by parts, we obtain in the limit t1 ? 0 and tN ?1 a practicable
form:

hðln tÞki ¼ ðln t1Þk þ k
Z ln tN

ln t1

ðln tÞk�1u d ln t ð12Þ

Thus, the calculation of the logarithmic moments amounts to a
numerical integration of u given by Eq. (12) and a few elementary
operations by Eq. (10). To use these equations implies that u is
sampled at logarithmic steps and normalized to [1, 0].

3. Computational accuracy tests

3.1. The effect of data sampling

Eq. (12) brings in two principle sources of systematic error to
the logarithmic moment estimates. One is the sampling interval
[t1, tN] which defines the integration limits in (12). For a good accu-
racy, the interval [t1, tN] must cover u up to its asymptotic levels on
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Fig. 1. (a): An example of a mono-exponential relaxation function with s = 1 s. The arrows shows sampling limits at which respective logarithmic moment estimates deviate
from true values by 10% (the truncation error for the 3rd moment is below 10%, hence no arrow shown at long times). (b) and (c): Logarithmic moment estimates reduced
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either side of the log-time scale. Fig. 1 illustrates that for a model
mono-exponential decay with a time constant s = 1 s. The error
due to the lower limit of t1 remains below practically acceptable
10% up to t1 = 0.1s, 0.025s, and 0.002s for the first, the second,
and the third moment, respectively. That is, the error due to the
late acquisition onset increases with k: it is the least for the first
moment, still tolerable when u drops down to 90% of its amplitude
at t1 = 0.1s, and it is the most for the third moment which requires,
for a good accuracy, that sampling begins at t1 of three orders of
magnitude shorter than s (Fig. 1a and b). The error due to the
upper limit of tN attains 10% at tN = 1.5s and 1.7s for the first and
the second moments (at which points u drops down to 22 and
18% of its amplitude, respectively). On the other hand, the third
moment does not deviate more than by 5% from the true value
(Fig. 1c), thus appearing least affected by an early truncation of u.

The other accuracy factor is the sampling step D ln t (/ N�1)
which controls the numerical approximation of the integral (12).
Fig. 2 shows calculated logarithmic moments of the mono-
exponential decay as a function of N for Simpson’s rule integration.
It appears that N has a significant effect only on l3 ln s, but even in
this case the approximation is still passable (10% error) for N = 16.
We note, however, that one would hardly set N on the basis of the
numerical approximation criterion. Rather, one might want N to be
as large as possible to minimize the effect of the noise on data nor-
malization and scatter in values (see below), yet keeping the total
experiment time reasonably short.

3.2. The effect of noise

The noise present in u enters (12) with the weight ðln tÞk�1,
hence its effect depends on k. To appreciate this dependence, let
us compute the variance of a weighted sum of N random variables
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y �
XN
i¼1

aixi ð13Þ

as a representative of the noise term in (12). We assume that xi are
independent random additions to ui in (12) and that they are nor-
mally distributed with mean 0 and variance r2. Then, the variance
of the sum (13) is given by [10]

r2
y � r2

XN
i¼1

a2i ð14Þ

For simplicity, let us consider a sampling interval that is sym-
metric about zero, lnt1 = �lntN. Then, the weights ai ¼ aiðkÞ can
be written simply as:

a2i ð1Þ ¼ ðD ln tÞ2 ð15aÞ

a2i ð2Þ ¼
1
4
ðD ln tÞ4 i2 ð15bÞ

a2i ð3Þ ¼
1
16

ðD ln tÞ6i4 ð15cÞ

which, after substituting in (11), gives:

r2
yð1Þ ¼ r2ðD ln tÞ2N ð16aÞ

r2
yð2Þ �

1
12

r2ðD ln tÞ4N3 ð16bÞ

r2
yð3Þ �

1
80

r2ðD ln tÞ6N5 ð16cÞ

From this example of a zero-symmetric interval, the logarithmic
moment estimation error due to the random noise is a power-law

function of k, r2
LM / ðD ln tÞ2kN2k�1. Such a strong dependence on k

presents us with a problem for measuring l3 ln s even at a moderate
level of noise. There are two options to reduce this error: either
through narrowing a sampling interval at the expense of the inte-
gration accuracy (see Section 3.1), or by increasing the number of
points N, thus prolonging the experiment. For comparison, Eq.

(16) gives r2
LM / ½lnðtN=t1Þ�2k for a constant N and r2

LM / N�1 in
the case of a constant sampling interval.

To illustrate that, we calculate logarithmic moments for a bi-
exponential function with equal components’ weights and a varied
difference in s (Fig. 3a). The sampling interval was chosen just suf-
ficiently broad in order to exclude significant systematic errors
(see Section 3.1). Thus, addition of 1% of a normal noise
(SNR = 17) has only a mild effect on hln si and r2

ln s values, which
both remain statistically significant, but has a destructive effect
on l3 ln s (Fig. 3c). The latter can be reduced significantly by nar-
rowing the sampling interval but with an entailing loss of the inte-
gral’s accuracy manifested as an upward shift of l3 ln s in Fig. 3d.
Fortunately, one can restore the accuracy by extrapolation of data
toward zero time (Fig. 3e), as described in the next section.
Fig. 3d and f shows the effect of N: using 256 sampling points
instead of 24 results in more than a 3-fold decrease in logarithmic
moments deviation, in full agreement with Eq. (16).

3.3. The problem of normalization

Scaling u(t) to [1, 0] consists of two steps: a shift of u by its value
at t?1 and normalization of thus-shiftedu to its value at t? 0. To
obtain these limit values of u forms a computational problem in its
own right. A simple way to do this is to take extreme points of u (or
a mean of two or three of them at either end), but that might not
work if u is too noisy or sampled far off its plateaus. Therefore, it
seems more practicable to fit a model exponential function to u
with its amplitude and offset parameters used as variables. We
found a tri-exponential function sufficient to approximate u at
either plateau in all our tests, hencewe recommend using this func-
tion in practice. Including more terms in the fit seems redundant
taking into account a fast convergence of the sum of exponentials
to u. One might consider using a bi-exponential fit when relaxation
has a pronounced two-component character in order to reduce
variability in best-fit parameters. In assessing whether to decrease
the number of terms, one can rely on F-test or similar statistical
tests to compare nested models.

The advantage of using a model fit function, other than a rela-
tively accurate data normalization, is that it enables extrapolation
of u towards zero time, thus providing a better fulfillment of the
limiting conditions underlying Eq. (12). All calculations in this
work were, if not mentioned otherwise, performed on extrapolated
magnetization curves with N extra values added at the beginning
of the curves. Fig. 4 and Table 1 illustrate the benefit of the extrap-
olation. A 7Li NMR stimulated echo in a lithium-ion conductor
shows a prominent two-component decay with a major compo-
nent (80%) relaxing with s = 7 ls and a minor component with
s = 0.3 ms (Fig. 4). Because of the extremely fast relaxation of the
major component, the signal recorded on delays shorter than
10 ls misses approximately 50% of its total amplitude. Calculation
of hlnsi and r2

ln s on such incomplete data leads to intolerable
errors, especially so for r2

ln s. Extrapolation toward zero time gives
correct results, as can be ascertained from comparison to a bi-
exponential decomposition or more comprehensive ILT analysis
(Table 1).

Extrapolation is potentially unsafe in the presence of outlying
values, the more as they affect the fit. The logarithmic moments
derivation formulated in Section 2.2 allows to omit any value from
a given data set, which can be employed to detect the outliers
through an abrupt change of the resulting moments. Optionally,
one might consider discarding a few data points in the beginning
of a relaxation curve to assess how sensitive it is to magnetic field
transients upon switching r.f. pulses or the magnet.
4. Further feasibility tests

4.1. Discrimination of two relaxation components

Measuring the logarithmic variance r2
ln s aims to assist in the

analysis of structural and dynamical heterogeneity as it manifests
itself in relaxation broadening. The sensitivity of r2

lns to the pres-
ence of two relaxation components as a function of their relative
intensity and separation was tested on a model spectrum (Fig. 5a)
at two levels of noise. The number of data points was chosen to be
32, which is about a typical number used in T1 relaxometry. The
calculations show (Fig. 5b) that for 1% of noise (SNR = 17), r2

lns dif-
fers from zero by a statistically significant amount when relaxation
times differ on the logarithmic time scale by a factor of 2 or more.
For 5% of the noise (SNR = 3), they are distinguishable when they
differ by a factor of 5 to 10, depending on the second component’s
weight fraction.

For a test on experimental data, a set of T1-relaxation curves
were acquired from a composite sample of cyclohexane and
CuSO4-doped water in a wide range of the relaxation field using
the field-cycling technique. The fluids were placed in two coaxial
NMR tubes and cooled down to T = 273 K so that cyclohexane
turned into plastically crystalline phase, while doped water
remained unfrozen. This temperature regime provided essentially
different T1 dispersions for the two components with up to a
sixty-fold gap between the respective T1 values (Fig. 6a). (For pre-
vious measurements of T1 dispersion in solid cyclohexane, see
[11].) In this test, we measured the geometric standard deviation
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Fig. 3. Effect of noise on the error in logarithmic moment estimates in the case of a two-component relaxation spectrum (a) with a variable component separation m. (b):
Mean logarithmic moments values and their standard deviation for noiseless relaxation function, sampled in a wide interval ti 2 [0.0001Tmin, 10Tmax], N = 256. The solid lines
represent theoretical values for the model used. (c) Same sampling conditions as in (b) but with SNR = 17. (d) The sampling interval is set twice as narrow as in (c). (e) The
effect of the sampling interval narrowing is compensated by extrapolation beyond the lower limit t1. (f) The number of points is reduced down to N = 24 compared to N = 256
in (d). SNR is defined as the ratio of the relaxation function amplitude to the maximum peak-to-peak difference in a normal noise background, which, according to a ‘‘3-sigma
rule”, is taken equal to 6 times the noise’s standard deviation.
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rg which has a theoretical minimum of 1 at the point where two
exponential decay time constants coincide. For a reference, we cal-
culated rg from known T1’s and an effective component ratio (see
Fig. 6a). The substantial change in the component ratio is owing to
a partial loss of magnetization during the field switching intervals
of several ms. Because of a stronger T1 dispersion. the weight frac-
tion of cyclohexane decreases more pronouncedly than that of
doped water. Fig. 6b shows that except for one outlier, the rg mea-
sured on the composite sample follows the reference values accu-
rately while remaining sensitive to a difference in T1 of less than a
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Table 1
The two lowest-order logarithmic moments calculated from u(t) shown in Fig. 4a by this method and through multi-exponential deconvolution of u(t). Missing more than 50% of
the signal due to a fast relaxation necessitates data extrapolation.

hlnsi r2
ln s

This method UPEN Bi-exponential This method UPEN Bi-exponential

Without extrapolation After extrapolation Without extrapolation After extrapolation
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factor of two (Fig. 6b). Measurements on data acquired with a finer
relaxation field increment and in the immediate vicinity of a rg

minimum (not plotted here) show that the deviation of rg from
1 becomes statistically significant when T1 values differ by 30%.
We note that this figure is less than the thresholds reported above
for model spectra (see Fig. 5), apparently due to a better SNR in the
experimental data used.
4.2. Comparison with the ILT analysis

Fig. 7a shows g(ln T1) obtained through the Inverse Laplace
Transform of the data used in the previous test. The geometric
mean hT1ig and the geometric standard deviation rg calculated
from thus obtained g(ln T1) are drawn in Figs. 6b and 7b along with
respective values from the logarithmic moment analysis. The
results by the two methods are virtually identical. It is worth men-
tioning that the employed ILT algorithm (UPEN [4]) provides cor-
rect integral characteristics of g(ln T1) even though it does not
resolve it into separate peaks unless their T1 values differ by more
than a factor of six (see Fig. 7a).

Fig. 7c relates the skewness parameter c1 ln T1
calculated from

the logarithmic moments analysis to the shape of g(ln T1) given
by ILT. As expected, c1 ln T1

turns from positive to negative values
as g(ln T1) changes from a right-tailed to a left-tailed distribution.
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At the crossover, where g(ln T1) collapses down to a single peak,
both numerator and denominator in Eq. (6) approach zero. This
is likely to explain the vast c1 ln T1

fluctuations around 1 MHz.

4.3. Comparison with the stretched exponential analysis

The stretched exponential function (17), also called the Kohl-
rausch function, is a long-used, compact model for phenomenolog-
ical description of non-exponential relaxation, also in NMR
relaxometry [12–14].

uðtÞ / exp½�ðt=sKÞb� ð17Þ
A stretching exponent b 2 [0, 1] measures the deviation from a

mono-exponential relaxation, with b = 1 corresponding to the
usual exponential function. As such, b has to correlate inversely
with rg . The first moment of a normalized (17)

hsi ¼
Z 1

0
exp½�ðt=sKÞb�dt ¼ sK

b
C

1
b

� �
ð18Þ

where C is the gamma function, is interpreted as a mean relaxation
time and is to be compared to hsig . To draw the comparison, we
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utilize 1H T1 relaxation data acquired by the field-cycling technique
from commercially available dry-cured ham (Jamón Serrano, Spain).
Samples were cut from the representative muscle and adipose
regions of ham slices and measured at 10 �C in the relaxation field
ranging from 20 MHz down to 10 kHz. The muscle tissue shows a
nearly mono-exponential T1 relaxation, with the rg values not
exceeding 1.6 (Fig. 8a). Accordingly, fitting (17) to the data yields
the stretching exponent b that is close to 1 (Fig. 8b). A slight devia-
tion from an exponential is positively seen in both rg and b graph
near the relaxation field of 1 MHz. Whatever causes this deviation
is fairly measurable through the geometric standard deviation and
the stretching exponent values, even though a mono-exponential
fit appears as good as everywhere else. The adipose tissue exhibits
essentially a non-exponential relaxation. The rg values monotoni-
cally grows from 1.6 at 20 MHz up to 2.1 at 10 kHz (Fig. 8c). The b
values follows same trends as in rg , recalling their inverse correla-
tion (Fig. 8d). Thus, given comparable scatter in values, either of
these quantities can be used to detect relaxation broadening. We
note, however, that relation of b to the second moment of T1 is
regarded as being mostly qualitative because of the phenomenolog-
ical concept of the stretched exponential model. Besides, the good-
ness of fit of (17) might be an issue, e.g., for data with a bimodal g
(s).

The stretched-exponential model gives the mean T1 that coin-
cides with the corresponding value from the logarithmic moment
analysis in the case of the muscle tissue, but is significantly greater
for the adipose tissue (Fig. 9). This can be explained taking into
account that the integral (18) defines the mean on a linear time-
scale, that is, the usual arithmetic mean hT1ia, for which the general
inequality hT1ia P hT1ig applies, the more so as relaxation deviates
from an exponential. A dip is visible on the T1 dispersion curve of
the muscle tissue at 2 MHz, owing to a quadrupolar enhancement
of the 1H relaxation in a vicinity of immobilized proteins’ amino-
groups [15].

Although it is not immediately relevant to the present discus-
sion, we note that combining the logarithmic moment and
stretched exponential analysis allows one to calculate the har-

monic mean hT1ih using the relationship hT1ia hT1ih ¼ hT1i2g [16].
The harmonic mean is of particular use in studying glass transi-
tions, as this quantity exhibits no (misleading) discontinuity at
the relaxation crossover from slow to fast exchange limit [13]. Usu-
ally, hT1ih is measured from a time derivative of u(t) at t? 0, which
requires high-precision magnetization curves. Here hT1ih is calcu-
lated from integral values which are far less demanding of SNR.
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Fig. 8c shows the trend which is commonly seen when compar-
ing rg values by ILT and by the logarithmic moment analysis.
Namely, ILT gives rg that is greater than a corresponding quantity
obtained from the logarithmic moments calculation. We attribute
this to regularization in ILT which leads to artificially broadened
distributions and thus results in overestimated rg values.
5. Discussion and conclusion

Let us emphasize benefits of the logarithmic moments when
keeping track of non-exponential behavior of u(t). Besides the
computational advantages, there are a number of arguments, some
being supported by the present data and others being only a claim,
in favor of using the moments defined on the logarithmic scale.

(i) The relaxation function u(t) is often sampled at logarithmi-
cally equidistant points, whenever it is possible, to capture
better its exponential behavior, with a rapid change at short
times and a progressively slower change on longer times.
Having been plotted against ln t, the thus sampled u(t)
appears as a smooth-step function with a well visible inflec-
tion point and a slope enabling easy comparison of data in
terms of the mean relaxation time and its deviation form
exponential (see, e.g., Figs. 1a and 4a). On the other hand,
ILT algorithms output relaxation time distributions as his-
tograms on a logarithmic abscissa. That makes sense since
it is the ratio of relaxation times rather than their difference
that defines the non-exponential character of relaxation. It is
fitting therefore that one deals with quantities measured on
the logarithmic time scale whenever comparing to those,
popular, representations of relaxation data.

(ii) The geometric mean hsig is preferable to the usual arith-
metic mean hsia as a characteristic relaxation time of highly
skewed s distributions. When s values differ by a factor of 10
or more, hsia is dominated by a longer-s component even if
it is comparable to shorter-s constituents by weight. In some
extreme situations, such as encountered in relaxation of flu-
ids in porous media with a bulk fraction present, hsia may
address neither of the relaxation components and therefore
cannot represent a characteristic relaxation time in the
sense of the most frequent value. The geometric mean seems
to be a more balanced quantity for such cases.

(iii) The logarithmic moments are particularly convenient for
analysis of variable-temperature T1 measurements. In a
simple case of thermal fluctuations characterized by a single
correlation time sc, T1 is proportional to scx2 and s�1

c in the
slow and fast motion limits, respectively, such that the
dependence of T1 on temperature takes the Arrhenius
form for a given activation barrier E. Let us now assume that
there is a distribution of activation barriers, G(E), leading to a
respective distribution of T1. Then the variance of E is
related to the log-variance of T1 simply as rE ¼ kBrln T1T
[7], such that the product rln T1T is invariant to T unless G
(E) changes with temperature. By monitoring the rln T1T
value, one can readily explore whether such a change takes
place, e.g., as a result of structural rearrangement or a
chemical reaction.

(iv) Measuringrln T1 may also assist in the analysis of T1 as a func-
tion of the relaxation field strength (T1 dispersion). Provided
that the relaxation function is a sum of terms with
Lorentzian-like dispersions,rln T1 is to be invariant to the field
strength in the high and low field limits. The observation of
rln T1 that does vary in those extreme fieldswould either indi-
cate an exchange between relaxation components or call for a
model that exploits a non-Lorentzian dispersion.
Despite the simplicity of the general approach, the calculation of
the logarithmic moments has two methodological shortcomings.
One lies in the need, as a preliminary, of data normalization, which
relies on the choice of the objective function as well as on the
employed optimization technique (see Section 3.3). A poor data
quality and incomplete sampling of u at its long-time plateau can
readily make normalization a principle source of error, especially
so for field-cycling relaxation data with their intrinsically non-
zero offsets. The other problem is the requirement for u to be sam-
pled in logarithmically equispaced steps. This presents no trouble in
convenient T1 relaxometry and diffusometry, but may be difficult to
achieve in the experiments based on Carr-Purcell-Meiboom-Gill
(CPMG) and similar pulse sequences with a constant acquisition
period. Further work to overcome this problem will be necessary.
(In view that CPMG T2-decays comprise many points and only a
few are required for the log-moment calculation, it seems possible
to interpolate u for the logarithmically equispaced time delays.)

The estimation of hln si and r2
lns has proved robust against defi-

ciencies of the experiment such as a small number of data points
and scatter in values. The quantities will assist in analyzing struc-
tural and dynamical heterogeneities and in studying magnetiza-
tion exchange processes. The calculation of l3 ln s was found to be
less reliable due to its particular susceptibility to the noise and
therefore must be used with caution. In many aspects, measuring
logarithmic moments on u(t) is a computationally facile alternative
to the Inverse Laplace Transform of data. It is worth noting, how-
ever, that it gives information only about integral characteristics
of an underlying distribution of exponentials such that no informa-
tion on the distribution’s modality is provided. If one’s objective is
to know whether the distribution breaks up into two or more
peaks, suggesting separate populations, then one should consider
using ILT (with a carefully adjusted regularization parameter) or
else exploit the tools that are especially designed for separating
exponential components [17].
6. Experimental

The field-cycling measurements of 1H T1 relaxation decays were
carried out on a Stelar Spinmaster FFC2000 relaxometer, at
T = 273 K. The detection fieldwas 17 MHz, while the relaxation field
varied from 16 to 0.01 MHz, the field switching time 2.5 ms, the
pre-polarization at 20 MHz took 1.9 s, and the 90�-pulse was
7.5 ls long. A composite test sample for these measurements was
made of two nested coaxial NMR tubes of 5 and 10 mm diameters,
filledwith cyclohexane and CuSO4-dopedwater, respectively, in the
proportion that gave equal signal intensities at themaximum relax-
ation field used in this experiment (16 MHz). Dry-cured ham
(Jamón Serrano, Spain) was purchased from a local vendor in a form
of thin slices. The muscle and adipose tissue were separated by a
knife and packed in 10 mm NMR tubes without further treatment.

The Inverse Laplace Transform algorithm used was UPEN [4]
featuring a uniform penalty smoothing of distribution components.
A regularization parameter was kept close to its limit (about 3
times the default value) to minimize a line broadening yet prevent-
ing instability in data inversion.

The logarithmic moment computation algorithm was written in
the programming language Python. The program includes the
triple-exponential fit by the Powell’s optimization method for data
scaling and extrapolation purposes, which was implemented using
the lmfit package.
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