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Abstract 7 

Variable-speed stall-regulated (VS-SR) wind turbines can be designed to produce power as efficiently 8 

as variable-speed pitch-controlled (VS-PC) systems. However, amongst the main drawbacks of VS-9 

SR systems high transient power and low predictability have been the primary factors in favour of 10 

adopting VS-PC system for multi-MW wind turbines. Cyclic and stochastic loads leading to fatigue 11 

failure is one of the prime considerations for large wind turbines. In contrast to the current trend of 12 

research, which is focused on load alleviation by integrating active flow controllers, this paper 13 

highlights the potential benefits of VS-SR wind turbines in reducing fatigue loads. Adopting the 14 

NREL 5MW wind turbine as the baseline, blades are redesigned for stall-regulation. It is shown that 15 

a well-designed VS-SR wind turbine experiences significantly less fatigue loads compared to VS-PC 16 

systems. It also results in low power transients near and above rated wind speed. Taking into account 17 

added complexity, mass and maintenance costs of wind turbines utilising active flow controllers and 18 

in view of the recent progresses that have been made regarding the aeroelastic stability of stalled 19 

blades, VS-SR systems seem to have a role to play in the design of future wind turbines.  20 

 21 

Keywords: fatigue load alleviation; aerodynamic sensitivity; progressive stall line; variable-speed; 22 

stall-regulated wind turbine; WTAC 23 

 24 

1 Introduction  25 

The incentive in reducing the cost of wind energy has led to a steady growth in wind turbines rotor 26 

size over the past decades. However, major technical challenges are to be overcome in order to 27 

maintain the current growth rate. In particular, blade failure due to fatigue has become a major design 28 

concern [1-3]. Variable-speed pitch-controlled (VS-PC) wind turbines are designed for maximising 29 

power generation and keeping the aerodynamic torque at nominal value [4]. Compared to variable-30 

speed stall-regulated (VS-SR) wind turbines, VS-PC have lighter blades and produce less noise. 31 

Moreover, VS-PC have a well-understood and predictable aerodynamic under attached flow, high 32 

aerodynamic damping and a refine power control. On the other hand, VS-PC wind turbines also have 33 

limitations. Wind turbines cyclic loads, arising due to the cyclic motion of the blades in a non-34 

axisymmetric wind field, are the prime cause of fatigue [5, 6]. The collective pitch control strategy 35 

for VS-PC turbines is not designed for relieving fatigue loads. Furthermore, the most commonly 36 

employed pitch control strategy (i.e. pitch to feather) maintains the blades in attached flow conditions 37 

resulting in high aerodynamic sensitivity causing large alternating fatigue loads. The integration of 38 

new active flow controllers (e.g. trailing edge flaps and microtabs) to alleviate fatigue loads increases 39 

the complexity, mass and maintenance costs of wind turbines. While the trend in current research 40 

focuses on alleviating the loads of VS-PC wind turbines using active flow controllers [7-10], the 41 

present paper highlights the potential benefits of employing variable-speed stall-regulated (VS-SR) 42 

wind turbines. In particular, this paper seeks at raising interest in fatigue and transient power reduction 43 

by taking advantage of the low aerodynamic sensitivity of stalled blades. 44 

 45 

Most investigations on VS-SR wind turbines occurred more than a decade ago. During that time the 46 

main arguments driving the VS-SR research were the substantial reduction in installation and 47 

maintenance costs as well as lighter blades and simpler control systems compared to VS-PC wind 48 

turbines [11-14]. Investigations have shown that a few VS-SR control strategies could be used to 49 

maximise and limit power at low and high wind speeds [11-15]. However, the generator and converter 50 

size of VS-SR turbines had to be increased [16] in order to absorb high power transients occurring 51 
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due to sudden changes in wind speeds (e.g. gust). It is important to note that at that time the wind 52 

turbines on which the VS-SR control strategies were tested were not especially designed for this type 53 

of operating conditions. A recent investigation [17] suggested that specifically designed blades could 54 

have better dynamics in stall such as lower aerodynamic sensitivity and higher aeroelastic stability. 55 

Recent research has also shown that the blade tip design (e.g. back-twist) plays a critical role in 56 

generating aerodynamic damping [17-19]. Although it has long been known that stall-regulated 57 

blades have a low aerodynamic sensitivity, the present investigation provides a thorough investigation 58 

using this knowledge to reduce fatigue loads and transient dynamics.  59 

 60 

The rest of this paper is structured as follows. The design of a large-scale VS-SR wind turbine is 61 

proposed in Section 2. The aerodynamic sensitivity and fatigue of both wind turbine designs are 62 

compared in Section 3. The variable-speed control performance of the VS-SR wind turbine is 63 

investigated in Section 4. The outcomes of this investigation are summarised in Section 5.  64 

 65 

2 Variable-Speed Stall-Regulated Design 66 

The aeroelastic code WTAC [20] is used for calculating the wind turbines aerodynamic performance. 67 

WTAC (Wind Turbine Aeroelastic and Control) was originally developed to calculate the 68 

aerodynamic and structural performance of wind turbines equipped with active flow controllers and 69 

to ease the development and evaluation of control structures and strategies for actively controlled 70 

wind turbine blades. WTAC includes an unsteady BEMT as well as a structural, a control and a wind 71 

field module. WTAC predictions are compared with FAST [21] for the NREL 5MW wind turbine 72 

[22] in Figure 1.  73 

 74 

The original blade design of the 5MW VS-PC wind turbine is not suitable for stall-regulated operation 75 

and the chord, twist and aerofoil distributions have to be re-designed. The stall-regulated design is 76 

obtained by using a genetic algorithm coupled with WTAC steady state BEMT in order to maximise 77 

power and minimise thrust. The final values of the design variables found for the stall-regulated 78 

design are detailed in Figure 2 and Table 1. Note that this paper aim is not to find the optimal design, 79 

including all aerodynamic and structural design variables, but rather to demonstrate the advantages 80 

of VS-SR wind turbines for large scale applications.  81 

 82 

In comparison to pitch-controlled systems, three dimensional stall [23] has a non-negligible influence 83 

on the power and thrust predictions of stall-regulated wind turbines [24]. The three dimensional stall 84 

model employed in WTAC is identical to the one in AirfoilPrep [25] which includes the modifications 85 

from Du and Selig [26] and Eggers et al [27]. Moreover, Larsen et al. dynamic stall model is used 86 

[28]. A conservative variable speed control strategy [14, 19] is chosen in order to limit the potential 87 

power peaks. The control strategy varies accordingly to the wind turbine operating region as 88 

illustrated in Figure 3: (1) the maximum power coefficient is tracked in low wind speeds, (2) the 89 

generator torque increases in order to force the blades into stall and (3) as the wind increases above 90 

rated the power is limited by reducing the wind turbine angular speed and forcing the blades into stall. 91 

 92 
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  93 
 94 

Figure 1-Power and thrust curve comparison between WTAC and FAST predictions for the 5MW VS-PC 95 
wind turbine 96 

 97 

 98 
Figure 2-Comparison between the chord and pretwist distribution for the VS-PC and VS-SR designs 99 
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Table 1-Aerofoil distribution for the VS-SR and VS-PC 5MW wind turbine designs 101 

Radius (m) 
Aerofoils 

VS-PC VS-SR 

2.867 Root Cylinder  Root Cylinder 

5.600 Root Cylinder Root Cylinder 

8.333 Root Cylinder Root Cylinder 

11.750 DU40_A17 DU40_A17 

15.850 DU35_A17 DU40_A17 

19.950 DU35_A17 DU40_A17 

24.050 DU30_A17 DU40_A17 

28.150 DU25_A17 DU25_A17 

32.250 DU25_A17 DU25_A17 

36.350 DU21_A17 DU25_A17 

40.450 DU21_A17 DU25_A17 

44.550 NACA 64-618 NACA 64-618 

48.650 NACA 64-618 NACA 64-618 

52.750 NACA 64-618 NACA 64-618 

56.166 NACA 64-618 NACA 64-618 

58.900 NACA 64-618 NACA 64-618 

61.634 NACA 64-618 NACA 64-618 

 102 

 103 

 104 
 105 

Figure 3-Variable-speed control strategy for the 5MW VS-PC and VS-SR wind turbines 106 
 107 

Employing WTAC, a VS-SR wind turbine equipped with the blades of Table 1 while operating 108 

according to the variable-speed control strategy of Figure 3 is simulated. The steady state power and 109 

thrust are presented in Figure 4.  110 

 111 

From the power curve of Figure 4.a, we see that the VS-SR design is highly efficient at generating 112 

and limiting power, although small power losses are observed near rated wind speed. Figure 4.b 113 

shows that the VS-SR wind turbine experiences a smaller pick thrust load compared to the VS-PC 114 

design. This is due to specific blade and control design. In wind speeds below the rated speed, the 115 

VS-SR wind turbine operates at higher rotor speeds but the blade operates mainly in lower angles of 116 

attack, where the drag force is smaller. Although a higher rotor speed leads to higher dynamic 117 

pressure, but since the drag coefficient is very small in low angles of attack, the overall drag force on 118 

the blade and consequently the thrust load on the rotor is less than that of the VS-PC turbine. In higher 119 

speeds, having the blade operating in higher angles of attack and entering stall region, significant 120 
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increase in the drag coefficient is expected. However, due to operating at lower rotor speeds compared 121 

to the VS-PC design, the thrust force does not increase sharply.   122 
 123 

 124 
 125 

Figure 4-Comparison between the VS-PC and VS-SR power and thrust curves  126 
 127 

3 Aerodynamic Sensitivity and Fatigue 128 

The aerodynamic sensitivity of a wind turbine operating at a particular mean wind speed is obtained 129 

by changing the incoming wind speed while keeping all other parameters constant. In other words, 130 

the aerodynamic sensitivity reflects the variation of the wind turbine power when subjected to an 131 

instantaneous change in velocity and aerodynamic torque. Results for mean wind speeds of 5, 10, 15, 132 

20 and 25 m/s are presented in Figure 5. Moreover, the approximated slope of each curve is given in 133 

Table 2.  134 

 135 

 136 

Figure 5- Comparison between the aerodynamic sensitivity of the VS-PC and the VS-SR wind turbines  137 
 138 
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 140 
 141 

Table 2-Aerodynamic sensitivity of the VS-PC and the VS-SR wind turbines 142 

Wind Speed 
(m/s) 

Slope: 𝑑𝑝/𝑑(∆𝑉) (kW/ms-1) 

VS-PC VS-SR 

5 288 236 

10 994 954 

15 1292 282 

20 1577 51 

25 1847 -83 

 143 

 144 

As it can be observed in Figure 5, the aerodynamic sensitivities of the two designs are similar for low 145 

and medium wind speeds. That is, in low wind speeds both designs maximise the power coefficient 146 

and aerodynamic performance therefore resulting in high aerodynamic sensitivity. On the other hand, 147 

for higher wind speeds the aerodynamic sensitivity of the VS-PC turbine keeps increasing whereas 148 

the sensitivity of the VS-SR turbine decreases. The blades aerodynamic insensitivity comes from the 149 

insensitivity of its aerofoils to change in flow conditions. For instance,  150 

Figure 6 shows that as the aerofoil NACA 64-618 enters into stall, the slope of the lift coefficient 151 

approaches zero. Blades on pitch-controlled systems mostly operate in pre-stall region where the lift 152 

slope is maximal whereas the blades of a stall-regulated wind turbine operate in both pre-stall and 153 

stall. This is clearly illustrated in Figure 7 that shows the angle of attack distribution along the blade 154 

span for the various operating mean wind speeds of the VS-SR wind turbine. The progressive stall 155 

line indicates both the stall location along the blade span and the steady state wind speed at which it 156 

occurs. Typically, when the blades of a pitch-controlled wind turbine are subjected to a sudden change 157 

in wind speeds the angle of attack variation results in a large change in lift and its corresponding 158 

aerodynamic forces. On the other hand, when a blade operating along or above the progressive stall 159 

line is subjected to the same event, it experiences a greater change in drag and a lower change in lift 160 

(see Figure 6). The VS-SR wind turbine blades aerodynamic sensitivity decreases as the angle of 161 

attack increases and the blades progressively enters into stall. The resulting change in aerodynamic 162 

forces experienced by the stalled blades is therefore lower than the one experienced by the pitch-163 

controlled wind turbine.  164 

 165 

 166 
 167 

Figure 6-Lift and drag coefficient of the aerofoil NACA 64-618 168 
 169 

FAST is used to calculate the flapwise root bending moments experienced by the VS-PC and VS-SR 170 

wind turbines operating in windshear conditions. In this preliminary study, the structural properties 171 

of both blades are assumed identical. Results are presented in Figures 8 and 9. Figure 8 compares the 172 

root bending moment experienced by the blades at two wind speeds of 12 and 21m/s. Figure 9 173 
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types of wind turbines in the range of 5 to 25 m/s. As these figures show, the aerodynamic sensitivity 175 

and the cyclic loads amplitude of the stall-regulated wind turbine decreases with wind speeds (see 176 

Figures 8.b and 9). On the other hand, as the aerodynamic sensitivity of the pitch-controlled wind 177 

turbine increases with wind speeds the cyclic loads amplitude also increases as shown in Figure 9.  178 

 179 

 180 

 181 
Figure 7-Angle of attack distribution along the blade span and over the entire operating mean wind speed 182 

range for the VS-SR wind turbine 183 
 184 

 185 
Figure 8-Comparison of the flapwise root bending moments for the two wind turbine designs at wind speeds 186 

of (a)12 and (b) 21m/s 187 
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 189 
 190 

Figure 9-Comparison between the magnitudes of the cyclic (alternating) component of the root bending 191 
moment of the two wind turbines  192 

 193 

For a given blade, the fatigue life depends on cyclic and stochastic behaviour of loads, namely the 194 

number of fluctuations (low frequency cyclic and high frequency turbulence), the alternating force 195 

components, and of the second degree of importance compared to the alternating components, the 196 

midrange force component. With reference to Figures 3 and 9, one can see that at lower wind speeds 197 

(less than 9 m/s), the proposed VS-SR design experiences higher rotational speeds- which directly 198 

translates to a higher number of cycles- and is subjected to more or less the same alternating force 199 

components. Taking into account only this region and excluding the effect of high frequency 200 

fluctuations, one can argue that the proposed VS-SR blade design performs inferior to its VS-PC 201 

counterpart. However, this argument weakens by considering the inherent insensitivity of stall-202 

regulated blades to fluctuating forces due to the turbulence.  Moreover, at higher wind speeds above 203 

the rated speed, where the loads are generally higher and more damaging, similar argument can be 204 

made in favour of VS-SR:  lower rotational speed (Figure 3), significantly lower alternating 205 

component of cyclic force (Figure 9), and due to insensitivity of the stall-regulated design, 206 

significantly lower alternating fluctuating forces due to turbulence (Figure 5). The next section 207 

expands on the insensitivity of SR design to high frequency fluctuations by detailing the variable 208 

speed control strategy and power/torque transients.  209 

 210 

4 Power Transient and Variable-Speed Control Strategy  211 

Compared to VS-PC wind turbines where the pitch angle can rapidly be controlled to shed power, 212 

avoiding peak power is more critical for VS-SR turbines. Consequently the transitions between the 213 

different control regions need to be carefully designed in order to ensure safe operating conditions. 214 

The dynamic behaviour of VS-SR turbines for low wind speeds has been previously demonstrated in 215 

literature [4] and is not reported herein. 216 

 217 

The original set-up for the variable speed operation of the NREL 5MW wind turbine is modified for 218 

the VS-SR design. Due to a lower rated angular speed compared to the VS-PC design, the rated 219 

generator torque is increased by 16% to obtain a rated value of 50kN.m. The maximum allowable 220 

torque is fixed at 10% above rated (55kN.m). The low shaft rated angular speed is fixed at 10.1 rpm 221 

(i.e. high wind speed rpm) with a variable speed operation range of ± 40% [14, 15]. The original drive 222 

train ratio (97:1), generator efficiency (94.4%), rotor inertia and other parameters are kept identical. 223 

The turbulent wind fields used for the dynamic simulations presented in the rest of this paper have 224 

been generated using TurbSim [29]. 225 

 226 

The wind turbine control near rated wind speeds is divided into four transitions as illustrated in Figure 227 

10. The transitions (t1) and (t2) correspond to a change between the low and medium wind speed 228 

regions. There are no major challenges for these transitions because the generator torque control 229 

margin is sufficient in order to follow the desired control strategy: (t1) the power increases towards 230 
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rated while the rpm also increases or (t2) the aerodynamic torque and power decreases away from 231 

rated values. The transition (t3) refers to the transition from the medium to the high wind speed region 232 

when the wind speed increases. This is the most critical transition because the aerodynamic torque 233 

increases whereas the rpm must decrease to limit power. As a consequence, there is a risk that a 234 

sudden increase in wind speed and therefore aerodynamic torque results in a large peak power above 235 

rated. It is crucial to avoid such scenario that could seriously damage the wind turbine. The variable 236 

speed control strategy must be designed considering the trade-off between the desired rapid changes 237 

in angular speed and the sudden power increase. The transition (t4) corresponds to a variation of wind 238 

speeds from the high to the medium wind speeds. Caution must also be taken during this transition 239 

because the aerodynamic torque has reached rated value and the generator torque control margin is 240 

therefore small. Rapid increase of the rpm should be avoided to limit peak power when a quick (t4) 241 

transition is followed by a (t3) transition. 242 

 243 

 244 
Figure 10-Variable-speed control transitions for the stall regulated wind turbine 245 

 246 

Applying those limitations to the variable speed control strategy proposed by Pierce and Migliore 247 

[14], the power transients near and above rated wind speeds are evaluated. Since the main concern is 248 

to limit power peaks, the converter and power smoothing control strategy were not modelled. The 249 

results of the stall-regulated wind turbine operating near rated wind speeds are presented in Figure 250 

11. As can be observed in Figure 11.a, the wind turbine operates in the critical transition regions (t3) 251 

and (t4) with fast changing wind speeds. Notice that, despite the substantial aerodynamic torque peaks 252 

(Figure 11.c, time ≈ 50-70s), the power generator is well-limited to +10% rated power as illustrated 253 

in Figure 11.b.  254 

 255 

The control strategy trade-off between power limitation and generation may result in power losses 256 

due to the limitation at which the rpm is allowed to change as it can be seen in Figures 11.a and 11.b. 257 

For instance, between 50 and 80 seconds the aerodynamic torque rapidly decreases before 258 

substantially increasing for 20 seconds. First the generator torque is controlled such that the rpm 259 

increases to bring the power back to rated value (≈ 65s). At that point, the aerodynamic torque keeps 260 

increasing while the generator torque is controlled to reduce the rpm and maintain power at rated. 261 

However, the rate at which the rpm decreases is limited by the rotor inertia and a small power 262 

overshoot occurs. Note that if the rpm was allowed to quickly increase during the first aerodynamic 263 

torque drop, the rpm would have reached a higher value and the power overshoot would have been 264 

more significant. That is, the acceleration and deceleration rates of the angular speed during the (t3) 265 

transition are critical to avoid power peaks. Due to this conservative control strategy the rotor angular 266 

speed near rated wind speed is often lower than predicted by the steady state design (Figure 11.a). As 267 

a consequence, a lower generator variable speed operation range could be used. Although this would 268 

results in much lower power generation when using a steady state analysis, the stored rotor kinetic 269 

energy helps in maintaining power near rated in a dynamic framework. 270 
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 272 
Figure 11-Dynamic performance of the VS-SR wind turbine operating near rated wind speed, (a) wind speed 273 

at hub and rpm, (b) power and (c) torque 274 
 275 

Results for the stall-regulated wind turbine operating well above rated wind speed are presented in 276 

Figure 12. As shown in Figure 12.a the wind turbine is subjected to a rapidly varying wind fields in 277 

the high wind speed region. As expected from the aerodynamic sensitivity results presented in Section 278 

3, the wind turbine power and aerodynamic torque are not very sensitive to change in wind speeds 279 

above 15m/s (see Figures 12.b and 12.c). Consequently, the torque and power transients in high wind 280 

speeds are minimal. Furthermore, one can observe that the power is well-maintained below + 10% of 281 

its rated value.  282 
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 283 
 284 

Figure 12-Dynamic performance of the VS-SR wind turbine operating in high wind speed, (a) wind speed at 285 
hub and rpm, (b) power and (c) torque 286 

 287 

5 Concluding Remarks 288 

The present paper investigates the potential benefit of variable-speed stall-regulated wind turbines in 289 

reducing fatigue loads and limiting power transients. While the potential interest in using stall-290 

regulated wind turbines for that purpose was speculated, no thorough investigation had been 291 

previously carried out. During this investigation, it was found that VS-SR wind turbine can be as 292 

efficient as a pitch-control design in power generation and regulation, and that VS-SR turbines can 293 

be designed to experience the same (or even slightly lower) thrust load compared to a pitch-control 294 

design. Most importantly, it was shown that by taking advantage of the aerodynamic insensitivity of 295 

stalled blades, VS-SR designs experience significantly lower fatigue loads than pitch-controlled wind 296 

turbines. Furthermore, it was shown that the VS-SR design reported in this paper helps in minimising 297 

the power transients near and above rated wind speed. The power generated was shown to be well-298 

maintained around its rated value while operating under highly turbulent winds.  299 
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Compared to pitch controlled turbines, stall-regulated turbines generally experience higher blade 301 

loading at higher wind speeds and produce more noise. Higher blade loading leads to heavier blades, 302 

which is a major drawback of stall-regulated turbines. The VS-SR design proposed in this 303 

investigation is the results of a steady state aerodynamic optimisation problem without including 304 

structural design parameters. The structure of the VS-SR turbine was assumed identical to the VS-305 

PC blade. It is, therefore, most likely that a comprehensive optimisation-including structural 306 

optimisation- will result in a VS-SR design with larger chord and/or thicker shell, and/or a thicker 307 

aerofoil family. Furthermore, the behaviour of VS-SR wind turbines is strongly dictated by unsteady 308 

aerodynamics. Consequently, unsteady-based design optimisations may be required in order to 309 

achieve optimal performance under unsteady conditions. Moreover, the progressive stall line may be 310 

used as a design variable in order to obtain the desired wind turbine aerodynamic sensitivity. A natural 311 

extension of the presented work is therefore an integrated design approach, in which the optimisation 312 

problem is formulated to include both steady and unsteady aerodynamic performance measures and 313 

structural performance measures simultaneously.  314 

 315 
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