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Abstract 

 

Risers are important components of offshore oil extraction facilities as they connect the 

surface structure to a pipeline or well-head on the seabed to transport hydrocarbons 

between the two. Damage incidents in risers may lead to catastrophic economic, 

environmental and human safety consequences. To avoid the disastrous outcomes of such 

incidents, early detection of damage in risers is of paramount importance and vibration-

based structural health monitoring (SHM) is a promising means of achieving this. 

Although vibration-based SHM has been extensively studied for several types of 

structures and systems such as rotating machinery, aerospace structures, bridges and wind 

turbines, its application to risers has hardly been explored to date. In this paper, 

application of vibration-based SHM to a top tensioned riser is investigated. To that end, 

an analytical distributed parameter model is formulated using the Galerkin method and 

dynamic response of the riser to ambient surface wave excitations is obtained at the 

healthy and damaged states. Corrosion damage is considered here as it is the predominant 

cause of damage incidents in risers and it is modelled as cross-sectional area loss at the 

damaged portion of the riser. To represent the wave excitations realistically, energy 

density distribution of the sea states is obtained from the JONSWAP wave spectrum. 

Finally, from the dynamic response of the riser, auto-regressive coefficients and riser 

natural frequencies are identified and their damage sensitivities are compared for a series 

of damage extents. 

 

1. Introduction 
 

Top-tensioned risers (TTRs) are slender pipes which connect an offshore surface structure 

to the seabed and transport products between the two. They operate in a corrosive marine 

environment under significant wave and current environmental loads and hence are 

exposed to several damage mechanisms. In the PARLOC 2001 report [1], damage 

statistics are presented for steel risers operating in the North Sea from 1975 to 2001, and 

corrosion damage is shown to be the predominant cause of past damage incidents. The 

methods used for corrosion inspection in risers, such as visual inspection, ultrasonic 

techniques, acoustic emission and infrared thermography, are reviewed by Lozev et al [2] 

and evaluated as having limited potential due to clean surface and complex equipment 
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requirements, high costs, and their ability to detect only specific types of corrosion 

damage. Moreover, most of these methods can be applied only periodically at 

predetermined time intervals and they are effective only locally and hence require prior 

knowledge of the approximate damage location for an economically and practically viable 

application. Allowing for globally effective and continuous inspection, vibration-based 

structural health monitoring (SHM) methods are promising for detection of corrosion 

damage in risers. However, their potential for risers, and similar systems such as 

pipelines, has hardly been explored to date. 

 

Several studies applied modal parameters-based damage sensitive features (DSFs) to 

vibration-based SHM of risers and pipelines. Zhou et al. [3] used the transfer matrix 

method and obtained mode-shape curvatures of a riser for damage localization. Huang 

and Nagarajaiah [4] proposed application of a time-frequency domain blind identification 

method for identification of modal properties from vortex induced vibrations of a deep-

water riser. As an alternative to modal parameters-based DSFs, several authors fitted 

parametric time series models to dynamic response of risers and utilized these models for 

damage identification. Bao et al. [5] used an auto-regressive moving average (ARMA) 

model for detecting damage in pipelines on the seabed. Similarly, Liu et al. [6] used an 

ARMA model for damage localisation in a TTR subject to white noise excitation at its 

top end in the surge direction. Riveros et al. [7] used a semi-empirical model to predict 

vortex-induced vibration response of a flexible riser and fitted auto-regressive (AR) 

models to detect and localize damage.  

 

Although applications of both modal parameters and time series model based DSFs have 

been investigated for risers, comparison of the two has not been reported in the literature. 

In addition, realistic representation of ambient wave loading has not been addressed in 

simulations of the dynamic response of risers for virtual monitoring data generation. In 

this paper, natural frequencies and AR coefficients are identified from numerically 

simulated dynamic response of a riser to realistic ambient wave excitations and their 

damage sensitivities are compared for a series of damage extents.  

 

In the following sections of the paper, the background theory is outlined for modelling of 

corrosion damage, simulation of dynamic response of the riser to ambient wave 

excitations, and hence generation of virtual monitoring data, and extraction of the natural 

frequencies and the AR coefficients from the response time series. Finally, damage 

sensitivity of the selected AR coefficients and natural frequencies are compared.  

 

2. Theory 
 

2.1 Modelling corrosion damage 

 

Corrosion damage amounts to loss of cross-sectional area or reduced axial stiffness at the 

damaged region, which leads to loss of tension in a TTR as demonstrated in Dunbar et al. 

[8]. The schematics of healthy and damaged risers are given in Figure 1, where the top 

tension value �௧௨ at the undamaged state drops to �௧ௗ at the damaged state due to 

structural axial stiffness change from ��௦௨ to ��௦ௗ  in the damaged region between � =�ଵ and � = �ଶ. Note hereafter the subscripts u and d denote undamaged and damaged 

states, respectively. 
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Figure 1. Schematics of a healthy (left) and a damaged (right) riser. 

The reduced top tension, �௧ௗ, of a TTR due to corrosion damage can be expressed as [8]: 
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and �௢ = � − �௘, in which �௢ and � are the free and tensioned lengths of the riser, 

respectively, and �௘ is the elastic elongation due to the top tension. The effective weights 

per unit length of the riser at the undamaged and damaged regions are �௘௨ and �௘ௗ, 

respectively, and are given as: 
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The symbols �௦, �� and �௘ denote the densities of the structure and the internal and 

external fluids, respectively, and �� and �௘ are the internal and external cross-sectional 

areas, respectively. Since the corrosion damage in risers is predominantly external [2], 

this type of damage is considered here for the damaged states. Therefore, the internal 

cross-sectional area, ��, remains the same for the undamaged and damaged states, 

whereas �௘௨ in the undamaged state drops to �௘ௗ with damage. 
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2.2 Modelling ambient wave excitations 

 

Risers are subject to environmental loads due to waves, currents and vessel motions, 

functional loads, such as internal and external pressure variations, and accidental loads 

due to ship impacts and tensioner failure. In this study, only wave loading is considered 

as the source of ambient excitation due to its persistence and ability to excite the riser 

globally. For a realistic representation of the energy density distribution of sea waves, the 

JONSWAP spectrum is used [9]: 
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where � is spectral density, � is the peak enhancement factor that depends on geographical 

sea location, � is wave radial frequency, �௣ is spectral peak radial frequency, g is 

acceleration due to gravity, and � and �∗are given by:  
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From a given energy density spectrum of the sea waves, it is possible to generate a time 

series wave profile to be used for the time domain dynamic response simulations. 

Dividing the spectrum into n=1…N discrete frequency components, for the nth discrete 

frequency value �௡, the corresponding wave height �௡ can be obtained as [10]: 
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where Δ௙ is the frequency resolution of the spectrum and Sn is the nth spectral value. To 

each discrete frequency, a random phase angle, �௡, distributed uniformly between 0 and 

2rad, is assigned. Finally, at the riser location, the free surface elevation, �, and 

horizontal water particle velocity, u, and acceleration, �̇, are expressed in the time domain 

following linear wave theory with deep water approximation [10]: 
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Having determined the water particle velocities and accelerations from the JONSWAP 

spectrum, the inline hydrodynamic force is calculated from the linearized form of the 

Morison’s equation [11]: 
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where �ௗ is the drag coefficient, �௠ is the inertia coefficient, �௢ is the outer diameter of 

the riser, y is the transverse displacement of the riser, which is in-line with the wave 

direction, and �௨� is the standard deviation of the relative velocity, �௥ = � − � /��. Eq. 

(11) states that the total wave-induced inline force on the riser consists of the drag force, 

inertia force, and added mass force, respectively. 

 

2.3 Simulation of dynamic response of the riser 

 

The partial differential equation of motion for a tubular segment of a TTR for small 

deflections is given by Kirk [12]. The equation can be extended for a damaged riser with 

pinned-pinned boundary conditions as: 
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where the total mass per unit length, m, the flexural rigidity, EI, and the effective weight 

per unit length, �௘, are described as piecewise functions due to presence of a damaged 

segment: 
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Substituting the hydrodynamic wave loading from equation (11) into the equation of 

motion (12) and rearranging the terms, the governing equation of motion can be expressed 

as: 
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where    
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The solution to the partial differential equation of motion (14) is approximated by using 

the Galerkin method. To that end, a solution is assumed in the following form: 
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Substituting the assumed solution in the equation of motion and applying the Galerkin 

method yields a set of N ordinary differential equations as follows: 

 

 Mq + Cq + Kq = Q   (17) 

 

where the mass matrix, �, damping matrix, �, stiffness matrix, �, and excitation vector, �, are given as:    
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Having approximated the partial differential equation of motion as a set of N ordinary 

differential equations, time domain response of the riser to wave excitations was obtained 

in this study using the Newmark-β direct integration method [13].  

 

2.4 Extraction of DSFs from virtual dynamic response of the riser 

 

The time series of the simulated riser response to ambient wave excitations yields the 

virtual monitoring data, which is used for extraction of AR coefficients and natural 

frequencies. The AR model of the response can be expressed as: 

 

        1 1
p

y t a y t a y t p e t       (22) 

 

where ��, � = ͳ,ʹ…� are the AR coefficients, p is the model order and e(t) is the noise 

time series. The unknown AR coefficients are estimated here by using the Burg algorithm 

[14] and the optimal model order is determined using the Akaike information criterion 
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(AIC) [14]. The natural frequencies are identified from the power spectral density of the 

response by locating the dominant peaks in the spectrum, i.e., using the basic peak-

picking approach [15], where the power spectral densities are calculated by using the 

Welch method [16].  

 

3. Results 
 

A series of simulations are performed for a reference structure whose characteristics are 

adapted from [12] and listed in Table 1. The JONSWAP spectrum, shown in Figure 2a, 

is defined with significant wave height �௦ = ͺ.͹ m, peak frequency �௣ = Ͳ.ͷʹ͵͸ rad/s 

and peak enhancement factor � = ͵.͵. In total, a 128,000 s long water surface elevation 

and water particle velocity and acceleration time series is generated from the JONSWAP 

spectrum. Figure 2b shows an example 16,000 s long segment of the wave surface 

elevation time series. 
 

Table 1. Properties of the reference TTR.  

Parameter Value Parameter Value 

Inner diameter, �� [m] 0.374 Density of structure, s[kg/m3] 7840 

Outer diameter, �௢ [m] 0.406 Density of external fluid, �௘ [kg/m3] 1025 

Length, � [m] 500 Density of internal fluid, �� [kg/m3] 920 

Top tension, �௧௨ [kN] 1960 Drag coefficient, �ௗ 0.8 

Elastic modulus, � [GPa] 210 Inertia coefficient, �௠ 0.2 

 

The response to wave excitations is obtained for the healthy state of the riser and for three 

different damage scenarios corresponding to 10, 20 and 30% cross-sectional area loss due 

to corrosion damage, respectively, which are affecting 15% of the riser length. The centre 

point of the damaged region is located at � = �/ͷ. The generated acceleration response 

time series are divided into 8 segments to be used for identification of AR coefficients 

and natural frequencies. The number of comparison functions is selected as 15 for the 

Galerkin method. For the Newmark-β solution, the time step is set to 0.2 s and the 

coefficients are set to � = ͳ/ʹ and � = ͳ/Ͷ, which corresponds to the assumption of 

constant acceleration between time steps. 

 

 
Figure 2. Simulation of wave loading: a) JONSWAP spectrum, and b) sample free surface elevation 

time history. 

(a) 

(b) 
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Figure 3 shows acceleration output power spectral densities of the riser at /10z L  from 

one of eight 16,000 s long samples for the healthy and for the three damage scenarios. 

Note that no artificial ‘measurement’ noise was added to the generated response time 
series. For each acceleration response time series, the natural frequencies are identified 

from the peaks of these acceleration power spectral densities; the resulting mean values 

and standard deviations of the natural frequencies are given in Figure 4. The results show 

that the mean of the first natural frequency varies more significantly with increasing 

damage extent. However, in addition to the change in averages due to damage, a reliable 

comparison requires also corresponding variances to be considered as this gives an 

indication of state separability for noisy DSFs. To that end, the Fisher criterion is used 

here, which can be expressed as follows: 
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2 2

, ,

 
i d i u
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FC i
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where �̅� is the mean of the �th natural frequency, ��ଶ is the corresponding variance and 

subscripts � and � denote, as previously, the undamaged and damaged states, 

respectively. Figure 5 shows the variation of the Fisher criterion with damage extents for 

the first four modes. Note the results were scaled such that the largest Fisher criterion is 

one. It follows from the figure that  second natural frequency reaches the maximum Fisher 

criterion for 30% cross-sectional area loss due to damage and overall gives the highest 

Fisher criterion amongst all damage cases. Therefore, the second natural frequency is the 

most sensitive one within the first four natural frequencies for the selected damage 

location. 

 

For AR modelling of the acceleration response time series, first the AR model order is 

determined using the AIC. Variation of the AIC with AR model order is given in Figure 

6, which indicates that an AR model order 12 is appropriate for a satisfactory fit without 

using an excessively high number of terms.  

 

 
Figure 3. Power spectral density of the acceleration response in the neighbourhood of first four 

natural frequencies in healthy and damaged states. 
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Figure 4. Damage sensitivity of natural frequencies. 

 
Figure 5. Variation of the Fisher criterion of the first four natural frequencies with damage extent. 

 
Figure 6. Variation of AIC with model order. 

The sensitivity analysis performed for the AR coefficients is similar to the one applied 

for the natural frequencies. The mean values and corresponding standard deviations of 

AR coefficients are shown in Figure 7 for the selected damage scenarios. The Fisher 

criterion values for the AR coefficients are given in Figure 8, where the results are again 

divided by the overall maximum value. The comparison of the Fisher criteria indicates 

that the AR coefficient �9 is the one most sensitive to damage. 
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Having selected features with the highest damage sensitivity (i.e. AR coefficient �9 and 

the natural frequency �ଶ), a comparison can now be made between the AR coefficients 

and natural frequencies as DSFs. Figure 9 shows that for the selected damage location 

and extents, the AR coefficient, �9 is more sensitive to damage compared to the second 

natural frequency, �ଶ since it yields greater Fisher criterion values at all damage states. 

 
Figure 7. Damage sensitivity of AR coefficients. 

 
Figure 8. Variation of Fisher’s criterion of AR coefficients with damage extents.  

 
Figure 9. Comparison of variation of Fisher’s criterion with damage extents for second natural 

frequency �� and AR coefficient ��. 
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4. Conclusions 
 

In this paper, damage sensitivities of natural frequencies and AR coefficients were 

compared for vibration-based SHM of a TTR. Dynamic response of the riser to ambient 

wave excitations was simulated for a fixed damage location and a series of damage 

extents. The natural frequencies and the AR coefficients were identified from the resulting 

virtual monitoring data. The most sensitive natural frequency and the AR coefficient were 

selected from amongst the first four natural frequencies and 12 AR coefficients. The 

selected AR coefficient was shown to be more sensitive to damage compared to the 

selected natural frequency. However, sensitivity comparison of AR coefficients and 

natural frequencies might yield different results when damage location is changed, or 

results are influenced by measurement noise. Therefore, future work is aimed at 

addressing the influence of varying damage locations and noise levels on sensitivities of 

natural frequencies and AR coefficients, which will be supported through a series of 

laboratory wave flume experiments.  
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