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Highlights: 30 

• Chemical dispersant increased the mobility of hydrocarbons through permeable sands. 31 

• Chemical dispersant enhanced entrainment of oil below manufacturer recommended 32 

dosing. 33 

• Chemical dispersant selectively entrained hydrocarbons based on their solubility in 34 

water. 35 

Abstract: 36 

Accidental releases of oil to the marine environment can reach sensitive shorelines resulting in 37 

a wide range of environmental impacts. Chemical dispersant is a response tool employed to 38 

minimise damage to coastal ecosystems by facilitating dispersal of oil slicks before they reach 39 

shores. However, chemical dispersants may increase entrainment of hydrocarbons into coastal 40 

sediments following an oil spill, resulting in higher hydrocarbon residence times in sediments. 41 

Here, the effect of dispersant concentration on the entrainment capability of hydrocarbons in 42 

permeable coastal sands from North East Scotland (United Kingdom) was evaluated. 43 

Hydrocarbon entrainment into sands was facilitated by dispersant application at concentrations 44 

below manufacturer-recommended dosage. Percolation of water-soluble hydrocarbons beyond 45 

10 cm deep was not affected by chemical dispersant application and water-insoluble 46 

component concentrations increased with dispersant concentration. Results highlighted that the 47 

application of dispersant readily mobilised less water-soluble hydrocarbons through coastal 48 

sands but did not affect pore-water transport of more water-soluble hydrocarbons. 49 

Keywords: oil, transport, percolation, sediment, dispersant 50 

1 Introduction 51 

Accidental oil releases to the marine environment result in a wide variety of environmental 52 

impacts. These are partly determined by the extent to which the oil evaporates, disperses and 53 

biodegrades in the water column, settles on the seabed and reaches shores, among other fates 54 

(Bandara et al., 2011; Davies and Tibbetts, 1987; Ramseur, 2010). Documented accidents such 55 

as the Deepwater Horizon (DwH), Prestige and Exxon Valdez oil spills resulted in extensive 56 

mailto:hwhite@haverford.edu
https://www.haverford.edu/users/hwhite


3 

coastal oiling and subsequent environmental impacts which are detectable to this day (Beyer 57 

et al., 2016; Levine et al., 2017; Payne et al., 2008). 58 

Chemical dispersants were widely used during DwH response operations in an attempt to 59 

mitigate its environmental impacts, with 5.3 million litres of dispersant applied at the sea 60 

surface and 2.9 million litres at the wellhead (~1500 m deep). Dispersant use remains 61 

controversial but has been shown to be beneficial under specific circumstances (Prince 2015). 62 

The aim of dispersant application is to disperse insoluble and persistent hydrocarbons by 63 

dispersing and dissolving oil as small droplets to increase their surface area with the end goal 64 

of accelerating physical, chemical and biological oil degradation (Fingas, 2002). Additionally, 65 

dispersant was applied at the wellhead during DwH to facilitate the removal of volatile 66 

hydrocarbons from surfacing oil and reduce the risks of uncontrolled ignition of volatile 67 

hydrocarbons on surface waters and inhalation by oil spill responders (International 68 

Association of Oil & Gas Producers, 2015). Dispersant increases oil bioavailability by 69 

increasing its accessible surface area and enabling microbes to access and utilise oil faster 70 

(Hazen et al., 2010). However, by increasing oil bioavailability, dispersant also facilitates the 71 

uptake of hydrocarbons by fauna such as filter feeders, marine mammals, seabirds and 72 

commercially harvested fish, and can thus result in negative effects for both the marine 73 

environment and reach humans through accumulation in the food chain (Beyer et al., 2016). 74 

Moreover, dispersants have been found to be toxic to marine organisms and be more persistent 75 

than previously thought (White et al., 2012). 76 

Dispersed oil, whether mechanically or chemically dispersed, that reaches shorelines can be 77 

entrained into sediments where it can persist for decades and act as a reservoir from which 78 

contaminants can enter the food chain (Payne et al., 2008). If polyaromatic hydrocarbons 79 

(PAHs, hereafter) reach anoxic sediments biodegradation may be limited and consequently 80 

higher PAH half-life in sediments could be expected (Widdel et al., 2010). Whilst the mobility 81 

of PAHs is especially relevant due to their carcinogenicity and persistence, entrainment of 82 

hydrocarbons from other fractions (such as aliphatics and Benzene, Toluene, Ethyl benzene 83 

and Xylene, BTEX hereafter) is relevant as these have been shown to induce an environmental 84 

response, particularly in microbial communities (Phelps and Young, 1999). BTEX components 85 

are far more water-soluble than PAHs, potentially being carried into permeable sediments more 86 

readily. 87 
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Oil contact with sediments is particularly undesirable because of the well-known 88 

environmental impacts it causes, the difficulty involved in restoring habitats and the damage 89 

to the reputation of the responsible party (Beyer et al., 2016; Zuijdgeest and Huettel, 2012). 90 

Consequently, understanding the potential entrainment of spilled oil into sediments in coastal 91 

environments is relevant. During DwH, the shorelines of Louisiana and other southern states 92 

of the United States were severely affected by beached oil (Nixon et al., 2016). Zuijdgeest and 93 

Huettel (2012) assessed the entrainment potential of mechanically and chemically dispersed 94 

MC525 oil (using Corexit 9500A) and found that mobility of Total Petroleum Hydrocarbons 95 

(TPH, hereafter) and PAHs was increased when a 1:100 Corexit 9500A to oil ratio was applied 96 

due to Corexit increasing the solubility of hydrocarbons. 97 

Over 70% of the seabed of the North Sea is characterised as fine sand (Paramor et al., 2009). 98 

Sandy seabeds are highly permeable and therefore facilitate pore-water flushing. Permeable 99 

continental shelf sediments contribute significantly to benthic biogeochemical cycling and 100 

primary production (Huettel et al., 2014). This highlights the importance of understanding the 101 

capability of hydrocarbons to entrain permeable sediments, which may affect upstream 102 

ecological processes should a large-scale oil spill take place. 103 

The aims of this work were to evaluate the potential of spilled hydrocarbons to be entrained 104 

into permeable sands and the effect of concentration of a commercially available dispersant 105 

stockpiled in the United Kingdom (Superdispersant-25, SD25 hereafter) on this process using 106 

Schiehallion crude oil and a synthetic oil (model oil, hereafter). A synthetic oil was used as it 107 

gives a good intermediate between a single hydrocarbon and a crude oil. Additionally, the use 108 

of a synthetic oil enabled a constant mixture that could be replicated and compared between 109 

experiments. A further objective was to elucidate if SD25 selectively mobilised components of 110 

different fractions of hydrocarbons at increasing SD25 concentration. The hypotheses of this 111 

study were: (1) The effects of SD25 on hydrocarbon entrainment into sediments would be 112 

observable from below manufacturer recommended application doses, (2) increasing SD25 113 

concentration would increase the entrainment of hydrocarbons and would be less effective in 114 

facilitating entrainment of the more soluble components of the model oil (such as BTEX and 115 

naphthalene) and (3) Oils would readily entrain permeable sands and may do so to different 116 

extents due to the difference in composition of the Schiehallion crude and model oils. 117 

  118 
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2 Materials and methods 119 

2.1 Study site 120 

The present study was conducted using intertidal sandy sediment collected at the mouth of the 121 

Ythan estuary (57°18'25.2"N 1°59'13.2"W), which is located 10 km to the north of Aberdeen, 122 

North East Scotland (United Kingdom, Figure 1). 123 

 124 

Figure 1. Location of sampling station (purple pin), Ythan estuary, North East Scotland, United 125 
Kingdom. 126 

The estuary’s intertidal area has been estimated at 1.85 km2, with a tidal flushing time between 127 

<14 hours (Balls, 1994) and 5–12 days (Leach, 1971). The sampling location chosen for this 128 

study was at the front-face of the beach. Samples were collected on December 2015 using 129 

acrylic cores (internal diameter = 3.6 cm, length = 30 cm) (small cores, hereafter) for sediment 130 

analysis and percolation experiments. Further samples were collected using larger cores 131 

(internal diameter = 10 cm, length = 30 cm) (large cores, hereafter) to measure permeability. 132 
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Seawater was collected from the site and UV-filtered (0.5 µm filter). Salient salinity and pH of 133 

water used were 35 and 7.5, respectively. The Ythan estuary has been chosen as the study site 134 

for this work due to its proximity to oil and gas offshore installations in the North Sea. These 135 

sands are representative of Scottish intertidal sands. Moreover, the Ythan Estuary is classified 136 

as a Special Protection Area under Article 4.1 of the Birds Directive (79/409/EEC, code: 137 

UK9002221, Natura 2000 network), highlighting the importance of understanding the 138 

implications of oil beaching in this region. 139 

2.2 Sediment characterisation 140 

All analyses detailed below were conducted on three replicate cores each, which were sectioned 141 

into four 2.5 cm sections (i.e. 0–2.5, 2.5–5, 5–7.5 and 7.5–10 cm). Each section was 142 

homogenised and subsamples subsequently oven dried at 60°C for three days and mechanically 143 

milled to ensure uniform grain size. Total carbon content (TC) was determined using an 144 

NA2500 elemental analyser (Carlo Erba Instruments). Total organic carbon content (TOC) was 145 

determined by acidification of sediment samples with 10% HCl acid, overnight drying at 60°C 146 

and subsequent carbon content quantification. Total inorganic carbon (TIC) content was 147 

determined as the difference between TC and TOC. 148 

For analysis of grain size distribution, a separate set of subsamples was dried overnight at 149 

105°C and subsequently sieved through decreasing mesh sizes (diameter = 2000, 1000, 500, 150 

250, 125 and 63 µm). Statistical analyses for the particle size distribution were performed using 151 

Gradistat v.8 (Blott and Pye, 2001). 152 

Saturated hydraulic conductivity (Ks) was measured using a UMS KSat benchtop saturated 153 

hydraulic conductivity instrument using the falling head method (Head, 1982). Three large 154 

cores were divided into two sections of depth ranges 0–5 cm, and 5–10 cm. Sectioned sediment 155 

samples were saturated with degassed, deionised water prior to recording of the Ks value to 156 

ensure no air bubbles were retained within the sediment, which might otherwise distort the 157 

measurement. Triplicate measurements were taken for each sample to ensure representative Ks 158 

values. Permeability (k) was derived from Ks by the equation: 159 

𝑘𝑘 =
𝐾𝐾s 𝑚𝑚
𝜌𝜌 𝑔𝑔

 160 

Where ρ and m are the water density (g cm-3) and viscosity (g cm-1 s-1), respectively, and g is 161 

gravity (9.81 m s-2). 162 
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2.3 Critical Micelle Concentration of Superdispersant-25 163 

The apparent critical micelle concentration (CMC) of SD25 was measured following a similar 164 

approach to that used by Gong et al. (2014). Briefly, three stock solutions of SD25 in seawater 165 

were prepared (327 ± 1 mg l-1) and these were diluted with several volumes of seawater and 166 

were measured for surface tension using a tensiometer (Attension, Sigma 700) fitted with a Du 167 

Noüy ring (triplicate measurements for each sample). Surface tension was then plotted against 168 

logSD25 concentration (mg l-1). A value of zero was allocated to log(SD25 concentration=0) 169 

(mg l-1) for the purposes of establishing the apparent CMC. Thereafter, the change in gradient 170 

was used as a boundary to calculate two linear regressions and establish their intersection point 171 

which was inferred to be the CMC (Gong et al., 2014). 172 

2.4 Oils used in percolation experiments 173 

A North Sea crude oil (Schiehallion) and a model oil were used in this investigation. The SARA 174 

analysis of the Schiehallion crude oil was undertaken externally (Intertek, ITS Testing 175 

Services, United Kingdom) and the mass percentage of the four fractions was found to be: 176 

saturates 51.33%, aromatics 32.20%, resins 14.87% and asphaltenes 1.5%. C10–30 were the most 177 

abundant hydrocarbon chain-lengths in the Schiehallion crude oil (Supplementary Figure 1). 178 

The model oil was composed of 21 hydrocarbons including BTEX, aliphatic, PAH and resin 179 

fractions (Ferguson et al., 2017). The model oil was based on the Schiehallion crude oil to 180 

enable a comparison to the crude and analyse the fate of all its components individually. The 181 

model oil contained hydrocarbons larger than C8 because these are more readily deposited on 182 

the seabed. Details of the percentage composition by component and fraction can be found in 183 

Table 1. 184 

  185 
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Table 1. Synthetic oil composition and selected properties of its components. Octanol-water coefficients 186 
were obtained from literature: (a) Sangster et al. (1989), (b) Mackay et al. (2006), (c) ChemSpider 187 
website, (d) Sigma Aldrich website. 188 

Hydrocarbon Hydrocarbon 
class 

Molecular 
weight 

(g mol-1) 

Octanol-
water 

coefficient 
(log KOW) 

Percentage 
composition 

Sonication 
extraction 

efficiency (%) 

Liquid-liquid 
extraction 

efficiency (%) 

Ethyl-Benzene BTEX 
(18.0%) 

106.165 3.15b 6.1 97.4 ± 0.1 88.5 ± 7.3 
m-Xylene 106.165 3.20b 6.0 97.9 ± 0.1 88.7 ± 7.2 
o-Xylene 106.165 3.12b 5.9 99.3 ± 0.7 89.5 ± 7.0 
Decane 

Aliphatics 
(58%) 

142.282 6.25a 9.0 99.1 ± 0.0 89.2 ± 7.0 
1-Decene 140.266 4.70b 9.1 98.2 ± 0.6 88.7 ± 7.2 
Dodecane 170.334 6.80 ± 1.00a 9.0 99.9 ± 0.0 89.4 ± 7.1 
Tetradecane 198.388 8.00a 9.2 100.3 ± 0.1 88.7 ± 6.9 
Pentadecane 212.415 7.50b 6.2 101.0 ± 0.2 89.0 ± 7.0 
Hexadecane 226.441 8.00b 8.8 101.2 ± 0.2 88.3 ± 6.8 
Heptadecane 240.468 8.50b 1.5 101.1 ± 0.0 88.7 ± 7.1 
1-Octadecene 252.478 9.81c 1.4 101.2 ± 0.7 88.0 ± 6.9 
Eicosane 282.547 10.0b 1.6 101.6 ± 0.5 87.5 ± 7.2 
Docosane 310.601 12.44c 1.4 101.8 ± 0.4 88.1 ± 7.0 
Tetracosane 338.654 12.0b 1.5 102.4 ± 0.2 87.8 ± 7.8 
Naphthalene 

PAHs 
(18.2%) 

128.171 3.43b 5.4 99.9 ± 0.7 89.3 ± 6.9 
Fluorene 166.219 4.18a 3.1 101.1 ± 0.4 89.3 ± 6.2 
Phenanthrene 178.229 4.52a 3.0 100.4 ± 1.3 89.2 ± 6.0 
Anthracene 178.229 4.50a 0.7 84.9 ± 4.0 86.9 ± 6.4 
Fluoranthene 202.251 5.20a 3.1 101.7 ± 1.0 89.7 ± 6.4 
Pyrene 202.201 5.17c 3.0 101.8 ± 1.1 89.6 ± 6.5 

Dibenzothiophene Resin 
(4.9%) 184.257 4.38a 4.9 101.0 ± 1.7 89.2 ± 6.4 

 189 

2.5 Percolation experimental set-up 190 

Solutions of SD25 in seawater were prepared by adding SD25 to seawater in one-litre 191 

volumetric flasks. Thereafter, SD25-seawater solutions were magnetically stirred at room 192 

temperature for 24 h to allow equilibration of SD25 in seawater. Immediately before 193 

percolations were performed, 100 ml of each solution was spiked with 1 g of oil and sonicated 194 

(45 kHz) in a USC-TH Ultrasonic bath (VWR) for 3 min to produce a proxy oil in water mixture 195 

to emulate the consequences of mechanical mixing of oil and water by waves and tides. The 196 

percolation experiment was based on a short column experiment by Zuijdgeest & Huettel 197 

(2012) with some modifications (Figure 2). 198 
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 199 

Figure 2. Percolation experiment setup. 200 

Samples were extruded from the small cores used for collection and transferred to Pyrex cores 201 

of the same dimensions. Care was taken to avoid alteration to the sedimentary structure. The 202 

cores were then fitted with a gauze-lined stopcock to prevent blockage by sand. Sediment in 203 

cores was then saturated with uncontaminated seawater, after which mixtures of oil and SD25 204 

at various concentrations (Table 2) were added to the cores avoiding sediment resuspension. 205 

The highest concentration (333.3 mg l-1) corresponds to the lower boundary of the 206 

manufacturer’s recommendations (1:30 dispersant to oil ratio). Immediately after the addition 207 

of the mixtures, the stopcock was opened to allow percolation of the mixtures through the sand 208 

until the water level reached the sediment surface. Washout water was collected and a further 209 

100 ml of non-contaminated water were percolated through the cores using the same method. 210 

The combined washout oil-dispersant-seawater solution was collected in separating funnels 211 

and hydrocarbons were extracted within minutes. Sediment was then extruded and sectioned 212 

by depths (0.0–1.0, 1.0–3.0, 3.0–5.0, 5.0–7.5, 7.5–10.0 cm) for hydrocarbon extraction and 213 

analysis. The use of natural, undisturbed sediments was decided following preliminary 214 

experiments where mixed sand from the upper 10 cm were carried out and showed that mixing 215 

(homogenising) sand resulted in enhanced entrainment and therefore overestimated 216 

entrainment in Ythan estuary sands (Supplementary Figure 2). 217 
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Table 2. Superdispersant-25 (SD25) concentrations applied to the oils used. 218 

Oil type SD25 concentration (mg l-1) 
Control 0 - - - - - 

Schiehallion crude oil 0 - - - - 333.3 
Synthetic oil 0 9.8 21.1 42.0 150 333.3 

 219 

2.6 Hydrocarbon extraction and analysis 220 

Hydrocarbon extractions from sediment were performed by sonicating each sediment section 221 

in 50 ml of dichloromethane for 10 min for model oil-contaminated samples. The procedure 222 

was performed in triplicate for the Schiehallion crude oil-contaminated sediment extractions. 223 

Extractions from washout water were performed by liquid-liquid extraction with 3 × 25 ml 224 

dichloromethane for both oil type-contaminated sediments. Hydrocarbons were quantified 225 

against external standards containing known concentrations of the model oil components. 226 

Hydrocarbon recovery efficiencies for each component can be found in Table 1. Schiehallion 227 

crude oil extractions were subsequently rotary-evaporated at 40°C until all dichloromethane 228 

had evaporated. Model oil extracts were analysed by gas chromatography (GC, hereafter) with 229 

flame ionizing detection using a previously described system (Ferguson et al., 2017). When no 230 

hydrocarbons were detected by GC, extracts were further concentrated by rotary evaporating 231 

to 10 ml and reinjected into the GC. Schiehallion crude oil was analysed gravimetrically as 232 

TPH. 233 

Calibration curves (6-point) were determined for each compound of the model oil. Laboratory 234 

control samples were analysed to establish the effect of the sediment matrix and extraction 235 

procedure on the recovery of model oil compounds. Toluene was added (1 µl ml-1) as an 236 

internal standard to correct for injection error in the GC analysis. The limits of detection (LOD) 237 

and quantification (LOQ) were defined as chromatographic signal to noise ratios (S:N) of 3 238 

and 10, respectively. When chromatographic peaks had a S:N between the LOD and LOQ were 239 

assigned a value of LOQ/2. 240 

2.7 Chemicals 241 

All model oil components (Table 1), toluene (99.8%), dichloromethane (99.8%) and hydrogen 242 

peroxide (30%) were purchased from Sigma Aldrich. SD25 was purchased from Oil Technics 243 

(Aberdeenshire). Sodium hexametaphosphate (technical grade) was purchased from Alfa 244 

Aesar. 245 
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2.8 Calculations and statistical modelling 246 

To establish valid comparisons across SD25 treatments, hydrocarbon concentrations in 247 

sediment were normalised to the total mass of hydrocarbon accounted for in all sediment layers 248 

and washout as follows: 249 

𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘 =

𝑚𝑚𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑡𝑡𝑖𝑖,𝑘𝑘
𝑠𝑠𝑗𝑗,𝑘𝑘

 250 

Where Ci,j,k is the normalised concentration in sediment of hydrocarbon i in section j in core k, 251 

mi,j,k is the mass of hydrocarbon i in section j in core k, ti,k is the total mass of hydrocarbon i in 252 

all sediment layers and washout of core k and sj,k is the mass of sediment in section j in core k. 253 

Washout hydrocarbon mass was normalised to total hydrocarbon mass in sediment and 254 

washout mixture as follows: 255 

𝑊𝑊𝑖𝑖,𝑘𝑘 =
𝑚𝑚𝑖𝑖,𝑘𝑘

𝑡𝑡𝑖𝑖,𝑘𝑘
 256 

Where Wi,k is the normalised mass of hydrocarbon i in the washout of core k and mi,k is the 257 

mass of hydrocarbon i in the washout mixture of core k. Depth and SD25 were expected to 258 

have non-linear effects and interactive effects on C. Therefore, a generalised additive mixed 259 

effects model (GAMM) was therefore fitted to the data including, for each individual 260 

hydrocarbon, a bivariate tensor product smooth of depth and SD25 (Wood, 2006). Core identity 261 

(k) and Hydrocarbon identity (i) were specified as crossed random intercepts which allowed 262 

for variation in average 𝐶𝐶 between cores and between model oil components. A lag-1 263 

continuous autoregressive residual correlation term was included in the model to account for 264 

the lack of independence between depth segments due to the movement of hydrocarbon from 265 

the surface of the sediment to the segments underneath, such that C at one depth segment was 266 

allowed to depend on C of the same hydrocarbon at the depth segment directly above it. Due 267 

to the much higher concentration of hydrocarbons in the 0–1 cm layer compared to the rest of 268 

the sediment column (89.5 ± 6.8%), the data from this layer was omitted from the GAMM. The 269 

response variable C was square root transformed prior to fitting the model to improve 270 

homoscedasticity of residuals, and a Gaussian distribution was assumed for the data. The model 271 

formula was: 272 

𝐶𝐶~𝑡𝑡𝑡𝑡(𝑧𝑧, SD25, by = i)  273 
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Where C is normalised hydrocarbon concentration, te represents tensor product smooths, z is 274 

the sediment depth (cm), SD25 is SD25 concentration (mg l-1), by estimates a separate smoother 275 

for each hydrocarbon i. Assessment of Wi as a function of SD25 concentration was modelled 276 

using locally weighted regression where Wi was the response variable and SD25 concentration 277 

was the explanatory variable. The model fits a polynomial surface determined by SD25 278 

concentration as a predictor using local polynomial regression fitting (Cleveland et al., 1992). 279 

Wi and SD25 concentration were log-scaled for ease of visualisation. For comparisons between 280 

Schiehallion and model oil, TPH mass percentages retained at each sediment depth and 281 

washout a locally weighed regression was also used where mass percentage was the response 282 

variable and depth was the explanatory variable. Models were developed for SD25 283 

concentration = 0 and 333.3 mg l-1 separately, and mass percentage was log-scaled for ease of 284 

visualisation. Where pair-wise comparisons were carried out, two-way ANOVAs are used to 285 

establish if SD25 application and oil type showed significant effects. All statistical analyses 286 

were carried out using the statistical software R (R Development Core Team, 2017) and the 287 

libraries ggplot2 (for the locally weighed regression analysis) and mgcv (for the GAMM 288 

analysis) (Wickham, 2009; Wood, 2011). 289 

  290 
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3 Results 291 

3.1 Sediment properties and SD25 characterisation 292 

The sediments analysed were classified as sands and were found to be highly permeable (Table 293 

3). The intersection of linear response of surface tension to SD25 concentration, the apparent 294 

CMC of SD25 in seawater, as 21.1 mg l-1 (Figure 3). 295 

Table 2. Ythan intertidal sediment characteristic. Permeability was measured at larger depth intervals 296 
than the other properties shown due to the size requirement of the instrument used. Errors represent 297 
standard deviation (n = 3). D50, TC, TIC and TOC refer to mass-median-diameter, total carbon, total 298 
inorganic carbon and total organic carbon, respectively. 299 

 Sediment size and sorting Carbon content Permeability 
Depth 
(cm) 

D50 
(µm) Sorting TC (%) TIC (%) TOC 

(%) 
Depth 
(cm) 

Permeability 
(m2) 

0.0–2.5 299.1 ± 
11.4 

Moderately Well 
Sorted Medium Sand 

0.072 ± 
0.024 

0.043 ± 
0.028 

0.029 ± 
0.006 0.0–5.0 4.04 × 10-11 ± 

2.25 × 10-12 
2.5–5.0 309.8 ± 

6.6 
Moderately Well 

Sorted Medium Sand 
0.052 ± 
0.045 

0.038 ± 
0.033 

0.014 ± 
0.012 

5.0–7.5 334.5 ± 
20.3 

Moderately Well 
Sorted Medium Sand 

0.086 ± 
0.012 

0.061 ± 
0.018 

0.026 ± 
0.006 

5.0–10 4.54 × 10-11 ± 
4.99 × 10-12 7.5–10 328.7 ± 

5.3 

Slightly Very Fine 
Gravelly Medium 

Sand 

0.038 ± 
0.010 

0.019 ± 
0.008 

0.019 ± 
0.005 

 300 
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 301 

Figure 3. Surface tension of Ythan seawater as a function of Superdispersant-25 (SD25) concentration 302 
to establish the apparent critical micelle concentration of SD25. Crosses and circles denote the 303 
separation of the dataset to calculate linear regressions (solid and dotted lines, respectively) from the 304 
change of slope and their intersection (vertical dashed line). 305 

3.2 Model oil – Schiehallion crude oil comparison 306 

The proportion of TPH retained in the top layer (0–1 cm) for model oil was significantly higher 307 

than that of Schiehallion crude oil aggregating treatments of both oil, and oil and dispersant 308 

treatments (89.5 ± 6.8% and 72.4 ± 16.9%, respectively, p-value = 0.04). Dispersant 309 

recommended dosage reduced the percentage to TPH retained in the top layer for model oil 310 

(95.1 ± 2.4% to 83.9 ± 4.1%, p = 0.01) but not for crude oil (79.9 ± 17.0% to 64.9 ± 16.1%, p 311 

= 0.33). Mass percentage decreased exponentially with depth for both oils and treatments. 312 

Locally weighed regressions revealed a clear increase in mass percentage as depth increased 313 

for model oil but not for crude oil when SD25 was applied at recommended dosage (Figure 4) 314 

SD25 did not have a consistent effect on the mass percentage of Schiehallion crude oil retained 315 

at any sediment layer but did increase the percentage of oil in the washout (3.7 ± 5.7% and 0% 316 

when SD25 was not applied).317 
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 318 

Figure 4. Total hydrocarbon mass percentage as a function of depth by treatment. Oils used were crude oil (left) and model oil (right) and treatments were oil 319 
only (red dots) and oil and 333.3 mg l-1 Superdispersant-25 (blue dots). Oil (red) and Oil and dispersant (blue) treatment lines bands represent locally-weighed 320 
regression values and associated standard errors, respectively. Note mass percentage has been log(x+1)-scaled.321 
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3.3 Hydrocarbon entrainment into the top 10 cm of sediment 322 

The GAMM results indicate that the application of SD25 increased the normalised 323 

concentration of all hydrocarbons with depth, even at SD25 concentration below the 324 

recommended dosing (Figure 5, Supplementary Figure 3, Supplementary Table 1). Overall, the 325 

application of SD25 increased the amount of oil entrained into these sands. The effect of SD25 326 

was similar for most hydrocarbons in the top 4 cm. However, differences in the effect of SD25 327 

on the entrainment of hydrocarbons became apparent at depths greater than 4 cm. C10–12 328 

aliphatics showed a linear increase in entrainment with increasing SD25 concentration as in 329 

the surface layers. The remaining hydrocarbons showed increased entrainment into these sands 330 

at SD25 concentration above 42 mg l-1. 1-Octadecene showed an unexpected response 331 

compared to equivalent length aliphatics (C17 and C19) with no effect of SD25 concentration 332 

on entrainment over 5 cm deep. Dibenzothiophene, the only resin in the model oil, showed 333 

enhanced entrainment in sediments from low SD25 concentration. Interestingly, entrainment 334 

of dibenzothiophene did not increase with dispersant concentration in the range 150–333 mg 335 

SD25 l-1 at depths greater than 7 cm.336 
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 337 

Figure 4. Generalised additive mixed effects models of hydrocarbon concentration in Ythan intertidal sands following percolation with increasing 338 
Superdispersant-25 concentrations from sediment depths of 1 to 10 cm. Note hydrocarbon concentrations have been normalised and square-rooted.339 



18 

3.4 Hydrocarbon entrainment beyond 10 cm of sediment 340 

Wi in the washout varied by component and SD25 concentration (Figure 6). For C10–14 341 

aliphatics, the influence of SD25 concentration on Wi was unclear. WPentadecane (C15) was 342 

increased at 42 mg SD25 l-1 but higher concentrations did not result in further increases of 343 

WPentadecane. WHexadecane (C16) increased with SD25 concentration. Heptadecane (C17) and 344 

tetracosane (C24) showed a higher Wi at and above 21.1 mg SD25 l-1. Interestingly, SD25 345 

application did not affect W1-Octadecene (C18) but affected C20 and C22 aliphatics which only 346 

increased at SD25 concentration >150 mg l-1. For the more soluble components of the model 347 

oil such as BTEX and naphthalene, no clear effect of SD25 concentration was observed, with 348 

Wi fluctuating as SD25 concentration increased. The response of fluorene to SD25 349 

concentration was similar to that of C10–15 aliphatics, but with only a slight increase of WFluorene 350 

at SD25 concentration above 21.1 mg l-1. Larger PAHs showed increased Wi from 42 mg SD25 351 

l-1 except anthracene which only showed increased WAnthracene at 333.3 mg SD25 l-1, possibly 352 

as a result of its lower percentage composition of the model oil. Dibenzothiophene, showed a 353 

steady increase in WDibenzthiophene with SD25 concentration. 354 
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 355 

Figure 5. Normalised hydrocarbon mass in washout mixtures (W) as a function of Superdispersant-25 concentration. Points represent raw data and lines with 356 
grey bands represent locally-weighed regression values and associated standard errors, respectively. Note W and Superdispersant-25 concentration were 357 
log(x+10-4) and log(x+1)-scaled, respectively.358 
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4 Discussion 359 

4.1 Key findings 360 

SD25 application enhanced the mobility of hydrocarbons of the model oil through the top 10 361 

cm of sediment and increased the Wi of leached hydrocarbons. The effect was most pronounced 362 

at and above 150 mg l-1 (half of the recommended dosage in terms of SD25:oil ratio) (Figures 363 

5 and 6). The effect of SD25 application on Wi varied with hydrocarbon type, with BTEX and 364 

naphthalene being unaffected and the remaining components showing different degrees of 365 

response (Figure 6). Overall, the recommended dosing of SD25 (1:30 SD25:oil ratio, 333.3 mg 366 

SD25 l-1) increased the Wi of most hydrocarbons. Crude and model oil concentrations followed 367 

an exponentially decaying trend with depth in the percentage of mass of TPHs retained in the 368 

sediment. SD25 application resulted in increased mobility of model oil through sediments but 369 

not in the relative amount of oil in the washout. In contrast, SD25 application resulted in an 370 

increase (from zero) in the percentage of crude oil present in the washout. 371 

4.2 Sediment properties and Superdispersant-25 CMC 372 

The sands used in this experiment were highly permeable (4 × 10-11 m2, Table 3) and values 373 

were in agreement with prior characterisation of the estuary’s sands (Zetsche et al., 2011). High 374 

permeability in the top 10 cm results in advective pore-water fluxes being the dominant 375 

transport mechanism of solutes (Huettel et al., 2014). Consequently, oil deposition on these 376 

permeable sands may result in significant hydrocarbon entrainment after an oil spill. This was 377 

evidenced here, where oil entrained the permeable sands beyond 10 cm deep (Figure 6) and is 378 

undesirable because sediment-entrained oil can persist for years (Lindeberg et al., 2017). 379 

The apparent CMC of SD25 was calculated to be 21.1 mg l-1 (Figure 3), which is close to that 380 

reported for Corexit EC9500A (22.5 mg l-1), a dispersant widely used during DwH (Gong et 381 

al. 2014), suggesting that the surfactant effect of the dispersants may be similar. The relevance 382 

of the CMC has been subject to extensive study within remediation and oil spill science in 383 

recent years. The desired effects of dispersant are frequently found above the CMC (Ahn et al., 384 

2010; Gong et al., 2014; Zhao et al., 2015). Here, a similar response for SD25 was found for 385 

heptadecane and tetracosane leading to increased percolation over 10 cm at SD25 concentration 386 

= CMC (Figure 6). It has been shown that different commercial dispersants can have different 387 

effectiveness on spilt oil deposition. For example, Corexit dispersants accelerate settling of oil-388 

mineral aggregates more effectively than SPC1000 (Cai et al., 2017). Furthermore, Corexit 389 
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dispersants promote photodegradation whereas SPC1000 inhibits it (Fu et al., 2016). It is 390 

therefore important to establish the effects of dispersants such as SD25, which are stored to 391 

respond to potential oil spills across the world, to adequately assess the implications of their 392 

use and subsequent consequences. 393 

4.3 Model oil – Crude oil comparison 394 

SD25 application resulted in increased mobility of model oil components but the effect on 395 

Schiehallion crude oil was less consistent (Figure 4) This may have been due to the greater 396 

complexity of crude oil composition (1000s of components) compared to that of the model oil 397 

(21 components), which showed a distinct exponentially decreasing percentage retained at 398 

increasing sediment depth. Additionally, the method used to establish TPHs for the 399 

Schiehallion crude oil may be less robust than that used for the model oil (gravimetry vs. gas 400 

chromatography, respectively). However, the use of a simpler oil (i.e. a model oil) facilitated 401 

the interpretation of oil-dispersant interaction mechanisms in seawater and highlighted the need 402 

for further research to understand the behaviour of multi-component mixtures in a multi-media 403 

system such as the oil-dispersant-seawater-sediment system analysed in this work. 404 

4.4 Hydrocarbon entrainment into the top 10 cm of sand 405 

SD25 application had distinct effects on the mobility of hydrocarbons through permeable sands 406 

(Figure 5). SD25 concentration below 42 mg SD25 l-1 had a relatively low impact on the 407 

mobility of most hydrocarbons in the top 10 cm. The effect was most apparent at high SD25 408 

concentration, indicating that SD25 concentration >150 mg l-1 may be necessary for 409 

hydrocarbons to readily entrain into these sands. C10–12 entrainment showed a linear increase 410 

with SD25 concentration (Figure 5). These components are of limited concern as they are 411 

relatively volatile and are readily biodegraded (Liu and Liu, 2013). Longer-chained aliphatics 412 

(C12+) responded non-linearly but almost always monotonically to an increase in SD25 413 

concentration (Figure 5). C14–16 were readily mobilised around 4 cm deep at the recommended 414 

SD25 dosing compared to in its absence. This suggested that SD25 selectively mobilised 415 

aliphatics with long chains more readily than those with short ones. Interestingly, the effect of 416 

SD25 application on 1-octadecene entrainment was minimal compared to the C17 and C20 417 

saturate hydrocarbons of the model oil (Figure 5). A key difference which may influence 1-418 

octadecene’s interactions with an oil-dispersant-seawater-sediment system with respect to C17 419 

and C20 saturate hydrocarbons is the presence of a double bond, promoting stronger adsorption 420 

to sediment surfaces than saturates. Analogue comparisons between decane (C10 paraffin) and 421 
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1-decene (C10 olefin) reveal that entrainment of 1-decene is less pronounced than that of decane 422 

in the top 4 cm of sediment but not deeper (Figure 5). This suggested that SD25 may be less 423 

effective in mobilising olefins compared to paraffin. BTEX components showed a limited 424 

increase in entrainment with SD25 concentration up to 150 mg l-1, which agrees with previous 425 

work on the limited effect of SD25 on the dissolution and dispersion of these components of 426 

the model oil in seawater (Perez Calderon et al., 2018). These components were found in higher 427 

(normalised) concentrations in the washout hydrocarbon-dispersant-water solution (Figure 6), 428 

highlighting the capability of hydrocarbons to be entrained into coastal permeable sediments 429 

beyond 10 cm and impact benthic ecosystems. SD25 recommended dosing (1:30 SD25:oil 430 

ratio, in this work 333.3 mg l-1) resulted in enhanced entrainment of BTEX components (Figure 431 

5). However, unless an oil spill occurs nearshore, it is unlikely that these hydrocarbons will 432 

reach coastal sediments due their high volatility and low KOW. Nevertheless, BTEX have been 433 

detected in coastal sediment (Phelps and Young, 1999) and consequently, following the 434 

precautionary principle, these interactions should be considered in any dispersant application 435 

decision-making process. Dispersant-facilitated adsorption has been shown for PAHs using the 436 

dispersant Corexit 9500 (Gong et al., 2014; Zhao et al., 2015). In this work, PAHs showed a 437 

similar response to C14+ aliphatics with an increase in hydrocarbon entrainment with SD25 438 

concentration in the top 4 cm of sediment and the effect becoming more pronounced over 4 cm 439 

deep. Dispersant application is typically carried out offshore where high-energy mixing can 440 

take place with the aim of preventing beaching of spilled oil. However, dispersant can enhance 441 

the entrainment into permeable sands by increasing the solubility of hydrocarbons and reducing 442 

droplet size. 443 

4.5 Hydrocarbon entrainment beyond 10 cm of sediment 444 

Washout of hydrocarbons over 10 cm deep in Ythan estuary sands was enhanced by SD25 445 

application for most hydrocarbons (Figure 6). Aliphatic hydrocarbons of specific chain length 446 

ranges (C15–17 and C20–24) increased their Wi with SD25 application. In contrast, the effect of 447 

SD25 was less apparent on C10–14 and C18 aliphatics suggesting that SD25 may selectively 448 

enhance the mobility of certain hydrocarbons in permeable sediments. C10–14 aliphatics are the 449 

most soluble alkanes of the model oil and, therefore, a lesser impact of SD25 was expected. 450 

Intertidal microbial communities play an important role in organic carbon processing in marine 451 

sediments (Woulds et al., 2016). Facilitated entrainment of these hydrocarbons may result in 452 

microbial community succession in intertidal permeable sands shifting the microbial 453 

composition to hydrocarbon degrading communities (Lamendella et al., 2014). Furthermore, 454 
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bacterial oxidation of hydrocarbons may increase their water-solubility, making them more 455 

mobile within the sediment. The Wi of the most water-soluble hydrocarbons of the model oil 456 

(BTEX components and naphthalene) varied across the SD25 concentration range analysed 457 

and SD25 application did not have a consistent effect on the capacity of these hydrocarbons to 458 

entrain sands beyond 10 cm deep. This is may be due to their high water-solubilities which 459 

may limit the effect of SD25 application (Perez Calderon et al., 2018). Previous work has 460 

shown a reduced effect of dispersant application on the solubilisation of naphthalene, compared 461 

to pyrene (Zhao et al., 2015). This suggests that SD25 enhances the mobility of BTEX 462 

components and naphthalene into permeable sands but not their dissolution or dispersion in 463 

seawater, implying that pore-water transport of dissolved BTEX and naphthalene is less 464 

affected by dispersant application than that of larger, less seawater-soluble hydrocarbons. 465 

Larger PAHs (>2 rings) showed a similar response with low Wi values below 42 mg SD25 l-1. 466 

However, there was an inflexion point between the CMC and 42 mg SD25 l-1 from which 467 

hydrocarbon entrainment increases for these PAHs, indicating that a threshold in enhancing 468 

solubility in water may exist for SD25 effectiveness on large PAHs. Dibenzothiophene showed 469 

a steady increase in Wi with SD25 concentration, indicating a different response to SD25 than 470 

the other PAHs. Dibenzothiophene was the only resin (contains sulphur in its structure) in the 471 

model oil, which may explain its higher Wi at low SD25 concentration. Overall, these results 472 

suggested that hydrocarbons within a mixture such as a crude oil entrain permeable sediments 473 

and solubilise to different extents and that dispersant application affected this process 474 

differently for specific groups of hydrocarbons. 475 

5 Conclusions 476 

This work highlighted the capability of a synthetic hydrocarbon mixture (model oil) and a crude 477 

oil (Schiehallion) to entrain permeable sands via natural percolation and the facilitation of this 478 

process by dispersant application. The main findings of the work were: 479 

(1) A positive effect of SD25 concentration on hydrocarbon mobility was observed below 480 

the manufacturer’s recommended dosing in permeable sands. Enhanced percolation 481 

beyond 10 cm deep was detectable at as low as SD25 CMC (21.1 mg l-1). 482 

(2) SD25 concentration increased the mobility of model oil through permeable sands and 483 

selectively mobilised larger hydrocarbon components (less water-soluble) than smaller 484 

components (more water-soluble) of the model oil. 485 
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(3) Both the model and Schiehallion crude oils readily entrained permeable North East 486 

Scotland sands. The concentration profiles by depth followed an exponential decay 487 

pattern for model oil but were poorly reproduced for crude oil, highlighting the 488 

complexity of interactions in crude oil mobility through permeable media. SD25 489 

application increased the entrainment of model oil but not of Schiehallion crude oil, 490 

again due to high variability. 491 

The findings of this work highlight the potential of oil to readily be entrained into permeable 492 

sands in the event of an oil spill and that dispersant application exacerbates the process for 493 

some oil components more than others. Further work is needed to understand how different 494 

commercial dispersant formulations can affect oil entrainment and how this varies by oil, 495 

hydrocarbon and sediment type as well as how seawater moves through sandy sediments and 496 

potentially displaces hydrocarbons already present in them. 497 
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