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Vasculature networks are responsible for providing reliable blood perfusion to 

tissues in health or disease conditions. Volumetric imaging approaches, such as 

multiphoton microscopy, can generate detailed 3D images of blood vessel networks 

allowing researchers to investigate different aspects of vascular structures and networks 

in normal physiology and disease mechanisms. Image processing tasks such as vessel 

segmentation and centerline extraction impede research progress and have prevented the 

systematic comparison of 3D vascular architecture across large experimental populations 

in an objective fashion. The work presented in this dissertation provides complete a fully-

automated, open-source, and fast image processing pipeline that is transferable to other 

research areas and practices with minimal interventions and fine-tuning. As a proof of 

concept, the applications of the proposed pipeline are presented in the contexts of 

different biomedical and biological research questions ranging from the stalling capillary 

phenomenon in Alzheimer’s disease to the drought resistance of xylem networks in 

various tree species and wood types. 
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CHAPTER 1  

INTRODUCTION 

Current clinical evidence suggests that many cognitive disorders associated with 

aging, such as dementia and Alzheimer’s disease, are correlated with microvascular 

dysfunction and decreased blood flow (Iadecola, 2004). The underlying mechanisms are 

unknown and the question of whether vascular dysfunction is a consequence of the 

disease or one of its causes remains unanswered. Therefore, an understanding of the 

linkage between Alzheimer’s disease and the properties of the brain vascular network is 

essential (Hirsch, Reichold, Schneider, Székely, & Weber, 2012). However, the methods 

to systematically and quantitatively describe and compare structures as complex as the 

brain blood vessels are lacking. This shortage is hampering our ability to analyze the 

relationship between the structure and function of blood vessels. For instance, we used 

multiphoton microscopy (Kleinfeld, Mitra, Helmchen, & Denk, 1998; Santisakultarm et 

al., 2012; Schaffer et al., 2006) to generate three-dimensional images of the brain 

capillaries in mouse models of Alzheimer’s disease and normal mice (Figure 1.1). We 

developed automated computer vision and machine learning solutions such as DeepVess 

(Haft-Javaherian et al., 2019) to analyze such images and measure different geometrical 

and topological metrics within the brain vasculature network. These solutions are now in 

use in various research labs studying brain, heart, and even in trees. These methods are 

also used in the data processing backbone for our citizen science crowdsourcing project 

(StallCatchers.com).  
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Figure 1.1. Three-dimensional structure of blood vessels in the brain of a mouse 

model of Alzheimer’s  

disease acquired by in vivo two-photon microscopy.  Blood vessels (red), Aβ plaques 

(green), a sample of the network representation for few vessels (blue). 

 

The work in this dissertation had three main objectives: 

Objective 1. Development of a new fully automated open source image processing 

pipeline to analyze the raw 3D laser microscopy images using computer vision and 

machine learning.  

Objective 2. Development and collection of network metrics to study networks 

using different topological and geometrical metrics in order to characterize different 

diseases or survival mechanisms. 

Objective 3. Demonstration of the applications of the developed formalism in 

Objectives 1 and 2 in other research fields such as generation of data using the 

collaborative crowdsourcing online game project and xylem networks in trees. 
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Thesis structure  

Chapter 2 is a review of the current literature of 3D vessel segmentation and 

centerline extraction methods. This chapter is the draft of the paper that will be submitted.  

Chapter 3 was published in PLoS One and has been reformatted for inclusion in 

this dissertation. A fully-automated, open source pipeline was developed using the deep 

convolutional neural networks to segment multiphoton microscopy images and extract 

the vasculature centerlines. This method generated detailed analysis of the effects of 

aging and Alzheimer genes on capillary network structure in mouse cortex. I 

demonstrated the application of this formalism within two different research fields 

described in Chapter 4, 5 and 6: the study of microvascular dysfunction in Alzheimer’s 

disease and the study of the xylem networks in trees in response to drought and embolism. 

Haft-Javaherian, M., Fang, L., Muse, V., Schaffer, C. B., Nishimura, N., & 

Sabuncu, M. R. (2019). Deep convolutional neural networks for 

segmenting 3D in vivo multiphoton images of vasculature in Alzheimer 

disease mouse models. PLOS ONE, 14(3), e0213539. 

https://doi.org/10.1371/journal.pone.0213539 

Chapter 4 was published in Nature Neuroscience and has been reformatted for 

inclusion in this dissertation. We discovered that leukocyte cells plug about two percent 

of capillaries in the brains of Alzheimer’s disease mouse models. By blocking the 

leukocyte adhesion, we showed the cerebral blood flow immediately increased, and 
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cognitive performance rapidly improved. The contribution section reads “MH., G.O. and 

Y.K. developed custom software for data analysis. M.H. developed custom machine 

learning algorithms for image segmentation.” I provided novel data analysis and original 

algorithms which characterized the stalled vessels by several metrics including their 

topology, relationships to amyloid-beta deposits and morphology.  

Cruz Hernández, J. C., Bracko, O., Kersbergen, C. J., Muse, V., Haft-Javaherian, 

…, Nishimura, N., Schaffer, C. B. (2019). Neutrophil adhesion in brain 

capillaries reduces cortical blood flow and impairs memory function in 

Alzheimer’s disease mouse models. Nature Neuroscience, 22(3), 413–

420. https://doi.org/10.1038/s41593-018-0329-4 

Chapter 5 is on a crowdsourcing citizen science project, i.e., StallCatchers, that 

utilizes the power of citizen science to perform the task of detecting stalled capillary from 

images. This time-consuming task is a significant bottleneck for scientific research 

progress. I developed the image processing pipeline, worked on the validation of the 

crowd-source analysis, and contributed to generating the first scientific results from this 

novel method. This chapter is the draft of the paper that will be submitted.  

Chapter 6 explores drought resistance of trees with two different wood types and 

in six species. Similar to blood vessel networks in the brain, tree xylem networks have 

network structures that contribute to the tree’s resistance to drought and vulnerability to 

air embolisms that block water flow. In this chapter, we utilized our formalism developed 

in previous chapters to analyze images of the xylem networks and adapted these methods 

for extremely large datasets. The 3D xylem images were more than a hundred times larger 
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than the brain vascular images acquired by multiphoton microscopy. Inspired by methods 

used to study robustness in brain vascular networks, we also used fluid flow simulations 

to compare different tree species. This chapter was done in collaboration with Ms. Annika 

Huber and Prof. Taryn Bauerle at Cornell University in the School of Integrative Plant 

Science. This is the draft of the paper that will be submitted.  
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CHAPTER 2  

A REVIEW OF THREE-DIMENSIONAL VESSEL SEGMENTATION METHODS

  

2.1 Introduction 

The circulatory system provides oxygen and nutrients to the entire body and 

collects the metabolic waste from cells through the vasculature network. Many medical 

diagnoses and treatments depend heavily on different circulatory system examinations. 

Likewise, many biomedical researchers are investigating different aspects of this system. 

Imaging is one of the main methodological approaches used commonly in various 

biomedical laboratories and medical settings. Extracting the substantial amount of 

information embedded in cardiovascular images often costs an excessive amount of 

valuable time of experts who analyze the images before it can be delivered in useful 

formats to the downstream users ranging from physician and scientists to patients and 

general public. Image segmentation is an essential image processing task, which is an 

indispensable part of image analysis pipelines. The primary goal is to locate and label 

pixels or voxels with different labels, deterministically or stochastically. From a machine 

learning and data science point of view, this task can be done using supervised on 

unsupervised approaches. Mainly, the vessel segmentation task is an essential tool for the 

diagnosis, treatment, surgery planning, prognosis, and biomedical research.  

To address the complexity and entanglement of multiple factors within medical 

and biomedical image analysis, we focus on three different aspects of the 3D vessel 
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segmentation task. First, we focus on high-level image preprocessing (section 2) and 

image segmentation methods (section 3) with an emphasis on vasculature images. 

Second, we discuss organ- and tissue-based vessel segmentations into either vascular 

networks (section 4) or short segments (section 5). Third, we discussed different 

pathological vessel segmentation tasks (section 6). To best of our knowledge, currently, 

Kirbas and Quek (Kirbas & Quek, 2004) and Lesage (Lesage, Angelini, Bloch, & Funka-

Lea, 2009) are the most general and extensive vascular segmentation reviews. Therefore, 

we focused our review mostly on research papers published since 2008.  

2.2 Image preprocessing 

Preprocessing methods, as low-level pixel intensity operators and logic, filter the 

unrelated information and enhance targeted image features before the application of main 

image processing methods. Consequently, they reduce the information entropy to 

facilitate the main image processing task. These methods may use prior information about 

acquisition systems or estimate them based on the input image.  

For example, pixel-wise intensity transformation can be designed using prior 

information from neighboring pixels’ intensity statistics, the whole image intensity 

statistics, or the imaging modality used to acquire the input image. Constant thresholding 

uses no prior information, adaptive thresholding uses neighboring pixels, and the 

histogram equalizer uses either the whole image data or subset of neighboring pixels. For 

instance, the log-based intensity transform uses the prior information based on the 

imaging modality and the segmentation task in order to enhance large vessels and supress 

other structures in CTA or MRA (Freiman et al., 2009; Samet & Yildirim, 2016).  
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Prior knowledge of the imaged organs or tissues is a critical requirement for 

developing effective segmentation methods. The organ-based segmentation and the prior 

knowledge of the organ’s adjacencies produce a target mask that reduces the amount of 

falsely detected objects and the computational time (Chi et al., 2011). For instance, the 

skull-stripping algorithm facilitates cerebral tissues isolation (Forkert et al., 2009). 

2.2.1 Smoothing and sharpening  

Depending on the nature of the images and the main image processing task in 

hand, different preprocessing techniques ranging from smoothing or sharpening to texture 

measurements are common fundamental image preprocessing tasks used to prepare the 

images for the future image procedures. The application of smoothing based on the 

intensities of neighboring pixels reduces the salt-and-pepper noise and application of 

methods such as Canny edge detection (Canny, 1987) or wavelet edge highlighting 

(Korfiatis, Skiadopoulos, Sakellaropoulos, Kalogeropoulou, & Costaridou, 2007) 

sharpen the image and facilitate edge detections.  

The nonlinear smoothing techniques such as Gaussian filtering, Edge Enhancing 

Diffusion, or Regularized Perona-Malik diffusion (Weickert, 2001) improve the 

segmentation accuracy with application in CTA and 3D RA images (Firouzian et al., 

2011; Meijering, Niessen, Weickert, & Viergever, 2002). On the other hand, bi-Gaussian 

functions with independent foreground and background scales apply an intra-region 

smoothing based on the reduced adjacent objects interference (Xiao, Staring, Wang, 

Shamonin, & Stoel, 2013).  
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The mathematical morphological filters applya logical operation to the image 

using a structural element based on the set theory and logical operations. For example, 

the hit-and-miss filter matches circular shapes along the perpendicular axis or stick shapes 

along the other axes and leads to segmentation quality improvements (Kim, 2013). 

Similarly, the morphological top-hat filter reduces the background by subtracting the 

image from the morphological opening filter application on the image (Jin, Yang, Zhang, 

& Ding, 2013).  

In some cases, the combination of a few preprocessing tasks in addition to one 

postprocessing algorithm results in a complete segmentation method. Läthén et al. 

(Läthén, Jonasson, & Borga, 2010) combined line and edge detection using multi-scale 

quadrature filters to detect distinct objects with lower intensity variation sensitivity. 

Furthermore, they improved the vessel boundary precision using a min-cut/max-flow 

algorithm (Marvasti & Acar, 2013)  

2.2.2 Image artifact removal 

Different imaging techniques may suffer from various artifacts with known or 

unknown causes. The microscopy image artifacts due to the point spread function (PSF) 

shape and size causes blurring which can be reduced by deconvolution with the PSF. If 

there are no independent measures of the PSF, it can be estimated using different reverse-

engineering algorithms such as the Richardson-Lucy method and then used in 

deconvolving the image (Seidel, Edelmann, & Sachse, 2016). The multi-slab acquisition 

of time-of-flight (TOF) magnetic resonance angiography (MRA) contain inter- and intra-

slab boundary intensity variations caused by slab boundary artifacts and poor field 
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uniformity from the radio frequency coil, respectively. Histogram matching compensates 

the inter-slice intensity variation artifacts (Kholmovski, Alexander, & Parker, 2002), and 

the nonparametric methods such as N3 algorithm resolve the intra-slice intensity variation 

artifacts (Sled, Zijdenbos, & Evans, 1998).  

Image intensities in modalities such as PC-MRA fluctuate within the vessel 

regions due to the blood flow velocity variation and different vessels size, which 

consequently alter intensity gradients along the vessel centerlines and impair the gradient-

based segmentation methods. However, the dramatic signal loss in PC-MRA due to the 

turbulent blood flows leads is partially recoverable using multiscale filters and local 

variance (Law & Chung, 2013).  

The 3D cerebral CTP scans at multiple time points are affected by severe motion 

artifacts and the registration of 3D scans over time is the most crucial step in their 

segmentation and other image analysis. After the motion artifact removal, segmentation 

can be done simply using thresholding and image analyses such as arteries vs. veins 

classification (arteriograms and venograms) can be done based on the time to peak 

measurement of contrast enhancement curves (Mendrik et al., 2010).  

Aylward et al. (Aylward, Jomier, Weeks, & Bullitt, 2003) repurposed a similar 

registration strategy, which is a preprocessing solution for the motion artifact, for vessel 

segmentation and centerline extraction techniques with less sensitivity to image noise and 

without assumptions about the local shapes of vessels. They registered the designed 

vessel templates with the image using both rigid and non-rigid registration methods to 

segment the vessels and extract the centerlines.  
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2.2.3 Vesselness measurements 

The vesselness filters measure local image texture and orientation to locate vessel-

like objects. The Hessian-based vesselness enhancement filters are based on simplified 

cylindrical tube models and generate low values at bifurcations and boundaries. The strain 

energy filters based on strain energy density theory from solid mechanics improves the 

responses at those locations as well (Zhai, Staring, & Stoel, 2016).  

Vesselness filters can be defined in the spherical polar coordinate system instead 

of the Cartesian coordinate system to relax the simplified cylindrical tube model 

assumption, which resolves the errors at the bifurcations and boundaries (Qian et al., 

2007). Similar to the Hessian-based filter, Gabor filtering can be applied in a multiscale 

fashion to study the image textures based on high-frequency local directionality (Shoujun, 

Jian, Yongtian, & Wufan, 2010). 

The combination of lineness measures and line-direction vectors reduces the 

partial volume effect in the analysis of small vessels in Hessian-based methods, which 

happens if an small object smaller than the image resolution is surrounded with low 

intensity objects and not detectable (Nimura, Kitasaka, & Mori, 2010). The computational 

cost associated with the Hessian-based multi-scale vesselness measures can be reduced 

by estimation of each Hessian matrix components using the fractional order differential 

operators (Gong et al., 2016). 

There are multi-scale filters such as the Frangi filter, which measures the 

vesselness of the image at each voxel at different scales. The multi-scale line filters 
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applied at different orientations enhance cylindrical structures of vessels and improve 

their segmentation and visualization (Sato et al., 1997). Similar to the Hessian-based local 

measurement, the combination of the inward gradient flux through circular cross-sections 

and non-linear penalizations of asymmetric flux contributions can reduce the false 

positive rate (Lesage, Angelini, Bloch, & Funka-Lea, 2009). Likewise, filters based on 

the medial-axis points, which pass a line through each point of the image intersecting the 

edges of different tubes measuring the distance differences to the nearest edges to 

facilitate the segmentation (Foruzan, Zoroofi, Sato, & Hori, 2012) with the option of 

resolving the asymmetric cross-sections artifacts using the isotropic coefficient (Pock, 

Thomas G, 2004).  

2.2.4 Frequency domain 

Note that some preprocessing methods are in the frequency domain due to the 

nature of acquisition systems or image artifacts (Sonka, Hlavac, & Boyle, 2014). For 

instance, the segmentation task for OCT images are either in the frequency (e.g., using 

low-pass and high-pass filters) or the space domains. In the case of 1D segmentation in 

the space domain, only the A-lines that captures the vessels are required to be analyzed 

based on intensity criteria starting from the shallowest pixel. This intensity-based 

preprocessing requires 2D or 3D smoothing in order to obtain segmentation continuity 

(Ughi et al., 2012).  
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2.3 Vascular segmentation methods 

In this section, we discuss the segmentation methods in the context of the vessel 

segmentation task. The selection of segmentation methods for each task depends on the 

imaged organ, imaging modality, method availability, and the state-of-the-art methods 

for the particular task in hand. 

2.3.1 Region-based segmentation 

The main idea of the region-based segmentation methods is to divide the image 

into regions that have the maximum homogeneity. The binary homogeneity function is 

defined based on different characteristics of each voxel or super voxel such as intensity, 

saliency, direction, and connectivity (Chi et al., 2011). For example, metrics such as 

gradient vector flow field have high magnitudes at vessel boundaries and in directions 

toward vessel centerlines (Chen, Sun, & Ong, 2014; Smistad, Elster, & Lindseth, 2014). 

The regions should satisfy the following two criteria: homogeneity value of each region 

should be true, and the homogeneity value of the union of each two adjacent regions 

should be false (Sonka et al., 2014). The homogeneity criteria can have its internal voxel-

based inclusion criteria based on neighborhood homogeneity as well. In this scenario, 

only voxels located in neighborhoods with homogeneity higher than the minimum 

inclusion criteria are contributing to the homogeneity term of the cost function (Ogiela & 

Hachaj, 2013). The growing process at different locations within the image can be done 

simultaneously or can be done vessel branch by vessel branch sequentially (Eiho, 

Sekiguchi, Sugimoto, Hanakawa, & Urayama, 2004). This method requires initial seed 
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points provided by experts or obtained from another method such as centerline extraction 

(Smistad et al., 2014).  

The variational region growing approaches utilize the intensity and vesselness 

terms simultaneously to enforce the target intensity ranges and detect tubular shapes by 

minimizing the region-descriptor energy function. The variational region growing 

methods are similar to FCM (see next subsection). The initial seeds required for the 

variational region growing approaches can be obtained using Hessian-based methods (Lo 

et al., 2012; Pacureanu, Revol-Muller, Rose, Ruiz, & Peyrin, 2010; Rose, Rose, Revol-

Muller, Charpigny, & Odet, 2009). The region growing algorithms combined with noise 

models can segment the 3D images of vessel laminae, which is the boundary between the 

lumen and the rest of the tissue, instead of vessel luminal volume by utilizing the detected 

high-confidence foreground voxels and then converting the detected foreground laminae 

voxels into 3D isosurface meshes using the marching tetrahedra algorithm 

(Narayanaswamy et al., 2010).  

Researchers resolved some of the known shortcomings of these methods using 

different techniques. The combination of slice marching and region growing algorithms 

reduces the leakage and other false positive errors (Zhang, He, Dehmeshki, & Qanadli, 

2010). Friman et al. (Friman, Hindennach, & Peitgen, 2008) utilized a vessel template 

function based on radiuses, directions, and center points to improve the missing vessel 

end segmentations at low SNR regions after the application of region growing methods.  

Note that the inclusion criteria based on the formulated homogeneity function in 

region-based methods are interchangeable with ensemble models such as the random 
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forest (Schwier, Hahn, Dahmen, & Dirsch, 2016). Fabijańska et al. (Fabijańska, 2012) 

used the random walk within consecutive CT slices, slice-by-slice in addition to 

considering images acquired from other acquisition series.  

2.3.2 Fuzzy clustering methods 

The segmentation FCM defines the relationship between different regions in the 

image using fuzzy logic rules in order to include the uncertainties due to the image 

variations and noise. For example, this statement is a fuzzy rule:  

"if two sub-regions have similar pixel intensities and if they are 

comparatively in close distance, there is a higher likelihood that 

these two sub-regions belong to one region."  

Therefore, the relationships between different sub-regions are considered for all 

the possible pairs of sub-regions, which make this method very similar to the behavior of 

a human observer. Hessian-based filtering and spatially-variant mathematical 

morphology with low computation cost can enhance the fuzzy logic segmentation results 

(Dufour et al., 2013). Similarly, the addition of line direction vectors of all voxels to the 

vesselness information improves the FCM results (Wang, Xiong, Huang, Zhou, & 

Venkatesh, 2012). The second order statistics of image voxels such as angular second 

moment, contrast correlation, variance, and different inverse moment can be derived 

using Gray level co-occurrence matrices at different directions and distances that are 

suitable for the FCM feature extractions (Kumar & Jeyanthi, 2012). A computational cost 

reduction by a factor of two is achievable by adopting look-up table strategies (Guo, 
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Huang, Fu, Wang, & Huang, 2015). Guo et al. (Guo et al., 2015) used watershed methods 

to define the threshold for FCM binarization. The detection of crossing or bifurcation 

simultaneously with FCM using the structural pattern detection algorithms reduces the 

merging error (Shoujun et al., 2010). 

The expectation maximization (EM) method is the probabilistic counterpart of 

FCM that changes the segmentation problem into a missing data problem (Zhou et al., 

2007). EM defines class prior probabilities and probability density functions to determine 

class associations. Given an image, EM solves an inverse problem to estimate the 

parameters of density functions. In the expectation step, EM computes the expected 

associate probabilities, and in the maximization step, EM estimates the parameters of 

density functions using likelihood maximization. EM iterates between these two steps 

until convergence. After convergence, the segmentation results can be acquired using 

MAP. Analogous to FCM and EM, since the segmentation problems are interchangeable 

with classification problems for each voxel or group of voxels between background and 

one or multiple foreground classes, Zheng et al. (Zheng et al., 2011) extracted a set of 

geometric and image features and used probabilistic boosting tree (Tu, 2005). 

2.3.3 Active contour models - Snakes 

Kass and colleagues initially introduced the active contour models or snakes for 

image processing in the 1980s (Kass, Witkin, & Terzopoulos, 1988; Terzopoulos, Witkin, 

& Kass, 1988; Witkin, Terzopoulos, & Kass, 1987). These models are defined in terms 

of energy minimizing splines, which depend on the shape and the location of the spline 

within the target image and tries to match a deformable model to that image. The prior 
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knowledge about the underlying structure of the image will be incorporated to find the 

optimal solution. The 3D branching structures can be modeled using high order active 

contours to define multiscale shapes and interactions between boundaries and from 3D 

branches (Vazquez-Reina, Miller, Frisken, & Malek, 2008). Freiman et al. (Freiman, 

Joskowicz, & Sosna, 2009) proposed an energy term based on the vessel surface property 

to improve the segmentation results at the bifurcations and complex vascular structures. 

Note that because the introduced evolution is a local process, it is possible to fall into 

local minimum that result in errors (Reinbacher, Pock, Bauer, & Bischof, 2010).  

On the other hand, Terzopoulos and Vasilescu (Terzopoulos & Vasilescu, 1991; 

Vasilescu & Terzopoulos, 1992) developed a shape reconstruction algorithm based on a 

deformable mesh using parameter fitting, which was later further improved by including 

an attractive force derived from the 3D image. Since mesh initialization is critical for 

precise segmentation, Huang and Goldgof (Huang & Goldgof, 1993) introduced a 

tracking method for nonrigid structures by dynamically adding or subtracting mesh nodes 

and correspondingly Delingette et al. (Delingette, Hebert, & Ikeuchi, 1992) developed a 

dynamic model with both internal smoothness energy and forces derived from input 

information. Cohen et al. (Cohen & Cohen, 1993) used balloon models to overcome 

image noise as well as assist with better convergence. The inflating balloon models 

decrease the computational cost by constructing surfaces from multi-scale images (Chen 

& Medioni, 1995). 

The intensity gradients within a local sphere region, called orientated flux, can be 

symmetric or antisymmetric and are indicators of regions located at the centers or 
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boundaries of vessels, respectively. The active counter method evolves using the oriented 

flux measured for a set of radii unaffected by intensity fluctuation along the vessel 

centerlines (Law & Chung, 2008). The oriented flux is measured in the Fourier domain 

in order to decrease computation time (Law & Chung, 2010). Likewise, the reformulation 

of spherical flux based on divergence theorem, spherical step function, and the 

convolution operation can be done in the Fourier domain (Law & Chung, 2009b). Since 

the enforced antipodal-symmetry of the sphere is not appropriate for modeling the 

bifurcations, cylindrical flux-based higher order tensors can be utilized to detect 

vasculature and branching together (Cetin & Unal, 2015).  

2.3.4 Geometric deformable models - Level set 

Parametric methods are the basis of the active counter models (snakes), and partial 

differential equations are the basis of the geometric deformable models (a.k.a. Level Set 

(Malladi, Sethian, & Vemuri, 1995)). The main difference is that the optimized geometric 

curves are non-parametric. The foreground and background are considered as fluid and 

solid phases, respectively. Based on continuum mechanics, the three forces applied on 

solid surfaces are the fluid pressure on the solid surfaces, the internal stresses in solid 

surfaces to maintain the solid integrity, and the external bulk stresses on the surfaces of 

solids. The fluid pressure deforms the surface along the centerline, the bulk force deforms 

the surface along the cross-section, and the surface forces control the rate of deformation 

changes along the surface. These forces can be defined using the second order intensity 

statistics, and the surface geometry and the surfaces can be modeled using level set 

functions. 
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On the other hand, to account for the vessel size variability, the second order 

intensity statistics of images can be smoothed using Gaussian filters with multiple scale 

kernels (Law & Chung, 2009a). The small vessels also can be captured using the minimal 

curvature criteria (Lorigo et al., 2001). Similarly, the MAP of the intensity distribution 

estimated as a finite mixture of statistical model distributions can be combined with the 

intensity gradient to perform a fast level set segmentation (Gao et al., 2011). 

Caselles et al. (Caselles, Kimmel, & Sapiro, 1997) proposed Geodesic Active 

Contours to avoid trapping in the local minimum, which one can reformulate within the 

level set framework. The energy function includes an edge detection function with a 

common choice of exponential functions, which integrates the curve length and image 

boundaries. Boykov and Kolmogorov (Boykov & Kolmogorov, 2003) combined a similar 

energy function and minimized it using the graph cut method. In contrast to the active 

counter models, this contour topology is changeable throughout its evolution. However, 

there is still a low possibility to be trapped in a local minimum using these energy 

functions.  

Since the image intensity term of the level-set energy function causes higher 

vessel segmentation errors within small vessels to compare to the larger vessel, its 

relaxation improves the small vessel segmentation results (Ugurlu, Demirci, Navab, & 

Celebi, 2011). Similarly, Zhu et al. (Zhu, Xiong, & Jiang, 2012) proposed to add a vessel 

energy term to facilitate the distinction between tubular objects vs. spherical objects. 

Alternatively, Ebrahimdoost et al. (Ebrahimdoost et al., 2011) proposed energy-based 

stopping criteria for the vessel boundary evolution. Similarly, a vesselness-based 
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regularization can be added to the curvature term of the energy function to expedite the 

evolution while maintaining the smoothness (Zhu, Xue, Gao, Zhu, & Wong, 2009).  

Bresson (Bresson, 2005) and Reinbacher et al. (Reinbacher et al., 2010) 

introduced the anisotropic weighted total variation energy with a global volumetric 

constraint and assumed a continuous image domain instead of the formerly discrete 

domain, which results in a convex energy function. The convex energy functions can be 

globally optimized independently of the initial solution (Biesdorf, Wörz, Tengg-Kobligk, 

Rohr, & Schnörr, 2015). Moreover, Unger et al. (Unger, Pock, Trobin, Cremers, & 

Bischof, 2008) added an energy term based on the user-provided potential function with 

regularizations to allow the user input incorporation throughout the segmentation process. 

The second-order directional intensity tensors measured using the diffusion tensor image 

modeling and tractography can be fed into the geodesic active contour energy function 

based on the surface term in the Sobolev Space (Mohan, Sundaramoorthi, & 

Tannenbaum, 2010) or fiber tracking tractography method (Cetin, Demir, Yezzi, 

Degertekin, & Unal, 2013).  

Segmentation methods based on the level-set and curve evolutions (Lorigo et al., 

2001) produce vessel wall leakages or under-segmentation in images acquired using 

different modalities (e.g., intracranial TOF-MRA and cardiac CTA) due to the presence 

of tissues with vessel-like intensity in the proximity of vessels (Law & Chung, 2009a, 

2010). An external constraint term based on the standard deviation of the Gaussian filter 

was used in Level Set to reduce the segmentation leakages of nonvascular structures (Jin 

et al., 2013). Because the boundary and initial conditions have strong effects on the 
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accuracy, initialization methods such as colliding fronts (Piccinelli, Veneziani, Steinman, 

Remuzzi, & Antiga, 2009) and cube search (Gong et al., 2014) improve the final results. 

Instead of the devised gradient-based forces used for the level set method, the local phase 

information filtered by multiscale quadrature can be used alternatively to detect the edges 

and segment vessels of different diameter with less computational cost (Lathen, Jonasson, 

& Borga, 2008). 

2.3.5 Probabilistic graphical models 

The graphical models typically consist of directed or undirected graphs with a set 

of nodes and edges, in which nodes represent the image voxels classified with a particular 

label and the edges represent the connection between nodes based on a set of 

neighborhood criteria. Subsequently, the common graph algorithms such as minimum 

spanning tree, shortest path, or graph-cuts can be adopted to solve the graph-based 

segmentation problem.  

FCM (Chen, 2012) or quick shift clustering (Chen et al., 2014) can be adapted to 

obtain the initial segmentation, which is then represented based on the 6-connectivity 

(when the connected voxels have a shared face) or 26-connectivity (when the connected 

voxels have a shared face, edge, or corner). Then, graph analysis methods such as graph-

cuts coupled with an energy function based on the intensity and boundary penalty terms 

improve the segmentation result.  

Note that the surface smoothness constraint in the graph-cut energy functions 

(Homann, Vesom, & Noble, 2008) may lead to the elimination of small or detailed 



 

 24 

vessels, which can be resolved using submodular constraints (Kitrungrotsakul, Han, 

Iwamoto, & Chen, 2017). Local graph-cut methods based on regional intensity 

distributions can be applied iteratively until the minimal change of global results (B. Chen 

et al., 2014). The sparse graph representation based on elimination of voxels with a very 

high probability of being the background reduces the memory and computation 

requirements (Zhai et al., 2016).  

2.3.6 Artificial Deep Neural Networks 

The artificial neural network (ANN) and specifically deep neural network (DNN) 

are the most current popular segmentation methods, after the remarkable success of 

AlexNet in the ImageNet challenge in 2012 (Krizhevsky, Sutskever, & Hinton, 2012), 

which was the third reincarnation of ANN within the active area of research. ANN can 

be used for solving any problem that can be reformulated as a classification problem by 

modeling a black box classifier as a stack of Rosenblatt's Perceptrons (Rosenblatt, 1958) 

with input nodes, output nodes and hidden nodes in between, which mimics the human 

neural networks. 

Feature extractions for ANN or other clustering and classification methods can be 

done automatically using an extra set of initial ANN layers or manually. A set of features 

can be manually engineered through utilizing the preprocessing methods such as Sato or 

Frangi filters to enhance structures, the offset medialness filter to enhance topologies, and 

strain energy filter to enhance bifurcations (Zeng et al., 2016). Similarly, k-means 

methods are suitable for learning filter banks used for feature extraction.  
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 In contrast to traditional ANN, DNN has a much greater number of layers 

between input and output layers in comparison to the simple three-layer ANN. There are 

four different common types of DNN: stacked auto-encoders (SAE), deep belief networks 

(DBN), recurrent neural network (RNN), and convolutional neural network (CNN). 

Currently, CNN is the most common method among these DNN for biomedical image 

analysis (Litjens et al., 2017). The first successful CNN work was presented by Lecun et 

al. (LeCun, Bottou, Bengio, & Haffner, 1998) in 1998 called LeNet-5 used for a digit 

recognition task in handwritten zip code on mail envelopes.  

Merkow et al. (Merkow, Marsden, Kriegman, & Tu, 2016) compared different 

fully convolutional neural network models for 3D vessel boundary segmentation task. 

Based on their results, the complete 3D U-Net architecture (i.e., encoding and decoding 

layers with skip connections) outperforms both 2D and 3D fully convolutional encoder 

architected adopted from a holistically-nested edge detection model (Xie & Tu, 2015), 

which produced one of the top accuracy results on the BSDS500 dataset (Martin, 

Fowlkes, & Malik, 2004). Conversely, Haft-Javaherian et al. (Haft-Javaherian et al., 

2019) showed the optimized patch-based CNN architecture with a customized cost 

function segmentation outperforms 3D U-Net architecture. 

Instead of 3D DNN networks, Kitrungrotsakul et al. (Kitrungrotsakul, Han, 

Iwamoto, Foruzan, et al., 2017) uses three independent 2D sub-networks to process 

sagittal, coronal, and transversal planes separately. The features extracted from these 

three independent sub-networks are aggregated at the last layer of the network to produce 

3D segmentation of the hepatic vessel in CT images, surpassing 3D CNN performance. 
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For a survey on deep learning in medical image analysis see the review by Litjens et al. 

(Litjens et al., 2017). 

2.3.7 Centerline extraction Methods 

Many medical and biomedical tasks rely on a graph representation of the 

vasculature network called vessel centerlines. The centerline can be extracted as the 

primary task based on the raw image or can be a done as a secondary task by 

skeletonization of the segmentation results. Although centerlines sometimes obtained as 

a byproduct of segmentation, they can be also used as an initial seed for the segmentation 

(Gülsün & Tek, 2010; Smistad et al., 2014). The skeletonization methods for the 

centerline extraction do not perform well in the cases with irregularities and holes in the 

vessels segmentation results, while the methods without a segmentation step, such as 

parallel centerline extraction and ridge traversal, do not struggle in those cases (Smistad 

et al., 2014).  

The semi-automated centerline extraction methods often start with a seed point 

defined by the user and then alternate between prediction and estimation steps to fit a 

model such as a cylinder to the data (Friman, Hindennach, Kühnel, & Peitgen, 2010; 

Kerrien et al., 2017; Yureidini, Kerrien, & Cotin, 2012) or solve an optimization problem 

using a cost function based on the centerline path (Hachaj & Ogiela, 2012; Longair, 

Baker, & Armstrong, 2011; Türetken, Benmansour, & Fua, 2012). Instead of searching 

for the optimal path between two centerline seed points based on the 3D trajectory curves 

of tubular structures, the 3D multi-branch tubular surfaces starting from one seed point 
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can be identified using 4D curve representation of the structure surfaces based on the 3D 

sphere representation of points within the tubular structure (Li, Yezzi, & Cohen, 2009). 

The crucial requirement for the centerline extraction of large 3D datasets is the 

ability of local centerline extraction while preserving the global vasculature network 

continuity (Cassot, Lauwers, Fouard, Prohaska, & Lauwers-Cances, 2006). The 

segmentation results have different artifacts such as non-smooth boundaries, holes, side-

branch discontinuity, or side-branch inclusion. Techniques such as segmentation surface 

postprocessing (Wala et al., 2011) and robust kernel regression (Schaap et al., 2009) 

reduce these artifacts. The centerline extraction based on the segmented 3D images of 

vessel laminae can be done using ray casting and vote accumulation (Narayanaswamy et 

al., 2010) or cylindrical ellipsoids (Tyrrell et al., 2007). The orientation-based thinning 

algorithms can be applied in parallel iteratively using different templates until no change 

is observed (Hu & Cheng, 2015). The segmentation and centerline extraction computation 

time can be reduced dramatically by utilizing the graphics processing unit (GPU) instead 

of the central processing unit (CPU) (Bauer, Bischof, & Beichel, 2009; Bauer, Pock, 

Bischof, & Beichel, 2009; Erdt, Raspe, & Suehling, 2008; Helmberger et al., 2013; 

Narayanaswamy et al., 2010; Smistad et al., 2014).  

The centerline errors such as center points ordering errors and filling inter- and 

intra-vessel gaps can be resolved using different graph-based techniques such as the 

shortest path search algorithms (Fetita, Brillet, & Prêteux, 2009; Helmberger et al., 2013) 

and minimum spanning tree (Kitamura, Li, & Ito, 2012). There are different edge weights 

that can be considered for finding the shortest path between two vertices including the 



 

 28 

Euclidean distance and sum of voxel values along the path using raw intensities or 

enhances intensities (Lo, Ginneken, & Bruijne, 2010) in addition to the surface 

information from both the inner and outer walls of the vessel segments (Zhao et al., 2009). 

Another postprocessing step to improve the centerline quality is simple point removal, 

which removes the foreground voxels whose removal does not alter the centerline graph 

representation (Dongen & Ginneken, 2010). Addotomally, a set of logical rules in 

addition to multiple thinning and dilation applied iteratively improves the skeletonization 

results (Haft-Javaherian et al., 2019). Algorithms such as 3D dynamic balloon tracking 

(Zhou et al., 2012) produce more reasonable results compare to thinning algorithms when 

the task is to extract the large vessels’ centerlines within a segmented image containing 

both large and small vessel. The continuity and smoothness of the final centerline results 

can be controlled using different techniques such as Laplacian filter and Kalman state 

estimator (Valencia, Azencot, & Orkisz, 2010). 

2.3.8 Bifurcation detection 

The vessel bifurcations are detectable by clustering the pixels with high values of 

a convexity metric measure based on the segmented image using one of the segmentation 

methods such as k-mean clustering (Almasi & Miller, 2013), level set (Almasi et al., 

2015), kernel-based region growing (Almasi et al., 2017), and Bayesian tracking 

estimation (Zheng, Carr, & Ge, 2013). This methodology may lead to a high rate of false 

positive bifurcations that require rigorous postprocessing. Almasi et al. (Almasi et al., 

2015) reduced the false positive bifurcation candidates by solving an integer linear 

programming problem with a utility function based on the intensity and structural 
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information of the graph representation of bifurcations. Pan et al. (Pan, Su, Lai, Liu, & 

Wu, 2014) used all of the detected vessel bifurcations to construct a minimum spanning 

tree based on the shortest distance bifurcations and combined it with a strategy that 

connects the closest pairs of terminal bifurcations to resolve the network discontinuities. 

The recursive application of the probabilistic sequential Monte Carlo method in addition 

to the k-means clustering detects both vasculature and the junctions along the vessel tree 

(Zhao & Bhotika, 2011). The bifurcations detection can be done using geometrical 

model-based methods with different criteria such as the comparison between parent 

vessel diameter and daughter vessels’ diameters as well as the angle and curvature of the 

daughter vessels (Wala et al., 2011). 

2.4 Vascular networks 

2.4.1 Brain 

2.4.1.1 Microscopic imaging 

Imaging and automatic image analysis of 3D vascular microscopic images are 

essential tools for researchers studying various biomedical science fields including stem 

cells (Moore & Lemischka, 2006), neuroscience (Cruz Hernandez et al., 2017), brain 

tumors (Calabrese et al., 2007), and angiogenesis (Tyrrell et al., 2005). Note that the 

optimum image processing method should be selected with consideration of the different 

types of labels and whether the labeling is of the lumen or laminae of vessels. Typical 3D 

vascular microscopic images artifacts include:  
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• in vivo raster scanning induced motion artifact,  

• low signal to noise ratio and multiscale vessel sizes,  

• irregular or extra dense pathological vasculature networks,  

• low sensitivity and specificity of labeling dyes,  

• in complete labeling within the small vessels,  

• large point spreads functions in comparison to the vessel sizes. 

  

To study small vessels and cells with diameters ranges from 2 to 50 μm, an 

imaging modality with one μm per pixel or smaller resolutions is required based on the 

Nyquist–Shannon sampling theorem (Wu et al., 2014). On the other hand, the studies that 

require large fields of views such as the barrel cortex local angiome project (Blinder et 

al., 2013) need custom image processing toolboxes (Tsai et al., 2009) with large dataset 

analysis capability.  

Different geometrical and topological metrics such as diameter, length, tortuosity, 

or betweenness centrality measured deterministically or stochastically on the 

segmentation results can be used to assesses vasculature networks’ health and efficiency 

under different conditions or disease models (Cruz Hernández et al., 2019; Haft-

Javaherian et al., 2019).  

2.4.1.2 CTA and MRA 

There are many different CTA and MRA sequences suitable for various medical 

diagnosis and treatments. For instance, TOF-MRA has a high contrast between blood 

serum and tissues that makes is suitable imaging modality for cerebral vascular network 

imaging (Al-Kwifi, Emery, & Wilman, 2002). It is also possible to acquire more complete 
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brain vasculature networks using PD-MRI in comparison to PC-MRA and TOF-MRA 

due to black-blood contrast phenomenon, i.e., low signal blood vessels (Descoteaux, 

Collins, & Siddiqi, 2008). On the other hand, cerebral CTP scans acquired at a fixed time 

interval for some time allow the cerebral tissue perfusion assessment for patients with 

cerebrovascular diseases including acute stroke and subarachnoid hemorrhage (Mendrik 

et al., 2010). However, repeated imaging over time induces severe motion artifacts 

requiring registration processes. On the other hand, PC-CT as a non-invasive imaging 

modality in comparison to the corrosion cast CT is very suitable for vascularization 

studies because it is possible to perform microscopy imaging of the postmortem 

histological slices of the same case (Lang et al., 2012). Also, the healthy and pathological 

animal tissues such as mice and rats can be visualized using SRμCT in both absorption 

and phase contrast modes (Lang et al., 2012).  

For example, TOF-MRI images can be preprocessed (Forkert et al., 2013), and 

multiscale line filtered (Sato et al., 1997) separately and then combined by a voxel-wise 

fuzzy logic to weight the high-value intensity of each voxel in any of two images more 

when the other image has a low intensity (Forkert et al., 2011). Afterward, two different 

thresholds were applied to seed the level set method and the fuzzy value probability 

estimation using the Parzen-Window technique (Schmidt-Richberg, Handels, & 

Ehrhardt, 2009). Additionally, considering the local adaptive energy weights with 

additional vesselness forces yields better small vessel detection results (Forkert et al., 

2013). The TOF-MRA intensity distribution can be models as a finite mixture of 

statistical model distributions such as Linear Combination of Discrete Gaussians (El-Baz 

et al., 2012) or a Gaussian distribution for cerebral vasculatures and a Rayleigh 
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distribution in addition to a set of Gaussian distributions for the surrounding tissues (Gao 

et al., 2011). A mixture of finite statistical model distributions can be estimated using the 

EM method and then using MAP to classify the image (Gao et al., 2011). 

2.4.2 Lung 

The accurate pulmonary vessel segmentation of lung images is required for 

interventional lung disease diagnosis and treatments as a tool for pre-operation planning 

and intraoperative assistance in order to avoid any significant vessel damage that has a 

ubiquities role in the effective image-guided clinical intervention (Zhu et al., 2009). 

Consequently, the VESSEL12 Challenge (Rudyanto et al., 2014) was hosted by Grand-

Challenges and organized in conjunction with the IEEE International Symposium on 

Biomedical Imaging in 2012 was about lung vessel segmentation in thoracic CT images 

with different phenotypes as well as characterization of segmentation difficulties in the 

presence of anatomical abnormalities such as the presence of nodules and dense 

consolidation.  

The lung CT and MR images contain various anatomical information such as ribs, 

spins, heart, and other vessel segments. Therefore, the vessel segmentation task in the 

lung is entangled with segmentation of a few other tissues such as pulmonary lobes, 

fissures, and bronchi (Lassen et al., 2013). For example, The lung field isolation as the 

first preprocessing step can be performed using different methods such as the knowledge-

based segmentation using the prior information of lung intensity ranges (Heussel et al., 

2006) and tissue continuities (Lai, Huang, Wang, & Wang, 2016) and application of 

morphological filters (Dongen & Ginneken, 2010) based on 2D slice-by-slice fashion 
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(Armato III & Sensakovic, 2004) or 3D volumes (Sun, Zhang, & Duan, 2006). 

Correspondingly, it is required to exclude the airway walls within the lung a 

preprocessing step using airway lumen segmentation (Fetita, Ortner, et al., 2009) or the 

prior information of the wall thickness as a function of lumen diameter (Peters et al., 

2007). Then again, the automated detection methods identify the pathological-related 

errors (Rikxoort, Hoop, Viergever, Prokop, & Ginneken, 2009) and the errors can be 

reduced based on the abnormality types, e.g. juxtapleural nodules (Pu et al., 2008), prior 

knowledge of lung regions with high attenuation due to various diseases, e.g. asthma, 

scleroderma, and emphysema (Prasad et al., 2008), or presence of very dense pathologies 

requiring atlas-based registrations (Sluimer, Prokop, & Ginneken, 2005).  

The candidate seed points required for the semi-automated method can be refined 

using special filtering based on the distance to the lung mask boundaries or applying 

morphological erosion filter to the lung mask and utilize it to mask the seed points 

(Rudyanto et al., 2014). Similarly, the image can be segmented into a fuzzy spherical 

object representation of blood vessels and nodules and then a tracking algorithm to 

connect the spheres into the vasculature network based on their connectivity and 

collinearity (Wu, Agam, Roy, & Armato, 2004).  

The Hessian matrix-based methods can detect strong responses based on the scale-

space particle sampling (Estépar et al., 2012), and the relevant scales of neighbor voxels 

can be obtained using multi-label Markov Random Field models enabling the detection 

of peripheral thin segments thick segments with better connectivity (Geng, Yang, Tan, & 

Zhao, 2016). On the other hand, the nodules alongside the vessels or fibrosis tissue can 
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be eliminated as a postprocessing step using shape-based filters based on the medial axis 

and diameter of vessels (Peters et al., 2007). Additionally, the log transformation based 

on variance variations to reduces false positive.  

2.4.3 Liver 

The geometrical properties and territories of liver vasculature network in the 

vicinity of a tumor facilitate the interventional procedure planning (Chi et al., 2011) or 

about the liver parenchyma for the liver transplantations (Frericks et al., 2004). 

Additionally, accurate anatomical dissection helps with avoiding portal osculation, 

excessive blood loss, and healthy liver tissue injury (Kim, 2013). Accurate vessel 

segmentation is essential for precise tumor growth estimation (Chen, 2012). Within the 

liver, it is easier to detect the hepatic artery and bile duct in comparison to the portal vein 

and hepatic vein due to similar intensity values and twisted structures, especially in cases 

with abnormalities (Chi et al., 2011). Therefore, the vessel segmentation with inferior 

vena cava and entrance of portal veins areas are challenging and requires the separation 

of hepatic and portal veins (Wang, Hansen, Zidowitz, & Hahn, 2014), while it is possible 

to merely segment the hepatic artery using Canny edge detection (Seo & Park, 2009), 

dimension reduction using 2D projection (Huang, Wang, Cheng, Huang, & Ju, 2008), or 

the combination of the vascular intensity Gaussian distribution and Hessian matrix 

(Kawajiri et al., 2008; Wang et al., 2013).  

The small vessels are very hard to detect and even occasionally are missing in the 

manual segmentations (Chen et al., 2014). The small, precise branches at the liver 

boundaries can be detected using the hyper-complex edge operator (Ma & Li, 2014), 
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which replaces the voxel intensity with an eight-dimension octonion containing the 

neighbors’ intensities as well and circularly convoluted with the edge detection operates. 

Oliveira et al. (Oliveira, Feitosa, & Correia, 2008) detected planes, which fit the hepatic 

and portal veins, to define the eight distinct liver regions developed by Couinaud 

facilitating the development of hepatectomies (Couinaud, 1954). The exploitation of the 

anatomical information and post-order walks of the vessels’ graph representation in 

addition to including 4D enhancement modeling and shape likelihoods improve the 

segmentation and classification results (Yoshida, Sakas, & Linguraru, 2012).  

In clinical practices, the 3D visualizations or information extractions of liver 

images using common method are extremely beneficial (X. Gao et al., 2011). For 

example, the maximum intensity projection reduces the 3D information to a 2D image by 

illustrating the maximum value of voxels along the view angle at each pixel to show the 

overall vasculature network (Johnson, Prince, & Chenevert, 1998).  

2.5 Short segments 

2.5.1 Heart 

Alongside the importance of heart vessel segmentation in medical settings, 

biomedical research projects and veterinary care also depend on the imaging the major 

heart vessels for research studies, diagnosis, and prognosis in order to obtain geometrical 

measurements, hemodynamics, autoregulation, and tissue oxygen delivery using different 

imagining modalities such as MRA, Micro-CT, and multiphoton microscopy (Lee, 
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Beighley, Ritman, & Smith, 2007; Small et al., 2018). The motion of the beating heart 

presents an additional challenge for vessel identification. 

The segmentation methods benefit from prior information about the approximate 

or precise location of the targeted organ within the image such as the heart in the thorax 

CT. For example, the prior knowledge of the heart location significantly reduces the 

computation time and search space because in this case, only the voxels in the proximity 

of the heart surface require vessel segmentation. This prior information can be obtained 

based on landmark detection (e.g., aorta, lungs, rib cage, plaques, and/or carina region), 

mathematical morphology techniques (e.g. blur grey-level hit-or-miss transform) 

(Bouraoui, Ronse, Baruthio, Passat, & Germain, 2010), adaptive thresholding (Zhou et 

al., 2012), rigid registration of heart phantom, or estimating the elastic deformation of 

heart atlas. Furthermore, the usage of several atlases in a multi-atlas fashion by 

registration of all atlases and fusion of their results improves the segmentation results 

(Isgum et al., 2009). In some cases, initially, the atlas can be registered rigidly, and then 

non-rigid registration can be utilized (Isgum et al., 2009). Multi-label myocardium 

segmentation (e.g., left and right atriums and ventricle, and valves) and heart movement 

tracking can be done using different techniques such as 4D watershed-cut algorithm 

(Cousty et al., 2010) or automatic model-based mesh adaptation method (Ecabert et al., 

2011). 

Similar techniques can be utilized to the locate aorta or the coronary artery within 

the prior detected heart (Bouraoui et al., 2010). The rib cage can be removed by intensity 

thresholding and morphological closing (Wang & Smedby, 2010) or closing the anterior 
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or posterior mediastinum using 2D livewires with a cost function to attract the wire to the 

interior edge of the sternum and the azygoesophageal recess (Wang & Smedby, 2008). In 

cases that the heart atlas contains the major vessel segments as well, a vasculature model 

can be obtained from the atlas and fed into a region growing or level set model to obtain 

a precise vessel segmentation (Wang, Moreno, & Smedby, 2012).  

The blood flow volume and pattern measurements required for diagnosis and 

prognosis of cardiovascular diseases utilize semi-automated or fully-automated 

segmentation of thoracic vessels at different cardiac phases based on 2D or 3D PC-MR 

results in 3D or 4D flow tensors, respectively (Srichai, Lim, Wong, & Lee, 2009). Due to 

the variation between segmentation results caused by the heart movement and 

pathological issues, the atlas-based methods achieve reasonable results by registering an 

atlas to each imaging time point (Bustamante et al., 2015). Rather than utilizing the 

currently available atlases, atlases can be developed in a supervised fashion by learning 

the cardiovascular structures and geometries from a set of images (Peters et al., 2008) and 

then detecting the landmarks using methods such as simulated search (Peters, Ecabert, & 

Weese, 2005). 

2.5.2 Coronary arteries 

Coronary arteries supply blood to the heart, and any complication may lead to 

ischemia or heart attack. Many diagnosis and prognosis procedures depend heavily on the 

geometrical characteristic of the coronary arteries. 
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In cases that the heart is detected and located in the image (Zambal, Hladuvka, 

Kanitsar, & Bühler, 2008), searching algorithms such as cylindrical sampling and pattern 

fitting can be used to extract the coronary artery vessel tree in addition to handing the 

branching and terminations using by depth-first search and noise level estimation by 

Bayesian tracking (Schaap, Smal, Metz, van Walsum, & Niessen, 2007).  

The coronary artery images that capture both the lumen-intima and the external 

elastic membrane of adventitia boundaries (e.g., IVUS) require multilabel segmentations 

and can be done using the fast-marching method based on the textural gradients (Will, 

Hermes, Buhmann, & Puzicha, 2000) or the gray level gradient (Destrempes, Roy 

Cardinal, Allard, Tardif, & Cloutier, 2014). The front propagation of fast-marching 

method along the local vessel orientation can be constrained using a minimum path cost 

function (Garcia et al., 2013). 

The sub-resolution segmentation is essential for applications that require precise 

geometrical measurements such as vessel diameters or cross-section profiles for 

diagnoses or follow-up analyses such as computational fluid mechanics with high 

sensitivity to small geometrical variations. The methods based on coarse-to-fine fashion 

initially obtain a rough vessel segmentation and then adapt to segment the image with 

higher precision than the image resolution. For instance, non-linear regressions based on 

the image intensity variations along the radial direction result in a sub-resolution 

segmentation (Schaap et al., 2011).  
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2.5.3 Carotid arteries 

Carotid arteries are located in the neck and supply blood to the head and neck, 

mainly to the brain. Since the brain has a very low tolerance for blood flow disruption, 

occlusion or narrowing of carotid arteries may lead to a stroke. MRI is the standard 

method for the carotid atherosclerosis progression and regression visualization 

(Underhill, Hatsukami, Fayad, Fuster, & Yuan, 2010). Since BB-MRA and PC-MRA 

have higher SNR and are non-invasive compared to CTA and CE-MRA, and intensity 

and gradient information are crucial for carotid lumen segmentation, BB-MRA or PC-

MRA are good candidates for quantifying the carotid bifurcation geometries such as 

angle, area ratio, bulb size, and tortuosity that are correlated with the risk level of the 

atherosclerosis development (Thomas et al., 2005).  

Tang et al. (Tang et al., 2012) proposed utilizing Multispectral MRIs to accurately 

detect and measure carotid centerlines and geometries, specifically in the pathological 

conditions. Conversely, the use of local neighboring ray filtering in low-contrast images 

facilitate the vessel segments’ surface detection (Xie, Padgett, Biancardi, & Reeves, 

2014). Freiman et al. (Freiman et al., 2009) segmented the carotid arteries using graph 

min-cut method by considering edge weights based on adaptively coupling of voxel 

intensity, the intensity prior, and geometric vesselness shape prior. They applied a similar 

methodology to remove tiny vessel segments and fill vessel discontinuities caused by 

imaging artifacts. 

In cases that the multi-label carotid vessel segmentation (e.g., vessel wall and 

lumen vs. Background) is required, algorithms have utilized prior knowledge such as the 
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minimum and maximum separation between the wall and lumen, the segmentation 

smoothness, and the minimum distribution-based distances such as Bhattacharyya 

distance (Michailovich, Rathi, & Tannenbaum, 2007) between the label-based intensity 

distribution models and the intensity distribution of the segmented object (Ukwatta et al., 

2013). 

2.5.4 Abdominal aorta 

There will be more than 15 thousand deaths in the United States due to abdominal 

aortic aneurysm (Upchurch, Schaub, & others, 2006) and more than 3 million death 

worldwide due to abdominal organs with malignant tumors between 2014 and 2030 

(Maklad et al., 2017). Due to the asymptomatic nature of the abdominal aortic aneurysm, 

they are not noticeable until the aneurysm ruptures (Cornuz, Sidoti Pinto, Tevaearai, & 

Egger, 2004). Since the abdominal aorta is the largest human blood vessel, its rupture 

causes massive internal bleeding with a 90% mortality rate in non-hospitalized cases 

(Mozaffarian et al., 2016). 

Surgical planning for vasculature disruption and reconnection as well as 

percutaneous stent-graft deployment or medical diagnoses such as arterial occlusive 

disease or thromboembolism requires accurate knowledge of localizations and 

geometrical measurements of vasculature network and specifically abdominal aorta. 

Preprocessing steps such as the segmentation of kidneys, liver, and the abdominal part of 

the heart based on their morphological, textural, and geometrical information in addition 

to various bone structures segmentations and lastly postprocessing steps such as 4D 

curvature analysis (Maklad et al., 2017) facilitate the abdominal aorta segmentation task.  
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The 3D BB-MRI is the standard for the assessment and volumetric measurements 

of the abdominal aortic aneurysm and vessel lumens and walls and is more predictive of 

clinical outcomes (Zhu et al., 2014). Wang et al. (Wang et al., 2017) proposed the use of 

both CE-MRI and BB-MRI to perform different segmentation based on the mutual 

information and the geometric active contour using both image series and finally 

superimposing the final result by their registration results using deformation-based 

registration methods. Similarly, landmark-based registration methods based on the 

fiducial markers facilitate the superimposing step (Wörz et al., 2016). 

2.5.5 Ascending aorta, aortic arch, and descending aorta 

The aorta, the largest artery, begins with the ascending aorta from the left 

ventricle, reaches the aortic arch, and the continues to the descending aorta. The early 

detection of congenital aortic disease and consequently the aortic aneurysms and 

dissections are crucial. The SSFP-MRA (Potthast et al., 2010) has advantages compare 

to CTA and MRA, which have high risks of renal dysfunction for patients with 

forthcoming surgery, e.g., aortic endograft procedures, and with a high probability of 

coexistent cardiovascular and renovascular disease due to repeated diagnostic and 

prognostic imaging and exposure to ionizing radiation and nephrotoxic contrast agents 

(Neschis & Fairman, 2004). Nevertheless, low SNR of SSFP-MRA makes the vessel 

segmentation task more challenging, which can be tackled using the 3D model-based 

segmentation approach (Müller-Eschner et al., 2014; Worz et al., 2010). Since the two 

centerlines of ascending and descending aorta may not be spatially co-localized, post-
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processing or adapted cost function is required to guarantee the continuity of the 

centerlines (Zheng et al., 2013). 

Due to the prominent intensity of blood within the ascending aorta in CTA and 

MRA in addition to circular cross-section morphology, the segmentation task turns into 

the detection of a circular object in each slice. The optimal set of circles consists of one 

circle per slice and each circle has a high overlap with adjacent slices’ circles based on 

the competing fuzzy connectedness tree (Wang & Smedby, 2008) or virtual contrast 

injection method (Wang & Smedby, 2010). The precise perimeter of cross-sections can 

be obtained using region growing or level-set techniques.  

The outer aortic cross-sectional boundary can be segmented efficiently using a 

piecewise constant curvature within a polar-based segmentation model by utilizing the 

initial aortic centerline estimation to generate multiplanar reformatted image sequence 

(Deserno, Handels, Meinzer, & Tolxdorff, 2014). Similarly, the initial centerline 

estimation can be used as the seed points for the geodesic distance transformation and 

then using each segmented slice as the segmentation seed for the next adjacent slice (Jang 

et al., 2016). On the other hand, the prior knowledge of the ascending or descending aorta 

shape and morphology can be used to generate an atlas-based segmentation model (Seada, 

Hamad, & Mostafa, 2016). The temporal tracking of the centerline can be achieved using 

the Kalman filter, 3D elliptic cylinder vessel models, and longitudinal intensity-based 

motion determination (Biesdorf et al., 2011).  
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2.5.6 Aorta root 

The vessel segment between the heart and ascending aorta with aortic valve and 

the coronary arteries openings and its rupture lead to life-threatening internal bleeding. 

The localization of lung and the carina tracheae facilitate the detection of the beginning 

of the aorta root. Feuerstein et al. (Feuerstein, Kitasaka, & Mori, 2009) located a 

confiding mediastinal bounding box centered at the carina on the mediolateral axis and at 

the center of lungs bounding box on the anteroposterior and superior-inferior axes with 

width equal to half of the lung bounding box dimension along the mediolateral axis and 

the lung bounding box dimension along the anteroposterior and superior-inferior axes. 

Due to mediastinal anatomy, the aortic arch centerline can be detected using a series of 

circular Hough transforms (Dasgupta, Mukhopadhyay, Mehre, & Bhattacharyya, 2017; 

Feuerstein et al., 2009; S. Gao et al., 2017) and the result can be used to segment the aorta 

root precisely.  

The intensity-based elastic image registrations of an image to an aorta root atlas 

(Biesdorf et al., 2012) or a 3D parametric intensity model generated by convolving an 

ideal sharp 3D cylinder with another 3D cylinder, which was already convoluted with a 

3D Gaussian (Biesdorf, Worz, Tengg-Kobligk, & Rohr, 2009), facilitate the segmentation 

task. In contrast to the atlas-based models, the parametric intensity models do not require 

the prior knowledge of atlas and segmentation and produce the templates on-fly. The 

artifacts caused by calcifications with high intensities can be masked to improve the 

vascular segmentation accuracy (Elattar et al., 2014). 
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The severe aortic valve stenosis can be treated using the invasive transcatheter 

aortic valve implantation (TAVI) procedure. TAVI requires geometrical and 

morphological information extracted form C-arm CT images for surgery planning and 

operational guidance such as providing 3-D valve measurements and determining a 

proper C-arm angulation. Even though it has a lower image quality compared to CT and 

MRI, C-arm CT captures both 2D and 3D images and overlay the 3D Left Atrium model 

to the 2D fluoroscopy based on the intrinsic machine coordinate system, while it monitors 

the physiological status of the patient simultaneously (Gessat et al., 2009; John et al., 

2010; Y. Zheng, Yang, John, & Comaniciu, 2014). Since the complete aorta segregation 

is required (i.e., aortic root, ascending aorta, aortic arch, and descending aorta), Zheng et 

al. (Zheng et al., 2012) proposed marginal space learning method to localize objects based 

on their anatomical structures and estimates their scales and orientations.  

On the other hand, the atrial fibrillation can be treated using a minimally invasive 

catheter-based ablation surgery utilizing high radio-frequency energy to ablate the 

potential sources of abnormal electrical activities (e.g., the ostia of pulmonary veins). An 

overlay of electro-anatomical maps or real-time 2D fluoroscopic images on the 

segmented result of left atrium chamber, appendage, and pulmonary veins in ECG-gated 

MRI or CT images provide essential visual guidance during the surgery (Zheng et al., 

2014). In non-gated images, e.g., 3D US, users can define selecting end-diastolic and end-

systole in addition to some landmarks, e.g., mitral valve to segment both left atrium and 

ventricle (Almeida et al., 2014).  
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2.6 Disease state segmentation 

2.6.1 Intracranial aneurysm and BAVM 

An intracranial aneurysm is a pathological dilation of a cerebral artery within the 

Circle of Willis due to weakened vessel walls, and its rupture leads to subarachnoid 

hemorrhage (Brisman, Song, & Newell, 2006). CTA and 3D-RA are widely-used 

diagnoses and assessment imaging for intracranial aneurysm (Li et al., 2009). Also, non-

invasive modalities such as PC-MRA and TOF-MRA, which do not involve injections 

and radiations, are preferred for diagnosis and screening (Bogunović et al., 2011).  

For instance, CTA intracranial aneurysm images can be segmented using a level 

set segmentation method such as geodesic active surfaces (Caselles et al., 1997) by 

incorporating intensity, gradient magnitude, and intensity variance as different energy 

terms and a single manual seed point within the aneurysm (Firouzian et al., 2011). There 

are three ways to improve the geodesic active surfaces. First, the multiple-valued neuron 

classifiers reduce the region-based probability map computation cost (Aizenberg, 

Aizenberg, & Vandewalle, 2013). Second, utilizing the voxel-based feature scale 

selection enable the processing of multiscale images (Bogunović et al., 2011). Third, 

using image intensity standardization, the intensity dependency on the scanning machine 

can be compensated (Nyúl, Udupa, & others, 1999). On the other hand, because 2D DSA 

projections are the gold standard for geometrical measurements, Spiegel et al. (Spiegel, 

Redel, Struffert, Hornegger, & Doerfler, 2011) proposed a snake-based segmentation 

method for 3D DSA and validated their method by transforming their results into the 2D 

DSA domain.  
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The brain arteriovenous malformation (BAVM) is an abnormal direct connection 

and tangle, i.e., nidus, between arteries and veins without intermediate capillary bed 

(Byrne, 2005). 2D catheter DSA was the gold standard for diagnostic aneurysm detection 

(McKinney, Palmer, Truwit, Karagulle, & Teksam, 2008) before the introduction of 3D-

RA as the new gold standard (Rooij, Sprengers, Gast, Peluso, & Sluzewski, 2008). Even 

though DSA and 3D-RA are the standard techniques for the diagnosis and prognosis of 

BAVM (Friedlander, 2007), researchers explored various image sequences at different 

stages for the same purpose such as CCA, CTA, TOF-MRA, and PC-MRA (Byrne, 2005; 

Gauvrit et al., 2006; Remonda et al., 2002; Sanelli, Mifsud, & Stieg, 2004).  

Microsurgery is the conventional treatment for BAVM with a diameter less than 

3 cm and endovascular embolization (Pik & Morgan, 2000), which requires precise 

location and geometry of BAVM. Sarieddeen et al. (Sarieddeen et al., 2013) compared 

KM, FCM, and EM for the BAVM vascular segmentation. They reported similar 

accuracy across the three methods and the lowest computation time for KM.  

2.6.2 Interstitial lung diseases 

Lung diseases are the third-leading cause of death in the United States. Interstitial 

lung diseases (ILD) is a large group of parenchymal lung disorders with unpredictable 

clinical courses and high mortality rates (Demedts et al., 2001). For instance, the five-

year survival-rate of idiopathic pulmonary fibrosis (IPF), major ILD diseases, is about 

50% (Xu et al., 2006). The quantitative detection of pulmonary pathology based on 

various segmentations facilitates the ILD diagnosis and prognosis (Korfiatis, 

Kalogeropoulou, Karahaliou, Kazantzi, & Costaridou, 2011). The vessel segmentation 
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within the lung parenchyma field in the presence of abnormalities such as focal 

abnormalities (Li, Sone, & Doi, 2003) and pulmonary embolism (Zhou et al., 2007) is 

more challenging compared to healthy state (Shikata, McLennan, Hoffman, & Sonka, 

2009). For example, the pattern similarity between reticular patterns and vessel tree 

segments have similar patterns in lungs parenchyma affected by interstitial pneumonia 

(Manivila, 2014).  

2.6.3 Carotid diseases 

Precise severity assessment of carotid diseases is crucial for therapy assignment, 

which has been shown by the NASCET and ECST trials (European Carotid Surgery 

Trialists’ Collaborative Group and others, 1991; North American Symptomatic Carotid 

Endarterectomy Trial Collaborators, 1991). Accurate monitoring of carotid disease help 

patients with managing the risk of stroke given the fact that surgical or non-surgical 

treatment can prevent many strokes related to carotid atherosclerosis (Gorelick, 1994). 

There are two classic ways to assess carotid disease severity and monitor atherosclerosis 

progression: determine the degree of stenosis directly or assess the abnormalities in blood 

flow velocity indirectly. DSA is the gold standard, but it is invasive and may cause emboli 

formation during catheterization or adverse allergic reaction to the contrast agent. MRA 

is an alternative to DSA, but it has the risk of overestimating stenosis due to intravoxel 

phase dispersion. 

Doppler ultrasonography has been increasingly used clinically due to its non-

invasive property, albeit it is not able to visualize the details of plaque or its surface and 

has high intra- and inter-operator variabilities (Gill, Ladak, Steinman, & Fenster, 2000). 
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The development of 3D US with the ability to visualize plaque and its surface, as well as 

measure volume of stenosis and the actual atheroma, can better evaluate carotid disease 

severity and monitor stroke risk (Fenster & Downey, 1996). 3D US imaging is 

noninvasive and gives 3D information of internal organs and vessels, whose structure can 

be reconstructed by a 3D segmentation technique.  

2.6.4 Coronary artery disease 

Coronary artery disease (CAD) is one of the leading causes of death, and nearly 

one-third of the patients experienced a coronary episode will die in the same year 

(Mozaffarian et al., 2016). Even though the prevalence of CAD will increase by about 

18% by 2030, its mortality rates are decreased since the 1970s in part due to 

improvements in the clinical presentation patterns of acute myocardium infarction 

(Mozaffarian et al., 2016). IVUS captures cross-sectional image sequences of vessel walls 

and plaques by pulling-back a catheter inside arteries blood vessels, and it is the invasive 

gold standard for studying atherosclerotic diseases (Nissen & Yock, 2001). Invasive 

coronary angiography (ICA) in adjunction with fractional flow reserve (FFR) 

measurement is the reference standard for lesion-specific diagnosis of canary artery 

disease (CAD) (Min et al., 2012; Min, Shaw, & Berman, 2010). Even though coronary 

CTA as noninvasive imaging method facilitate visualization of CAD and correlates with 

ICA findings, it cannot capture the hemodynamic and consequently has low precision in 

ischemia causing obstructive stenosis detection (Meijboom et al., 2008; Schuijf & Bax, 

2008).  
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The narrowing or occlusion of the coronary artery (i.e., stenosis) due to the 

accumulation of calcium, fat, or cholesterol plaques (i.e., atherosclerosis) compromises 

the oxygen and nutrition delivery to the heart (i.e., ischemia). The atherosclerotic plaques 

are divided into two categories of stable vs. unstable based on their rupture possibility, 

and it may cause irreversible defects to the myocardium or myocardial infarction, (i.e., 

heart attack) (Kirişli et al., 2013). Therefore, the plaques and vessels identifications, 

classifications (e.g., types of plaques and vessels), and characterizations (e.g., 

segmentation and geometrical measurements), especially in the early stage, is 

indispensable. 

Frequently, non-vascular objects such as plaques, stent struts, and guide-wire 

require segmentation while causing artifacts on the vascular segmentation results. On the 

other hand, since most of the plaques occur near a bifurcation in the pathological cases, 

the plaque localization and identification can lead to landmark detections and allow an 

automatic region of interest detections and image to image registrations (Hemmati, 

Kamli-Asl, Talebpour, & Shirani, 2015). The external object localization (e.g., guide-

wire) is required to eliminate the caused shadow artifacts using different methods such as 

convex hull approaches (Tung, Shi, Silva, Edwards, & Rueckert, 2011). 

2.7 Conclusion  

Many medical practices and biomedical research projects focusing on the 

circulatory system depend profoundly on different imaging techniques and subsequently 

requires efficient image processing procedures to analyze images time- and cost-

effectively. Image segmentation and centerline extraction methods play an essential role 
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in most of the image processing pipeline. In this review, we examined these important 

tasks from different angles ranging from fundamental image segmentation methods to 

organ- and tissue-level vascular segmentation methods divided into the segments and 

networks in addition to the segmentation of pathological vasculatures.   
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CHAPTER 3  

DEEP CONVOLUTIONAL NEURAL NETWORKS FOR SEGMENTING 3D IN 

VIVO MULTIPHOTON IMAGES OF VASCULATURE IN ALZHEIMER DISEASE 

MOUSE MODELS  

 

3.1 Abstract 

The health and function of tissue rely on its vasculature network to provide 

reliable blood perfusion. Volumetric imaging approaches, such as multiphoton 

microscopy, are able to generate detailed 3D images of blood vessels that could contribute 

to our understanding of the role of vascular structure in normal physiology and in disease 

mechanisms. The segmentation of vessels, a core image analysis problem, is a bottleneck 

that has prevented the systematic comparison of 3D vascular architecture across 

experimental populations. We explored the use of convolutional neural networks to 

segment 3D vessels within volumetric in vivo images acquired by multiphoton 

microscopy. We evaluated different network architectures and machine learning 

techniques in the context of this segmentation problem. We show that our optimized 

convolutional neural network architecture with a customized loss function, which we call 

DeepVess, yielded a segmentation accuracy that was better than state-of-the-art methods, 

while also being orders of magnitude faster than the manual annotation. To explore the 

effects of aging and Alzheimer’s disease on capillaries, we applied DeepVess to 3D 

images of cortical blood vessels in young and old mouse models of Alzheimer’s disease 

and wild type littermates. We found little difference in the distribution of capillary 
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diameter or tortuosity between these groups but did note a decrease in the number of 

longer capillary segments (> 75µm) in aged animals as compared to young, in both wild 

type and Alzheimer’s disease mouse models. 

3.2 Introduction 

The performance of organs and tissues depend critically on the delivery of nutrients 

and removal of metabolic products by the vasculature. Blood flow deficits due to disease 

related factors or aging often leads to functional impairment [1]. In particular, the brain 

has essentially no energy reserve and relies on the vasculature to provide uninterrupted blood 

perfusion [2]. 

Multiple image modalities can be used to study vascular structure and dynamics, 

each offering tradeoffs between the smallest vessels that can be resolved and the volume of 

tissue that can be imaged. Recent work with several modalities, including photoacoustic 

microscopy [3], optical coherence tomography [4], and multiphoton microscopy (MPM) 

[5], enable individual capillaries to be resolved in 3D over volumes approaching 1 mm3 in 

living animals. The analysis of such images is one of the most critical and time-consuming 

tasks of this research, especially when it has to be done manually. 

For example, in our own work we investigated the mechanisms leading to reduced 

brain blood flow in mouse models of Alzheimer’s disease (AD), which required extracting 

topology from capillary networks each with ∼ 1, 000 vessels from dozens of animals. The 

manual tracing of these networks required ∼ 40× the time required to acquire the images, 

greatly slowing research progress [6]. The labor involved in such tasks limits our ability to 
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investigate the vital link between capillary function and many different diseases. Many 

studies have shown anatomical and physiological differences in microvasculature associated 

both with age and AD, such as changes in composition of large vessel walls’ smooth muscles 

[7], increased collagen VI in microvascular basement membranes and their thickening in AD 

[8], and age-associated reduction of microvascular plasticity and the ability of the vessels 

to respond appropriately to changes in metabolic demand [9]. 

In this paper, we consider the segmentation of vessels, a core image analysis 

problem that has received considerable attention [10, 11]. As in other segmentation and 

computer vision problems, in recent years deep neural networks (DNNs) have offered 

state-of-the-art performance [12]. DNN approaches often rely on formulating the problem 

as supervised classification (or regression), where a neural network model is trained on 

some (manually) labeled data. For a survey on deep learning in medical image analysis, 

see a recent review by Litjens et al. [12]. 

Here, we explore the use of a convolutional neural network (CNN) to segment 3D 

vessels within volumetric in vivo MPM images. In vivo MPM imaging of blood vessels 

has the advantage that it captures the size and shape of vessels without introducing 

artifacts from postmortem tissue processing. However, blood flow generates features 

which must be accommodated in the vessel segmentation. We conduct a thorough study 

of different network architectures and machine learning techniques in the context of this 

segmentation problem. We apply the final model, which we call DeepVess, on image 

stacks of cortical blood vessels in mouse models of AD and wild type (WT) littermates. 

Our experimental results show that DeepVess yields segmentation accuracy that is better 
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than current state-of-the-art, while being orders of magnitude faster than the manual 

annotation (20-30 hours manual work vs. 10 minutes computation time). The 

segmentation method developed in this work provides robust and efficient analysis which 

enabled us to quantify and compare capillary diameters and other vascular parameters 

from in vivo cortex images across multiple animals, with varying age as well as across 

WT mice and AD models. 

3.3 Related work 

Blood vessel segmentation is one of the most common and time-consuming tasks in 

biomedical image analysis. This problem can either be approached in 2D or 3D, depending 

on the specifics of the application and analytic technique. The most established blood vessel 

segmentation methods are developed for 2D retinography [13] and 3D CT/MRI [11]. 

Among segmentation methods, region-based methods are well-known for their 

simplicity and low computational cost [14]. For example, Yi et al. [15] developed a 3D 

region growing vessel segmentation method based on local cube tracking. In related 

work, Mille et al. [16] used a 3D parametric deformable model based on the explicit 

representation of a vessel tree to generate centerlines. In recent years, these traditional 

segmentation methods have become less popular and are considered to be limited in 

comparison to deep learning methods, because they require handcrafted filters, features, 

or logical rules and often yield lower accuracy. 

Today, in problems that are closely related to ours, various deep learning 

techniques dominate state-of-the-art. For instance, in a recent Kaggle challenge for 
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diabetic retinopathy detection within color fundus images, deep learning was used by 

most of the 661 participant teams, including the top four teams. Interestingly, those top 

four methods surpassed the average human accuracy. Subsequently, Gulshan et al. [17] 

adopted the Google Inception V3 network [18] for this task and reached the accuracy of 

seven ophthalmologists combined. For retinal blood vessel segmentation, Wu et al. [19] 

used a CNN-based approach to extract the entire connected vessel tree. Fu et al. [20] 

proposed to add a conditional random fields (CRF) to post-process the CNN segmentation 

output. They further improved their method by replacing the CRF with a recurrent neural 

network (RNN), which allows them to train the complete network in an end-to-end 

fashion [21]. Further, Maninis et al. [22] addressed retinal vessel and optic disc 

segmentation problems using one CNN network and could surpass the human expert. 

There are 3D capillary image datasets in mice [14] and human [23] that were 

segmented using traditional segmentation methods and have illustrated the scientific 

value of such information, but few such datasets are available. 

To the best of our knowledge, there are only two studies that used deep learning 

for our problem: vascular image analysis of multi-photon microscopy (MPM) images. 

The first one is by Teikari et al. [24] who proposed a hybrid 2D-3D CNN architecture to 

produce state-of-the-art vessel segmentation results in 3D microscopy images. The main 

limitation of their method was the use of 2D convolutions and 2D conditional random 

fields (CRF)s, which restrict the full exploitation of the information along the third 

dimension. The second study was conducted by Bates et al. [25], where the authors 

applied a convolutional long short-term memory RNN to extract 3D vascular centerlines 



 

 87 

of endothelial cells. Their approach was based on the U-net architecture [26], which is a 

well-known fully convolutional network [27] widely used for biomedical image 

segmentation. Bates and colleagues achieved state-of-the-art results in terms of centerline 

extraction; nevertheless, they reported that certain vessels in the images were combined 

in the automatic segmentation. Finally, we consider the 3D U-Net [28], which is the 

volumetric version of the U-net architecture [26] and is regarded by many as state-of-the-

art for microscopy image segmentation problems. 

3.4 Data and methods 

The proposed vasculature segmentation method for 3D in vivo MPM images, 

DeepVess, consists of (i) pre-processing to remove in vivo physiological motion artifacts 

due to respiration and heartbeat, (ii) applying a 3D CNN for binary segmentation of the 

vessel tree, and (iii) post-processing to remove artifacts such as network discontinuities 

and holes. 

3.4.1 Data 

3.4.1.1 Animals 

All animal procedures were approved by the Cornell University Institutional 

Animal Care and Use Committee and were performed under the guidance of the Cornell 

Center for Animal Resources and Education. We used double transgenic mice (B6.Cg-

Tg (APPswe, PSEN1dE9) 85Dbo/J, referred to as APP/PS1 mice) that express two human 

proteins associated with early onset AD, a chimeric mouse/human amyloid precursor 

protein (Mo/HuAPP695swe) and a mutant human presenilin1 (PS1-dE9), which is a 
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standard model of AD and typically develops amyloid-beta plaque deposition around 6 

months of age [29]. Littermate WT mice (C57BL/6) served as controls. Animals were of 

both sexes and ranged in age from 18 to 31 weeks for young mice and from 50 to 64 

weeks for the old mice (6 WT and 6 AD at each age, for a total of 24 mice). 

3.4.1.2 In vivo imaging of cortical vasculature 

We use a locally-designed multiphoton microscope [30] for in vivo imaging of 

the brain vasculature. Glass-covered craniotomies were prepared over parietal cortex, as 

described previously [6, 31, 32]. For cranial window implantation and imaging, mice 

were anesthetized with 3% isoflurane and then maintained on 1.5% isoflurane in 100% 

oxygen. Mice were injected with 0.05 mg/100g of mouse weight glycopyrrolate (Baxter 

Inc.) or 0.005 mg/100g atropine (intramuscular 54925-063-10, Med-Pharmex Inc.). At 

time of surgery as well as 1 and 2 days after mice received 0.025 mg/100g dexamethasone 

(subcutaneous 07-808-8194, Phoenix Pharm Inc.), and 0.5 mg/100g ketoprofen 

(intramuscular, Zoetis Inc.). Bupivacaine (0.1 ml, 0.125%, Hospira Inc.) was 

subcutaneously injected at the incision site. Animals were injected with 1 ml/100g mouse 

5% (w/v) glucose in normal saline subcutaneously every hour during imaging and 

surgery. Body temperature was maintained at 37oC with a feedback-controlled heating 

blanket (40-90-8D DC, FHC). Mice were euthanized with pentobarbital overdose after 

their last imaging session. 

We waited at least three weeks after the surgery before imaging to give time for 

the mild surgically-induced inflammation to subside. Windows typically remained clear 

for as long as 20 weeks. This technique allows us to map the architecture of the 
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vasculature throughout the top 500 µm of the cortex. Briefly, the blood plasma of an 

anesthetized mouse was labeled with an intravenous injection of Texas Red labeled 

dextran (70 KDa, Life Technologies). The two-photon excited fluorescence intensity was 

recorded while the position of the focus of a femtosecond laser pulse train was scanned 

throughout the brain, providing a three-dimensional image of the vasculature [30]. 

Imaging was done using 800-nm or 830-nm, 75-fs pulses from a Ti:Sapphire laser 

oscillator (MIRA HP, pumped by a Verdi-V18, or Vision S, Coherent). Lasers were 

scanned by galvonometric scanners and focused into the sample using a 1.0 NA, 20X 

water-immersion objective lens (Carl Zeiss, Inc.). Image stacks were acquired with 

645/45 nm (center wavelength/bandwidth) bandpass filters. The ScanImage software 

package [33] was used to control the whole system. Image stacks were taken with a range 

of magnifications resulting in lateral voxel sizes from 0.45 to 1.71 µm/pixel, but always 

1 µm in the axial direction. 

3.4.1.3 Expert annotation 

We implemented a protocol to facilitate the manual 3D segmentation task using 

ImageJ, an open-source image processing software package [34] (supplementary 

material). Two people, one expert and one less experienced, each manually segmented a 

motion artifact corrected (see below), 256 × 256 × 200 voxels (292 × 292 × 200 µm3) 

image from an AD mouse, independently, which took about 20 and 30 hours, 

respectively. The second annotator was trained by the expert and then had several months 

of practice prior to performing this task. These data were used to estimate inter-human 

segmentation variation. We treated the expert labels as the “gold standard” segmentation 
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and used the second annotator’s labels to compare variability in manual segmentation. 

All other comparisons were made with respect to the gold standard segmentation as the 

ground truth. This dataset was divided into independent (i.e., non-overlapping) training, 

validation, and testing sub-parts (50%-25%-25%), all spanning the entire depth of the 

stack. The training and validation datasets were used in the optimization of CNN 

architectures, while the test dataset was kept unused until the end of our architecture 

design optimization process and used for the final unbiased evaluation. We repeated this 

process 4 times, by varying the test data and thus effectively conducting 4-fold cross-

validation. We note that architecture optimization was only done in the first fold. 

Additionally, six independent 3D images (different mice and different voxel size) 

acquired by Cruz Hernandez et al. [6] were labeled by an expert to examine the 

generalization of DeepVess. The detailed properties of these images are in S3 Table. With 

this paper, we also have made all images and expert annotations publicly available at: 

https://doi.org/10.7298/X4FJ2F1D 

3.4.2 Preprocessing 

Motion artifacts caused by physiological movements are one of the major 

challenges for 3D segmentation of in vivo MPM images. Furthermore, global linear 

transformation models cannot compensate for the local nonuniform motion artifacts, for 

example, due to a breath occurring part way though the raster scanning for an MPM 

image. In this study, we adopted the non-rigid non-parametric diffeomorphic demons 

image registration tool implemented based on the work of Thirion [35] and Vercauteren 

et al. [36]. Our approach is to register each slice to the previous slice, starting from the 
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first slice as the fixed reference. The diffeomorphic demons algorithm aims to match the 

intensity values between the reference image and deformed image, where cost is 

computed as the mean squared error. The smoothness prior on the deformation field is 

implemented via an efficient Gaussian smoothing of gradient fields, and invertibility is 

ensured via concatenation of small deformations. This kernel is effectively encouraging 

the deformation field to be smooth, thus regularizing the ill-posed non-linear registration 

problem. Based on our experiments, a Gaussian kernel with the standard deviation of 1.3 

was chosen for the regularization of the registration algorithm. Next, in our pre-

processing steps, the 1-99% range of the image intensities in the input image patch were 

linearly mapped between 0 and 1, and the extreme 1% of voxels were clipped at 0 and 1. 

This step, we found, helps with generalizing the model to work well with images taken 

from other MPM platforms by adapting normalization parameters to the acquisition 

systems and image statistics utilizing most of the intensity rang. To facilitate comparison 

between different datasets, image volumes were resampled to have 1 µm3 voxel for 

comparisons. 

3.4.3 Convolutional neural network architectures 

Our aim in this work is to design a system that takes an input stack of images (in 

3D) and produces a segmentation of vessels as a binary volume of the same size. For this 

task, as we elaborate below, we explored different CNN architectures using validation 

performance as our guiding metric. Our baseline CNN architecture starts with a 3D input 

image patch (tile), which has 33 × 33 × 5 voxels (in x, y, and z directions). The first 

convolution layer uses a 7 × 7 × 5 voxel kernel with 32 features to capture 3D structural 
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information within the neighborhood of the targeted voxel. The output of this layer, 32 

nodes of 27 × 27 × 1 voxel images, enter a max pooling layer with a 2 × 2 kernel and 2 × 

2 strides. Another convolution layer with 5 × 5 × 1 kernel and 64 features, followed by a 

similar max pooling layer are then applied before the application of the fully connected 

dense layer with 1024 hidden nodes and dropout [37] with a probability value of 50%. 

The output is a two-node layer, which represents the probability that the pixel at the center 

of the input patch belongs to tissue vs. vessel. The CNN takes an input 3D patch and 

produces a segmentation label for the central voxel. All the convolution layers have a bias 

term and rectified linear unit (ReLU) as the element-wise nonlinear activation function. 

Starting from this baseline CNN architecture, we optimized the network architecture 

hyperparameters with a greedy algorithm. 

Different kernel sizes for the 3D convolution layers were explored in our 

experiments. Note that each choice in the architecture parameters (including the kernel 

size) corresponded to a different input patch size. As the validation results summarized 

in S1 Table indicate, the best performing baseline architecture had an input patch size of 

33 × 33 × 7. Based on this result we chose an input patch size of 33 × 33 × 7 as the optimal 

field of view (FOV) for segmentation. We then explored the effect of the number of 

convolutional and max pooling layers. As summarized in S2 Table, the best architecture 

had three 3D convolution layers with a 3 × 3 × 3 voxel kernel, a max pooling layer, 

followed by two convolution layers with a 3 × 3 voxel kernel, and a max pooling layer. 

The output of the last max pooling layer is reshaped to a fully-connected layer followed 

by a 1024-node fully-connected layer and the last fully-connected layer, which is 
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reshaped to the output patch size. Note that there is no difference in spatial resolution 

(i.e., voxel dimensions) between the input and output patches. 

Finally, we investigated the performance for different output patch sizes, ranging 

from 1 voxel to 5 × 5 × 5 voxels and found that performance was improved further when 

the output is the segmentation of the central 5 × 5 × 1 patch and not just a single voxel. 

A larger output area has the advantage of accounting for the structural relationship 

between adjacent voxels in their segmentation. The optimal CNN architecture scheme is 

shown in Figure 3.1. 
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Figure 3.1. The optimal 3D CNN architecture. 

The field of view (FOV), i.e. the input patch size is 33 × 33 × 7 voxels and the output is 

the segmentation of the 5 × 5 × 1 patch (region of interest, ROI) at the center of the 

patch. The convolution kernels are 3 × 3 × 3 voxels for all the layers and ReLU is 

used as the element-wise nonlinear activation function. The first three convolution 

layers have 32 channels and are followed by pooling. The second three convolution 

layers have 64 channels. The output of convolution layers is 5 × 5 × 1 voxels with 64 

channels, which is fed to a fully connected neural network with a 1024-node hidden 

layer. The final result has 5 × 5 × 1 voxels with two channels representing the 

probability of the foreground and background label associations. 
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3.4.4 Performance metrics 

There are different performance metrics to compare agreement between an 

automated segmentation method and a “ground truth” (GT) human annotation. In the 

context of binary segmentation, the foreground (F) will be the positive class, and the 

negative class will correspond to the background (B). Therefore, true positive (TP) can 

be measured as the total number of voxels where both the automatic and human 

segmentation labels are foreground. True Negative (TN), False Positive (FP) and False 

Negative (FN) can be defined in a similar fashion. 

Based on these, we can compute sensitivity and specificity. For example, 

sensitivity is the percentage of GT foreground voxels that are labeled by the automatic 

segmentation (ASeg) correctly. Mathematically, we have: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑃(𝑦 = 𝑓|𝐺𝑇 = 𝐹) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑃(𝑦 = 𝐵|𝐺𝑇 = 𝐵) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2) 

 The Dice coefficient (DC), Jaccard index (JI), and modified Hausdorff distance 

(MHD) are another set of commonly used segmentation performance metrics. JI is 

defined as the ratio between the number of voxels labeled as foreground by both GT and 

ASeg, to the total number of voxels that are called foreground by either GT and ASeg. 

DC is very similar to JI, except it values TP twice as much as FP and FN. JI and DC are 

useful metrics when the number of the foreground voxels is much less than background 
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and the detection accuracy of the foreground voxels is more important compared to 

background voxel detection, which is the case for 3D imaging of vasculature. 

𝐽𝐼 = 𝑃(𝑦 = 𝐹 ∩ 𝐹𝑇 = 𝐹|𝑦 = 𝐹 ∪ 𝐺𝑇 = 𝐹) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3) 

𝐷𝐶 =
2 𝐽𝐼

1 + 𝐽𝐼
=

2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

On the other hand, MHD [38] quantifies accuracy in terms of distances between 

boundaries, which might be appropriate when considering tubular structures. For each 

boundary point in image A (a ∈ A), the closest Euclidean distance (d(a, b) = ||a − b||2) to 

any boundary point inside image B (b ∈ B) is first calculated, d(a, B) = minb∈B ||a − b||2). 

This is then averaged over all boundary points in A: 
1

𝑁𝑎
∑ 𝑑(𝑎, B)𝑎∈A  [39]. MHD is then 

defined as: 

𝑀𝐻𝐷 = 𝑚𝑎𝑥 [∑ 𝑑(𝑎, B)

𝑎∈A

, ∑ 𝑑(𝑏, A)

𝑏∈B

] (5) 

𝑑(𝑎, B) = 𝑚𝑖𝑛𝑏∈B‖𝑎 − 𝑏‖2 (6) 

Note that in the segmentation setting, A and B can represent the foreground 

boundaries in the automatic and GT segmentations, respectively. Finally, we can compute 

the MHD on centerlines instead of boundaries, a metric we call MHD-CL. 
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3.4.5 Training and implementation details 

In training our segmentation algorithms, we used a customized cross-entropy loss 

function designed for our highly unbalanced datasets (where foreground voxels comprise 

only a small fraction of the volume), measured over all voxels but TN (i ∈ {TP, FP, FN}), 

defined as: 

𝐿𝑜𝑠𝑠 = ∑ −|𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)| 

i ∈ {TP,FP,FN }

 (7) 

yi is the GT label and pi is the model’s output as the probability of the target 

voxel i belonging to the foreground. Note that in Eq. (7), true negative voxels have no 

contribution, effectively reducing the influence of the dominant background. We trained 

our model using Adam stochastic optimization [40] with a learning rate of 10−4 for 100 

epochs during architecture exploration and a learning rate of 10−6 for 30,000 epochs during 

the fine tuning of model parameters for the proposed architecture with mini-batch size of 

1000 samples (based on GPU memory constraints and results of our experiments with 

smaller mini-batch size, which did not improve the optimization results). The fine tuning 

took one month on one NVIDIA TITAN X GPU. We implemented our models in Python 

using Tensorflow [41]. 

3.4.6 Post-processing 

CNN segmentation results contain some segmentation artifact such as holes inside 

the vessels, rough boundaries, or isolated small objects. In order to remove these artifacts, 

the holes within the vessels were filled. This was followed by application of a 3D mean 
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filter with a 3 × 3 × 3 voxel kernel and the removal of small foreground objects, e.g. 

smaller than 100 voxels. This result was used to compare to the gold standard. 

3.4.7 Analysis of vasculature centrelines 

To characterize the cortical vasculature of the experimental animals, we identified 

capillary segments by calculating centerlines from the segmented image data. Our 

centerline extraction method includes dilation and thinning operations, in addition to 

some centerline artifact removal steps. The binary segmentation image was first thinned 

using the algorithm developed by Lee et al. [42]. The result was then dilated using a 

spherical kernel with a radius of 5-voxels to improve the vessel connectivity, which was 

followed by mean filtering with a 3 × 3 × 3 voxel kernel and removing holes from each 

cross section. Next, a thinning step was applied again to obtain the new centerline result. 

The original segmented image was dilated using a spherical kernel with a radius of 1-

voxel to act as the mask for the centerlines with the goal of improving the centerline 

connectivity. The following rules were applied to the resulting centerlines repeatedly until 

no further changes could be done. A vessel is a segment between two bifurcations. 

1) Remove any vessels with one end not connected to the network (i.e., dead end) 

and with length smaller than 11 voxels. 

2) Remove single voxels connected to a junction. 

3) Remove single voxels with no connections. 

4) Remove vessel loops with length of one or two voxels. 
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Finally, the centerline network representation (i.e. nodes, edges, and their 

properties) was extracted. (The centerline extraction was applied on both manual and 

automated segmentations.) 

3.5 Results 

We conducted a systematic evaluation of several network architecture parameters 

in order to optimize segmentation accuracy of images of mouse cortex vasculature from 

MPM. Features of in vivo MPM images include motion artifacts due to respiration and 

heartbeat. Because vessels are visualized by an injection of dye that labels the blood 

plasma, unlabeled red blood cells appear as dark spots and streaks moving through the 

vessel lumen (arrows in Figure 3.2). Images are acquired by raster scanning through the 

tissue and each vessel is captured in several images. The imaging speed has a significant 

influence on these features and in in vivo experiments, imaging is often relatively slow, 

such that these features become prominent [43]. We emphasize that our exploration was 

based on performance on the validation dataset and the final results presented reflect the 

model accuracy on an independent test dataset. The detailed performance results for some 

of the tested architectures are reported in Table S 3.1 and Table S 3.2. The optimal 

architecture, DeepVess, was trained on the training data until the model accuracy stopped 

improving and no overfitting was observed (30,000 epochs). Figure S1 shows the JI 

learning curve over 30,000 epochs, for training, validation, and test datasets. The constant 

gap between JI of the training and validation datasets, which represent generalization 

error, confirms that we are not strongly overfitting. 
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Figure 3.2. In vivo MPM images of a capillary.  

Because MPM images are acquire by raster scanning, images at different depths (z) 

are acquired with a time lag (t). Unlabeled red blood cells moving through the lumen 

cause dark spots and streaks and result in variable patterns within a single vessel. 

 

Furthermore, we implemented two state-of-the-art methods [24, 28], and an 

improved version of the method of Teikari et al. [24], where we changed the 2D 

convolutional kernels into 3D kernels and inserted a fully connected neural network layer 

at the end, based on the suggestion in the discussion of their paper. Table 3.1 summarizes 

the comparison between the performance of our optimal architecture based on the 4-fold 

cross-validation results, with and without the post-processing step, comparing to two 

state-of-the-art methods and a second human annotator to provide a measure of the inter-

human variability. These results, as well as Figure S1 demonstrate that DeepVess 

outperforms the state-of-the-art methods [24, 28] in terms of sensitivity, Dice index, 

Jaccard index, and boundary modified Hausdorff distance; and approaches human 

performance in terms of Dice and Jaccard. The proposed method does not outperform the 

benchmarks in specificity, indicating a slightly higher rate of false positive voxels. Yet 

we note that the relatively lower specificity is still very high (97%). 
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Table 3-1. The comparison of our proposed CNN architecture (DeepVess), 

manual annotation by a trained person, and two state-of-the-art methods [24, 28] to 

the gold standard of the expert human annotation based on the 4-fold cross-

validation results. DeepVess surpassed both human annotator and two state-of-the-

art methods in terms of sensitivity as well as Dice index, Jaccard index, and 

boundary modified Hausdorff distance, which are the three metrics that are widely 

used in segmentation. 

 

Sensitivity Specificity Dice Jaccard MHD 

Second human annotator 81.07% 98.70% 82.35% 70.40% 1.50 

Original Teikari et al. [24] 62.44% 98.65% 69.69% 55.06% 3.20 

Ç içek et al. [28] 70.01% 98.21% 72.69% 59.41% 3.55 

Improved [24] in this study 69.55% 98.39% 74.03% 59.96% 3.16 

DeepVess 89.91% 97.00% 81.62% 69.13% 2.26 

DeepVess with post-processing 89.95% 97.00% 81.63% 69.15% 2.25 

 

In MPM, the variation in the signal to noise as a function of imaging depth leads 

to changes in image quality between image slices. The performance of a segmentation 

method should therefore be assessed by analyzing slices separately. Figure 3.3 illustrates 

the boxplot of slice-wise Dice index values from the x-y planes within the 3D MPM 

image dataset. DeepVess had a higher Dice index values in comparison to the Teikari et 

al. and the trained annotator’s results. However, there was more variation compared to 

the other two results, which implies the possibility and need for further improvements. 
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Figure 3.3. Slice-wise Dice index of DeepVess vs. manual annotation  

by a trained person and the state-of-the-art methods [24, 28] compared to the gold 

standard of the expert human annotation. The central red mark is the median, and 

the top and bottom of the box is the third and first quartiles, respectively. The 

whiskers indicate the range of data. DeepVess has higher median value in 

comparison to the Teikari et al. [24], Cicek et al. [28], and the human annotator 

(Wilcoxon signed-rank test, p = 2.98e − 23, p = 2.59e − 32, and p = 2.8e − 28, 

respectively). 

 

The generalization of the model was studied by testing an independent dataset 

annotated by our expert consisting of 6 separate 3D MPM images acquired from 1 AD 

and 5 WT mice (Table S 3.3) and the results are summarized in Table S 3.4. DeepVess 

outperforms both the state-of-the-art methods [24, 28] on the second dataset in terms of 

sensitivity, Dice index, Jaccard index, and boundary MHD. Similar to the test dataset 

results, specificity was slightly lower. These results illustrate the generalization of our 

model on new MPM images with different image quality and captured from different 

mouse models and with different voxels sizes. Figure 3.4.A illustrates the image intensity 
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and three models overlaid on the image for a cross-section extracted from a 3D image 

from the independent dataset (Table S 3.4 #1). Figure 3.4.B-E are magnified version of 

three cases within Figure 3.4.A. The main sources of failure in the vessel segmentations 

of 3D in vivo MPM images are low SNR at deeper cross-sections (Figure 3.4.C) and 

unlabeled, moving red blood cells in the vessel lumen, which cause dark spots and streaks 

(Figure 3.4.B and D). The patchy segmentations due to unlabeled red blood cells result 

in unconnected and isolated vasculature centerlines and network. The DeepVess 

architecture has fully connected layers and thus might be exploiting some spatially 

varying properties of the signal (as in the variation of contrast as a function of depth) that 

a fully convolutional architecture such as U-Net might not be able to exploit. Elsewhere, 

in the absence of such difficulties, all three models segment the vessels largely accurately. 
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Figure 3.4. Comparison of DeepVess and the state-of-the-art methods  

[24, 28] in a 3D image cross-section obtained from an independent dataset (S4 Table 

#1) not used during the training. (A) An image frame with intensity in gray and 

overlay of segmentation from each method. (B-E) magnified view of four cases 

within A. The three models overlaid on the complete 3D image is made available 

online in Supplemental Materials. Scale bar is 50µm. 
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We next examined the quality of the vessel centerlines derived from the different 

segmentations. Using the centerline modified Hausdorff distance (CL MHD) as a 

centerline extraction accuracy metric, DeepVess (CL MHD [DeepVess] = 3.03) is 

substantially better than the state-of-the-art methods (CL MHD [Teikari et al.] = 3.72, CL 

MHD [Cicek et al.] = 6.13). But there is still room for improvement in terms of automatic 

centerline extraction as neither automatic methods yielded scores as good as the trained 

human annotator (CL MHD [human annotator] = 2.73). In order to test the accuracy of 

geometrical measurements, the vessel diameter, a sensitive metric, was selected. We 

measured the diameter of 100 vessels manually by averaging ten 2D measurements per 

vessel to compare with the DeepVess’s results (Figure S 3.2) We observed that there is 

no significant difference between manually measured diameters and DeepVess’s results 

(paired t-test, n = 100, p = 0.34). 

3.6 Discussion 

The segmentation of 3D vasculature images is a laborious task that slows down 

the progress of biomedical research and constrains the use of imaging in clinical practice. 

There has been significant research into tackling this problem via image analysis methods 

that reduce or eliminate human involvement. In this work, we presented a CNN approach, 

which surpasses the state-of-the-art vessel segmentation methods [24, 28] as well as a 

trained human annotator. The proposed algorithm, DeepVess, segments 3D in vivo 

vascular MPM images with more than ten million voxels in ten minutes on a single 
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NVIDIA TITAN X GPU, a task that takes 30 hours for a trained human annotator to 

complete manually. 

In order to characterize the performance of DeepVess, we compared the 

automated segmentation to an expert manual segmentation (Figure 3.5). Here, we 

visualized three slices with different qualities of segmentation results. The 3D rendering 

of the mouse brain vasculature shown in Fig 5 indicates the location of these top, middle, 

and bottom slices representing typical high, medium, and low segmentation quality, 

respectively. Top layers are very similar, and differences are visible at the bottom layers, 

which have low SNR. 

 

 

Figure 3.5. 3D rendering of (A) the expert’s manual and (B) DeepVess segmentation 

results.  

The top, middle, and bottom black plains correspond to the high, medium, and low-

quality examples, respectively, which are analyzed further in the Discussion (Fig 6). 

Each volume is 256 × 256 × 200 voxels (292 × 292 × 200 µm3). 
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We used 50% dropout during test-time [44] and computed Shannon’s entropy for 

the segmentation prediction at each voxel to quantify the uncertainty in the automated 

segmentation. Higher entropy represents higher segmentation uncertainty at a particular 

voxel. The entropy results together with the comparison between DeepVess and the 

expert segmentations for those three planes are illustrated in Figure 3.6. The left column 

contains the intensity gray-scale images of these examples. The segmentation results of 

the DeepVess and the expert are superimposed on the original gray-scale image with red 

(DeepVess) and green (the expert), as shown in the middle column. Yellow represents 

agreement between DeepVess and the expert. The right column shows the entropy of each 

example estimated via test time dropout. We observe that, in general, DeepVess has 

higher uncertainty at the boundaries of vessels. The disagreement with ground truth is 

also mostly concentrated at the boundaries. Images from deeper within the brain tissue 

that often have lower image contrast and higher noise levels due to the nature of MPM, 

suffer from more segmentation errors. These images can often be challenging even for 

expert humans. Arrows in Figure 3.6.C highlight examples of these difficulties. The error 

example 1 illustrates the case where the expert ignored bright pixels around the vessel 

lumen based on their knowledge of the underlying physiology and experience with MPM 

images of brain that postulate a rounded lumen instead of a jittery and rough lumen, despite 

a very strong signal. The error example 2 illustrates a low intensity vessel junction that 

was judged to be an artifact by humans based on experience or information from other 

image planes. The error example 3 illustrates the case where a small vessel does not exhibit 

a strong signal and it is not connected to another major vessel. 
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Figure 3.6. Comparison of DeepVess and the gold standard human expert  

segmentation results in image planes as shown in Figure 3.5. Imaging is generally 

higher quality at planes closer to the sample surface. (Left column) Image intensity 

shown with gray scale after motion artifact removal. The dark spots within the 

vessels are red blood cells that do not take up the injected dye. (Middle column) 

Comparison between DeepVess (red) and the expert (green) segmentation results 

overlaid on images. Yellow shows agreement between the two segmentations. (Right 

column) Shannon entropy, which is a metric of DeepVess segmentation uncertainty 

computed with 50% dropout at test-time [44]. The boundaries of vessels with high 

entropy values, shown in warmer colors, demonstrate the uncertainty of DeepVess 

results at those locations. Scale bar is 50 µm.  
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DeepVess implements pre- and post-processing tools to deal with in vivo MPM 

images that suffer from different motion artifacts. DeepVess is freely available at 

https://github.com/mhaft/DeepVess and can be used immediately by researchers who use 

MPM for vasculature imaging. Also, our model can be fine-tuned further by adjusting the 

intensity normalization step to utilize a different part of the intensity range and training 

samples for other 3D vasiform structures or other imaging modalities. Similar to many 

machine learning solutions, DeepVess’ performance depends on specific image features 

and the performance will degrade in cases where the tissues are labeled differently (e.g. 

vessel walls are labeled instead of blood serum) or the images intensities are concentrated 

in a small portion of the intensity range. 

Although in vivo measurements present unique challenges to image segmentation, 

such as the red blood cell motion, in our case, we have shown that DeepVess successfully 

handles these challenges. Postmortem techniques all change the vessel diameters in the 

tissue processing. Hence, we believe that in vivo imaging is the best strategy to quantify 

vessel diameters. While features such as topology and length might not be affected by 

postmortem processing, in vivo imaging with MPM is important for capillary diameter 

measurements. Two-photon microscopy has been used to validate histology in many 

studies ([5, 14, 45–48]) and comparisons with other labeling techniques are quite 

common. 

While DeepVess offers very high accuracy in the problem we consider, there is 

room for further improvement and validation, in particular in the application to other 

vasiform structures and modalities. For example, other types of (e.g., non-convolutional) 
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architectures such as long short-term memory (LSTM) can be examined for this problem. 

Likewise, a combined approach that treats segmentation and centerline extraction 

methods together, such as the method proposed by Bates et al. [25] in a single complete 

end-to-end learning framework might achieve higher centerline accuracy levels. 

3.7 Application to Alzheimer’s mouse models 

3.7.1 Capillary alteration caused by aging and Alzheimer’s disease 

In vivo imaging with multiphoton microscopy of capillary beds is free of 

distortions in vessel structure caused by postmortem tissue processing that can result in 

artifacts such as altered diameters [5]. However, the images often suffer from poor signal 

to noise and motion artifacts. An additional challenge is that unlabeled, moving red blood 

cells in the vessel lumen cause dark spots and streaks that move over time. Disease models 

are often especially challenging because inflammation and tissue damage can further 

degrade imaging conditions. 

Strong correlations between vascular health, brain blood flow and AD suggest 

that mapping the microvascular network is critical to the understanding of cognitive 

health in aging [49]. To explore this question, we imaged the cortical vascular networks 

in young and old mouse models of AD (young AD and old AD) and their young and old 

WT littermates (young WT and old WT). Imaged volumes ranged from 230 × 230 to 600 

× 600 µm2 in x-y and 130 to 459 µm in the z direction. We imaged 6 animals per group, 

with at least 3000 capillary segments analyzed for each group. 
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The resulting 3D stacks of images were preprocessed, segmented with DeepVess, 

and post-processed as discussed in the previous sections. Centerlines were extracted, and 

individual vessel segments were identified. To analyze capillaries while excluding 

arterioles and venules, only vessel segments less than 10 µm in diameter were included 

[6, 50, 51]. For the vascular parameters of segment length, diameter, and tortuosity 

considered here, previous work has shown that AD mouse models have increased 

tortuosity in cortical penetrating arterioles as compared to WT mice [52, 53]. Our analysis 

of capillaries excluded these vessels. Three metrics were selected to characterize the 

vascular network. For each capillary segment, we calculated the diameter averaged along 

the length (Fig 7.A), the length (Figure 3.7.B), and the tortuosity, defined as the length 

divided by the Euclidean distance between the two ends (Figure w.7.C). The distributions 

of capillary diameter, length, and tortuosity varied little between young and old mice or 

between WT and AD genotype (Table 3.2). There were subtle shifts (∼ 0.25 µm) in the 

diameter distribution between groups, but no clear differences across old/young or 

WT/AD and the differences in means were small compared to the standard deviation (6-

27% of SD). However, we observed a decrease in the number of longer length (> 75µm) 

capillaries in older animals as compared to young in both WT and AD mice shown by a 

rightward shift in the cumulative distribution function curve (Figure w.7.B and Table 

3.2). 
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Figure 3.7. Comparison of capillaries between young and old mice with WT and AD 

genotype (6 mice in each group).  

The relative probability and cumulative distribution function (CDF) of the (A) 

diameters, (B) length, and (C) tortuosity based on all capillaries aggregated within 

each of the four groups. We compared these metrics between the groups using 

Kruskal-Wallis test followed by Bonferroni multiple comparison correction [54] 

(Table 3.2). 

 

Table 3-2. Comparison between metrics distributions between different groups  

using Kruskal-Wallis test followed by Bonferroni multiple comparison correction. 

∆µ is the difference between the mean values of the two tested groups. 

 

 

 

 

Diameter (µm) Length (µm) Tortuosity 

∆µ P-value ∆µ P-value ∆µ P-value 

AD-Old vs. AD-Young 0.206 2.61E-7 7.908 7.5E-22 0.016 0.798 

AD-Old vs. WT-Old 0.475 2.93E-27 2.787 0.055 0.019 0.645 

AD-Old vs. WT-Young 0.095 1.20E-5 16.16 6.9E-67 0.018 0.321 

AD-Young vs. WT-Old 0.269 6.39E-9 10.69 1.14E-27 0.035 0.027 

AD-Young vs. WT-Young 0.110 0.012 8.252 9.12E-17 1.50E-3 1.000 

WT-Old vs. WT-Young 0.379 1.1E-14 18.95 2.1E-63 0.037 0.036 
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3.7.2 Aging and Alzheimer’s disease have little effect on capillary characteristics 

Using a large database of vessel segments measured in three dimensions, we 

surprisingly found only very small differences between groups that were dwarfed by the 

variance in capillary diameter or tortuosity between young and old animals or between 

WT and AD mouse models. The automation provided by DeepVess enabled the 

evaluation across a very large number of vessels in a large group size. The strong 

agreement between the measurements based on DeepVess and the manual measurements 

by Cruz Hernandez et al. [6], confirms that the proposed pipeline yields unbiased and 

accurate metrics to analyze capillary segments. There was a decrease in the number of 

long capillary segments in the aged animals compared to young in both the WT and AD 

groups. Note that the reported metrics only represent the parietal region of cortex and that 

regional variability can affect our results. These finding may not generalize across all 

ages and mouse models of AD and could be different in other regions of the brain. 

Sonntag et al. [1] argue that changes in vasculature due to aging might be non-linear and 

multi-phasic. For instance, two studies showed that the capillary density increases during 

adulthood and then declines in more advanced age [55, 56]. As summarized in Table 3.3, 

several previous studies have characterized the average diameters of cortical capillaries 

in mice and showed high variability in results suggesting that methodological variations 

make comparison between studies difficult. Other studies that compared AD models and 

WT also found negligible or no difference in capillary diameters. Heinzer et al. compared 

a different mouse model (APP23) using MRA and found no difference between WT and 
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AD mice [57]. The same group also compared the effects of “VEGF overexpression” 

model and WT using SRµCT and also found little difference [58]. 

There are a wide range of imaging approaches used in these various studies and 

data from both live animal and postmortem analysis is included. It is possible that some 

of these differences emerge when tissues are processed rather than measured in vivo as 

was done here. Studies based on sectioned tissue sample the 3D vascular architecture 

differently so it is difficult to make direct comparisons between datasets. Measures of 

capillaries depend on the definition of capillaries. Here it was based on a threshold 

diameter of 10µm, which could explain some of the variability in the literature. Not 

surprisingly given the differences in approach and sample preparation, there is significant 

disagreement between reported average diameters. Some differences may, however, 

reflect differences in vasculature across strains and ages of animals.  

Therefore, the proposed fully automated objective segmentation of 3D in vivo 

images of the vasculature can be used to reduce the variability due to sample preparation 

and imaging/analysis approach, allowing such strain and age differences to be elucidated 

clearly. 
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Table 3-3. Comparison of measured mouse capillary diameters from different 

studies. 

 
Study 

 
Background 

 
Trans 

gene 

 
Phenotype 

Age 

(week) 

Imaging 

Modality 
Vessel 

Diameter 

This study C57/BL6 - WT 18-31 in vivo 2PEF 5.81 ± 1.62 

µm This study C57/BL6 - WT 50-64 in vivo 2PEF 6.19 ± 1.76 

µm This study C57/BL6 APP/PS1 AD 18-31 in vivo 2PEF 5.92 ± 1.76 

µm This study C57/BL6 APP/PS1 AD 50-64 in vivo 2PEF 5.71 ± 1.77 

µm 
 

Boero et al. [59] 
 

BALB/C 
 

- 
 

WT 
 

11 
postmortem 

optical imaging 
2.48 − 2.70 

µm 

Drew et al. [60] C57/BL6 - WT - in vivo 2PEF 2.9 ± 0.5 µm 
 

Blinder et al. [5] 
 

C57/BL6 
 

- 
 

WT 
 

- 
in vivo optical 

img., 

postmortem 2PEF 

2 − 5.3 µm 

Hall et al. [61] C57/BL6J NG2-

DsRed 

WT - in vivo 2PEF 4.4 ± 0.1 µm 

Gutierrez-Jiménez 

et al. [51] 

 
C57/BL6 

 
NTac 

 
WT 

 
13-15 

 
in vivo 2PEF 4.1 − 4.5 µm 

 
Cudmore et al. [62] 

 
C57/BL6 

Tie2-Cre 

:mTmG 

 
WT 

13-21, 

64, 97 

 
in vivo 2PEF 5.03 ± 1.18 

µm 
 

Meyer et al. [63] 
 

C57/BL6 
 

APP23 & 

- 

 
AD & WT 

 
12-108 

postmortem 

histology 
4 − 6 µm 

Tsai et al. [14] Swiss - WT - in vivo 2PEF 3.97 − 4.11 

µm Tsai et al. [14] C57/BL6 - WT - in vivo 2PEF 3.97 − 4.11 

µm Heinzer et al. [57] C57/BL6 APP23 WT 52 MRA 14 ± 5 µm 

Heinzer et al. [57] C57/BL6 APP23 AD 52 MRA 14 ± 5 µm 

Heinzer et al. [64] C57/BL6 APP23 AD 44 SRµCT 8.9 µm 

Heinzer et al. [58] C57/BL6 - WT 16 SRµCT 5.6 ± 27.9 µm 
 

Heinzer et al. [58] 
 

C57/BL6 
C3H/He:N

SE 

-

VEGF165

1 

 
other 

 
16 

 
SRµCT 5.5 ± 29.3 µm 

Serduc et al. [65] Swiss nude - WT 5 in vivo 2PEF 4 − 6 µm 

Vérant et al. [50] Swiss nude - WT 5 in vivo 2PEF 8.2 ± 1.4 µm 

 

3.8 Conclusions 

Here, we presented DeepVess, a 3D CNN segmentation method together with 

essential pre- and post-processing steps, to fully automate the vascular segmentation of 

3D in vivo MPM images of murine brain vasculature. DeepVess promises to expedite 

biomedical research on the differences in angioarchitecture and the impact of such 
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differences by removing the laborious, time consuming, and subjective manual 

segmentation task from the analysis pipelines in addition to elimination of subjective 

image analysis results. We hope the availability of our open source code and reported 

results will facilitate and motivate the adoption of this method by researchers and 

practitioners. 

3.9 Data availability statement 

All data underlying these findings is publicly available at Cornell’s eCommons 

online archive: https://doi.org/10.7298/X4FJ2F1D 

3.10 Declarations of interest 

none 

3.11 Supplementary materials 

3.11.1 Manual 3D segmentation protocol using ImageJ. 

First, we created a new hyper-stack (File menu → New) with 3D voxel size and 

bit depth similar to the original image (e.g. a 16-bit 1024 × 1024 × 500 voxel hyper-

stack). The original image and the new hyper-stack were then merged (Image menu → 

Color) into a multi-channel hyper-stack, which contained both the raw data and the 

segmentation results. On each image (in the x-y plane) the expert drew segmentation 

boundaries using the free hand tool and fill function (F key) while the second channel is 

selected using scrollbar. The Color Picker and Channels Tool (Image menu → Color) in 
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addition to the Reverse CZT option (Edit menu → Options → Miscellaneous) were used 

to expedite the segmentation process. 

 

Figure S 3.1. Jaccard as a measure of the model accuracy.  

The DeepVess results surpass the trained human annotator result at all three train, 

validation, and test datasets. The human annotator and DeepVess results are shown 

in dashed and solid lines respectively. The constant difference between DeepVess and 

the human annotator’s results confirm the avoidance of overfitting. 
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Figure S 3.2. The vessel diameters measured manually in comparison to the 

DeepVess’s results.  

There is no significant difference between two measurements (paired t-test, n = 100, 

p = 0.34). 

 

Table S 3-1. The results of investigating different field of view sizes. 
 

 

Architecture FOV 

N1 C 7x7x5 - P - C 5x5 - P - NN 33x33x5 

N2 C 7x7x9 - P - C 5x5 - P - NN 33x33x9 

N3 C 7x7x15 - P - C 5x5 - P - NN 33x33x15 

N4 C 7x7x31 - P - C 5x5 - P - NN 33x33x31 

N5 C 7x7x5 - P - C 5x5 - P - NN 85x85x5 

N6 C 7x7x7 - P - C 5x5 - P - NN 25x25x7 

N7 C 7x7x7 - P - C 5x5 - P - NN 33x33x7 

N8 C 7x7x7 - P - C 5x5 - P - NN 41x41x7 

N9 C 9x9x9 - P - C 5x5 - P - NN 41x41x9 
 

 

Sensitivity Specificity Dice Jaccard MHD 

N1 93.10% 98.15% 87.11% 77.17% 1.38 

N2 87.39% 98.87% 87.40% 77.62% 1.15 

N3 91.69% 98.31% 87.09% 77.13% 1.61 

N4 89.94% 98.21% 85.69% 74.96% 2.19 

N5 91.15% 98.23% 86.43% 76.11% 1.46 

N6 90.22% 98.61% 87.71% 78.11% 1.03 

N7 91.57% 98.49% 87.89% 78.40% 1.20 

N8 91.01% 98.34% 86.86% 76.77% 1.85 

N9 93.23% 97.61% 84.81% 73.63% 2.38 
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Table S 3-2. The results of investigating different architectures. 
 

 

Architecture FOV 

N10 C 7x7x7 - P - C 5x5 - P - 2*NN 33x33x7 

N11 3*C 3x3x3 - P - 3*C 3x3 - P - NN 33x33x7 

N12 4*C 5x5x5 - P - 3*C 5x5 - P - NN 41x41x9 

N13 4*C 3x3x3 - P - 3*C 3x3 - P - NN 41x41x9 

N14 C 7x7x7 - P - C 5x5x5 - P - NN 25x25x25 

N15 3*C 3x3x3 - P - 2*C 3x3x3 - P - NN 33x33x33 

N16 3*C 3x3x3 - P - 2*C 3x3 - P - NN 41x41x41 

N17 3*C 3x3x3 - P - 2*C 3x3 - P - NN 31x31x31 

N18 3*C 3x3x3 - P - 2*C 3x3 - P - NN 49x49x49 

N19 3*C 3x3x3 - P - 2*C 3x3 - P - NN 33x33x7 

N20 previous architecture for ROI 5x5 33x33x7 

N20P previous architecture+post proc. 33x33x7 
 

 

Sensitivity Specificity Dice Jaccard MHD 

N10 89.61% 98.33% 86.06% 75.53% 1.63 

N11 93.71% 97.83% 86.00% 75.44% 1.87 

N12 83.78% 98.68% 84.43% 73.05% 1.82 

N13 93.45% 98.15% 87.30% 77.46% 1.48 

N14 91.57% 98.49% 87.89% 78.40% 1.20 

N15 90.29% 98.40% 86.77% 76.63% 5.98 

N16 6.31% 93.76% 7.17% 3.72% 9.45 

N17 14.82% 85.51% 10.71% 5.66% 9.48 

N18 30.40% 72.32% 13.85% 7.44% 9.50 

N19 92.89% 98.31% 87.74% 78.15% 1.16 

N20 95.15% 98.40% 89.33% 80.71% 1.58 

N20P 95.09% 98.47% 89.65% 81.24% 1.04 
 

 

Table S 3-3. The properties of six 3D images not used for training acquired from 

different mice included in the second independent dataset. 

 

Image Size 

(voxel) 

Voxel Size 

(µm3) 

Z evaluation 

interval 

 

Background 
 

Trans gene 
 

Phenotype 

1 256 × 256 × 100 1.14 × 1.14 × 1 1 µm C57/BL6 APP/PS1 AD 

2 256 × 256 × 250 0.95 × 0.95 × 1 25 µm C57/BL6 APP/PS1 WT 

3 256 × 256 × 25 0.95 × 0.95 × 1 1 µm C57/BL6 APP/PS1 WT 

4 256 × 256 × 25 0.95 × 0.95 × 1 1 µm C57/BL6 APP/PS1 WT 

5 256 × 256 × 25 0.95 × 0.95 × 1 1 µm C57/BL6 APP/PS1 WT 

6 256 × 256 × 25 0.95 × 0.95 × 1 1 µm C57/BL6 APP/PS1 WT 
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Table S 3-4. The results of DeepVess and the state-of-the-art methods on the second 

independent dataset from subjects not used for the model training (S3 Table).  

DeepVess surpass both of them in terms of sensitivity, Dice index, Jaccard index, and 

boundary modified Hausdorff distance (MHD). 

 

Sensitivity Specificity Dice Jaccard MHD 

Teikari et al. [24] 67.7% 99.3% 74.9% 60.6% 1.73 

3D U-Net [28] 72.4% 99.3% 78.5% 64.9% 1.45 

DeepVess 85.5% 98.7% 83.5% 71.8% 1.41 
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CHAPTER 4  

NEUTROPHIL ADHESION IN BRAIN CAPILLARIES REDUCES CORTICAL 

BLOOD FLOW AND IMPAIRS MEMORY FUNCTION IN ALZHEIMER’S 

DISEASE MOUSE MODELS 

 

4.1 List of Haft-Javaherian’s contributions 

• Author contributions section (4.7) reads: “… MH., G.O. and Y.K. developed custom 

software for data analysis. M.H. developed custom machine learning algorithms for 

image segmentation. … . J.C.C.H., O.B., N.N. and C.B.S. wrote the paper with 

contributions from M.H., M.C.C., L.P., C.L., C.I. and S.L. All authors edited and 

commented on the manuscript.”  

• Figure 4.1: Panel E, F, and G 

• Figure 4.2: Panel D and E 

• Figure S 4.1: Panel A 

• Figure S 4.2: Panel A, B, C, D 

• Method Section: Quantification of capillary network topology and capillary segment 

stalling. 

• Method Section: Variations in quantification of capillary network topology and 

capillary segment stalling for 5xFAD mice 

• Method Section: Amyloid plaque segmentation and density analysis 
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4.2 Abstract 

Cerebral blood flow (CBF) reductions in Alzheimer’s disease (AD) patients and 

related mouse models have been recognized for decades, but the underlying mechanisms 

and resulting consequences on AD pathogenesis remain poorly understood. In APP/PS1 

and 5xFAD mice we found that an increased number of cortical capillaries had stalled 

blood flow as compared to wildtype animals, largely due to neutrophils that adhered in 

capillary segments and blocked blood flow. Administration of antibodies against the 

neutrophil marker Ly6G reduced the number of stalled capillaries, leading to an 

immediate increase in CBF and to rapidly improved performance in spatial and working 

memory tasks. This study identified a novel cellular mechanism that explains the majority 

of the CBF reduction seen in two mouse models of AD and demonstrated that improving 

CBF rapidly improved short-term memory function. Restoring cerebral perfusion by 

preventing neutrophil adhesion may provide a novel strategy for improving cognition in 

AD patients. 

4.3 Introduction 

Alzheimer’s disease (AD) is the most common form of dementia in the elderly, 

worldwide. AD is characterized by a rapid and progressive cognitive decline 

accompanied by several pathological features, such as the accumulation of amyloid-beta 

(A) plaques in brain tissue and along blood vessels as cerebral amyloid angiopathy, the 

hyperphosphorylation of tau proteins and formation of neurofibrillary tangles in neurons, 

increased density and activation of inflammatory cells, and ultimately the death of 

neurons and other brain cells1.  
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Vascular dysfunction is implicated in the pathogenesis of AD. Many of the 

primary risk factors for AD are associated with compromised vascular structure and 

function, such as obesity, diabetes, atherosclerosis, and hypertension2. Brain blood flow 

is also severely compromised in AD, with both patients with AD3-5 and mouse models of 

AD6-8, which express mutated genes that encode for amyloid precursor protein (APP), 

exhibiting cortical cerebral blood flow (cCBF) reductions of ~25% early in disease 

development. Several mechanisms for this hypoperfusion had been proposed including 

constriction of brain arterioles9, loss of vascular density10, and changes in neural activity 

patterns and/or in neurovascular coupling11,12, but a full understanding of the underlying 

mechanisms for CBF reduction in AD has not emerged.  

These large blood flow decreases could contribute to the cognitive symptoms of 

AD and drive disease progression. Cognitive functions, such as attention, were 

immediately impaired by CBF reductions of ~20% in healthy humans13. When CBF was 

chronically reduced by ~35% in wildtype (wt) mice, spatial memory deficits were 

observed, accompanied by pathological changes in the brain including increased 

inflammation14. In addition, impairing blood flow in AD mouse models led to an increase 

in A deposition, suggesting that blood flow deficits can worsen A pathology14,15. These 

data suggest that the decreased CBF in AD likely contributes to both the cognitive 

dysfunction and to disease progression.  

Because CBF reductions have been a recognized and important aspect of AD, yet 

have not been well explained, we sought to uncover the cellular basis for these flow 

reductions in the APP/PS1 and 5xFAD mouse models of APP overexpression.  
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4.4 Results 

To investigate cortical hypoperfusion in AD, we used in vivo two-photon excited 

fluorescence (2PEF) microscopy to image the cortical vasculature in APP/PS1 mice16 

(Fig. 4.1.a) and looked for occluded vessels (Figure 4.1.b). We observed no obstructions 

in arterioles or venules, but about 1.8% of capillaries in APP/PS1 mice had stalled blood 

flow, while age- and sex-matched, wt littermates had 0.4% of capillaries not flowing 

(Figure 4.1.c, video S 4.1 and S 4.2). The number of stalled capillaries was elevated by 

12 weeks of age in APP/PS1 mice and remained elevated throughout disease progression 

(Figure 4.1.d). Flowing and stalled capillaries (Figure 4.1.e) had about the same distance 

distribution relative to the nearest penetrating arteriole (Figure 4.1.f) or ascending venule 

(Figure 4.1.g). The incidence of capillary stalling did not increase with Aβ plaque density 

(Figure S 4.1a) and was the same in awake and anesthetized animals (video S 4.3 and S 

4.4; Figure S 4.1.b). Capillary stalling was similarly elevated in 5-6 month old 5xFAD 

(Figure S 4.2.a) and 10-13 month old TgCRND8 mice17 (Figure S 4.3), two different 

mouse model of APP overexpression.  
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Figure 4.1. 2PEF imaging of mouse cortical vasculature revealed a higher fraction of 

plugged capillaries in APP/PS1 mice.  

(a) Rendering of 2PEF image stack of cortical vasculature (red; Texas Red dextran) 

and amyloid deposits (white; methoxy-X04). (b) Individual brain capillaries were 

scored as flowing or stalled based on the motion of unlabeled blood cells (black) 

within the fluorescently labeled blood plasma (red). (c) Fraction of capillaries with 

stalled blood flow in APP/PS1 and wt mice. (APP/PS1: n = 28 mice (7 female, 21 

male), ~22,400 capillaries, and wt: n = 12 mice (10 female, 2 male), ~9,600 capillaries; 

Two-tailed Mann-Whitney, p=6.8 X 10-9; Boxplot: whiskers extend 1.5 times the 

difference between the value of the 75th and 25th percentile, median=black line and 

mean= red line.) (d) same data in c shown as a function of animal age. Each data 

point represents the fraction of capillaries stalled in one mouse, with a minimum of 

800 capillaries scored per mouse. Curves represent sliding averages with a 10-week 

window and shaded areas represent 95% confidence intervals. Data from one 

outlier mouse not shown in c and d: APP/PS1, 42 weeks, 4.4% stalled. (e) Tracing of 

the vascular network in panel a, with stalled capillaries indicated in brown. (f) and (g) 

Histograms showing the topological location of flowing and stalled capillaries in 

APP/PS1 mice relative to the nearest penetrating arteriole and ascending venule, 

respectively (n = 8 mice (5 female, 3 male), 120 stalled and ~8,700 flowing capillaries).  
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Using labeling strategies to distinguish leukocytes, platelets, and RBCs (Figure 

4.2.a), we found the majority of stalled capillary segments in APP/PS1 mice contained a 

leukocyte, sometimes with and sometimes without one or more RBCs also present in the 

capillary segment (Figure 4.2.b). We injected a low dose of fluorescently labeled 

antibodies against Ly6G, a neutrophil surface marker (0.1 mg/kg animal weight, 

intravenous), and found that the vast majority of capillary stalls had a labeled cell present 

(Figure 4.2.c; 26 of 30 identified capillary stalls across four mice were labeled). Stalled 

capillaries had a modestly smaller average diameter than flowing capillaries (Figure 

4.2.d), but no difference in the density of nearby Aβ deposits (Figure 4.2.e). Most plugged 

capillaries were transiently stalled with a half-life of less than 5 min, while one-third 

remained stalled for 15 min and 10% began flowing and then re-stalled within 15 min 

(Figure 4.2.f; Figure S 4.4). We also observed that some capillary segments alternated 

between flowing and stalled in repeated imaging sessions over weeks (Figure 4.2.g). The 

same capillaries were stalled across multiple imaging sessions about ten times as 

frequently as predicted by a statistical model that assumed each capillary had an equal 

probability of being stalled at any time point (Figure 4.2.h). Taken together, these data 

suggest that the capillary stalls were caused by leukocytes (likely neutrophils based on 

the specificity of Ly6G expression18) plugging a distinct subset of capillary segments.  
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Figure 4.2. Characterization of the cause, location, and dynamics of capillary 

occlusions in APP/PS1 mice.  

(a) 2PEF images of stalled capillaries that contained a leukocyte (LEU, left), platelet 

aggregates (PLT) and RBCs (center), or only RBCs (right), distinguished by 

fluorescent labels (red: Texas Red-labeled blood plasma; green: rhodamine 6G-

labeled leukocytes and platelets; blue: Hoechst-labeled leukocyte nuclei). (b) Fraction 

of stalled capillaries in APP/PS1 mice that contained LEU, one or more RBCs, and 

PLT, distinguishing cases of LEU only, LEU with one or more RBCs, PLT only, 

PLT with RBCs, and RBCs only (n = 6 mice (3 female, 3 male) and 106 stalls; error 

bars represent 95% confidence intervals based on binomial statistics.) (c) Projection 

of 2PEF image stack showing an anti-Ly6G labeled cell in a stalled capillary (red: 

Texas Red-labeled blood plasma; green: anti-Ly6G-Alexa 488 (0.1 mg/kg animal 

weight, intravenous). (d) Histogram of the diameter of flowing and stalled capillaries 

in APP/PS1 mice (Averages: 5.80.84 µm (stalled), 6.31.1 µm (flowing) (meanSD);  
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Two-tailed Mann-Whitney, p=0.000020; n = 7 mice (4 female, 3 male), 116 stalled 

and ~8,400 flowing capillaries). (e) Violin plot of the density of amyloid deposits 

within tubes of different radii that followed the capillary centerline for flowing and 

stalled capillary segments in APP/PS1 mice (n = 7 mice (4 female, 3 male), 116 stalled 

and ~8,400 flowing capillaries). The vertical range of the violin plot represents the full 

range of measured values, while the width of the violin indicates the frequency of 

those values. The red (black) horizontal line indicates the mean (median) value. (f) 

Fraction of stalled capillaries that remained stalled (red), resumed flowing (green), or 

resumed flowing and then re-stalled (blue) over 15 minutes in APP/PS1 mice (n = 3 

mice (all male), 31 capillary segments). (g) 2PEF images of the same capillary 

alternately stalled (arrows) and flowing over several weeks (white: methoxy-X04). (h) 

Probability of an initially stalled capillary to be observed stalled again at any 

subsequent imaging time point, showing both real observations in APP/PS1 mice 

and predictions from a model that assumed each capillary had an equal probability 

of stalling at each time point (n=4 mice (2 female, 2 male), 49 stalled capillaries 

followed from the first imaging session).  
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We serendipitously found that administration of a much higher dose of 

fluorescently-labeled antibodies against Ly6G (α-Ly6G; 4 mg/kg animal weight, 

intraperitoneal) reduced the number of stalled capillaries within 10 min (Figure 4.3.a and 

Figure S 4.5). Isotype control (Iso-Ctr) antibodies did not impact capillary stalling. Using 

flow cytometry (Figure S 4.6.a) we found that α-Ly6G administration led to no change in 

the number of circulating neutrophils at three hours (Figure S 4.6.b) but did lead to ~50% 

depletion by six hours (Figure S 4.6.c) and near complete depletion by 24 hours (Figure 

4.6.d). Median volumetric blood flow in penetrating arterioles, measured using 2PEF 

(Figure 4.3.b) and characterizing blood flow into the cortex, increased by 26% in young 

(3-4 months) and 32% in aged (11-14 months) APP/PS1 mice one hour after α-Ly6G 

administration (Figure 4.3.c). This increase in penetrating arteriole blood flow was due 

to an increase in RBC speed and not an increase in vessel diameter (Figure S 4.7.a and 

b). Penetrating arterioles with lower baseline flow tended to show larger flow increases 

(Figure S 4.7.c). Iso-Ctr antibodies did not change penetrating arteriole blood flow in 

APP/PS1 mice, nor did α-Ly6G in wt animals (Figure S 4.3.c). We also used arterial spin 

labeled MRI (ASL-MRI) to measure cCBF in 7-9-month old animals (Figure 4.3.d). At 

baseline, average cCBF in APP/PS1 mice was 17% lower than in wt animals (Figure 

4.3.e). cCBF increased by 13% in APP/PS1 mice at ~5 hr after α-Ly6G administration, 

recovering about two-thirds of the deficit relative to wt animals, but was unchanged in 

APP/PS1 mice given Iso-Ctr antibodies or wt mice given α-Ly6G (Figure 4.3.e). To 

establish the timeline for these CBF increases, we used multi-exposure laser speckle 

contrast imaging to quantify changes in CBF over the first three hours after antibody 

administration in APP/PS1 mice. CBF increased within the first 10 min after α-Ly6G 
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administration and remained elevated over the three hours (Figure S 4.8). Isotype control 

antibodies did not lead to significant changes in CBF (Figure S 4.8). In 5-6-month-old 

5xFAD mice we also found that α-Ly6G administration led to a reduction in the number 

of stalled capillaries (Figure S 4.2.a) and an increase in blood flow in cortical penetrating 

arterioles (Figure S 4.2.b-d) within an hour. Thus, administration of α-Ly6G led to a rapid 

reduction in the number of capillary stalls that was accompanied by a rapid increase in 

cCBF in APP/PS1 and 5xFAD mice. In contrast, when antibodies against LFA-1 were 

administered to 11-13-month-old APP/PS1 mice, we did not observe a rapid decrease in 

the number of stalled capillaries. Instead, we found that capillary stalls were reduced, and 

penetrating arteriole blood flow was increased at one day after antibody injection, when 

circulating leukocytes had been depleted (Figure S 4.9). Across all antibody and control 

treatments in APP/PS1 mice, penetrating arteriole flows increased (decreased) when the 

number of stalled capillaries decreased (increased) (Figure S 4.9.g). 
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Figure 4.3. Administration of antibodies against Ly6G reduced the number of stalled 

capillaries and increased cCBF in APP/PS1 mice.  

(a) Number of capillaries with stalled blood flow ~1 hr after α-Ly6G or Iso-Ctr 

antibody administration (4 mg/kg animal weight, intraperitoneal) shown as a 

fraction of the number of stalled capillaries at baseline in APP/PS1 mice (α-Ly6G: n 

= 6 mice (3 female, 3 male), ~4,800 capillaries; Iso-Ctr: n = 6 mice (5 female, 1 male), 

~4,800 capillaries; two-tailed Mann-Whitney, p=0.0004). (b) Projection of 2PEF 

image stack of brain surface vasculature, with surface (red lines) and penetrating 

(red dots) arterioles identified. For each penetrating arteriole, volumetric blood flow 

is indicated at baseline (left) and after α-Ly6G administration (right), along with the 

percentage of baseline flow. (c) Volumetric blood flow in penetrating arterioles 

measured 60-90 min after α-Ly6G or Iso-Ctr antibody administration in young and 

old APP/PS1 mice and wt control animals shown as a fraction of baseline arteriole 

flow (young APP/PS1 Iso-Ctr: n = 5 mice (1 female, 4 male), 32 arterioles; old 

APP/PS1 Iso-Ctr: n = 3 mice (1 female, 2 male), 18 arterioles; young wt α-Ly6G: n = 

5 mice (3 female, 2 male), 30 arterioles; young APP/PS1 α-Ly6G: n = 5 (2 female, 3  
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male), 33 arterioles; old APP/PS1 α-Ly6G: n = 3 mice (all male), 22 arterioles; one-

way Kruskal-Wallis ANOVA with post-hoc using Dunn’s multiple comparison 

correction: young wt α-Ly6G vs. young APP/PS1 α-Ly6G p = 0.0023; young 

APP/PS1 Iso-Ctr vs. young APP/PS1 α-Ly6G p = 0.0000012; old APP/PS1 Iso-Ctr 

vs. old APP/PS1 α-Ly6G p = 0.00055). (d) CBF map measured using ASL-MRI at 

baseline and ~5 hr after administration of α-Ly6G or Iso-Ctr antibodies in APP/PS1 

and wt mice. (e) cCBF measurements (ASL-MRI, inset indicates ROI on T2 MRI 

image) at baseline and ~5 hr after administration of α-Ly6G or Iso-Ctr antibodies in 

APP/PS1 and wt mice (wt α-Ly6G: n = 10 mice, APP/PS1 α-Ly6G: n = 10 mice, 

APP/PS1 Iso-Ctr: n = 10 mice; Ordinary one-way ANOVA with post hoc using 

Tukey’s multiple comparison correction to compare across groups: baseline wt α-

Ly6G vs. baseline APP/PS1 α-Ly6G p=0.011; baseline wt α-Ly6G vs. baseline 

APP/PS1 Iso-Ctr p=0.014; Paired t-test to compare baseline and after treatment 

within a group: baseline APP/PS1 α-Ly6G vs. after APP/PS1 α-Ly6G p=0.0058). All 

boxplots are defined as: whiskers extend 1.5 times the difference between the value of 

the 75th and 25th percentile, median=black line and mean= red line.  

 

 

  



 

 141 

We next tested whether α-Ly6G administration improves cognitive function in 

APP/PS1 (Figure 4.4.a) and 5xFAD mice. In the object replacement (OR) test of spatial 

short-term memory (Figure 4.4.b), a single dose of α-Ly6G in ~11-month old APP/PS1 

mice improved performance to the level of wt animals at 3 and 24 hours after 

administration (Figure 4.4.c; Figure S 4.10.a). APP/PS1 mice treated with Iso-Ctr 

antibodies showed no change, nor did wt animals with α-Ly6G (Figure 4.4.c). In ~ 6-

month-old 5xFAD mice, a single dose of α-Ly6G improved animal performance in the 

OR task at 24 hours, with this trend evident at 3 hours (Figure 4.11.a and b). Similarly, 

α-Ly6G improved performance of APP/PS1 and 5xFAD mice in the Y-maze test of 

working memory (Figure 4.4d, Figure S 4.10.b, and Figure S 4.11.c and d). We detected 

no improvement in sensory-motor function (balance beam walk, Figure S 4.12.a-d) nor 

in depression- and anxiety-like behavior (forced swim, Figure S 4.12.e) in APP/PS1 mice 

with α-Ly6G. To exclude an antibody specific effect we repeated the OR and Y-maze 

behavioral tests in another cohort of APP/PS1 mice before and after administration of α-

LFA-1 antibodies and found improved performance on both tests at 24 hours (Figure S 

4.13.a-d).  
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Figure 4.4. Administration of α-Ly6G improved short-term memory.  

(a) Experimental timeline for behavioral studies. (b) Tracking of mouse nose location 

from video recording during training and trial phases of OR task taken 3-5 hr after 

administration of α-Ly6G or Iso-Ctr antibodies in APP/PS1 mice (representative 

tracing maps). (c) Preference score in OR task and (d) spontaneous alternation in Y-

maze task for APP/PS1 and wt mice at baseline and at 3 hr and 24 hr after a single 

administration of α-Ly6G or Iso-Ctr antibodies, and after 4 weeks of treatment 

every three days. (e) Preference score in NOR task for APP/PS1 and wt mice at 

baseline and after 4 weeks of treatment every three days. (APP/PS1 Iso-Ctr: n=10 

mice (5 female, 5 female), APP/PS1 α-Ly6G: n=10 mice (5 female, 5 male), wt α-

Ly6G: n=11 mice (7 female, 4 male), wt Iso-Ctr: n=11 mice (8 female, 3 male); one-

way Kruskal-Wallis ANOVA with post-hoc using Dunn’s multiple comparison 

correction to compare across groups: Object replacement APP/PS1 4wk Iso-Ctr vs. 

α-Ly6G p=0.029; Y-maze APP/PS1 4wk Iso-Ctr vs. α-Ly6G p=0.037; Novel object 

APP/PS1 4wk Iso-Ctr vs. α-Ly6G p=0.038; Friedman one-way repeated measures 

non-parametric ANOVA to compare baseline and after treatment results within a 

group: Object replacement APP/PS1 α-Ly6G baseline vs. 3 h p=0.0055, baseline vs. 

24h p=0.016, baseline vs. 4wk p=0.045; Y-maze APP/PS1 α-Ly6G baseline vs. 24h 

p=0.13, baseline vs 4wk p=0.036; two-tailed Wilcoxon matched-pairs signed rank 

test to compare baseline and post-treatment with novel object APP/PS1 α-Ly6G 

baseline vs 4wk p=0.039.) All boxplots are defined as: whiskers extend 1.5 times the 

difference between the value of the 75th and 25th percentile, median=black line and 

mean= red line. All data in this figure represents the aggregation of two 

independently-conducted sets of behavioral experiments.  
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We continued to treat the APP/PS1 mice that received α-Ly6G with additional 

doses of α-Ly6G every three days for a month, resulting in depletion of neutrophils 

(Figure S 4.6.e). After this regimen, APP/PS1 mice exhibited short-term memory 

performance that matched wt animals in OR (Figure 4.4.c), Y-maze (Figure 4.4.d), and 

novel object recognition (NOR) (Figure 4.4.e; Figure S 4.10.c and d). We saw no 

improvement in sensory-motor function (Figure S 4.12.a-d) nor in depression- and 

anxiety-like behavior (Figure S 4.12.e).  

Because one of the clearance pathways for Aβ is through the vasculature19 we 

assessed whether improving cCBF with α-Ly6G decreases the concentration of Aβ 

monomers and aggregates. Using enzyme-linked immunosorbent assays (ELISAs) of 

brain extracts from the animals that received one month of antibody treatment, we found 

that α-Ly6G reduced the concentration of Aβ1-40 compared to Iso-Ctr antibodies (Figure 

4.5.a), while the concentration of Aβ1-42 (Figure 4.5.b) and aggregates of Aβ (Figure S 

4.14.d) remained unchanged. We saw no difference in the number and density of Aβ 

plaques between α-Ly6G and Iso-Ctr treated animals (Figure S 4.14.a – c).  
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Figure 4.5. Administration of α-Ly6G for one month decreased the concentration of 

Aβ1-40 in APP/PS1 mice.  

ELISA measurements of (a) Aβ1-40 and (b) Aβ1-42 monomer concentrations after 

4 weeks of treatment every three days (Iso-Ctr: n=6 mice (4 female, 2 male) and α-

Ly6G: n=7 mice (4 female, 3 male); two-tailed Mann-Whitney p=0.0023). Boxplots 

are defined as: whiskers extend 1.5 times the difference between the value of the 75th 

and 25th percentile, median=black line and mean= red line. 

 

Finally, we addressed the question of how only ~2% of capillaries being stalled 

could explain the dramatic blood flow changes we observed after α-Ly6G administration. 

Because each occluded capillary decreases blood flow in up- and down-stream vessels20, 

a small number of stalled capillaries could have an outsized impact on CBF. To estimate 

the magnitude of this impact and to compare how the topology of the cortical capillary 

network influences the result, we simulated blood flow in vascular networks from a 1 

mm3 volume of mouse parietal cortex (Figure 4.6.a)21, a 6 mm3 volume of human cortex 

(Figure 4.6.b)22, and a synthetic periodic network of order three (Figure S 4.15.a) using a 

non-linear model of microvascular blood flow23 (see Supplementary Methods and 

Supplementary Note). cCBF decreased linearly with an increasing fraction of stalled 
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capillaries, without any threshold effect, across all three networks (Figure 4.6.c), 

demonstrating that, on average, each single capillary occlusion has a similar, and 

cumulative, impact on blood flow. Moreover, the slope of the CBF decrease with 

increasing capillary stalls was almost identical between the mouse, human, and artificial 

networks, suggesting that capillary stalling may impact CBF similarly across three-

dimensional capillary networks with three vessels connected at each node. Quantitatively, 

these simulations predicted a ~5% (10%) deficit in cCBF due to 2% (4%) of capillaries 

stalled (relative to the case with no capillary stalls), which is smaller than the increase in 

CBF we observed with 2PEF and ASL-MRI measurements after α-Ly6G administration.  

 

Figure 4.6. Simulations predicted a similar CBF decrease in mouse and human 

cortical capillary networks with increasing fraction of capillaries with stalled flow.  

Spatial maps of simulated blood flow changes caused by stalling of 2% of capillaries 

(indicated by purple spheres) in an mouse cortical vascular network (a, data on the 

structure and connectivity of murine cortical vascular network from 44), and a 

human network (b, data on the structure and connectivity of human cortical 

vascular network from 22). (c) Normalized cortical perfusion as a function of the 

fraction of capillaries that were occluded, expressed as a fraction of the perfusion 

with no occlusions, in mouse, human, and synthetic networks (data points represent 

the mean and error bars represent the SD across five independent simulations).  
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4.5 Discussion 

In this study, we aimed to uncover the cellular mechanisms contributing to 

reduced cCBF in AD and to determine the impact of this reduced cCBF on cognitive 

function. Brain blood flow reductions occur in the vast majority of dementia patients, 

including those with AD. These blood flow reductions are one of the earliest features of 

AD progression3,24. Mouse models that express mutant APP also show comparable 

reductions in CBF6-8.  

Previous studies have implicated a variety of potential mechanisms in the CBF 

reductions seen in AD. Amyloid beta monomers were found to drive vasoconstriction in 

brain arterioles that could contribute to a reduction in resting CBF9. In AD, there is a 

faster loss of vascular density with age, which could reduce cerebral perfusion10. In 

addition to decreases in baseline perfusion, the regulation of blood flow in the brain is 

compromised in AD. Vessel diameter changes in response to CO2 inhalation, blood 

pressure changes, and changes in local neural activity are all attenuated in AD patients 

and mouse models of APP overexpression25. This loss of dynamic regulation of cerebral 

blood flow could also contribute to cognitive impacts. Indeed, recent work showed that 

restoring cerebrovascular function, by angiotensin receptor inhibition or by reducing 

vascular oxidative stress, led to improved cognitive function12,26,27.  

Our data reveal that neutrophil plugging of individual capillary segments is a 

previously unrecognized mechanism that significantly contributes to the CBF reduction 

in AD mouse models. The rapid resolution of the capillary stalls after α-Ly6G treatment 

suggests the stalls are caused by receptor-mediated interactions of neutrophils with the 
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capillary endothelium28, likely due to increased endothelial inflammation. Ly6G has long 

been appreciated as a neutrophil-specific marker29. Consistent with our findings, it has 

recently been shown that inhibiting Ly6G signaling leads to decreased migration of 

neutrophils toward sites of inflammation by modulating 2-integrin-dependent 

adhesion28. There may, however, be other mechanisms that contribute to the reduction in 

capillary stalling after α-Ly6G treatment. We observed that stalled capillaries had a 

modestly smaller diameter, on average, than flowing capillaries and a receptor-mediated 

increase in the mechanical stiffness of neutrophils that was blocked by α-Ly6G might 

allow for easier deformation and passage of neutrophils through the narrowed 

capillaries30. While some mouse models of AD have shown severe alterations in the 

topology of the cortical vascular network, recent work has shown that there are relatively 

minor differences in the capillary density and tortuosity between APP/PS1 and wt mice, 

suggesting differences in vascular structure likely do not underlie the increase in capillary 

stalling in APP/PS1 mice31,32. 

Capillary obstructions due to tissue inflammation have been observed in a variety 

of organ systems (typically at higher incidence than observed here) and have been shown 

to contribute to the pathology and disease development33-39. Inflammation is a persistent 

and well-recognized feature of AD and previous work has demonstrated an increase in 

inflammatory adhesion receptors on endothelial cells40-42, which likely underlies the 

capillary stalling we observed. A significant contributor to this inflammation is increased 

reactive oxygen species (ROS) induced by brain exposure to Aβ oligomeric aggregates26. 

These ROS cause a loss of cerebrovascular flow regulation and likely drive the expression 
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of leucocyte-binding receptors on the endothelial cell surface, such as ICAM1 and 

VCAM1. Our observation that some capillary segments were more likely to stall suggests 

that the underlying vascular inflammation may not be uniform.  

While here our focus has been on increased leukocyte adherence causing a subset 

of capillaries to be transiently stalled due to a firmly adhered leukocyte, this increased 

leukocyte adherence likely also contributes to slowed, but not stalled, flow in other 

capillary segments when a leukocyte is present. Our experimental approach does not 

enable us to readily detect such slowed vessels. Our simulations included only the impact 

of completely stalled vessels, which may have contributed to the model’s underestimation 

of the increase in CBF after α-Ly6G administration. However, the simulations predicted 

a similar sensitivity of brain blood flow to capillary stalling in humans and mice, 

suggesting that, if capillary stalling occurs in AD patients, significant blood flow 

improvements could be achieved.  

We observed spatial and working memory improvements within 24 hours after 

treatment with antibodies against Ly6G and/or LFA-1 in multiple mouse models of AD. 

The temporal correlation between reduced capillary stalling/blood flow increase and the 

improvement in cognitive function suggests that a mismatch between neuronal energy 

metabolism and delivery of energy substrates through blood flow contributes to the 

cognitive deficit in these AD mouse models.  

We also observed improved cognitive function after one month of treatment with 

α-Ly6G, which depletes neutrophils, in APP/PS1 mice, measured during the antibody 

therapy. Because of the persistent depletion of neutrophils during this treatment, we 
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expect that capillary stalling was reduced and brain blood flow increased throughout the 

month, including during cognitive testing, which likely contributed to the improved 

cognitive performance. In previous work by Zenaro, et al., treatment with antibodies that 

deplete neutrophils (α-GR-1, α-LFA-1, and α-Ly6G) for one month in multiple AD 

mouse models (3xTg and 5xFAD), remarkably, led to a persistent improvement in 

cognitive performance, measured a month after the end of antibody therapy42. This 

persistent improvement in cognitive function was attributed to a decrease in the number 

of neutrophils present in the brain parenchyma due to their antibody-mediated depletion 

and a resulting decrease in neuroinflammation, and it is likely this mechanism contributed 

to the improvement in cognitive performance we observed after one month of antibody 

therapy. Taken together, these studies show that neutrophil interactions in the vasculature 

and parenchyma of the brain play a crucial role in the impaired cognitive function 

observed in multiple mouse models of amyloid-beta overexpression.  

Without a firm understanding of the underlying mechanisms that caused reduced 

CBF in AD, no medical approach to increasing brain blood flow has been developed or 

tested in humans. In a limited series of experiments in severe AD patients, a piece of 

omentum, which is known to secrete angiogenic factors and encourage new vessel 

growth, was surgically placed on the surface of the brain. In the patients that showed an 

increased CBF as a result, there were signs of improved cognitive function5,43. 

Accordingly, improving CBF by interfering with neutrophil adhesion could be a 

promising therapeutic approach for AD.   
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4.9 Methods 

4.9.1 Animals and surgical preparation 

All animal procedures were approved by the Cornell Institutional Animal Care 

and Use Committee (protocol numbers: 2009-0043 and 2015-0029) and were performed 

under the guidance of the Cornell Center for Animal Resources and Education. We used 

adult transgenic mice as mouse models of AD, including the APP/PS1 line (B6.Cg-Tg 

(APPswe, PSEN1dE9) 85Dbo/J; MMRRC_034832-JAX, The Jackson Laboratory)45 and 

the 5xFAD line (B6SJL-Tg(APPSwFlLon,PSEN1 *M146L*L286V)6799Vas/Mmjax; 

MMRRC Stock No: 34840-JAX, The Jackson Laboratory)46. Littermate wild-type mice 

(C57BL/6) were used as controls. Animals were of both sexes and ranged in age from 12 

to 100 weeks.  

For cranial window implantation, mice were anesthetized under 3% isoflurane on 

a custom-built stereotactic surgery frame and then maintained on ~1.5% isoflurane in 

100% oxygen. Once unresponsive to a toe pinch, mice were given 0.05 mg per 100 g of 

mouse weight of glycopyrrolate (Baxter Inc.) or 0.005 mg/100 g of atropine (54925-063-

10, Med-Pharmex Inc.) to prevent lung secretions, 0.025 mg/100 g of dexamethasone 
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(07-808-8194, Phoenix Pharm Inc.) to reduce post-surgical inflammation, and 0.5 mg/100 

g of ketoprofen (Zoetis Inc.) to reduce post-surgical inflammation and provide post-

surgical analgesia. Glycopyrrolate and ketoprofen were injected intramuscularly, while 

atropine and dexamethasone were injected subcutaneously. Bupivacaine (0.1 ml, 0.125%) 

(Hospira Inc.) was subcutaneously administered at the incision site to provide a local 

nerve block. Animals were provided 1 ml per 100 g of mouse weight of 5% (w/v) glucose 

in normal saline subcutaneously every hour during the procedure. We used a thermometer 

and feedback-controlled heating blanket (40-90-8D DC, FHC) to maintain body 

temperature at 37 °C. The head was shaved and washed 3 times with alternating 70% 

(v/v) ethanol and iodine solutions (AgriLabs). A 6-mm diameter craniotomy was 

performed over the cerebral cortex using a high-speed drill (HP4-917-21, Fordom) using 

bits with diameters of 1.4, 0.9, 0.7, and 0.5 mm (Fine Science Tools) for different steps 

in the craniotomy procedure. The craniotomy was then covered with a sterile 8-mm 

diameter glass coverslip (11986309, Thermo Scientific), glued onto the remaining skull 

with cyanoacrylate adhesive (Loctite) and dental cement (Co-Oral-Ite Dental). All 

procedures were done using sterile technique.  

Once the craniotomy was completed, mice were returned to their cages and given 

injections of 0.025 mg/100 g of dexamethasone and 0.5 mg/100 g of ketoprofen 

subcutaneously 1 and 2 days after surgery, and all cages were placed over a heating pad 

during this period. Animals were given at least two weeks to recover from cranial window 

implantation before experimentation to minimize inflammation from the surgical 

procedure. Animals were excluded from further study if the clarity of the imaging window 

was insufficient for 2PEF imaging. 
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4.9.2 In vivo two-photon microscopy 

During imaging sessions, mice were anesthetized with 3% isoflurane, placed on a 

custom stereotactic frame, and were given glycopyrrolate or atropine and glucose as 

described above. During imaging, anesthesia was maintained with ~1.5% isoflurane in 

100% oxygen, with small adjustments to the isoflurane made to maintain the respiratory 

rate at ~1 Hz. The mouse was kept at 37 °C with a feedback-controlled heating pad. 

To fluorescently label the microvasculature, Texas Red dextran (40 μl, 2.5%, MW 

= 70,000 kDA, Thermo Fisher Scientific) in saline was injected retro-orbitally 

immediately prior to imaging. In some animals, amyloid beta (Aβ) deposits were labeled 

using methoxy-X0447. In early experiments using methoxy-X04 obtained directly from 

Prof. Klunk at the University of Pittsburgh, we retro-orbitally injected 40 µL of 1 mg/ml 

methoxy-X04 in 0.9% saline (adjusted to pH 12 with 0.1 N NaOH) immediately prior to 

imaging. In later experiments using methoxy-X04 available commercially from Tocris, 

we intraperitoneally injected methoxy-X04 (dissolved in DMSO at 100 mM) one day 

prior to imaging at a dose of 1 mg/100 g. We observed no obvious differences in the 

amyloid labeling between these two administration approaches. In some animals, 

leukocytes and blood platelets were labeled with a retro-orbital injection of Rhodamine 

6G (0.1 ml, 1 mg/ml in 0.9% saline, Acros Organics, Pure)38. Leukocytes were 

distinguished from blood platelets with a retro-orbital injection of Hoechst 33342 (50 μl, 

4.8 mg/ml in 0.9% saline, Thermo Fisher Scientific). Texas Red (and methoxy-X04, when 

given retro-orbitally) were dosed in a single syringe, while Rhodamine 6G and Hoechst 

were dosed together in a second syringe.  



 

 155 

Three-dimensional images of the cortical vasculature and measurement of red 

blood cell flow speeds in specific vessels were obtained via a custom-built two-photon 

excited fluorescence (2PEF) microscope. Imaging was done using 830-nm, 75-fs pulses 

from a Ti:Sapphire laser oscillator (MIRA HP pumped by a Verdi-V18 or Vision S, 

Coherent) and 900-nm, 75-fs pulses from a second Ti:Sapphire laser oscillator (Vision S, 

Coherent). Lasers were scanned by galvonometric scanners (1 frame/s) and focused into 

the sample using a 20× water-immersion objective lens for high-resolution imaging 

(numerical aperture (NA) = 1.0, Carl Zeiss Microscopy; or NA = 0.95, Olympus), or a 4× 

objective for mapping of the cortical surface vasculature (NA = 0.28, Olympus). The 

emitted fluorescence was detected on either a two-channel detection system or, for later 

data sets, on an upgraded four-channel detection system. On the two-channel system, the 

fluorescence was split by a 600-nm long pass dichroic and two successive image stacks 

were acquired first with 645/45 nm (center wavelength/bandwidth) and 575/25 nm 

bandpass filters to image Texas Red and Rhodamine 6G, respectively, and then with 

645/65 nm and 460/50 nm filters to image Texas Red and both methoxy-X04 and Hoescht 

(on the same channel), all under 830-nm excitation. On the four-channel system, a 

secondary long-pass dichroic at 520 nm was followed by tertiary long-pass dichroics at 

458 nm and one at either 562 or 605 nm. Emission was detected on four photomultiplier 

tubes through the following emission filters: 417/60 nm for Hoechst, 494/41 nm for 

methoxy-X04, 550/49 nm for Rhodamine 6G, and 641/75 nm for Texas Red. Laser 

excitation was 830 nm except when trying to image deep cortical tissue in animals where 

only Texas Red was present in which case 900-nm excitation was used. Laser scanning 

and data acquisition was controlled by ScanImage software48. To visualize the cortical 
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vasculature, stacks of images spaced by 1 μm axially were taken to a cortical depth of 

300-500 μm.  

For imaging of neutrophils labeled with anti-Ly6G antibodies labeled with 

Alexa488, imaging was performed on a custom-built 2PEF microscope at the Wellman 

Center for Photomedicine. In these animals, neutrophils were labeled with a tail vein 

injection of anti-Ly6G-Alexa 488 (0.1 mg/kg animal weight, 127626-Biolegend) at the 

same time as the labeling of blood plasma with Texas Red dextran. Imaging was done 

using 750-nm, 80-fs pulses from a Ti:Sapphire laser oscillator (Spectra-Physics Mai Tai). 

The laser beam was scanned by polygon scanners (30 frames/s) and focused into the 

sample using a 40x water-immersion objective lens for high-resolution imaging (NA = 

0.80, Olympus), or a 10x objective for mapping of the cortical surface vasculature (NA 

= 0.30, Olympus). The emitted fluorescence was detected on photomultiplier tubes 

through the following emission filters: 525/50 nm for Alexa-488 and 605/50 nm for Texas 

Red. Laser scanning and data acquisition was controlled by custom built software. Stacks 

of images spaced by 1 μm axially were taken to a cortical depth of 100-200 μm. 

4.9.3 Quantification of capillary network topology and capillary segment stalling 

The 2PEF images of vascular networks were manually traced in three-dimensions 

to create a vectorized skeleton that represents the cortical vasculature using custom-

written tracing software. The researchers producing these tracings were blinded to the 

genotype of the animal and any treatment it had received. Volumes of these image stacks 

where vessels could not be readily identified and traced were excluded from all analysis. 

These regions were typically deep and near the edges of the imaged volume, or 
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occasionally directly underneath a large surface vessel. Vessel segments were classified 

as surface and penetrating arterioles, capillaries, or ascending and surface venules. All 

vessels smaller than 10 µm in diameter were classed as capillaries. Large surface 

arterioles were distinguished from large surface venules based on morphology (arterioles 

were smaller diameter, had smoother walls and less tortuosity, and tended to branch more 

symmetrically and in Y-shape junctions as compared to venules). Other arterioles or 

venules were classed by tracing their connectivity to these readily identifiable large 

vessels.  

Each capillary segment in these images was then manually classed as either 

flowing or stalled based on the motion of RBCs during the entire time each capillary was 

visible in the 3D image stack. The Texas Red dextran labels the blood plasma, but not the 

blood cells, so RBCs and other blood cells show up as dark patches in the vessel lumen. 

The motion of these dark patches indicates flowing blood cells. Each capillary segment 

was visible in a minimum of ~5 successive frames in the 3D image stack, or for ~5 s 

(capillaries not oriented parallel to the cortical surface were observed for significantly 

more frames). We scored a capillary segment as stalled if we did not see motion of the 

RBCs and other cells in the capillary segment over this observation time. This manual 

scoring of capillaries as flowing or stalled was performed with the researcher blinded to 

the genotype and treatment status of the animal. In addition, this scoring was performed 

using only the image data visible on the Texas Red imaging channel. All animals included 

in our analysis had at least 800 capillary segments scored as flowing or stalled. Animals 

with fewer characterized capillaries were excluded. 
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Using the traced vascular network, the topologically shortest path from each 

flowing or stalled capillary to the nearest penetrating arteriole and ascending 

venule was calculated using Dijkstra's algorithm49. 

4.9.4 Distinguishing causes of capillary stalls 

In some animals, once capillary stalls were identified we used the additional 

fluorescent labels to determine what was blocking blood flow in the capillary segment. 

Stalled capillary segments with a cell-shaped object labeled with both Rhodamine 6G and 

Hoechst present were scored as having a leukocyte. Stalled segments with punctate 

objects labeled with Rhodamine 6G alone were scored as having platelet aggregates. 

Stalled capillary segments with only RBCs present were classed as RBC stalls. We 

determined what fraction of stalled capillaries had only a leukocyte, a leukocyte with one 

or more RBCs present, only platelet aggregates, platelet aggregates with RBCs, and only 

RBCs. With this labeling scheme, we were unable to reliably distinguish platelet 

aggregates when a leukocyte was present. Additional experiments used a low-dose of 

Alexa 488 labeled anti-Ly6G antibodies to assess the type of leukocyte associated with 

capillary stalls.  

We assessed if the diameter of flowing and stalled capillaries was different, on 

average. First, image stacks were linearly interpolated to have an isotropic 1 µm voxel 

size. To reduce the salt and pepper noise in the vascular images, we filtered using a 3D 5 

x 5 x 5 pixel Gaussian filter. We then corrected for unevenness in the image intensity by 

filtering the image (85 x 85 pixel sized mean filter) and subtracting this from the Gaussian 

filtered image. The resulting image was binarized using Otsu’s method50. Finally, objects 
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smaller than 1000 voxels were eliminated, where voxels were considered part of the same 

connected object whenever they shared at least a corner. We then used this binarized 

image to correct the manual tracing of the vasculature by shifting the centerline, so it was 

equidistant from the vessel boundaries (done within a 10-µm neighborhood to avoid 

confusion between neighboring capillaries). Every 5 µm along the centerline of each 

capillary segment, we estimated the vessel radius by finding the closest distance from the 

centerline to the vessel boundary. Measurements of less than 2 µm or more than 10 µm 

were excluded as they likely reflected imaging artifacts, and we averaged across all 

measurements for each capillary segment.  

4.9.5 Administration of antibodies against Ly6G or LFA-1 to interfere with capillary 

stalling 

We treated APP/PS1 and 5xFAD mice with intraperitoneal injections of 

monoclonal antibodies against lymphocyte antigen 6 complex, locus G (Ly6G) (α-Ly6G, 

clone 1A8, 4 mg/kg, BD Biosciences) or an isotype control antibody (Rat IgG2a, κ, 4 

mg/kg, BD Biosciences). In addition, APP/PS1 mice were treated with retroorbital or 

intraperitoneal injections of monoclonal antibodies against Lymphocyte Functional 

Antigen 1 (α-LFA-1; M17/4 clone, BD Biosciences; 4 mg/kg). The same cortical 

capillary bed was imaged in anesthetized mice immediately before and at 60-90 min after 

treatment. Mice were randomly assigned to receive treatment or isotype control 

antibodies and the experimenter was blinded to both mouse genotype and whether the 

antibody was the treatment or control during the experiment. Quantification of stalled 
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capillaries was performed by researchers blinded to imaging time, animal genotype, and 

treatment type.  

4.9.6 Behavior experiments 

All experiments were performed under red light in an isolated room. The position 

of the mouse’s nose was automatically traced by Viewer III software (Biobserve, Bonn, 

Germany). In addition to the automatic results obtained by Viewer III software, a blinded 

experimenter independently scored mouse behavior manually. Animals were taken into 

the behavior room one-hour prior to the experiment. Behavioral analysis was conducted 

at baseline and at 3 and 24 h after injection with α-Ly6G, α-LFA-1, or isotype control 

antibodies (IP 4 mg/kg). The α-Ly6G treated APP/PS1 mice were then treated every three 

days for four weeks (IP 2 mg/kg) and behavior experiments were repeated. The OR, Y-

maze, balance beam walk, and forced swim tests were performed at all time points. The 

NOR task was performed only at baseline and the 4-week time point to avoid animals 

becoming accustomed to the objects. For experiments with APP/PS1 mice and α-Ly6G, 

animals were ~11 months of age at the start of the experiment. For experiments with 

APP/PS1 mice and α-LFA-1, animals were 11-13 months of age. For experiments with 

5xFAD mice and α-Ly6G, animals were 5-6 months of age. Mice were randomly assigned 

to receive treatment or isotype control antibodies and the experimenter was blinded to 

both mouse genotype and whether the antibody was the treatment or control during the 

experiment. 
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4.9.6.1 Object replacement test:  

The object replacement (OR) task evaluated spatial memory performance. All 

objects used were first validated in a separate cohort of mice to ensure that no intrinsic 

preference or aversion was observed, and animals explored all objects similarly. 

Exploration time for the objects was defined as any time when there was physical contact 

with an object (whisking, sniffing, rearing on, or touching the object) or when the animal 

was oriented toward the object and the head was within 2 cm of the object. In trial 1, mice 

were allowed to explore two identical objects for 10 min in the arena and then returned 

to their home cage for 60 min. Mice were then returned to the testing arena for 3 min with 

one object moved to a novel location (trial 2). Care was taken to ensure that the change 

of placement alters both the intrinsic relationship between objects (e.g. a rotation of the 

moved object) and the position relative to internal visual cues (e.g. new location in the 

arena; one wall of testing arena had a pattern). At subsequent time points, new object 

positions and new pairs of objects (from the validated pool of objects) were used to 

maintain animal interest. In addition to using the tracking software to determine the object 

exploration times, the time spent at each object was manually scored by an independent 

experimenter who was blinded to the genotype and treatment. The preference score (%) 

for OR tasks was calculated as ([exploration time of the novel object]/[exploration time 

of both objects]) × 100 from the data in trial 2. Automated tracking and manual scoring 

yielded similar results across groups, so we report the automated tracking results.  
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4.9.6.2 Y-Maze:  

The Y-Maze task was used to measure working memory by quantifying 

spontaneous alternation between arms of the maze. The Y-maze consisted of three arms 

at 120° and was made of light grey plastic. Each arm was 6-cm wide and 36-cm long and 

had 12.5-cm high walls. The maze was cleaned with 70% ethanol after each mouse. A 

mouse was placed in the Y-maze and allowed to explore for 6 min. Mouse behavior was 

monitored, recorded, and analyzed using the Viewer software. A mouse was considered 

to have entered an arm if the whole body (except for the tail) entered the arm and to have 

exited if the whole body (except for the tail) exited the arm. If an animal consecutively 

entered three different arms, it was counted as an alternating trial. Because the maximum 

number of triads is the total number of arm entries minus 2, the spontaneous alternation 

score was calculated as (number of alternating triads)/(total number of arm entries − 2). 

4.9.6.3 Novel object recognition test:  

The novel object recognition (NOR) task measures recognition memory and 

is based on rodents’ innate preference for exploring novel objects. This test was 

conducted only in the animals at baseline and after 4 weeks of treatment. The testing 

approach was identical to the OR task, but with a novel object placed at the location 

of one of the initial objects in trial 2. To exclude preference bias for particular objects 

in the first trial one animal would see two of object A and another animal two of 

object B. In the second trial to test for preference for a novel object, both animals 

see one of object A and one of object B. For the repeat of the test at 4 weeks, we used 

new objects C and D. 
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4.9.7 ELISA assay 

After the conclusion of the behavior experiments, the APP/PS1 animals that had 

received α-Ly6G or isotype control antibodies every 3 days for a month were sacrificed 

by lethal injection of pentobarbital (5 mg/100 g). Brains were quickly extracted and 

divided along the centerline. One half was immersed in 4% paraformaldehyde in 

phosphate buffered saline (PBS) for later histological analysis and the other half was snap 

frozen in liquid nitrogen.  

The frozen APP/PS1 mouse hemi-brains (Iso-Ctr: n=6, 11.5-12.5 months old; α-

Ly6G: n=7, 11.5-12.5 months old) were weighed and homogenized in 1 ml PBS 

containing complete protease inhibitor (Roche Applied Science) and 1 mM AEBSF 

(Sigma) using a Dounce homogenizer. The homogenates were then sonicated and 

centrifuged at 14,000 g for 30 min at 4° C. The supernatant (PBS-soluble fraction) was 

removed and stored at −80° C. The pellet was re-dissolved in 0.5 ml 70% formic acid, 

sonicated, and centrifuged at 14,000 g for 30 min at 4° C, and the supernatant was 

removed and neutralized using 1M Tris buffer at pH 11. Protein concentration was 

measured in the PBS soluble fraction and the formic acid soluble fraction using the Pierce 

BCA Protein Assay (Thermo Fischer Scientific). The PBS soluble fraction extracts were 

diluted 1:5. Formic acid extracts were diluted 1:1 after neutralization. These brain extracts 

were analyzed by sandwich ELISA for Aβ1-40, Aβ1-42, and Aβ aggregates using 

commercial ELISA kits and following the manufacturer’s protocol (Aβ1-40: KHB3481; 

Aβ1-42: KHB3441; Aβ aggregates: KHB3491, Thermo Fisher Scientific). The Aβ 

concentration was calculated by comparing the sample absorbance with the absorbance 
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of known concentrations of synthetic Aβ1–40 and Aβ1–42 standards on the same plate. 

Data was acquired with a Synergy HT plate reader (Biotek) and analyzed using Gen5 

software (BioTek) and Prism (Graphpad).  

4.9.8 Statistical analysis 

Boxplots were created using Prism7 (GraphPad). The box extends between the 

values for the 25th and 75th percentile of the data. The whiskers extend 1.5 times the 

difference between the value of the 75th and 25th percentile of the data from the top and 

bottom of the box. Values lying outside the whiskers were defined as outliers and the 

mean was computed excluding these outliers. The median is indicated with a black 

horizontal line inside the box, while the mean is indicated with a red horizontal line. 

Violin plots were created using the statistical software package, R51.  

Data in all groups was tested for normality using D’Agostino-Pearson omnibus 

normality test. Parametric statistics were used only if the data in all groups in the 

comparison were normally distributed. The statistical significance of differences between 

multiple groups was determined using one-way analysis of variance (ANOVA) followed 

by Tukey’s multiple comparison correction for normally distributed data and using one-

way Kruskal-Wallis ANOVA followed by Dunn’s multiple comparison correction for 

data with a non-normal distribution. To compare baseline and post-treatment 

measurements at multiple time points with non-normal data, the Friedman one-way 

repeated measures non-parametric ANOVA followed by Dunn’s multiple comparison 

correction was used. Statistical comparisons between two groups were performed using 

the Student’s t test or paired t test for normally distributed data or using the Mann-
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Whitney test or Wilcoxon matched-pairs test for data with a non-normal distribution. P-

values smaller than 0.05 were considered statistically significant. All statistical analysis 

was performed using Prism7 (GraphPad). 

We use a standardized set of significance indicators across all figures in this 

manuscript. For comparisons between groups: *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. For matched comparisons before and after treatment: +p<0.05, ++p<0.01. 

Details of the groups compared, animal and capillary numbers, sex distributions, 

statistical tests, exact p-values, and explanatory notes for individual panels are included 

in the figure captions.  

4.9.9 Additional methodological details 

Additional information on the methods used in this study are available in the 

Supplementary Methods. 

4.9.10 Data availability  

The raw data reported in this manuscript are archived at 

https://doi.org/10.7298/9PR3-D773. 

4.9.11 Code availability  

Code for 3D tracing, vessel segmentation, analysis of linescan data, and 

determination of amyloid density around capillaries can be obtained by contacting NN or 

CBS. Code for simulation of blood flow in vascular networks can be obtained by 

contacting SL.   

https://doi.org/10.7298/9PR3-D773
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SUPPLEMENTARY MATERIALS 

4.10 Materials and methods  

4.10.1 Animals and surgical preparation 

All animal procedures were approved by the Cornell Institutional Animal Care 

and Use Committee and were performed under the guidance of the Cornell Center for 

Animal Resources and Education. We used adult transgenic mice as mouse models of 

AD, including the APP/PS1 line (B6.Cg-Tg (APPswe, PSEN1dE9) 85Dbo/J; 

MMRRC_034832-JAX, The Jackson Laboratory)45 and the 5xFAD line (B6SJL-

Tg(APPSwFlLon,PSEN1 *M146L*L286V)6799Vas/Mmjax; MMRRC Stock 

No: 34840-JAX, The Jackson Laboratory)46. Littermate wild-type mice (C57BL/6) were 

used as controls. Animals were of both sexes and ranged in age from 12 to 100 weeks.  

For cranial window implantation, mice were anesthetized under 3% isoflurane on 

a custom-built stereotactic surgery frame and then maintained on ~1.5% isoflurane in 

100% oxygen. Once unresponsive to a toe pinch, mice were given 0.05 mg per 100 g of 

mouse weight of glycopyrrolate (Baxter Inc.) or 0.005 mg/100 g of atropine (54925-063-

10, Med-Pharmex Inc.) to prevent lung secretions, 0.025 mg/100 g of dexamethasone 

(07-808-8194, Phoenix Pharm Inc.) to reduce post-surgical inflammation, and 0.5 mg/100 

g of ketoprofen (Zoetis Inc.) to reduce post-surgical inflammation and provide post-

surgical analgesia. Glycopyrrolate and ketoprofen were injected intramuscularly, while 

atropine and dexamethasone were injected subcutaneously. Bupivacaine (0.1 ml, 0.125%) 

(Hospira Inc.) was subcutaneously administered at the incision site to provide a local 
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nerve block. Animals were provided 1 ml per 100 g of mouse weight of 5% (w/v) glucose 

in normal saline subcutaneously every hour during the procedure. We used a thermometer 

and feedback-controlled heating blanket (40-90-8D DC, FHC) to maintain body 

temperature at 37 °C. The head was shaved and washed 3 times with alternating 70% 

(v/v) ethanol and iodine solutions (AgriLabs). A 6-mm diameter craniotomy was 

performed over the cerebral cortex using a high-speed drill (HP4-917-21, Fordom) using 

bits with diameters of 1.4, 0.9, 0.7, and 0.5 mm (Fine Science Tools) for different steps 

in the craniotomy procedure. The craniotomy was then covered with a sterile 8-mm 

diameter glass coverslip (11986309, Thermo Scientific), glued onto the remaining skull 

with cyanoacrylate adhesive (Loctite) and dental cement (Co-Oral-Ite Dental). All 

procedures were done using sterile technique.  

Once the craniotomy was completed, mice were returned to their cages and given 

injections of 0.025 mg/100 g of dexamethasone and 0.5 mg/100 g of ketoprofen 

subcutaneously 1 and 2 days after surgery, and all cages were placed over a heating pad 

during this period. Animals were given at least two weeks to recover from cranial window 

implantation before experimentation to minimize inflammation from the surgical 

procedure. 

Cranial window implantations were also performed in TgCRND8 mice (41-51 

weeks of age, all female)17. These animals were housed at The Rockefeller University’s 

Comparative Biosciences Center and treated in accordance with IACUC-approved 

protocols. The window implantation followed the same protocol as described above, 
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except that mice were anaesthetized using avertin (50 mg/100 g, intraperitoneal) and were 

given atropine (0.004 mg/100 g).  

4.10.2 In vivo two-photon microscopy 

During imaging sessions, mice were anesthetized with 3% isoflurane, placed on a 

custom stereotactic frame, and were given glycopyrrolate or atropine and glucose as 

described above. During imaging, anesthesia was maintained with ~1.5% isoflurane in 

100% oxygen, with small adjustments to the isoflurane made to maintain the respiratory 

rate at ~1 Hz. The mouse was kept at 37 °C with a feedback-controlled heating pad. 

To fluorescently label the microvasculature, Texas Red dextran (40 μl, 2.5%, MW 

= 70,000 kDA, Thermo Fisher Scientific) in saline was injected retro-orbitally 

immediately prior to imaging. In some animals, amyloid beta (Aβ) deposits were labeled 

using methoxy-X0447. In early experiments using methoxy-X04 obtained directly from 

Prof. Klunk at the University of Pittsburgh, we retro-orbitally injected 40 µL of 1 mg/ml 

methoxy-X04 in 0.9% saline (adjusted to pH 12 with 0.1 N NaOH) immediately prior to 

imaging. In later experiments using methoxy-X04 available commercially from Tocris, 

we intraperitoneally injected methoxy-X04 (dissolved in DMSO at 100 mM) one day 

prior to imaging at a dose of 1 mg/100 g. We observed no obvious differences in the 

amyloid labeling between these two administration approaches. In some animals, 

leukocytes and blood platelets were labeled with a retro-orbital injection of Rhodamine 

6G (0.1 ml, 1 mg/ml in 0.9% saline, Acros Organics, Pure)38 Leukocytes were 

distinguished from blood platelets with a retro-orbital injection of Hoechst 33342 (50 μl, 

4.8 mg/ml in 0.9% saline, Thermo Fisher Scientific). Texas Red (and methoxy-X04, when 
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given retro-orbitally) were dosed in a single syringe, while Rhodamine 6G and Hoechst 

were dosed together in a second syringe.  

Three-dimensional images of the cortical vasculature and measurement of red 

blood cell flow speeds in specific vessels were obtained via a custom-built two-photon 

excited fluorescence (2PEF) microscope. Imaging was done using 830-nm, 75-fs pulses 

from a Ti:Sapphire laser oscillator (MIRA HP pumped by a Verdi-V18 or Vision S, 

Coherent) and 900-nm, 75-fs pulses from a second Ti:Sapphire laser oscillator (Vision S, 

Coherent). Lasers were scanned by galvonometric scanners (1 frame/s) and focused into 

the sample using a 20× water-immersion objective lens for high-resolution imaging 

(numerical aperture (NA) = 1.0, Carl Zeiss Microscopy; or NA = 0.95, Olympus), or a 4× 

objective for mapping of the cortical surface vasculature (NA = 0.28, Olympus). The 

emitted fluorescence was detected on either a two-channel detection system or, for later 

data sets, on an upgraded four-channel detection system. On the two-channel system, the 

fluorescence was split by a 600-nm long pass dichroic and two successive image stacks 

were acquired first with 645/45 nm (center wavelength/bandwidth) and 575/25 nm 

bandpass filters to image Texas Red and Rhodamine 6G, respectively, and then with 

645/65 nm and 460/50 nm filters to image Texas Red and both methoxy-X04 and Hoescht 

(on the same channel), all under 830-nm excitation. On the four-channel system, a 

secondary long-pass dichroic at 520 nm was followed by tertiary long-pass dichroics at 

458 nm and one at either 562 or 605 nm. Emission was detected on four photomultiplier 

tubes through the following emission filters: 417/60 nm for Hoechst, 494/41 nm for 

methoxy-X04, 550/49 nm for Rhodamine 6G, and 641/75 nm for Texas Red. Laser 

excitation was 830 nm except when trying to image deep cortical tissue in animals where 
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only Texas Red was present in which case 900-nm excitation was used. Laser scanning 

and data acquisition was controlled by ScanImage software48. To visualize the cortical 

vasculature, stacks of images spaced by 1 μm axially were taken to a cortical depth of 

300-500 μm.  

For TgCRND8 mice, imaging was performed using a Fluoview 1000MPE two-

photon laser scanning microscope (Olympus) equipped with a SpectraPhysics MaiTai 

DeepSee laser and a 25x/1.05 NA objective at The Rockefeller University Bio-Imaging 

Resource Center. 

For imaging of neutrophils labeled with anti-Ly6G antibodies labeled with 

Alexa488, imaging was performed on a custom-built 2PEF microscope at the Wellman 

Center for Photomedicine. In these animals, neutrophils were labeled with a tail vein 

injection of anti-Ly6G-Alexa 488 (0.1 mg/kg animal weight, 127626-Biolegend) at the 

same time as the labeling of blood plasma with Texas Red dextran. Imaging was done 

using 750-nm, 80-fs pulses from a Ti:Sapphire laser oscillator (Spectra-Physics Mai Tai). 

The laser beam was scanned by polygon scanners (30 frames/s) and focused into the 

sample using a 40x water-immersion objective lens for high-resolution imaging (NA = 

0.80, Olympus), or a 10x objective for mapping of the cortical surface vasculature (NA 

= 0.30, Olympus). The emitted fluorescence was detected on three photomultiplier tubes 

through the following emission filters: 525/50 nm for Alexa-488 and 605/50 nm for Texas 

Red. Laser scanning and data acquisition was controlled by custom built software. Stacks 

of images spaced by 1 μm axially were taken to a cortical depth of 100-200 μm. 
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4.10.3 Awake imaging 

A subset of mice was imaged with 2PEF without anesthesia. During the 

craniotomy surgery, a 3D-printed skull-attached mounting frame was secured on top of 

the cranial window to allow for head fixation during anesthesia-free imaging. The 3D-

printed frame was flanked by 4 screws (TX000-1-1/2 self tapping screws, Small Parts 

Inc., Miami Lakes, FL) inserted into the skull. The screws and appropriate parts of the 

frame were glued to the skull using Loctite and dental cement to firmly attach the 

mounting frame.  

We adapted and modified the awake imaging system from Dombeck et al.49, in 

which a large (8-inch diameter) Styrofoam ball (Floracraft) was levitated using a thin 

cushion of air between the ball and a custom made (3D printed) casting containing eight 

0.25-inch diameter air jets, arranged symmetrically. The air pressure was adjusted to just 

float the ball when the mouse was on top of it.  

We trained mice to remain in a calm state during awake, head-fixed imaging. 

During the first training session, mice were handled, with the room lights on, by a trainer 

wearing gloves for ~10 min or until the mice routinely ran from hand to hand. The mice 

were then transferred to the ball and allowed to move freely for ~10 min with the room 

lights on while the handler rotated the ball to keep the mice centered near the top. The 

second training session consisted of again allowing the mice to move freely on the ball 

for ~10–15 min, again with the room lights on. The third training session began by head 

restraining the mice on the ball in complete darkness for ~15–20 min. Typically it would 

take 5–10 min for the mouse to learn to balance and then begin to walk or run. Mice were 



 

 178 

then head-fixed and placed on the ball during imaging under the microscope. Awake 

imaging lasted less than 30 min. Following awake imaging, mice were anesthetized as 

described above and imaging was repeated over the same cortical area to compare 

capillary physiology between the awake and anesthetized states. 

4.10.4 Quantification of capillary network topology and capillary segment stalling 

The 2PEF images of vascular networks were manually traced in three-dimensions 

to create a vectorized skeleton that represents the cortical vasculature using custom-

written tracing software. The researchers producing these tracings were blinded to the 

genotype of the animal and any treatment it had received. Volumes of these image stacks 

where vessels could not be readily identified and traced were excluded from all analysis. 

These regions were typically deep and near the edges of the imaged volume, or 

occasionally directly underneath a large surface vessel. Vessel segments were classified 

as surface and penetrating arterioles, capillaries, or ascending and surface venules. All 

vessels smaller than 10 µm in diameter were classed as capillaries. Large surface 

arterioles were distinguished from large surface venules based on morphology (arterioles 

were smaller diameter, had smoother walls and less tortuosity, and tended to branch more 

symmetrically and in Y-shape junctions as compared to venules). Other arterioles or 

venules were classed by tracing their connectivity to these readily identifiable large 

vessels.  

Each capillary segment in these images was then manually classed as either 

flowing or stalled based on the motion of RBCs during the entire time each capillary was 

visible in the 3D image stack. The Texas Red dextran labels the blood plasma, but not the 
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blood cells, so RBCs and other blood cells show up as dark patches in the vessel lumen. 

The motion of these dark patches indicates flowing blood cells. Each capillary segment 

was visible in a minimum of ~5 successive frames in the 3D image stack, or for ~5 s 

(capillaries not oriented parallel to the cortical surface were observed for significantly 

more frames). We scored a capillary segment as stalled if we did not see motion of the 

RBCs and other cells in the capillary segment over this observation time. This manual 

scoring of capillaries as flowing or stalled was performed with the researcher blinded to 

the genotype and treatment status of the animal. In addition, this scoring was performed 

using only the image data visible on the Texas Red imaging channel. All animals had at 

least 800 capillary segments scored as flowing or stalled.  

Using the traced vascular network, the topologically shortest path from each 

flowing or stalled capillary to the nearest penetrating arteriole and ascending venule was 

calculated using Dijkstra's algorithm50. 

For the data on the fraction of capillaries stalled in the 5xFAD mice, individual 

capillary segments for categorization as flowing or stalled were identified using a more 

automated approach. Briefly, the image stack was preprocessed to the remove motion 

artifacts and noises. Then the vasculature network in the image stack was segmented 

using deep convolutional neural network followed by the post-processing procedure to 

extract the vectorized vasculature network. Finally, each identified capillary segment was 

manually classified as either flowing or stalled32.  
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4.10.5 Distinguishing causes of capillary stalls 

In some animals, once capillary stalls were identified we used the additional 

fluorescent labels to determine what was blocking blood flow in the capillary segment. 

Stalled capillary segments with a cell-shaped object labeled with both Rhodamine 6G and 

Hoechst present were scored as having a leukocyte. Stalled segments with punctate 

objects labeled with Rhodamine 6G alone were scored as having platelet aggregates. 

Stalled capillary segments with only RBCs present were classed as RBC stalls. We 

determined what fraction of stalled capillaries had only a leukocyte, a leukocyte with one 

or more RBCs present, only platelet aggregates, platelet aggregates with RBCs, and only 

RBCs. With this labeling scheme, we were unable to reliably distinguish platelet 

aggregates when a leukocyte was present. Additional experiments used a low-dose of 

Alexa 488 labeled anti-Ly6G antibodies to assess the type of leukocyte associated with 

capillary stalls.  

We assessed if the diameter of flowing and stalled capillaries was different, on 

average. To reduce the salt and pepper noise in the vascular images, we filtered using a 

3D 5 x 5 x 5 pixel Gaussian filter. We then corrected for unevenness in the image intensity 

by filtering the image (85 x 85 pixel sized mean filter) and subtracting this from the 

Gaussian filtered image. The resulting image was binarized using Otsu’s method51. 

Finally, objects smaller than 1000 voxels were eliminated, where voxels were considered 

part of the same connected object whenever they shared at least a corner. We then used 

this binarized image to correct the manual tracing of the vasculature by shifting the 

centerline, so it was equidistant from the vessel boundaries (done within a 10-µm 
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neighborhood to avoid confusion between neighboring capillaries). Every 5 µm along the 

centerline of each capillary segment, we estimated the vessel radius by finding the closest 

distance from the centerline to the vessel boundary. Measurements of less than 2 µm or 

more than 10 µm were excluded as they likely reflected imaging artifacts, and we 

averaged across all measurements for each capillary segment.  

4.10.6 Amyloid plaque segmentation and density analysis 

2PEF images of methoxy-X04 labeled amyloid plaques were filtered and 

binarized. Briefly, we first reduced the background signal in a line-by-line fashion by 

subtracting the median of each line. Salt and pepper image noise was reduced using the 

adaptive Wiener method with a 3 x 3 pixel kernel52. The image was then binarized using 

a manually-determined threshold (99% of the intensity distribution) and smoothed with a 

3 x 3 pixel median filter. Objects smaller than 25 voxels were then removed, with object 

connectivity here defined as voxels sharing a face. The volume fraction of amyloid either 

globally or in a tube that follows the centerline of each capillary segment was then 

calculated from this binarized image. The tube volume was generated by swaying a sphere 

with a specified radius along the centerline of the capillary segment from one end to the 

other. 

4.10.7 Kinetics of capillary stalling  

To determine the short-term fate of capillaries that stalled, we repeatedly imaged 

the same capillary bed at baseline and at 5, 10, and 15 min later in APP/PS1 mice (n= 6 

animals), and tracked the fate of all the capillaries that were stalled at baseline. If a vessel 
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was observed as stalled at all subsequent imaging time points, it was scored as remaining 

stalled, and if flow had resumed the stall was scored to have resolved. If the originally 

stalled capillary resumed flow, then re-stalled at a later time point that was scored as re-

stalled. In some animals, we further determined the cause of capillary stalls at each of 

these time points.  

To evaluate the longer-term fate of capillaries that were stalled, we imaged 

APP/PS1 mice (n= 5 animals) at baseline and then 1, 3, 7, and 14 days later and 

determined what fraction of the capillaries stalled at baseline were stalled at any 

subsequent imaging session.  

We estimated how frequently we would observe capillaries stalled at baseline to 

be stalled at any subsequent imaging session assuming that no stalls lasted long enough 

to stay stalled between imaging sessions and that each capillary segment was equally 

likely to stall. With this model, the probability, Pc, of the capillaries stalled at baseline to 

be stalled at any subsequent imaging session is: 

𝑃𝑐 = 1 − (1 − 𝑟)𝑁 (𝑆1) 

where r is the fraction of capillaries with stalled blood flow and N is the number 

of observations after the baseline imaging.  

4.10.8 Administration of antibodies against Ly6G and impact on neutrophil population 

We treated APP/PS1 mice (n = 9, 12-25 weeks old) with intraperitoneal injections 

of monoclonal antibodies against lymphocyte antigen 6 complex, locus G (Ly6G) (α-
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Ly6G, clone 1A8, 4 mg/kg, BD Biosciences) or an isotype control antibody (n = 6, Rat 

IgG2a, κ, 4 mg/kg, BD Biosciences). The same cortical capillary bed was imaged in 

anesthetized mice immediately before and at 30-60 min and 60-90 min after treatment. 

Quantification of stalled capillaries was performed blinded to imaging time and treatment 

type.  

To determine the impact of α-Ly6G on neutrophil number, we used flow 

cytometry to determine neutrophil counts 3, 6 and 24 hr after a single treatment (4 mg/kg) 

and after one month of treatment every three days (2 mg/kg).  

Blood from APP/PS1 and wt mice was collected from the submandibular vein and 

mixed with 1x RBC lysis buffer (00-4300-54, ThermoFisher Scientific). After incubation 

at room temperature for 10 min, the sample was centrifuged at 500 g for 5 min and the 

supernatant was removed. The cell pellet was re-suspended in 500 uL of Hank’s balanced 

salt solution (HBSS) supplemented with 1% bovine serum albumin (BSA) and 

centrifuged again; this washing procedure was repeated 3 times. Following isolation, 

neutrophils were re-suspended at a density of 107 cells per ml in HBSS supplemented 

with 1% BSA. The cell samples were labeled at room temperature for 45 min with the 

following anti-mouse antibodies: anti-CD45 (560695, BD Bioscience), anti-CD11b 

(557686, BD Bioscience) and anti-Ly6G (551460, BD Bioscience). After washing the 

samples with HBSS samples have been re-suspended in FACS buffer (1% BSA and 2mM 

EDTA in PBS), the remaining leukocytes were analyzed by flow cytometry using a Guava 

easyCyte Flow Cytometer (EMD Millipore Corporation). Data were analyzed using 

FlowJo software (FlowJo LLC). The neutrophil population was identified based on the 
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side and forward scatter and later gated for CD45high, CD11bhigh, and Ly6Ghigh using 

FlowJo. 

4.10.9 Measurement of volumetric blood flow in penetrating arterioles 

To quantify blood flow in cortical penetrating arterioles, we measured the vessel 

diameter from image stacks and the centerline RBC flow speed from line-scan 

measurements, as described in Santisakultarm T.P. et al.53. The volumetric blood flow, 

F, was calculated as:  

𝐹 =
𝜋𝑣𝑟2

2
 (𝑆2) 

where v is the time-averaged centerline RBC speed and r is the vessel radius. To 

correlate the impact of the number of capillaries stalled on penetrating arteriole blood 

flow, we imaged the same capillaries and measured blood flow in the same six to eight 

penetrating arterioles in both young APP/PS1 and wt mice (ages 3-4 months) and older 

APP/PS1 mice (age 11-14 months) treated with antibodies against Ly6G or with isotype 

control antibodies. Images to determine capillary stalling and line scans to determine 

penetrating arteriole blood flow speed were taken at baseline and at 30-60 and 60-90 min 

after treatment. All analysis was conducted blinded to the animal genotype, age, 

treatment, and imaging time point.  

4.10.10Measurement of global blood flow using ASL-MRI 

Imaging was performed on a 7.0 Tesla small animal MRI system with 450 mT/m 

gradient amplitude and a 4500 T/m/s slew rate (Biospec 70/30, Bruker). The animals were 
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anesthetized with isoflurane in oxygen and immobilized in the MRI using a nose cone 

and bite ring. A volume coil was used for transmission and a surface coil for reception. 

We imaged APP/PS1 and wt mice (age 7-9 months) at baseline. About 48 hrs later, 

animals were given an intraperiotenial injection of α-Ly6G or isotype control antibodies 

(4 mg/kg) and a second set of images were acquired between 2-6 hr after injection. 

Anatomical images were acquired to find a coronal slice at a location 

approximately 1 mm caudal to Bregma54. This position was used for subsequent ASL 

imaging, which was based on a FAIR-RARE pulse sequence that labeled the inflowing 

blood by global inversion of the equilibrium magnetization55. In this method, inversion 

recovery data from the imaging slice are acquired after selective inversion of the slice and 

after inversion of both the slice and the surrounding tissue. The difference of the apparent 

R1 relaxation rate images then yields a measure of the CBF56. Three averages of one axial 

slice were acquired with a field of view of 15 × 15 mm, spatial resolution of 0.23 × 0.23 

× 2 mm3, echo time TE of 5.36 ms, effective TE of 26.84 ms, repeat time TR of 10 s, and 

a RARE factor of 36. This resulted in a total scan time for the CBF images of about 25 

min. Turbo-RARE anatomical images were acquired with the following parameters: 10 

averages of 14 slices with the same field-of-view and orientation as the ASL images, 

resolution = 0.078 × 0.078 × 1 mm3, TE = 48 ms, TR = 2000 ms, and a RARE factor of 

10. The total scan time was about 6 min. 

For computation of CBF, the Bruker ASL perfusion processing macro was used. 

It uses the model and includes steps to mask out the background and ventricles described 

in Kober, et al.57. The masked CBF images were exported to Analyze format on the MRI 
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console. We then used the anatomical image to create a mask that outlined the entire 

cortical region, excluding the sinus, and averaged the CBF measurement across this 

region for each animal at each imaging time point. Analysis of ASL-MRI data was 

conducted blinded to animal genotype and treatment.  

4.10.11Multi-Exposure Laser Speckle Imaging 

Mice were anesthetized for imaging using 3% isoflurane for induction and were 

given atropine and glucose each hour as described above. Depth of anesthesia was 

monitored using a force-sensitive square resistor placed below the mouse to detect 

respiration. For imaging, anesthesia was reduced to 1.5% in medical air and then adjusted 

to maintain a respiration rate between 65-75 breaths per minute. The mouse temperature 

was maintained at 37°C with a feedback-controlled heating pad.  

Multi-exposure laser speckle contrast imaging quantifies the degree of blurring of 

a laser speckle pattern due to moving scatterers for different image exposure times58. In 

the cortex, moving red blood cells are the primary moving scatterers, so this technique 

yields a measure of cerebral blood flow. Images were taken using a near-IR camera 

(Basler) through a 4x objective (NA=0.28, Olympus) with a 786-nm stabilized laser diode 

(LD785-SEV300, ThorLabs), intensity modulated using an acousto-optic modulator 

(AOMO 3100-125 and AODR 1110AF-AEFO-1.5, Gooch & Housego). Laser speckle 

images were taken at 15 exposure times ranging across three decades from 50 µs to 80 

ms, as described by Kaszmi et al.59, with a calibrated laser intensity for each exposure 

time. Images were taken at ~10 fps with 30 images for each exposure time at each time 

point.  
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Mice were imaged for 20 minutes prior to antibody injection in order to ensure 

stabilization under anesthesia. Animals received either α-Ly6G or isotype control 

antibodies (4mg/kg, intraperitoneal). The mice were imaged for 3 hours post-injection. 

Speckle contrast values, K, were fitted to the equation:  

𝐾2(𝑇, 𝜏𝑐) = 𝛽𝜌2
𝑒−2𝑥 − 1 + 2𝑥

2𝑥2
+ 4𝛽𝜌(1 − 𝜌)

𝑒−𝑥 − 1 + 𝑥

𝑥2
+ 𝑣𝑒 (𝑆3) 

with 𝑥 =
𝑇

𝜏𝑐
, where τc is the correlation time, considered to be inversely 

proportional to average speed of moving scatterers in the sample, T is the exposure time, 

ρ is the fraction of dynamically scattered light, ve accounts for any noise in the system, 

and   is a normalization constant indicating the mismatch between speckle and pixel 

sizes. The  parameter is estimated using the simpler form of the equation where ρ is 

considered to be 1: 

𝐾2(𝑇, 𝜏𝑐) = 𝛽
𝑒

−2
𝑇
𝜏𝑐 − 1 + 2

𝑇
𝜏𝑐

2 (
𝑇
𝜏𝑐

)
2 + 𝑣𝑒 (4) 

Fractional blood flow changes are proportional to the inverse of the correlation 

time image divided by a baseline image taken immediately before antibody injection. 
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4.10.12Extraction of network topology and vessel diameters from mouse anatomical 

dataset 

One large postmortem dataset from the vibrissa primary sensory (vS1) cortex in 

mouse previously obtained by Tsai et al21 and Blinder et al.44, was used for this study (~1 

mm3 and ~15,000 vessel segments). In brief, this dataset was obtained by filling the 

vessels with a fluorescent indicator, extracting the brain and imaging with 2PEF from the 

pial surface to near the bottom of cortex. In this dataset, penetrating arterioles and 

ascending venules that reached the pial surface were identified by following their 

connections to a large cerebral arteriole or venule. We further labeled subsurface vessels 

in three classes: arterioles, capillaries, and venules. Starting with the surface and 

penetrating arterioles (venules) vessels were classified by iteratively seeking all vessels 

with diameter above 6 µm connected to any previously labeled arteriole (venule). All 

remaining vessels were labeled as capillaries. The diameter threshold was manually 

chosen as the smallest integer diameter value which resulted in arteriolar and venular 

trees that exhibited no loops, in contrast to the very looped capillary network.  

Due to post-mortem shrinkage, vessel diameters in this mouse dataset were 

smaller than those measured in-vivo, so required rescaling21,44,53. As blood flow is highly 

dependent on vessel diameters, two successive corrections were applied. First, a 

monotonically increasing function, which tends to one at large diameter, was applied to 

all vessel diameters:  

𝑑 = 𝑑0 + 𝐴 cos (tan−1 (
𝑑0

𝐵
)), 𝐴 > 0, 𝐵 >

2

3
𝐴 sin (tan−1 (

1

√2
)) (S5) 
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where d is the corrected diameter and d0 is the diameter extracted from the image 

stack. A and B are constrained parameters calculated so that the corrected vessel diameter 

distribution matched in vivo measurements from two photon microscopy12, as shown in 

Extended Data Figure S 4.22. This function ensures that the hierarchy of diameters in the 

network is preserved and the larger vessels are not rescaled. For the network represented 

in Figure 6a, A=1.4 and B=10.3, so that the diameter threshold for capillary vessels 

becomes 7.2 µm. A second depth-dependent correction was then applied to the diameter 

of arterioles and venules: 

𝑑 = 𝑑0(𝑎𝑧 + 𝑏) Eq. 6 

where z is the depth below the cortical surface and a and b are parameters 

determined so that the diameters of the trunks of the penetrating arterioles and ascending 

venules matched in-vivo measurements60. For the network represented in Figure 4.6.a, 

these parameters were a=-0.0014 µm-1 (-9.36e-4 µm-1) and b=2.54 (2.02) for arterioles 

(venules).  

4.10.13Extraction of network topology and vessel diameters from human anatomical 

dataset 

The dataset used was previously obtained by Cassot et al.61 and Lauwers et al.22 

from thick sections (300 μm) of a human brain injected with India ink from the Duvernoy 

collection53. The brain came from a 60-year old female who died from an abdominal 

lymphoma with no known vascular or cerebral disease. It corresponds to a large volume 

(6.4 mm3 of cerebral cortex) extending across 20.8 mm2 along the lateral part of the 
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collateral sulcus (fisiform gyrus) extracted from Section S2 in Lauwers et al.22, and 

includes a total of 27,340 vessel segments. The mean radius and length of each segment 

were rescaled by a factor of 1.1 to account for the shrinkage of the anatomical preparation. 

The main vascular trunks were identified manually and divided into arterioles and venules 

according to their morphological features, following Duvernoy's classification62,63. 

Following Lauwers et al.22 and Lorthois et al23 (1) as in the mouse data sets, arterioles 

(venules) were defined by iteratively seeking all vessels with diameter above 9.9 µm 

connected to any previously identified arteriole (venule), so that no loops were present. 

All remaining vessels were classified as capillaries. 

4.10.14Synthetic network generation  

The synthetic periodic network of order three (i.e. three edges per node) was 

generated to match the mouse network parameters. A 1-mm3 vascular network was 

constructed by replication of a simple periodic network (Extended Data Figure S 4.21). 

Capillary diameters and lengths were uniform and were set to the averages for the mouse 

network. A single penetrating arteriole and ascending venule (with diameters set to the 

averages from the mouse network) served as inlet/outlet. The distance between the inlet 

and outlet corresponded to the average distance between penetrating arterioles and 

ascending venules from the mouse dataset. 

4.10.15Blood flow simulations 

The methodology for simulating blood flow in these intra-cortical vascular 

networks has been presented in detail in Lorthois et al.23. Briefly, the network was 
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represented by a graph in which edges represent vessel segments between branches that 

are characterized by an average diameter and length. We used a one-dimensional 

(analogous to electric circuit models) nonlinear network model that was slightly modified 

from Pries et al.64 to handle large networks for the flow simulations. Using an iterative 

procedure, the model takes into account the complex rheological properties of blood flow 

in the microcirculation (Fåhræus, Fåhræus-Lindqvist, and phase separation effects). 

These effects are modeled using empirical descriptions65,66 deduced from experiments in 

rats. The model was used to calculate the flow and hematocrit in each vessel and the 

pressure at each intersection of vessels. For the human dataset, the parameters for the 

empirical descriptions of the Fåhræus, Fåhræus -Lindqvist and phase separation effects 

were re-scaled in order to account for the difference in characteristic size between human 

and rat RBCs, as proposed by Lorthois et al.23 and Roman et al.67. This simulation 

approach has no free parameters. 

Boundary conditions: Physiologically realistic pressure drops of 60 mmHg, as 

measured in rats68 and estimated in humans23, were imposed between all arteriolar and 

venular trunks feeding and draining the computational volume, while a no-flow condition 

was imposed on deeper arteriolar or venular vessels that intersected the lateral boundaries 

of the simulated volume. A constant discharge hematocrit of 0.45, corresponding to a 

typical value of the systemic hematocrit, was also imposed in arteriolar trunks. Moreover, 

a pseudo-periodic boundary condition was applied to all capillaries at the lateral 

boundaries, as illustrated in Extended Data Figure S 4.23. Fictitious vessels were created 

that link capillaries intersecting opposing faces in a semi random fashion. A grid was 

created on the two faces and refined until, for a given cell, each capillary on one face was 
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matched with at most 2 capillaries on the opposing face, allowing the creation of fictitious 

bifurcations. Once the optimal grid was found, the closest neighboring vessels from the 

opposing faces were connected together. The length of the resulting fictitious vessels was 

set to 50 µm and their diameters to the average diameters of the connected capillaries. 

This pseudo-periodic boundary condition is similar in spirit but simpler and more 

computationally effective than the one recently introduced by Schmid et al.69. Finally, a 

no-flow boundary condition was applied to all vessels intersecting the bottom face of the 

domain. We also compared the results with no-flow boundary conditions for all 

capillaries at the lateral boundaries.  

Simulating stalls: In order to study the influence of capillary stalling on cerebral 

blood flow, a given proportion of capillaries in each network was randomly occluded. To 

simulate occlusion, the radius of the selected vessels was divided by 100. This resulted 

in a large increase of the hemodynamic resistance, of order 108, and a similar decrease of 

the computed flow through these vessels. At least five repetitions were performed for 

each proportion of stalled capillaries and each set of conditions considered. On the mouse 

data, 1000 simulations in total were run on a 32-core Intel(R) Xeon E5-2680 v2 @ 3.3 

GHz for a total computational time of ~170 hours. For human data set, about 100 

simulations were run on the same machine for a total computational time of ~50 hours. 

4.10.16Behavior experiments 

All experiments were performed under red light in an isolated room. The position 

of the mouse’s nose was automatically traced by Viewer III software (Biobserve, Bonn, 

Germany). In addition to the automatic results obtained by Viewer III software, a blinded 
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experimenter independently scored mouse behavior manually. Animals were taken into 

the behavior room one-hour prior to the experiment. Behavioral analysis was conducted 

at baseline and at 3 and 24 h after injection with α-Ly6G, α-LFA-1, or isotype control 

antibodies (IP 4 mg/kg). The α-Ly6G treated APP/PS1 mice were then treated every three 

days for four weeks (IP 2 mg/kg) and behavior experiments were repeated. The OR, Y-

maze, balance beam walk, and forced swim tests were performed at all time points. The 

NOR task was performed only at baseline and the 4-week time point to avoid animals 

becoming accustomed to the objects. For experiments with APP/PS1 mice and α-Ly6G, 

animals were ~11 months of age at the start of the experiment (APP/PS1, α-Ly6G n=11; 

APP/PS1 Iso-Ctl, n=9; wt α-Ly6G, n=10; and wt Iso-Ctl, n=10). For experiments with 

APP/PS1 mice and α-LFA-1, animals were 11-13 months of age (APP/PS1, α-LFA-1 

n=10; APP/PS1 Iso-Ctl, n=10; wt α-LFA-1, n=7; and wt Iso-Ctl, n=8). For experiments 

with 5xFAD mice and α-Ly6G, animals were 5-6 months of age (5xFAD, α-Ly6G n=8; 

5xFAD Iso-Ctl, n=8; and wt α-Ly6G, n=10). 

Object replacement test: The object replacement (OR) task evaluated spatial 

memory performance. All objects were validated in a separate cohort of mice to ensure 

that no intrinsic preference or aversion was observed, and animals explored all objects 

similarly. Exploration time for the objects was defined as any time when there was 

physical contact with an object (whisking, sniffing, rearing on, or touching the object) or 

when the animal was oriented toward the object and the head was within 2 cm of the 

object. In trial 1, mice were allowed to explore two identical objects for 10 min in the 

arena and then returned to their home cage for 60 min. Mice were then returned to the 

testing arena for 3 min with one object moved to a novel location (trial 2). Care was taken 
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to ensure that the change of placement alters both the intrinsic relationship between 

objects (e.g. a rotation of the moved object) and the position relative to internal visual 

cues (e.g. new location in the arena; one wall of testing arena had a pattern). In addition 

to using the tracking software to determine the object exploration times, the time spent at 

each object was manually scored by an independent experimenter who was blinded to the 

genotype and treatment. The preference score (%) for OR tasks was calculated as 

([exploration time of the novel object]/[exploration time of both objects]) × 100 from the 

data in trial 2. Automated tracking and manual scoring yielded similar results across 

groups, so we report the automated tracking results.  

Y-Maze: The Y-Maze task was used to measure working memory by quantifying 

spontaneous alternation between arms of the maze. The Y-maze consisted of three arms 

at 120° and was made of light grey plastic. Each arm was 6-cm wide and 36-cm long and 

had 12.5-cm high walls. The maze was cleaned with 70% ethanol after each mouse. A 

mouse was placed in the Y-maze and allowed to explore for 6 min. Mouse behavior was 

monitored, recorded, and analyzed using the Viewer software. A mouse was considered 

to have entered an arm if the whole body (except for the tail) entered the arm and to have 

exited if the whole body (except for the tail) exited the arm. If an animal consecutively 

entered three different arms, it was counted as an alternating trial. Because the maximum 

number of triads is the total number of arm entries minus 2, the spontaneous alternation 

score was calculated as (number of alternating triads)/ (total number of arm entries − 2). 

Forced swim test: The forced swim test measured depression-like behavior. Mice 

were individually placed in a 4-L glass beaker filled with 2.5 L of 25°C water. Mice were 
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allowed to adjust for 1 min and then were evaluated for 6 min. An experimenter blind to 

the genotype and treatment analyzed the videotaped behavior and scored the immobility 

time, defined by the absence of active, escape-oriented behaviors such as swimming, 

jumping, rearing, sniffing, or diving. 

Balance beam walk: The balance beam walk measured motor coordination and 

balance by scoring the ability of the mice to traverse a graded series of narrow beams to 

reach an enclosed safety platform. The beams consisted of long strips of wood (80 cm) 

with a round cross section of 12- or 6-mm diameter. The beams were placed horizontally, 

40 cm above the floor, with one end mounted on a narrow support and the other end 

attached to an enclosed platform. Bright light illuminated the end of the beam where the 

mice started. Mice received three consecutive trials on each of the round beams, in each 

case progressing from the widest to the narrowest beam (15 min between each trial). Mice 

were allowed up to 60 s to traverse each beam. The time to traverse each beam and the 

number of times either hind paw slipped off each beam were recorded for each trial. 

Analysis of each measure was based on the mean score across all trials for that mouse at 

that time point. Experimenters were blinded to the genotype and the treatment of the mice.  

Novel object recognition test: The novel object recognition (NOR) task measures 

recognition memory and is based on rodents’ innate preference for exploring novel 

objects. This test was conducted only in the animals at baseline and after 4 weeks of 

treatment. The testing approach was identical to the OR task, but with a novel object 

placed at the location of one of the initial objects in trial 2. 
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4.10.17ELISA assay 

After the conclusion of the behavior experiments, the APP/PS1 animals that had 

received α-Ly6G or isotype control antibodies every 3 days for a month were sacrificed 

by lethal injection of pentobarbital (5 mg/100 g). Brains were quickly extracted and 

divided along the centerline. One half was immersed in 4% paraformaldehyde in 

phosphate buffered saline (PBS) for later histological analysis and the other half was snap 

frozen in liquid nitrogen.  

The frozen APP/PS1 mouse hemi-brains (Iso-Ctr: n=6, 11.5-12.5 months old; α-

Ly6G: n=7, 11.5-12.5 months old) were weighed and homogenized in 1 ml PBS 

containing complete protease inhibitor (Roche Applied Science) and 1 mM AEBSF 

(Sigma) using a Dounce homogenizer. The homogenates were then sonicated and 

centrifuged at 14,000 g for 30 min at 4° C. The supernatant (PBS-soluble fraction) was 

removed and stored at −80° C. The pellet was re-dissolved in 0.5 ml 70% formic acid, 

sonicated, and centrifuged at 14,000 g for 30 min at 4° C, and the supernatant was 

removed and neutralized using 1M Tris buffer at pH 11. Protein concentration was 

measured in the PBS soluble fraction and the formic acid soluble fraction using the Pierce 

BCA Protein Assay (Thermo Fischer Scientific). The PBS soluble fraction extracts were 

diluted 1:5. Formic acid extracts were diluted 1:1 after neutralization. These brain extracts 

were analyzed by sandwich ELISA for Aβ1-40, Aβ1-42, and Aβ aggregates using 

commercial ELISA kits and following the manufacturer’s protocol (Aβ1-40: KHB3481; 

Aβ1-42: KHB3441; Aβ aggregates: KHB3491, Thermo Fisher Scientific). The Aβ 

concentration was calculated by comparing the sample absorbance with the absorbance 
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of known concentrations of synthetic Aβ1–40 and Aβ1–42 standards on the same plate. 

Data was acquired with a Synergy HT plate reader (Biotek) and analyzed using Gen5 

software (BioTek) and Prism (Graphpad).  

4.10.18Histopathology 

Immunohistochemistry was performed on the brains of mice chronically treated 

every third day for 4 weeks with either α-Ly6G antibody or isotype control (Iso-Ctr n=5, 

α-Ly6G n=4). A single paraformaldehyde-fixed hemisphere of each brain was cut into 40 

μm thick sagittal sections. 

Every sixth section from each mouse was stained with 1% Thioflavin-S (T1892, 

Sigma) for 10 min at room temperature and washed twice with 80% ethanol for 2 min. 

The sections were mounted using Fluoroshield with DAPI (F6057, Sigma). Images were 

taken using confocal microscopy (Zeiss Examiner.D1 AXIO). For each image, the 

background was subtracted using the ImageJ background subtraction plugin (Rolling ball 

with 7 µm radius). Images were then manually thresholded, using the same threshold for 

all sections from a given mouse. Appropriate thresholds varied mouse to mouse and were 

set to ensure that the smallest Thioflavin-S labeled objects that morphologically appeared 

to be an amyloid plaque remained above threshold. Cortical and hippocampal regions of 

interest were defined in each section anatomically, and the fraction of pixels above 

threshold was determined across all sections for these regions of interest. All image 

processing was done blinded to treatment group. As a second measure of amyloid 

deposition, we manually counting the number of Thioflavin-S positive amyloid plaques 

in the cortex and hippocampus, again across all sections and while blinded to the 
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treatment group. All sections were stained and imaged in parallel. Artifacts such as 

bubbles were eliminated from analysis by manually excluding these regions. 

4.10.19Statistical analysis 

Boxplots were created using Prism7 (GraphPad). The box extends between the 

values for the 25th and 75th percentile of the data. The whiskers extend 1.5 times the 

difference between the value of the 75th and 25th percentile of the data from the top and 

bottom of the box. Values lying outside the whiskers were defined as outliers and the 

mean was computed excluding these outliers. The median is indicated with a black 

horizontal line inside the box, while the mean is indicated with a red horizontal line. 

Violin plots were created using the statistical software package, R70.  

Data in all groups was tested for normality using D’Agostino-Pearson omnibus 

normality test. Parametric statistics were used only if the data in all groups in the 

comparison were normally distributed. The statistical significance of differences between 

multiple groups was determined using one-way analysis of variance (ANOVA) followed 

by Tukey’s multiple comparison correction for normally distributed data, and using 

Kruskal-Wallis one-way ANOVA followed by Dunn’s multiple comparison correction 

for data with a non-normal distribution. Statistical comparisons between two groups were 

performed using the Student’s t test or paired t test for normally distributed data, or using 

the Mann-Whitney test or Wilcoxon matched-pairs test for data with a non-normal 

distribution. P-values smaller than 0.05 were considered statistically significant. All 

statistical analysis was performed using Prism7 (GraphPad). 
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We use a standardized set of significance indicators across all figures in this 

manuscript. For comparisons between groups: *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. For matched comparisons before and after treatment: +p<0.05, ++p<0.01. 

Supplementary Table 1 provides details of the groups compared, animal and capillary 

numbers, statistical tests, and explanatory notes for individual panels in the main figures. 

This information is included in the caption of supplementary figures.  

4.10.20Supplementary text on numerical simulations of cerebral blood flow changes 

induced by capillary occlusions  

In previous work, we studied how the occlusion of a single cortical capillary 

influenced blood flow in downstream vessels11 and found strong reductions in blood flow 

(10% of baseline value 1 branch downstream; 25% at 2 branches; 50% at 3 and 4 

branches), suggesting that even the small fraction of occluded capillaries we observed in 

APP/PS1 mice could cause a significant decrease in overall brain blood flow. To test this 

idea, we simulated blood flow in anatomically accurate blood vessel networks from mice 

and humans and examined how flow changed when we occluded a random selection of 

capillaries.  

4.10.21Validation of simulations by comparison to in vivo measurements in mouse:  

As described in the Materials and Methods above, our simulations resulted in 

calculated values for flow (Extended Data Figure S 4.24.a), pressure (Extended Data 

Figure S 4.24.b), and hematocrit (Extended Data Figure S 4.24.c) in each vessel segment 

in the volume. We validated the simulation by comparing in vivo measurements of blood 
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flow at different levels in the microvascular hierarchy acquired by 2PEF from the top 300 

µm of mouse cortex (data from Santisakultarm, et al.48) with the simulation predictions. 

The simulation results are highly dependent on the boundary conditions imposed on 

capillaries at the lateral edges of the simulation volume. The calculated velocity 

distribution using pseudo-periodic boundary conditions in capillaries up to 300 µm in 

depth and using the vessel diameter corrections described above matches the 

experimental distribution well (Extended Data Figure S 4.24.d). For comparison, the 

velocity distribution calculated using diameters from the raw datasets (without correction 

for the difference in vessel size between in vivo and post mortem measurements) and that 

calculated using a no-flow boundary condition both led to an order of magnitude 

underestimation of capillary flow speeds (Extended Data Figure S 4.24.d). Our new 

pseudo-periodic boundary condition, together with the correction of vessel diameters, led 

to a velocity distribution that approaches the distribution of experimental velocities. The 

experimental distribution has a sharper peak, which might be due to experimental bias 

associated with the limited number of vessels in which these measurements have been 

performed (147 in vivo measurements vs. 3,400 capillaries in the simulations). The 

simulated speeds in penetrating arterioles and ascending venules as a function of their 

diameters also closely matched experimental results from Santisakultarm, et al.48 and 

from Taylor, et al.60 (Extended Data Figure S 4.24.e).  

Numerical simulation of cerebral blood flow reductions caused by capillary 

occlusions: The effect of occlusions in capillaries was investigated by randomly selecting 

a given proportion of capillaries and reducing their flow by imposing a 100-fold reduction 

in diameter (Extended Data Figure S 4.25.a, Figure 4.6.a). To quantify the effects of the 
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occlusions, we calculated the normalized cortical perfusion as the summed flow in the 

penetrating arterioles feeding the region, normalized by the value calculated with no 

capillary occlusions (Figure 4.6.c). While the magnitude of this summed flow is highly 

dependent on the boundary conditions, the decrease in flow due to capillary occlusions 

was much less sensitive to the choice of boundary conditions (Extended Data Figure S 

4.25.b). For the mouse network shown in Figs. 6a and Extended Data 24a with pseudo-

periodic boundary conditions and diameter correction, we found a linear decrease in the 

normalized perfusion with a slope S=-2.3±0.2 %baseline perfusion/% capillaries stalled 

(mean±SD) (Figure 4.6.c). This linear behavior was very robust to variations in the 

parameters chosen for the computations, with slopes equal to -2.2±0.1 (-2.1±0.2) with no-

flow boundary conditions and diameter correction (no diameter correction). In order to 

evaluate the influence of boundary conditions with regard to the size of the simulated 

volume, 300 µm-thick sub-volumes of the mouse anatomical datasets were randomly 

extracted. The decrease in blood flow with increasing numbers of stalled capillaries was 

slightly larger when 300 µm-thick sub-volumes of the datasets were used (-2.6±0.4 and -

2.9±0.5 with the pseudo-periodic boundary condition and the no-flow boundary 

condition, respectively), as compared to the full ~1 mm-thick volume. In Figure 4.6.c, 

only computations on the maximum simulation volume with the corrected diameters and 

pseudo-periodic boundary conditions are presented. 

The simulations in the human network (Figure 4.6.b) using pseudo-periodic 

boundary conditions yielded a slope of S=-2.3±0.6, very similar to the mouse results. This 

linear decrease was also observed in synthetic periodic networks of order three (i.e. three 

edges per node; S=-2.9, Figure 4.6.c).  
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Limitations and methodological considerations: The human dataset used in the 

simulations was only 300 µm thick, raising concerns about the influence of boundary 

conditions. The broad agreement between simulation results in mouse datasets with 1-

mm and 300-µm thickness reduces this concern. The simulations predicted a similar CBF 

increase across mouse and human vascular networks when stalls were reduced, 

suggesting that the blood flow improvements we observed in APP/PS1 mice may be 

achievable in humans.  

The simulations predicted a smaller impact of capillary stalling on CBF than we 

observed experimentally. One possible explanation is that the simulations used vascular 

networks from wt mice, while AD mouse models have different vascular densities and 

topologies71 that may influence the sensitivity of CBF to capillary stalls, although the 

vascular density differences between APP/PS1 and wt mice have been reported to be 

relatively minor. In addition, increased leukocyte adhesion in APP/PS1 mice may lead 

not only to complete stalls, but also to slowed flow in some capillaries when a leukocyte 

is present in the segment, which is not captured in the simulations.  

  



 

 203 

4.11 Supplementary figures 

 

 

 

 

Figure S 4.1. The fraction of capillaries with stalled blood flow did not increase with 

increasing cortical amyloid plaque density in APP/PS1 mice.  

Fraction of capillaries with stalled blood flow as a function of the cortical volume 

fraction that was labeled by methoxy-X04. Mice ranged from 50 to 64 weeks of age.  
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Figure S 4.2. Plot of the fraction of capillaries with stalled blood flow in mice imaged 

while anesthetized and awake.  

Lines connecting data points indicate data from the same animal. Animals were first 

trained to remain calm while head fixed and standing on a spherical treadmill. On 

the day of imaging, animals were briefly anesthetized to enable retro-orbital injection 

of Texas-Red dextran and were then allowed to wake up. We imaged these animals 

first while awake and then while anesthetized under 1.5% isoflurane, with both 

imaging sessions occurring on the same day (n = 6 mice, no significant difference by 

Wilcoxon test).  
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Figure S 4.3. α-Ly6G administration reduced the number of cortical capillary stalls 

and increased penetrating arteriole blood flow in 5xFAD mice. 

 (a) Fraction of capillaries with stalled blood flow in 5-7 month old 5xFAD mice at 

baseline and at about one hour after injection of α-Ly6G or isotype control 

antibodies. (b) Vessel diameter, (c) RBC flow speed, and (d) RBC volumetric blood 

flow from cortical penetrating arterioles after α-Ly6G or isotype control antibody 

administration, shown as a fraction of the baseline value, in 5xFAD or wt mice (wt α-

Ly6G: 3 mice, 13 arterioles; 5xFAD Iso-Ctr: 3 mice, 18 arterioles; and 5xFAD α-

Ly6G: 3 mice, 19 arterioles; * p<0.05, Kruskal-Wallis one-way ANOVA with post-

hoc pair-wise comparisons using Dunn’s multiple comparison test). 
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Figure S 4.4. 2PEF imaging of cortical vasculature reveals a higher fraction of stalled 

capillaries in TgCRND8 mice as compared to wt mice.  

Fraction of capillaries with stalled blood flow in TgCRND8 and age-matched wild 

type littermates (TgCRND8: 3 mice, 3,028 capillaries; wild type: 4 mice, ~4,062 

capillaries; p=0.06, Mann-Whitney). 
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Figure S 4.5. Characterization of capillary stall dynamics in APP/PS1 mice.  

(a) Repeated 2PEF imaging over 15 min of capillaries that were stalled at the 

baseline measurement and (top) remained stalled, (middle) began flowing and then 

re-stalled and (bottom) resolved and remained flowing. Blood plasma labeled with 

Texas-Red dextran (red) and leukocytes labeled with Rhodamine 6G (green). (b) 

Characterization of the fate of individual capillaries observed as being stalled across 

four image stacks taken at baseline and 5, 10, and 15 min later. Each row represents 

an individual capillary and the color of the box for each capillary at each time point 

indicates the status: flowing (grey), stalled with a leukocyte present (cyan), stalled 

with platelet aggregates present (green), and stalled with only RBCs (red). Note that 

unlike the results shown in Figure 4.3.b, we do not separate cases where RBCs are 

present along with a leukocyte or platelet aggregates.  
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Figure S 4.6. Extended Data Figure 6. Number of stalled capillaries in APP/PS1 mice 

dropped rapidly after α-Ly6G administration.  

2PEF image stacks were taken repeatedly over an hour after α-Ly6G or isotype 

control antibody injection and the number of stalled capillaries determined at each 

time point (α-Ly6G: n=6 mice; Iso-Ctr: n=4; each mouse imaged 2 to 6 times over 

the hour). 
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Figure S 4.7. Treatment with α-Ly6G leads to neutrophil depletion in both APP/PS1 

and wildtype control mice, beginning within three hours after administration. 

 (a) Representative flow cytometry data for blood drawn from APP/PS1 mice 24 

hours after treatment with isotype control antibodies (top row) and α-Ly6G (bottom 

row). Left column shows forward and side scattering from entire population of 

blood cells (after lysing and removing red blood cells). The second column shows the 

gate on CD45+ cells, indicating leukocytes. The third column shows expression of 

CD11b (high for monocytes and neutrophils) and Ly6G (high for neutrophils) for 

the CD45+ cells. Cells with high expression levels of both CD11b and Ly6G were 

considered to be neutrophils (right column). (b-d) Neutrophil counts for APP/PS1 

and wt mice 3, 6, and 24 hr after a single treatment with α-Ly6G or isotype control 

antibodies, respectively. (3 hr data: wt Iso-Ctr: n=4 mice; wt Ly6G: n=4; APP/PS1 

Iso-Ctr: n=4; APP/PS1 Ly6G: n=5; 6 hr data: wt Iso-Ctr: n=4 mice; wt Ly6G: n=4; 

24 hr data: wt Iso-Ctr: n=9 mice; wt Ly6G: n=4; APP/PS1 Iso-Ctr: n=6; APP/PS1 

Ly6G: n=7) (e) Neutrophil counts for APP/PS1 and wt mice after one month of 

treatment with α-Ly6G or isotype control antibodies every three days (4 week data: 

wt Iso-Ctr: n=3; wt Ly6G: n=7; APP/PS1 Iso-Ctr: n=3; APP/PS1 Ly6G: n=3) 

(*p<0.05, **p<0.01, Mann-Whitney comparison between Iso-Ctr and Ly6G treated 

animals.) 
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Figure S 4.8. Administration of antibodies against Ly6G increased the RBC flow 

speed but did not alter the diameter of cortical penetrating arterioles in APP/PS1 

mice.  

(a) RBC flow speed and (b) vessel diameter after α-Ly6G or isotype control antibody 

administration in young (3-4 months) and old (11-14 months) APP/PS1 mice and wt 

control animals shown as a fraction of baseline (young wt α-Ly6G: 5 mice, 30 

arterioles; young APP/PS1 Iso-Ctr: 5 mice, 32 arterioles; young APP/PS1 α-Ly6G: 5 

mice, 33 arterioles; old APP/PS1 Iso-Ctr: 3 mice, 18 arterioles; old APP/PS1 α-

Ly6G: 3 mice, 22 arterioles; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, 

Kruskal-Wallis one-way ANOVA with post-hoc pair-wise comparisons using 

Dunn’s multiple comparison test).  
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Figure S 4.9. Penetrating arterioles with slower initial flow tended to increase flow 

speed more after α-Ly6G injection in APP/PS1 mice.  

Plot of penetrating arteriole flow after α-Ly6G antibody administration in young (3-

4 months) and old (11-14 months) APP/PS1 mice shown as a fraction of baseline 

flow. Same data as shown in Figure 3C.  
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Figure S 4.10. Multi-exposure laser speckle imaging revealed CBF increased in 

APP/PS1 mice within minutes of α-Ly6G administration.  

(a) Green light reflectance image of parietal cortex of APP/PS1 mouse. Image to the 

right is a expanded view of the region outlined with a yellow box. (b) Raw laser 

speckle image of the same region as (a) with a 10 ms exposure time. (c) Correlation 

time image of the same region as (a). (d) Speckle contrast values as a function of 

image exposure time, showing fits for regions of interest located in a surface arteriole, 

surface venule, or parenchymal region. The corresponding symbols in the expanded 

view of (c) show the locations for each fit. (e) Images and (f) plot of cerebral blood 

flow as a function of time after antibody injection, expressed as a fraction of the value 

at 5 minutes before injection for APP/PS1 mice treated with isotype control 

antibodies or α-Ly6G. (APP/PS1 α-LFA1: 5 mice; APP/PS1 Iso-Ctrl: 5 mice; age 

range 9-19 months) 
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Figure S 4.11. Treating APP/PS1 mice with α-LFA-1 reduced the number of stalled 

capillaries and improved arterial blood flow after 24 hours. 

(a) Flow cytometry scatter plots for APP/PS1 mice 24 hours after injection of isotype 

control antibodies (left) or with antibodies against Lymphocyte Functional Antigen 1 

(α-LFA-1; M17/4 clone, BD Biosciences; 4 mg/kg, retro-orbital injection). Circles 

depict the gate used to identify leukocytes. (b) Leukocyte concentration in the blood 

24 hours after treatment with α-LFA-1 or isotype control antibodies in APP/PS1 and  
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wt mice. Leukocytes counts in the gating area were decreased by 84% after α-LFA-1 

as compared to the isotype control in APP/PS1 mice (Iso-Ctr in wt: 8 mice, Iso-Ctr in 

APP/PS1: 9 mice, α-LFA-1 in APP/PS1: 7 mice; *p<0.05, ***p<0.001, Kruskal-

Wallis one-way ANOVA with post-hoc pair-wise comparisons using Dunn’s 

multiple comparison test). (c and c) Fraction of capillaries with stalled blood flow as a 

function of time after a single retro-orbital treatment with 0.9% saline (c) or α-LFA-

1 antibodies (d) in APP/PS1 mice (saline: n = 6 mice; α-LFA-1: n = 7 mice, 4 mg/kg). 

We observed a transient increase in the number of capillaries with stalled blood flow 

at about 1 hr after treatment in both groups. There was a significant decrease in the 

fraction of stalled capillaries 24 hours after injection in the α-LFA-1 group. Images 

were collected over the same capillary bed on each imaging day, and the fraction of 

capillaries stalled was determined for each time point, with the analysis performed 

blinded to treatment day and treatment type. (e) Number of stalled capillaries, 

expressed as a fraction of the baseline number, 24 hrs after administration of α-LFA-

1 or saline. α-LFA-1 reduced capillary stalls by 65% as compared to the saline 

control. (n = 6 mice per treatment group. **p<0.01, Mann-Whitney test). (f) Fraction 

of baseline arteriole flow in penetrating arterioles from APP/PS1 mice 24 hours after 

α-LFA-1 or saline treatment. Each point represents a single arteriole in one mouse. 

The blood flow was increased after α-LFA-1 treatment by 29% compared with 

saline controls (APP/PS1 α-LFA1: 4 mice, 11 arterioles; APP/PS1 saline: 4 mice, 12 

arterioles; *p<0.05, Mann- Whitney test).  
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Figure S 4.12. Brain penetrating arteriole blood flow negatively correlates with the 

number of capillaries stalled in underlying capillary beds in APP/PS1 mice.  

To correlate the effect of capillary stalling on penetrating arteriole blood flow, we 

imaged the same capillaries and measured blood flow in the same penetrating 

arterioles in APP/PS1 mice multiple times before and after administration of saline, 

α-LFA-1, α-Ly6G, and isotype control antibodies. For saline and α-LFA-1 animals, 

there were measurements at multiple time points over two weeks (data in Extended 

Data Figure S 4.9). For α-Ly6G and isotype control animals there were 

measurements only at baseline and ~1 hr after administration (data in Figure 4.3.c 

and Extended Data Figure 4.7 and 4.8). For each penetrating arteriole at each 

imaged time point, we plotted the volumetric flow, expressed as a fraction of the 

baseline volumetric flow, as a function of the number of capillaries stalled at that 

time point, expressed as a fraction of the baseline number of capillaries stalled 

(APP/PS1 α-LFA1: 4 mice, 11 arterioles; APP/PS1 saline: 4 mice, 12 arterioles; 

APP/PS1 α-Ly6G: 3 mice, 22 arterioles; APP/PS1 Iso-Ctr: 3 mice, 18 arterioles). 

These data confirm the sensitive dependence of penetrating arteriole blood flow on 

the fraction of capillaries with stalled flow across several different manipulations that 

led to either increases or decreases in the fraction of capillaries that are stalled. The 

linear regression is defined by: Y = -0.47 X + 1.6 (R2 = 0.2, goodness of fit test; 95% 

confidence interval on slope: -0.65 – -0.29). 
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Figure S 4.13. Time spent at the replaced object in wild type controls and APP/PS1 

animals treated with α-Ly6G or isotype control antibodies.  

Time spent at the replaced object measured over 6 minutes for APP/PS1 and wt 

mice at baseline and at 3h and 24h after a single administration of α-Ly6G or isotype 

control antibodies, and after 4 weeks of treatment every three days (APP/PS1 Iso-

Ctr: 10 mice; APP/PS1 α-Ly6G: 10 mice; wt Iso-Ctr: 11 mice; wt α-Ly6G: 11 mice; 

no significant differences among groups as determined by Kruskal-Wallis one-way 

ANOVA). 
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Figure S 4.14. Administration of α-Ly6G improves performance of 5xFAD mice on 

object replacement and Y-maze tests of spatial and working memory.  

(a) Preference score in OR task at baseline and at 3 hr and 24 hr after a single 

administration of α-Ly6G or Iso-Ctr antibodies. (b) Time spent at the replaced 

object measured over 3 minutes for 5xFAD and wt mice at baseline and at 3h and 

24h after a single administration of α-Ly6G or isotype control antibodies. (c) 

Spontaneous alternation in Y-Maze task at baseline and at 3 hr and 24 hr after a 

single administration of α-Ly6G or Iso-Ctr antibodies. (d) Number of arm entries in 

the Y-maze measured for 6 minutes for 5xFAD and wt mice at baseline and at 3h 

and 24h after a single administration of α-Ly6G or isotype control antibodies. 

(5xFAD α-Ly6G: 8 mice; 5xFAD Iso-Ctr: 8 mice; and wt α-Ly6G: 10 mice; ** p < 

0.01, Kruskal-Wallis one-way ANOVA with post-hoc pair-wise comparisons using 

Dunn’s multiple comparison test).  
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Figure S 4.15. Number of arm entries in the Y-maze for wild type controls and 

APP/PS1 animals treated with α-Ly6G or isotype control antibodies.  

Number of arm entries in the Y-maze measured for 6 minutes for APP/PS1 and wt 

mice at baseline and at 3h and 24h after a single administration of α-Ly6G or isotype 

control antibodies, and after 4 weeks of treatment every three days (APP/PS1 Iso-

Ctr: 10 mice; APP/PS1 α-Ly6G: 10 mice; wt Iso-Ctr: 11 mice; wt α-Ly6G: 11 mice; 

no significant differences among groups as determined by Kruskal-Wallis one-way 

ANOVA). 

 

 



 

 222 

 

 

 

  

0

10

20

30

40

50

B
a
la

n
c
e
 B

e
a
m

 W
a

lk

T
im

e
 t

o
 c

ro
s

s
 (

s
) 

6
m

m

Baseline Baseline 3h 24h 4wk24h3h 4wk

APP/PS1 

Iso-Ctr α-Ly6G

Baseline Baseline 3h 24h 4wk24h3h 4wk

wt

Iso-Ctr α-Ly6G

c

d

b

a

0

5

10

15

20

25

B
a
la

n
c
e
 B

e
a
m

 W
a
lk

T
im

e
 t

o
 c

ro
s

s
 (
s

) 
1
2
m

m
 

Baseline Baseline 3h 24h 4wk24h3h 4wk

APP/PS1 

Iso-Ctr α-Ly6G

Baseline Baseline 3h 24h 4wk24h3h 4wk

wt

Iso-Ctr α-Ly6G

0

5

10

15

B
a

la
n

c
e

 B
e

a
m

 W
a

lk

N
u

m
b

e
r 

o
f 
s

lip
s
 1

2
m

m

Baseline Baseline 3h 24h 4wk24h3h 4wk

APP/PS1 

Iso-Ctr α-Ly6G

Baseline Baseline 3h 24h 4wk24h3h 4wk

wt

Iso-Ctr α-Ly6G

0

10

20

30

40

B
a
la

n
c
e
 B

e
a
m

 W
a

lk

N
u

m
b

e
r 

o
f 

s
lip

s
 6

m
m

Baseline Baseline 3h 24h 4wk24h3h 4wk

APP/PS1 

Iso-Ctr α-Ly6G

Baseline Baseline 3h 24h 4wk24h3h 4wk

wt

Iso-Ctr α-Ly6G

***
*



 

 223 

 

 

 

 

 

Figure S 4.16. Balance beam walk (BBW) to measure motor coordination in 

wildtype controls and APP/PS1 animals treated with α-Ly6G or isotype control 

antibodies.  

(a and b) BBW time to cross on a 6- and 12-mm diameter beam, respectively, for 

APP/PS1 and wild type mice at baseline and at 3h and 24h after a single 

administration of α-Ly6G or isotype control antibodies, and after 4 weeks of 

treatment every three days. APP/PS1 mice showed a modest trend toward taking 

more time to cross the 6-mm diameter beam as compared to wt controls. (c and d). 

Number of slips on the BBW for a 6- and 12-mm diameter beam, respectively, for 

APP/PS1 and wild type mice at baseline and at 3h and 24h after a single 

administration of α-Ly6G or isotype control antibodies, and after 4 weeks of 

treatment every three days. For both beam diameters, APP/PS1 mice showed 

significantly more slips while crossing the beam as compared to wt animals, 

suggesting a motor deficit in the APP/PS1 mice. All animal groups showed a 

reduction in the number of slips with subsequent trials, suggesting improved motor 

coordination with practice. This improvement did not appear different between α-

Ly6G and isotype control treated APP/PS1 mice, suggesting that increases in brain 

blood flow did not influence the motor learning underlying the reduction in the 

number of slips (APP/PS1 Iso-Ctr: 10 mice; APP/PS1 α-Ly6G: 10 mice; wt Iso-Ctr: 

11 mice; wt α-Ly6G: 11 mice; * p < 0.05, *** p < 0.001, Kruskal-Wallis one-way 

ANOVA with post-hoc pair-wise comparisons using Dunn’s multiple comparison 

test) 
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Figure S 4.17.. Depression-like behavior measured as immobility time in a forced 

swim test for wild type controls and APP/PS1 animals treated with α-Ly6G or 

isotype control antibodies.  

Immobility time in forced swim test measured over 6 minutes for APP/PS1 and wt 

mice at baseline and at 3h and 24h after a single administration of α-Ly6G or isotype 

control antibodies, and after 4 weeks of treatment every three days (APP/PS1 Iso-

Ctr: 10 mice; APP/PS1 α-Ly6G: 10 mice; wt Iso-Ctr: 11 mice; wt α-Ly6G: 11 mice; 

* p < 0.05, Kruskal-Wallis one-way ANOVA with post-hoc pair-wise comparisons 

using Dunn’s multiple comparison test; p=0.06 comparison between baseline and 3h 

for APP/PS1 α-Ly6G, Wilcoxon matched-pairs signed rank test relative to baseline).  
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Figure S 4.18. Administration of α-LFA-1 improves performance of APP/PS1 mice 

on object replacement and Y-maze tests of spatial and working memory.  

(a) Preference score in OR task at baseline and at 3 hr and 24 hr after a single 

administration of α-LFA-1 or Iso-Ctr antibodies in 11-13 month old APP/PS1 and 

wt mice. (b) Time spent at the replaced object measured over 3 minutes these mice at 

baseline and at 3h and 24h after a single administration of α-LFA-1 or isotype 

control antibodies. (c) Spontaneous alternation in Y-Maze task at baseline and at 3 

hr and 24 hr after a single administration of α-LFA-1or Iso-Ctr antibodies. (d) 

Number of arm entries in the Y-maze measured for 6 minutes for APP/PS1 and wt 

mice at baseline and at 3h and 24h after a single administration of α-LFA-1 or 

isotype control antibodies. (APP/PS1 α-LFA-1: 10 mice; APP/PS1 Iso-Ctr: 10 mice; 

wt α-LFA-1: 8 mice; wt Iso-Ctr: 7 mice; * p<0.05, ** p<0.01, Kruskal-Wallis one-

way ANOVA with post-hoc pair-wise comparisons using Dunn’s multiple 

comparison test).  
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Figure S 4.19. Representative map of animal location and time spent at the novel 

object in wild type controls and APP/PS1 animals treated with α-Ly6G or isotype 

control antibodies.  

(a) Tracking of mouse nose location from video recording during training and trial 

phases of novel object recognition task taken 4 weeks after administration of α-Ly6G 

or isotype control antibodies every three days in APP/PS1 mice. (b) Time spent at the 

novel object (APP/PS1 Iso-Ctr: 10 mice; APP/PS1 α-Ly6G: 10 mice; wt Iso-Ctr: 11 

mice; wt α-Ly6G: 11 mice; no significant differences among groups as determined 

by Kruskal-Wallis one-way ANOVA).  
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Figure S 4.20. Amyloid plaque density and concentration of amyloid-beta oligomers 

were not changed in 11-month-old APP/PS1 animals treated with α-Ly6G every 

three days for a month.  

(a) Thioflavin-S staining of amyloid plaques in representative cortical sections (upper 

2 panels) and hippocampal sections (lower 2 panels) for APP/PS1 mice treated with 

isotype control antibodies (left panels) or α-Ly6G (right panels). (b) Number of 

amyloid plaques in the cortex (left) and hippocampus (right) for APP/PS1 mice after 

one month of treatment (Iso-Ctr: 5 mice; α-Ly6G: 3 mice). (c) Percentage of tissue 

section positive for Thioflavin-S in the cortex (left) and hippocampus (right) (Iso-Ctr: 

6 mice; α-Ly6G: 3 mice). (d) ELISA measurements of Aβ aggregate concentrations 

after 4 weeks of treatment with α-Ly6G or isotype control antibodies every three 

days (Iso-Ctr: 7 mice; α-Ly6G: 6 mice).  
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Figure S 4.21. Synthetic capillary network of order three.  

Capillaries are indicated in green, while red and blue indicate the single feeding 

arteriole and draining venule, respectively. 
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Figure S 4.22. Histogram of mouse capillary diameters from in vivo measurements 

and post-mortem vascular casts.  

The diameter correction described in Eq. 3 closely aligned the post mortem 

diameters to the in vivo data. 

 

 

Figure S 4.23. Illustration of the pseudo-periodic boundary conditions.  

Vessels categorized as arterioles are labeled in red, venules in blue, and capillaries in 

green.  
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Figure S 4.24. Validation of simulations.  

Spatial distribution of simulated blood flow (a), pressure (b), and hematocrit (c) in 

each vessel in the mouse vascular network. (d) Comparison of red blood cell 

velocities in capillaries in the top 300-µm of mouse cortex from experimental, in vivo 

measurements (red line), simulations with pseudo-periodic boundary conditions 

with corrected diameters (blue line), and no-flow boundary conditions without 

corrected diameters (black line). (e) Relationship between red blood cell speed and 

vessel diameter in arterioles and venules in calculations (solid red and blue dots) and 

experimental measurements (grey points).  
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Figure S 4.25. Calculated blood flow decreases due to capillary stalls was robust with 

respect to simulation parameters.  

(a) Pressure changes in mouse cortical vessel network due to randomly placed 

occlusions in 2% of capillaries. The corresponding flow changes are shown in Figure 

4.1.J. (b) Calculated flow changes due to the occlusion of varying proportions of the 

capillaries using the full mouse dataset (1000 µm) or truncated datasets (1000x300 

µm) with periodic or no flow boundary conditions, and with or without corrected 

vessel diameters. Error bars represent SD across n independent simulations (whole 

domain: n=5; 300 µm slices: n=5 for each of 3 slices). 
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4.12 Supplementary table 

Table S 4-1. Group sizes, statistical tests, and notes for main Figure panels.  

Figure panel Groups compared Statistical tests and Notes 

 

4.1c, d APP/PS1: 28 mice, ~22,400 

capillaries 

 

wt: 12 mice,  

~9,600 capillaries 

Mann-Whitney, ****p<0.0001 

Each data point represents one mouse in 

which > 800 capillaries were scored as 

flowing or stalled.  

The lines in panel D represent a sliding 

average with a 10-week window and the 

shaded areas represent 95% confidence 

intervals. 

4.1f APP/PS1: 7 mice 

Stalled: n ~ 120 

Flowing: n = ~ 8,700 

 

4.1g APP/PS1: 7 mice 

Stalled: n ~ 120 

Flowing: n = ~ 8,600 

 

4.2b APP/PS1: 6 mice,  

106 stalled capillaries 

Error bars represent 95% confidence intervals 

based on binomial statistics. 
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4.2d Stalled: n = 116 

Flowing: n = 8,431 

Mann-Whitney, ****p<0.0001 

4.2e APP/PS1: 7 mice 

Stalled: n ~ 120 

Flowing: n ~ 9,000 

 

4.2f APP/PS1: 3 mice,  

31 capillaries 

 

4.2h APP/PS1: 4 mice,  

49 stalled capillaries followed 

from first imaging session 

 

4.3a α-Ly6G: 6 mice, ~4,800 

capillaries 

Iso-Ctr: 6 mice, ~4,800 

capillaries 

Mann-Whitney, **p<0.01 

4.3c young APP/PS1 Iso-Ctr: 5 

mice, 32 arterioles 

old APP/PS1 Iso-Ctr: 3 mice, 

18 arterioles 

young wt α-Ly6G: 5 mice, 30 

arterioles 

Kruskal-Wallis one-way ANOVA with post-

hoc using Dunn’s multiple comparison 

correction, **p<0.01 and ***p<0.001 
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young APP/PS1 α-Ly6G: 5 

mice, 33 arterioles 

old APP/PS1 α-Ly6G: 3 mice, 

22 arterioles 

4.3e wt α-Ly6G: 10 mice 

APP/PS1 α-Ly6G: 10 mice 

APP/PS1 Iso-Ctr: 10 mice 

Ordinary one-way ANOVA with post hoc 

using Tukey’s multiple comparison correction 

to compare across groups, *p<0.05 

Paired t-test to compare baseline and after 

treatment within a group, ++p<0.01 

Each data point indicates a single mouse and 

lines connecting baseline and after 

measurements indicate the same animal. 

4.4c, d, e APP/PS1 Iso-Ctr: 10 mice  

APP/PS1 α-Ly6G: 10 mice  

wt α-Ly6G: 11 mice 

wt Iso-Ctr: 11 mice 

Kruskal-Wallis one-way ANOVA with post-

hoc using Dunn’s multiple comparison 

correction to compare across groups, *p<0.05 

and **p<0.01 

Wilcoxon matched-pairs signed rank test 

relative to the baseline measurement to 

compare baseline and after treatment within a 

group, +p<0.05 and ++p<0.01 

4.5a, b Iso-Ctr: 6 mice  Mann-Whitney 
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α-Ly6G: 7 mice **p <0.01 

4.6c  Error bars represent SD across for five 

independent simulations.  

 

4.13 Supplementary movies 

Movie S 4.1. Two-photon image stacks of fluorescently labeled blood vessels 

from APP/PS1 mice. Capillaries with stalled blood flow are indicated with red circles.  

Movie S 4.2. Two-photon image stacks of fluorescently labeled blood vessels 

from wt mice. Capillaries with stalled blood flow are indicated with red circles.  

Movie S 4.3. Two-photon image stacks of fluorescently-labeled blood vessels 

APP/PS1 mouse when anesthetized. Capillaries with stalled blood flow are indicated 

with red circles. Animal was anesthetized by breathing 1.5% isoflurane.  

Movie S 4.4. Two-photon image stacks of fluorescently-labeled blood vessels 

from the same APP/PS1 mouse (Movie. S3) when awake. Capillaries with stalled blood 

flow are indicated with red circles.  
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CHAPTER 5  

APPLICATION OF CROWDSOURCING CITIZEN SCIENCE IN STUDYING 

BRAIN CAPILLARIES IN ALZHEIMER’S DISEASE 

 

5.1 Introduction 

Alzheimer’s disease (AD), the leading cause of dementia in the elderly, is known 

to be caused by the aggregates of amyloid beta proteins and neurofibrillary tangles in the 

brain. Since the cerebrovascular dysregulation is a feature of neurodegenerative diseases 

(Iadecola, 2004), we are interested in studying the interaction between brain 

microvasculature dysfunction and AD. Recently, we observed a significantly increased 

rate of spontaneous transient capillary stalls in the cortical microvasculature of AD mice 

compared to wild-type littermates, which is correlated with the brain blood flow reduction 

seen in these mouse models of APP overexpression (Cruz Hernández et al., 2019). This 

study similar to other research projects that investigate the interaction between brain 

blood flow and neurodegenerative diseases depends heavily on both imaging techniques 

such as multiphoton microscopy and fMRI and image analysis methods such as 

registration, segmentation, and blood flow stalling detection (Bennett et al., 2018; Cruz 

Hernández et al., 2019; T. P. Santisakultarm et al., 2014; Thom P. Santisakultarm et al., 

2012).  

The brain vasculature network imaging and blood flow measurements can be done 

by in vivo two-photon excited fluorescence (2PEF) microscopy (Kleinfeld, Mitra, 
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Helmchen, & Denk, 1998; Thom P. Santisakultarm et al., 2012), which allows us to map 

the architecture of the vasculature throughout the top 500 μm of the mouse cortex, as well 

as measure the blood flow velocity in individual vessels. Briefly, the blood plasma of an 

anesthetized mouse is fluorescently labeled. A low-energy femtosecond laser pulse is 

tightly focused, through a craniotomy, into the cortex of the mouse. There is no linear 

absorption at the laser wavelength by the dye, so fluorescence is produced only at the 

focus, where the laser intensity is high enough to excite the dye through the two-photon 

absorption process. The fluorescence intensity is then recorded while the position of the 

laser focus is scanned throughout the brain, providing a three-dimensional image of the 

vasculature (Denk, Strickler, & Webb, 1990). To determine the flow velocity in 

individual vessels based on the fact that the dye labels only the blood plasma, the motion 

of the non-fluorescent red blood cells can be determined by tracking the dark patches 

produced in the 2PEF image (Kleinfeld et al., 1998).  

The acquired brain vasculature network images and blood flow measurements 

require various image analyses to quantitatively measure different geometrical and 

topological metrics in order to examine the proposed scientific hypothesis. For instance, 

our stalled capillary research study requires two main image processing tasks of 3D vessel 

segmentation and stalled vs. flowing capillary classification to identify each capillary 

with end points, centerline, and a unique identifier because we accumulate the data from 

multiple people for each vessel. Since manual image analysis tasks including both 

segmentation and classification are time-consuming and become bottleneck processes, 

researchers pursued different automated or semi-automated techniques to tackle this 
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problem. Alternatively, researchers tried to combine computational power and human 

wisdom through a process called “citizen science”.  

Citizen science is a mechanism in which citizens are participating alongside the 

professional scientists in different aspects of scientific research projects (e.g. 

crowdsourcing projects) such as environmental DNA data collection (Biggs et al., 2015), 

avian biological pattern monitoring (Sullivan et al., 2009), and interstellar dust particle 

detection (Westphal et al., 2014), and medical image analysis (Heim et al., 2018). Every 

year, more than 2 million volunteers participate in thousands of crowdsourcing projects 

around the world with an estimated value of $2.5B for their time investment (Theobald 

et al., 2015). Without the power of the crowd, the scientific community cannot tackle 

these research questions due to logistical and financial limitations (Bird et al., 2014). 

The “EyesOnALZ” initiative (involves Human Computation Institute, Cornell 

University, University of California at Berkeley, and Princeton University) proposed to 

use citizen science for both two main image processing tasks required for our stalled 

capillary research study (3D vessel segmentation and stalled vs. flowing capillary 

classification).  

Our proposed method for stalled vs. flowing capillary classifications starts with 

utilizing the acquired segmentation results to create image samples that each one outlines 

a particular vessel segment in the image and then, citizen scientists classify each vessel 

segment as a stalled or flowing capillary. This method was inspired by “Stardust@home”, 

a citizen science project developed by the Space Sciences Laboratory at U. C. Berkeley, 
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that analyzes samples collected by the Stardust spacecraft to detect interstellar dust 

particles (Westphal et al., 2014). 

In this chapter, we describe the manual solutions developed by Schaffer-

Nishimura labs for these image segmentation and classification tasks prior to 

EyesOnALZ initiative. Then, we discuss the complete pipeline including automated 

image segmentation and StallCatchers samples generation. In addition, we present a study 

on the StallCatchers’ performance and methodology validation based on the collected 

data. Finally, we present the results of a novel study produced by StallCatchers and 

conclude the chapter with the discussions of the StallCatchers’ powers and limitations to 

discuss the possibility of its adaptation by other researchers. 

5.2 Method 

5.2.1 General pipeline  

Based on the StallCathers’ crowdsourcing design, each player at each round of 

the game receives a 3D image stack that encompasses a particular vessel to target for the 

classification task between flowing vs. stalled. Users view the acquired 3D images 

through movies that show one plane at a time. Since vessels have different 3D orientation 

and many vessels are visible in an image stack, we need to indicate the targeted vessel 

segment to the user. Therefore, we need to identify each vessel segment within the 3D 

image stack and generate a movie that encompasses a particular targeted segment and 

includes a visual indicator to the segment for the user. A database is generated to save the 
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information about the generated movies for all vessel segments identified in each image 

stack.  

Each particular vessel is assigned to several players to score and their results are 

aggregated to form the crowd answer. The StallCatchers pipeline (Figure 5.1) starts with 

the imaging of a mouse brain using the multiphoton microscopy and followed by the 

vessel segmentation and the centerline detection as well as the single vessel movie 

generation. The pipeline is concluded by the user task assignment and the crowd result 

aggregation. In this section, we elaborate on each step of this pipeline and the rationale 

for the approaches in detail. 

 

Figure 5.1. StallCatchers complete pipeline. Each row represents one of the 

objectives (first column) and processes required to achieve it (other columns).  
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5.2.2 Manual tracing and scoring  

We developed an in-house software package (Cruz Hernández et al., 2019) to 

facilitate the image analysis of in vivo multiphoton microscopy images of brain 

vasculature networks. Furthermore, this tool was adopted for the StallCatchers’ validation 

study. Researchers load the 3D images and start with inserting a node at the location of 

vessel bifurcations or the end of the vessel segments. Next, the vessel centerlines can be 

drawn as a set of 3D center points between two vessel ends. Finally, each vessel is 

classified as one of the defined vessel classes (i.e. surface venule, surface arteriole, 

ascending venule, penetrating arteriole, flowing capillary, or stalled capillary). The final 

graph representation of the vasculature network within the image is saved in an XML file 

including the properties of all node’ and edges. 

5.2.3 DeepVess 

The manual tracing of brain vasculature network in a 3D image stack can take 20-

30 hours, depend on the researchers’ experience level. In order to remove this bottleneck, 

we developed a convolutional neural network model, called DeepVess (Haft-Javaherian 

et al., 2018), that performs the whole segmentation task automatically. In brief, DeepVess 

is a convolutional neural network with optimized architecture that uses a greedy search 

over each subgroup of the hyperparameters in addition to a new customized loss function 

to tackle the fact that the segmentation labels are highly unbalanced (i.e. vessels are within 

than 10% of the imaged brain volume). DeepVess consists of preprocessing, 

segmentation, and postprocessing. DeepVess’ preprocessing includes splitting the image 

channels, resizing the image close to 1 μm3 voxel, image intensity normalization, and 
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motion artifact removal. DeepVess’ postprocessing includes removing of small objects 

and holes, smoothing vessel boundaries, and automatic vessel centerline extraction. Small 

vessels connected to the boundary of the image were excluded from the analysis due to 

lack of information for the classification. 

The centerline extraction task is a challenging and essential task, which removes 

centerline artifacts such as hairs (i.e. tiny vessels with one end not connected to any 

vessels caused by noise bulge at vessel boundaries). Since images includes regions 

outside the brain (the dura) which have highly fluorescent structures that are not vessels, 

the slices captured outside the brain require manual rejection. Similarly, parts of the 

images need to be manually masked and excluded from the analysis pipeline when the 

signal-to-noise ratio (SNR) drops intensely due to light scattering caused by big vessel 

optical obstructions or highly inflamed tissues in the disease animal models. 

5.2.4 Vessel outlines and movie presentation for the StallCatchers user 

At each round of the game, each player examines a movie for a particular vessel, 

which is part of a 3D image stack with indications to the targeted vessel segment by 

showing one plane at a time. The movie generation step utilizes the segmentation and 

centerline information to generate movies for each identified vessel segment. A movie 

for each vessel segment was generated from sub-volume of the original image stack with 

a fixed aspect ratio and variable depth in z. The target vessel was located as close as 

possible to the centroid with some margin proportional to the vessel diameter, which is 

measure using the segmentation results along the vessel centerline. Infrequently, the 

original images were rotated 90 degrees or resized to obtain a better view of the vessel. 
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The displayed image intensity within the cropped box was normalized to utilize the entire 

available intensity range. Feedback from trained users suggests that contrast and 

saturation are critical in the ability to discriminate red blood cell motion. In our 

laboratory, users adjust the image contrast for each image stack independently and 

dynamically, but we made the decision to simplify the game delivery and choose a fixed 

contrast range determined by an internal multi-case multi-reader survey.  

The single channel 3D image is then converted to a 3-channel RGB image. Based 

on the vessel centerline and diameter an outline was overlaid on the image to annotate the 

target vessel (Figure 5.2). Initially, the outline hue was set to the green similar to the 

Stardust@home design. Six months after the public lunch in October, we received 

negative feedback from citizen scientists on the green hue. Subsequently, we did an 

external and internal multi-case multi-reader study to set an optimum hue, saturation and 

lightness that resulted in the selection of blaze orange (24° hue, 100% saturation, and 

50% lightness).  

In the same way, the shape of the outline was optimized with an internal multi-

case multi-reader study and was selected to meet the UI/UX design criteria of minimal 

user distraction caused by static annotation in the movie compare to other dynamic 

annotations. To annotate the target vessel with the circular cross-sectional pipes along the 

projection of vessels in 2D, the vessel centerline was projected into the x-y plane, two 

mathematical dilation morphological operations with disk structuring elements were 

applied to the projected centerline independently. The first disk structuring element has a 

fixed radius and the second disk structuring element has a radius equal to the radius of 
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the first disk added to a fixed value as the outline thickness. The logical operation of 

exclusive disjunction applied to these two dilated centerlines generates the final outcome. 

Next, a median filter was applied to smooth the outline and the results were overlaid on 

the original images in RGB format.  

Finally, A unique 128-bit immutable universally unique identifier (UUID) was 

assigned to each vessel and all the information about the vessel geometry and movie 

generation steps added to a metadata record. The metadata for each particular vessel 

includes the vessel’s UUID, the imaged animal ID, the image stack ID, the image 

intensity ranges based on the intensity normalization, the vessel centroid coordinate, the 

coordinate of the movie within the original image stack, the original size of the movie, 

and the rotation of the movie. Finally, the movie was saved either as a sequence of JPEG 

images, multi-page TIFF file, and/or MP4 movies.  

5.2.5 Amazon AWS & Microsoft Azure 

Later in the project, we expedited the image analysis process by utilizing the NC 

series virtual machines on the Microsoft Azure cloud service. The generated vessel 

samples in Microsoft Azure were transferred to Amazon AWS S3 storage shared between 

Stardust@home and StallCatchers projects. Finally, the StallCatchers frontend and 

backend was redeveloped using PHP and MySQL. Since 2016, the entire StallCatchers’ 

pipeline has been optimized for higher accuracy and performance continuously.  
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Figure 5.2. Example of frames from a StallCatchers movie showing a vessel that 

traverses along the third dimension.  

The movie starts at the top left frame and finishes at the bottom right frame, with the 

images going gradually deeper into the brain.  
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5.3 Results and discussions 

5.3.1 Alpha test Discussions  

StallCatchers was launched publicly in October 2016. Prior to the public lunch, 

the Alpha test was performed in September 2019 with contributions from several 

communities such as biomedical researchers, Cornell University Alzheimer's Help and 

Awareness Club, and other Alzheimer’s disease advocates who already have been 

involved in this project since 2015. For the Alpha test, we prepared a calibration dataset 

with 133 capillaries (100 flowing and 33 stalled capillaries) to be used for the training 

and the user calibration process during the game. These 133 capillaries are sampled from 

a few datasets due to the low incident rate of capillary stalling. Furthermore, a dataset 

with 1000 capillaries (750 flowing and 250 stalled capillaries) was prepared as the 

validation dataset. All flowing capillary were extracted from datasets based on the study 

done by Cruz Hernández et al. (Cruz Hernández et al., 2019). In contrast, since only a 

small fraction of vessels are stalled in that study, additional image data from stalled 

vessels were added from other studies (T. P. Santisakultarm et al., 2014; Thom P. 

Santisakultarm et al., 2012). An expert reconfirmed all the capillaries’ stalled vs. flowing 

classification.  

The alpha test had a two-fold goal: the user interface/experience design (UI/UX) 

feedback and hyperparameter optimization for crowd data aggregation algorithm. Crowd 

results can be aggregated using a weighted average with associating a weight to each user 

base on “d prime” (Eq. (1), as a user accuracy metric, where Z is the inverse of the 

cumulative distribution function of Gaussian distribution (Raykar et al., 2009). 
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𝑑′ = 𝑍ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 − 𝑍𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 (1) 

Based on the results of the Alpha test (Figure 5.3) and the StallCatchers’ design 

criteria of 95% sensitivity, 20 annotations per vessel is required for each vessel.  

 

Figure 5.3. Alpha test results for the different numbers of annotations per vessel.  

For the StallCatchers’ design criteria of 95% sensitivity, 20 annotators per vessel are 

required. 

 

On the other hand, the measured users’ d prime can be utilized for task completion 

determination. The cumulative sum of the d prime of the users who classified a particular 

vessel is a good indicator of the task completion. We defined an empirical threshold to 

determine the task completion based on the for the cumulative sum of the d prime. 

5.3.2 Validation Study 

After the public launch, the first dataset for validation of Alpha test findings was 

prepared and uploaded to StallCatchers. This dataset, called plaque proximity dataset, 
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served two purposes: the validation of Alpha test findings and the investigation of the 

scientific question whether the amyloid beta plaque density in the vessel vicinity is 

correlated with stalled capillary phenomena. Internally, we used our in-house manual 

tracing and scoring software package to locate the vessel segments and classify them as 

stalled or flowing. Independently, the detected stalled vessels by StallCatchers were 

reconfirmed by an expert to determine the final StallCatchers result. Based on our internal 

results and StallCatchers’ results as the confirmation, we concluded there is no significant 

difference in terms of plaque density in the vessel vicinity and the occurrence of capillary 

stalling (Cruz Hernández et al., 2019). Additionally, after conducting the analysis, we 

used this dataset for the future crowd aggregation algorithm development. The centerline 

in this dataset was extracted and all the vessels were classified manually to generate the 

ground truth for this dataset. 

After the reinvestigation of the crowd aggregation method parameters with this 

larger dataset compare to the Alpha test, we concluded that 7 annotations per vessels are 

required to obtain the StallCatchers’ design criteria of 95% sensitivity (Figure 5.4). The 

new criterion increases the StallCatchers throughput rate by 3-fold. We incorporated all 

UI/UX feedbacks and developed the second generation of StallCatchers (Figure 5.5).  

 

 



 

 258 

 

Figure 5.4. Validation study results for the different numbers of annotations per 

vessel based on the plaque proximity dataset.  

For the StallCatchers’ design criteria of 95% sensitivity, 7 annotators per vessel are 

required, which is a 3-fold improvement compare to Alpha test’s results. 

 

 

Figure 5.5. StallCatchers current user interface.  

UI includes the virtual microscope with a sliding bar for moving through the movie 

and decision buttons in addition to the leaderboard.  

 

5.3.3 High Fat Project  

The first study that utilized the complete StallCatchers pipeline investigated the 

effect of high-fat diet (HFD) and AD on the capillary stalls. Obesity is correlated with 
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severe dementia and AD (Cova et al., 2016). For instance, late-life dementia can be 

correlated in a dose-dependent manner to cardiovascular-risk factors such as diabetes, 

smoking, hypertension, and high cholesterol (Alosco et al., 2012). To answer this 

question, we studied the correlation between stall capillary phenomenon and HFD in AD 

and wild type mice. AD mice and WT mice were fed a western HFD or a control diet for 

11 months (6 mice per group, total of 24 mice) and then their brain vasculature was 

imaged using in vivo multiphoton microscopy and the capillary stalling rate was 

measured using StallCatchers. An expert reviewed the capillaries detected as stalled by 

StallCatchers with high probability after the data collection to reconfirm the results. As 

shown in Figure 5.6, this dataset suffers from poor image quality and low SNR compared 

to data in the previous StallCatchers testing and in the calibration data. This is a common 

phenomenon observed in the data of studies, which are dealing with mouse models with 

different diseases. 
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(A) (B) 

Figure 5.6. Comparison of image quality between a normal (A) and an HFD image 

stack (B). 

Due to inflammation caused by AD and/or HFD, images suffer from poor image 

quality and low SNR. 

 

5.3.4 Post-hoc expert stall reconfirmation 

Since the occurrence probability of capillary stalling is less than 0.5% and 2% in 

WT and APP/PS1 AD mouse models, the false positive rate can be reduced significantly 

using the second-round quality control of positive detection by researchers with a 

reasonable time cost. On the other hand, identifying false negatives are not tractable even 

with the second-round quality control due to the very large number of negative results.  
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5.3.5 Power of StallCatchers 

The stalled vs. flowing capillary classification is a challenging task and time-

consuming. Currently, there is no fully automated computer algorithm that can perform 

this task with an acceptable accuracy to eliminate the need for the manual classification. 

StallCatchers enables us to perform this classification task ~30 times faster compared to 

the traditional time-consuming manual classification, which delays the scientific research 

progress, with up to 30 times faster.  

5.3.6 Different stall-rate metrics 

The stalled capillary phenomenon can be characterized using different metrics 

depending on the stall detection methodology. The first category of the detection methods 

is based on examining the whole complete 3D image stack while scrolling through slices 

and the evaluator is not directed to check every vessel. This category has two variants. 

The image can be examined using the raw acquired image or it can be examined after 

overlaying the vessel centerlines on the image. Note that the vessel centerline also can be 

extracted manually or automatically using DeepVess. The second category of the 

detection methods is based on examining a sub-volume of the original 3D image stack 

with annotation identifying the targeted vessel. This category also has two variants. The 

examination can be done manually by an expert or it can be done using StallCatchers 

followed by manually reconfirmation of the vessel classification for vessels with high 

stalling probability.  
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On the other hand, the stall rate can be measured in two ways. The total number 

of stalled vessels can be normalized by the total number of vessels in the image or by 

total number slices in the image stack depending on the availability of the total number 

of vessels in the image. 

5.3.7 Comparison between StallCatchers and human manual classifications  

Concerned that the difference in image quality could compromise results, we 

selected 4 mice from the HFD project with ~5000 vessels total to perform vessel-by-

vessel accuracy comparisons between StallCatchers and expert manual classifications in 

addition to the inter-reader and reader vs. panel accuracies. Two trained researchers 

reviewed the vessel movies generated by StallCatchers pipeline one-by-one and marked 

144 vessels as stalled capillary candidates. First, one expert examined the candidates and 

then independently, a panel of experts met and examined the same candidates together. 

We used absolute mean difference (AMD), which is the absolute difference total number 

of detected stalled vessels divided by the arithmetic mean, as the accuracy metric. Note 

that a lower AMD value shows higher agreement between two measurements with AMD 

value of 0 means complete agreement. Additionally, we ran these vessels through 

StallCatchers and an expert reviewed top 6% of vessels in terms of stalling probability. 

StallCatchers and the panel agreed better with the AMD value of 0.06, than StallCatchers 

and the expert or StallCatchers and the manual classification with the AMD values of 

0.29 and 0.25, respectively.  
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(A)  (B)  

(C)  (D)  

Figure 5.7. The stalled capillary phenomenon in AD and HFD.  

The percentage (A, B) or total number (C, D) of capillary stalls in wildtype and AD 

mice with 11 months HFD or control diet based on StallCatchers’ results with post 

hoc expert reconfirmation (A, C) or manual detection of stalls in the raw 3D images 

(B, D). Each data point represents an averaged value of four 3D image stacks 

acquired from an animal. The manual ratio is the total number of stalls divided by 

the total number of image slices and the StallCatchers ratio is the total number of 

stalls divided by the total number of detected vessels in the image. 
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(A)       (B)          

(C)  (D)  

(E)         (F)        

(G)  (H)  
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Figure 5.8. Image Intensity normalization for two different datasets. 

 SN Lab (A-D) and Boas Lab (E-H), before (A, C, E, G) and after (B, D, F, H) 

intensity normalization illustrated as the grayscale image (A-B, E-F) and image 

intensity histogram (C-D, G-H). 

 

5.3.8 HFD results 

We also compared the results between a trained user evaluating full stacks and the 

StallCatchers result. An expert looks at the raw 3D images and identified the stalled 

vessels. Alternatively, an expert reviewed the stalled vessels detected by StallCatchers 

with high probability and reconfirmed the results similar to the previous section. The 

results of this study (shown in Figure 5.7) suggests HFD increases stall rates but does not 

have a synergistic effect with AD.  

5.3.9 Exceptional dataset  

A new dataset from an independent laboratory (Boas Lab, Boston University) was 

acquired to study the generalization of the preprocessing steps to images acquired using 

different microscopes and acquisition settings. These data had differences from previous 

used data in terms of the different levels of noise, the pixel size, and the frame rate. 

In order to utilize the current pipeline, the only hyperparameter of DeepVess that 

required fine-tuning was the image intensity normalization percentile used for the 

standardization. Typically, most of the intensity range can be utilized by performing 1% 

saturation at the two ends of the intensity range. In contrast, the new dataset required 2% 
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saturation at the high-intensity range in order to utilize most of the intensity range (Figure 

5.8). The level of saturation was determined in an empirical optimization fashion based 

on intensity histogram and DeepVess’ results. Figure 5.8 shows the effect of the intensity 

normalization process with having intensity distributions with the fat tail that utilizes 

most of the intensity range. 

As described in the last section, since the image intensity distribution depends on 

the microscope and acquisition systems, the only hyperparameter that needs fine tuning 

is the image normalization percentile, which maximizes the intensity range utilization.  

5.4 Conclusions 

5.4.1 Future work 

The crowd response aggregation algorithm can be improved to decrease the 

required number of responses per vessel and leads to a higher throughput rate. 

Additionally, the vessel assignment can be done in a more adaptive fashion in order to 

utilize the valuable time of the experienced users in more challenging cases.  

Furthermore, the StallCatchers’ results can be re-utilized as the ground truth 

dataset for training more sophisticated machine learning algorithm with the goal of 

performing this classification task in a semi- or fully-automated manner in the near future. 
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CHAPTER 6  

XYLEM VESSEL CONNECTIVITY IN THE RING AND DIFFUSE POROUS TREES 

 

6.1 Introduction 

The world is full of transport networks ranging from biological to engineered. 

Despite differences in their nature and purpose, networks share similar structures and 

dynamics (Watts & Strogatz 1998). To model and understand these dynamics, networks 

are often simplified and studied as graphs, structures comprising of nodes and edges, where 

nodes represent the main elements of the network and edges represent the connections or 

pathways between the elements. The specific arrangement of nodes and pathways within 

the network determines both the overall topology and the functional efficiency of the 

structure (Watts & Strogatz 1998; Latora & Marchiori 2001). With respect to biological 

fluid transport networks, the topology can also impact the vulnerability of the system in 

response to external stresses (Zimmermann 1983). Topology regulates the total throughput 

of the network in terms of the hydraulic conductance and the fluid transport distributions 

throughout the network. As a result, the ability to accurately map physical networks into 

well-defined networks is a crucial step toward understanding the dynamics of these 

complex systems. Previously, the methodologies based on the network analysis have been 

utilized to study brain vascular networks (Cruz Hernández et al. 2019). 

One network that has been understudied is the water transport system in plants: the 

xylem network. The anatomy of this network provides reliable water transport in plants. 

These networks consist of water conducting, tube-shaped vessels, called xylem vessels, 
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that are connected through intervessel pit connections, that form between two adjacent 

vessels (Figure 6.1). Pits are porous membranes with pore sizes ranging from 1-10 nm that 

are many-fold smaller than the diameters of xylem vessels, whose diameters range from 5-

500 µm (Venturas, Sperry & Hacke 2017). Intervessel connections between two adjacent 

xylem vessels occur in regions so that there are spans of vessels that are connected by many 

pores. The pores in intervessel connections are numerous so that they contribute 

substantially to water conductance despite their small size relative to the xylem vessels. 

Water flow through the network of xylem vessels is limited by both vessel diameter and 

intervessel connections (Sperry, Hacke & Wheeler 2005), stressing the importance that 

both anatomical features have on the water transport efficiency through xylem vessels. 

Intervessel connections between xylem vessels can provide redundant pathways for 

water transport that confer robustness against loss of xylem vessels. However, these 

connections can also threaten water transport efficiency during drought stress periods, 

because intervessel connections are not only permeable to water but also gases. During 

water shortages, the water tension within the xylem increases continuously, which can 

cause the metastable water to cavitate spontaneously, resulting in the formation of small 

air bubbles (Tyree & Dixon 1986). After which, air from cavitation events can expand 

across an entire xylem vessel, forming so-called embolism events that block the water flow 

through that segment of the xylem vessel. When water potentials continue to decline, local 

embolism events have the tendency to spread via intervessel connections through the 

vascular system, which decreases the hydraulic conductivity of the xylem network and 

diminishes the water supply to distal plant organs (Zimmermann 1983). Embolism 

vulnerability of single vessels is well examined and can be attributed to anatomical traits 
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such as vessel diameter, vessel wall thickness and intervessel connection structures 

(Jacobsen, Ewers, Pratt, Paddock III & Davis 2005; Wheeler, Sperry, Hacke & Hoang 

2005; Jansen, Choat & Pletsers 2009). Even though research has failed to provide direct 

evidence of an existing tradeoff between water efficiency and safety on a single intervessel 

connection level, data show that larger volume vessels are more likely to embolize because 

of the positive correlation between intervessel areas and vessel surface areas, based on 

which the likelihood of having a leaky intervessel connection increases with vessel size 

(Wheeler et al. 2005). Thus, vessel connectivity and vessel size are not only important 

anatomical characteristics for water transport efficiency but also embolism resistance.  

 

A. 

 

B. 

 

Figure 6.1. SEM images of a xylem intervessel connection.  

The intervessel connection between two adjacent xylems (A), which is a porous 

membrane between two xylems (B).  

 

Network connectivity is a major component of network robustness. However, the 

effects of water delivery efficiency on the drought survival and embolism spread are 

unknown. There is an ongoing debate on how xylem vessel topology relates to drought 

tolerance and whether higher vessel connectivity leads to a xylem network with higher 

resistant to embolism or if the opposite is the case. Both hypotheses are reasonably argued 
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and supported: Loepfe et al. 2007 suggested that higher xylem vessel connectivity impedes 

the network resistance to embolism because of the high network connectivity due to the 

intervessel connections facilities the spread of embolisms throughout the system. Indirect 

support for Loepe’s results is given by an empirical study conducted on eighteen North 

American and Asian temperate trees and shrubs (Zanne, Sweeney, Sharma & Orians 2006) 

which focused on drought tolerance. This study showed that plants with a higher drought 

tolerance have less integrated, i.e., less number of intervessel connections, xylem pathways 

(Zanne et al. 2006). Contrarily, the counter-theory proposes that interconnected xylem 

networks are more resistant to drought stress because, in the case of an embolism event, a 

highly interconnected xylem network benefits from having several pathways through 

which water can be redirected. Thus, embolism events will have less impact on hydraulic 

conductance in a well-connected network. Support for this theory is given by an empirical 

data set on six different Acer taxa, that showed that intervessel connectivity leads to a more 

resistant xylem network (Lens et al. 2011). These two contrary arguments highlight the 

necessity for characterizing the architecture of xylem networks to identify networks traits 

affecting embolism resistance. However, both vessel topology and vessel connections are 

difficult to map due to technical limitations and therefore are poorly understood. As a 

result, we are far away from understanding how network connectivity affects xylem 

network vulnerability to embolism. 

An established method for quantifying xylem network resistance to embolisms 

without the characterization of anatomical traits is the hydraulic vulnerability curves (PLC 

curves), which characterize the percent loss of hydraulic conductivity of a tissue segment 

as a function of the water potential within the tissue. There is an implicit assumption that 
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the water potential within the tissue is correlated with the degree of embolism within the 

vessel network and PLC curves (Cochard et al. 2013). Using the PLC curves, the P50 value 

is the water potential corresponding to a 50% hydraulic conductance loss through the xylem 

and is commonly used to compare drought resistance across plants. P50 values typically 

range in trees from -0.2 MPa to -14.0 MPa, with more negative values corresponding to 

greater tolerance to drought (Maherali, Pockman & Jackson 2004). How the overall shape 

of the PLC curve is directly linked to the relevant network characteristics remains 

unknown. 

To address a number of these unknowns, in this manuscript we utilized laser 

ablation tomography (LATscan), a method that produces three-dimensional structural 

images, to explore the anatomical network characteristics of three ring-porous and three 

diffuse-porous tree species. Diffuse-porous tree species typically exhibit a tight vessel size 

distribution (around 40 µm in diameter) across year rings, while ring-porous tree species 

typically exhibit a bimodal vessel distribution, with large vessels (<500 μm) in the spring 

wood and small vessels (>20 μm) in the late wood. Ring-porous tree species have a higher 

maximum hydraulic efficiency than diffuse porous tree species due to the larger vessels in 

the early growth periods of the season in comparison to diffuse porous tree species 

(Carlquist 1988). However, these large vessels are particularly vulnerable to air embolisms 

due to the inverse correlation between vessel size and intervessel quantity and the 

likelihood of gas penetrating through the intervessel connection (Zimmermann 1983; 

Wheeler et al. 2005; Christman, Sperry & Smith 2012). We investigated the relationship 

between the intervessel quantity and the embolism likelihood by tracing and reconstructing 

the xylem networks of all six species using a deep neural network to segment images and 
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then quantify the overall network connectivity and vessel topology to identify network 

characteristics for these two wood types. We then simulated the robustness of the water 

flow in the network against blocked vessels and correlated these findings to P50 values. 

Comparing the different vessel arrangements of these two wood types with vulnerability 

curves aims towards a better understanding of the different vulnerabilities of embolism 

spread in the ring and diffuse-porous trees and will allow us to examine if xylem network 

connectivity contributes to the high embolism vulnerability of large early wood vessels in 

ring-porous tree species. 

6.2 Material and Methods 

6.2.1 Plant material 

Two two-year-old branches of three individual trees of either three diffuse-porous 

(Fagus sylvatica, Populus x canadensis, Liriodendron tulipifera) or three ring-porous 

(Quercus montana, Fraxinus excelsior, Carya ovata) tree species were harvested for each 

measurement between April 2016 and June 2017. Selected tree species were grown on 

Cornell Campus, and tree replicates were chosen based on their proximity to each other 

(Ithaca, NY; lat. 42.44° N, long. 76.44° W). Ithaca has a continental moderate climate with 

an average annual temperature of 8.5 °C and an average annual rainfall of 982 mm 

(Northeast Regional Climate Center 2019).  

6.2.2 Percent loss of hydraulic conductivity 

Vulnerability curves were performed using the bench-top dry down method (Tyree 

& Dixon 1986). Around 60 cm long branches were cut around midnight, immediately 
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double bagged, brought to the lab, and the cut end was put into water. The following 

morning, the branches were spread out on the bench-top, single leaves were bagged for 

allowing leaf water potential (Ψleaf) to equilibrate with the branch water potential (Ψbranch) 

and dried down for varying amounts of time to archive a range of different (Ψleaf). During 

this timeframe, Ψleaf was taken on the bagged leaves with a water status console 

(Soilmoisture Equipment Corp., Goleta, CA). After reaching the desired Ψleaf, branches 

were double bagged, equilibrated for 12 hours, and remeasured. Then, branches were cut 

under water to 15 cm long segments and inserted into a custom-built low-pressure flow 

meter (Melcher et al. 2012) by attaching one end of the branch segment to a reservoir that 

was filled with a (0.1 µm) filtered 20 mM KCl of perfusion solution, and the other end of 

the branch segment to an analytical balance (HR-200, A&D, Elk Grove, Il). Then, the 

initial flow rate (Q) was measured. The hydraulic pressure difference between sample and 

solution reservoir was kept constant species dependent between 1.5 kPa and 3.0 kPa during 

the measurements. Afterward, branch segments were flushed for 1 hour at 100 kPa with 

the perfusion solution, and the max flow rate was measured by reinserting the stem 

segments in the low-pressure flow meter. The unit-length hydraulic conductivity (K) was 

determined by:  

K =  Q 
𝐿

ΔP
 (1) 

Where, L is the length of the sample, and ΔP is the hydraulic pressure gradient. 

After the measurements, the xylem cross-sectional area was determined with a caliper and 

the specific hydraulic conductivity determined by dividing the K by the cross-sectional 

areas. Lastly, the percent of hydraulic loss of conductivity (PLC) was calculated by:  
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PLC =  
100

1 −
𝐾𝑚𝑎𝑥
𝐾𝑚𝑖𝑛

 (2)
 

 Where, Kmax is the maximum specific conductivity after flushing, and Kin is the 

initial specific hydraulic conductivity. The PLC data were fitted with an exponential 

sigmoidal equation of: 

PLC =  
100

1 + 𝑒𝑥𝑝(𝑎 + (Ψ − b))
 (3) 

Where, a and b are fitting parameters, whereby a describes the slope of the curve 

and b represents the position of the curve on the x-axis at 50% PLC (Pammenter & Van 

der Willigen 1998). The significance levels of the parameters were calculated based on this 

fit.  

6.2.3 Vessel length distribution 

Vessel length distribution was calculated based on the silicon injection technique 

(Sperry et al. 2005; Wheeler et al. 2005). Six branches (~60 cm) per species were cut, 

brought into the lab, and flushed for 1 hour at 70 kPa with a 20 mM KCL solution to remove 

native embolisms (Sperry, Donnelly & Tyree 1988). Then, basal ends of the branches were 

connected via silicon tubing to a nitrogen gas tank and injected with a 10:1 two-component 

silicon elastomers (RTV141 A&B, distributed by Hisco, Somerset, NJ, USA) at 70 kPa 

overnight. Prior to injection, the silicon mixture was degassed under vacuum and infused 

with a UV stain that was dissolved in chloroform (Ciba Uvitex OB, Ciba Specialty 

Chemicals, Tarrytown, NY) in order to separate silicon injected xylem vessels from empty 

vessels for imaging analysis. After the silicon cured (~2 days), branches were sectioned at 

six cutting distances from the injection site with a sliding microtome (American Optical, 
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680 sliding microtome, Spencer Lens Co., Buffalo, NY). The respective cutting distances 

(Li) were determined with the following equation: 

𝐿𝑖 = 𝐿𝑚𝑖𝑛 (
𝐿𝑚𝑎𝑥

𝐿𝑚𝑖𝑛
)

[
𝑖−1
𝑁−1

]

 (4) 

With Lmin the cross section at 0.5 cm after the injection point, and Lmax the cross-

section at which 2% of the vessels were detected under the fluorescence microscope, and 

N the total amount of cuts. Then, cross sections mounted in glycerol, magnified with a 

10x/04 objective and imaged a with a fluorescence microscope (Olympus BX50, Olympus 

Scientific Solutions, Waltham, MA, US) to which a camera was attached (Retiga Exi CCD 

camera, QImagig, Burnaby, BC, Canada). Fluorescent silicon injected vessels from the 

most recent formed year ring were counted and averaged over species. Lastly, the vessel 

length distribution and the average vessel length was calculated for each species on the 

basis of equations reported by Christmann et al. and Christman et al. (Christmann, Weiler, 

Steudle & Grill 2007; Christman, Sperry & Adler 2009). The objective was to fit the 

silicon-injected vessel counts with a Weibull function and to use the best fit to calculate 

the second derivate, from which the vessel length distribution was calculated.  

6.2.4 Laser ablation tomography 

In this study, the laser source of the Laser ablation tomography scan (LATscan) 

system was a Coherent Avia 355-7000 Q-switched ultraviolet laser (Coherent, 5100 Patrick 

Henry Drive, Santa Clara, CA 95054 USA) with a pulse repetition rate of 25 KHz and 

wavelength of 355 nm. The pulse duration of the laser was less than 30 ns and supplied 

pulse energy of approximately 200 mJ. The galvanometer used to scan the laser beam to 

make the ablation plane was a Scanlab HurryScan 10 (Scanlab, Siemensstr 2a, 82178 
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Puchheim, Germany). Samples were fixed to a cantilever and connected to the mechanical 

stage along its travel axis, then fed into the ablation plane using an Aerotech linear drive 

stage (Aerotech, Inc., 101 Zeta Dr, Pittsburgh, PA 15238, USA), with the distance between 

sections ranging from 35 µm to 50 µm. Images were captured via a Canon 70D camera 

equipped with a Canon Macro Photo Lens MP-E 65 mm 1:2.8 1-5X. The images were 5472 

x 3648 pixels at a resolution of 1 micron per pixel. 
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F. sylvatica L. tulipifera 

  

 

P. x canadensis 

 

C. ovata 

  

 

F. pennsylvanica 

 

Q. montana 

  

Figure 6.2. Samples of 3D LATscan images of tree branch cross-sections of different 

species.  
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6.2.5 Selecting vessel length and cutting distance for analysis  

The maximum sample length was restricted by a combination of technical 

limitation and sample trait. The digital camera tended to overheat with increasing sample 

length due to the amount of image taken. Additionally, the degree of natural bending of the 

branches increased with sample length. Consequently, samples tended to move out of the 

imaging plane with increasing sample length and we were unable to realign the sample 

with imaging plane by simply pushing the sample back in the imaging plane. To ensure 

image quality we chose maximum sample length to be the 75th percentile of vessel class 

length, that was determined by vessel length distribution, for diffuse-porous tree species 

and 50th percentile for ring-porous tree species (Figure S 6.1). To determine the maximum 

distance between cuttings, we performed a preliminary experiment in which we ablated 31 

slices of a sample of all six tree species into the minimum cutting distance (5 μm and total 

length of 150 μm) and manually segmented 100 vessels per species using ImageJ (Rueden 

et al. 2017) using the procedure described by Haft-Javaherian et al. (Haft-Javaherian et al. 

2019). We then measured the segmentation similarity between the first slice and the 

following slices based on the ratio of the intersection area of two adjacent vessel cross-

sections and the first slice vessel cross-section area averaged over all detected vessels to 

determine the maximum distance between two images such that we observed at least 50% 

averaged cross-sectional overlaps with an upper limit of 50 μm. We found this distance to 

be 50 μm for all ring-porous tree species, 40 μm for F. sylvatica, 35 μm for P. x canadensis, 

and 50 μm for L. tulipifera. These cutting distances were then used for all further analysis 

(Table 6-1).  
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Table 6-1. The geometrical characteristic of tree species samples. 

Wood 

type 
Tree species 

Slice thickness 

(µm) 

Total 

Length 

(mm) 

Intervessel 

threshold 

(μm) 

Diffuse- 

porous 

F. sylvatica 40 70 2 

L. tulipifera 50 62.9 3 

P. x canadensis 35 46 3 

Ring-

porous 

C. ovata 50 98 4 

F. pennsylvanica 50 271.4 5 

Q. montana 50 167 5 

 

 

6.2.6 Determining intervessel wall thickness 

Scanning electron microscopy (SEM, Zeiss 1550) was used to measure intervessel 

wall thickness as the distance between two adjacent vessels to determine the minimum 

distance at which two vessels are connected and to be used as the vessel connectivity 

criteria. Three branches per individual tree (nine branches per tree species), were harvested 

and cut into 5 mm samples with a sliding microtome (American Optical, 680 sliding 

microtome, Spencer Lens Co, Buffalo, NY). Then, samples were dehydrated in a series of 

25%, 50%, 70%, 95%, and 100% ETOH, and then dried down at room temperature. 

Samples were coated with gold-palladium for 20 seconds at a current of 20 mA and imaged 

at a voltage of 3.0kV and a current of 0.21nA. The intervessel wall thickness was measured 

in ImageJ (Rueden et al. 2017) based on a minimum of 60 adjacent vessels. The 95th 

percentile of each data set was calculated and set as the criterion for intervessel 

connectivity. Intervessel distances equal to or smaller than the 95th percentile was counted 

as been connected (Table 1). 
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6.2.7 The study-design image processing pipeline  

We developed a graphical user interface (GUI) in Matlab for image processing and 

network analysis to facilitate the preliminary study analysis and the study design (e.g., 

cutting distance determinations and methodological feasibility risk analysis). The GUI 

allows the user to load a 3D stack of images and select the region of interest in addition to 

tuning the image processing parameters. The image processing pipeline started with the 

application of a top hat filter followed by a bottom hat filter. Top hat filter subtracts the 

morphological opening of the image from the original image and similarly bottom hat filter 

subtract the original image from the morphological closing of the image. The 

morphological opening consists of an erosion of image followed by dilation, and in 

contrast, morphological closing consists of a dilation followed by an erosion. The erosion 

and dilation are the two basic mathematical morphology operations, which require a 

structuring element (i.e., kernel) to operate. The combination of top hat and bottom hat 

filters treat small objects with very high or low intensity. Next, we sharpened the image by 

subtracting the smoothed image (using a Gaussian lowpass filter multiplied by a constant) 

from the original image. Next step the grayscale image is binarized using an adaptive 

threshold defined using Otsu’s method (Otsu 1979) in addition to ensuring the preservation 

of the boundaries between adjacent vessels. Finally, the small isolated objects were 

removed, and the holes were filled. The vessel cross-section centroids were identified to 

produce the graph representation of vasculature networks using the binary segmentation 

results. The GUI save the segmentation, graph representation, and the adjacency matrix of 

vessel connections to the output data file. 
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6.2.8 Motion artifact compensation 

Motion artifact is one of the main challenges for images processing of 3D 

vasculature network images. Apparent motion can be caused by any combination of 

gradual shift, sudden shift or rotation, poor focus, and burned cross-section (see Figure 

6.3). In order to compensate for these different motion artifact cases, we utilized two 

different methods and optimized their hyperparameter based on our images and sources of 

motion artifacts. Due to the size of our dataset, the computational complexity and 

scalability is the other important factor that needs to be considered because the 3D images 

could contain up to 5000 slices along their third dimension. Since there are no local 

distortion and motion artifacts in the images, a rigid registration (i.e., translation and 

rotation) is sufficient for this task. A registration method consists of a similarity metric as 

an input to the cost function and an optimizer to optimize the cost function finding the 

optimal registration parameters. The first method used mean square error (Eq. 5) as the 

similarity metric and the regular step gradient descent optimization, which follows the 

gradient of the cost function to in the direction of extrema with reducing the step function 

when the gradient changes direction.  

𝑀𝑆𝐸 =  
1

𝑁 × 𝑀
∑ ∑(𝐼𝑖,𝑗 − 𝐼𝑖,𝑗

′ )
2

𝑀

𝑗=1

𝑁

𝑖=1

 (5) 

We used a random grid search to find the optimal hyperparameters for the optimizer 

and found two optimal sets of hyperparameters. The ensemble of two optimizers based on 

the optimal sets of hyperparameters was able to handle most of the cases, and it was 

successful when applied to the test cases with small sample sizes. The failure modes 

include uneven illuminations, laser-burned cross-sections, color-distorted images, and 
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sudden dramatic changes. On the other hand, even after multi-thread parallelization, this 

method has a long run time, besides, to the need for required manual treatments of the 

remaining failure cases.  

 

 

Figure 6.3. Examples of motion artifacts due to the residuals of last cross-section (A) and 

the laser ablation signs in addition to the reflection (B). 

 

We devised the second method is based on the work by Evangelidis and Psarakis 

(Evangelidis & Psarakis 2008) to overcome the drawbacks of the first method specifically 

for samples with large sample sizes. They adopted the enhanced correlation coefficient 

(Psarakis & Evangelidis 2005) as the similarity measure. This measure has preferable 

characteristics such as being invariant to contrast and brightness differences (i.e., 

photometric distortions) as well as having a corresponding linear approximation expression 

with a closed-form solution, which facilitates the optimization of the original non-linear 
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measure. Additionally, Evangelidis and Psarakis proposed an iterative gradient based (e.g., 

forward additive refinement algorithm) to optimize the original non-linear measure using 

the linear approximation (Evangelidis & Psarakis 2008). In order to tackle multi-scale 

motion artifacts, we estimated the transformation parameters in a pyramid fashion using 

10X scaled-down versions of the two images and then fine-tune the parameters using the 

original resolutions. Since the images do not suffer from local motion artifacts, only the 

estimation of the global transformation parameters within two consecutive images is 

required.  

In order to parallelize the process, images were divided into groups of 10 

consecutive images and registered independently based on the first image in the group. 

Then, sequentially starting from the second image group, the first image of each image 

group was aligned to the last image of the preceding image group and the rest of the images 

within the group were warped using the same transformation. Finally, we implemented a 

failure detector using the mean structural similarity index (Wang, Bovik, Sheikh & 

Simoncelli 2004) between two consecutive images. Within every 11 consecutive pairs of 

images, the middle pair is considered as a failure case if its similarity index is at least 5% 

lower than the median of the 11 similarity indexes. The failure cases were registered again 

using the same algorithm (or in rare cases manually if the algorithm failed repeatedly) 

followed by warping all the following images using the same transformation parameters. 

This process was repeated until no failure cases were detected.  
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6.2.9 Segmentation 

We extracted three 3D samples per species including at least 31 consecutive images 

that were manually annotated as the ground truth. At least 100 vessels were manually 

segmented through the depth of each sample using the manual segmentation protocol 

developed by Haft-Javaherian et al. (Haft-Javaherian et al. 2019). Due to the significant 

anatomical differences between different species vessel morphologies and size 

distributions, we trained a separate segmentation model for each species. We adopted the 

architecture and training scheme of DeepVess (Haft-Javaherian et al. 2019), that is a 

convolutional neural network (CNN) model with an optimal architecture for the 3D 

vasculature segmentation task and a customized cost function, and trained the model for 

each species using the ground truth.  

Since each sample had between 1000 and 5000 images, each 500-image stack was 

stored in a separate HDF5 binary data format to be segmented using the CNN model. After 

the segmentation task, the binarized segmentation results were concatenated to form the 

complete segmentation results for each sample. In order to remove minimal segmentation 

artifacts, we applied a dilation morphological image filter with a disk kernel of radius 1 to 

remove the boundary of vessels followed by a 3D median filter with a 3-voxel box kernel 

to smooth the vessel boundary and fill the holes within the vessels. The complete image 

processing pipeline is illustrated in Figure 6.4. 
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Figure 6.4. Complete image processing pipeline.  

Raw images (A) are preprocessed for intensity normalization and motion artifact 

removal (B). The preprocessed images are segmented, and the xylem cross sections 

and intervessel connections (such as the intervessel connection between the two xylems 

indicated by the yellow arrow) are detected (C). The segmentation and detection 

results are represented in the graph representation (D). For example, the graph 

representation of 50 slices of images are illustrated in D. The xylem segment edges are 

in blue, and the intervessel connections are in red.  

 

 

6.2.10 Computational fluid dynamics and embolism simulation 

The pressure drops within a 3D xylem segment can be modeled based on the 

Hagen–Poiseuille law as a circular cross-sectional pipe with laminar flow of water, which 
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is an incompressible and Newtonian fluid, correlating the fluid flow within the pipe (Q) 

with the pressure drop (ΔP) as formulated in Eq. 6. Hence, the segment resistance is defined 

as Eq. 7, where, μ is the dynamic viscosity of water at 25°C, D is the xylem segment 

diameter, and L is the xylem segment length.  

𝑄 =
𝜋𝐷4∆𝑃

128𝜇𝐿
(6) 

𝑅𝑥 =
∆𝑃

𝑄
=

128𝜇𝐿

𝜋𝐷4
 (7) 

Sperry and Hacke (Sperry & Hacke 2004) modeled the resistance of the intervessel 

connections (Ri) as infinitely thin plates with perfectly circular pores with resistance as a 

function of the equivalent pore size (De) and the number of pores in the intervessel 

connection (np) defined in Eq. 8. Since we can assume that np is proportional to the 

intervessel connection length (Li in Eq. 9), which are measured based on 3D images of 

samples, we modeled the intervessel connection resistance (Ri) as a function of Li, which 

is a proxy for the np (Eq. 10).  

𝑅𝑖 =
24𝜇

𝐷𝑒
3𝑛𝑝

 (8) 

𝐷𝑒
3𝑛𝑝 = 𝛼𝐿𝑖 (9) 

𝑅𝑖 =
24𝜇

𝛼𝐿𝑖
 (10) 

The hydraulic network based on the xylem segments and intervessel connections 

was modeled using Eq. 7 and Eq. 10. The system then is represented in a linear system of 

equations, and the solution was acquired using one of the sparse systems of linear equation 

solver methods (e.g., Cholesky solver) depend on the characteristics of the linear systems. 

A unit pressure difference was applied between the two ends of the longest connected 
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segment within each tree sample, and the flow within the sample was measured to calculate 

the sample conductance (Q/ΔP). Thirty simulations were conducted for each dropout 

percentile ranging from 0% to 100% in order to simulate different embolism events. The 

relative conductance, which is the ratio of conductance to the baseline conductance at 0% 

dropout was reported for each sample. 

6.2.11 Statistics 

Statistical analysis was performed in JMP Pro 14.0.0 (SAS Institute Inc., Cary, 

NC.) or Matlab. All tests were performed with probability level p < 0.05. Differences 

between tree pieces were calculated using ANOVA, and multi-comparison corrections 

were done using the Tukey-Kramer method. For calculating differences in intervessel wall 

thickness among tree types, the dependent variable was log transformed to fulfill model 

assumptions. 

6.3 Results and Discussions 

Graphs and networks are mathematical tools that represent a set of relationships or 

processes (edges) between a set of objects (vertices) and facilitate quantitative analysis of 

the objects in the context of their relationships. We utilized the xylem segmentation results 

to generate the graph representation of xylem networks to study and characterize them 

using network analysis and fluid mechanics.  

Since 3D xylem vessels extend the length of the branch, the xylems appear in cross-

section in each image slice. The segmented image slices identified connected voxels that 

together represent a distinct cross-section of a xylem vessel. Xylem vessels are connected 
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by two types of connections. First xylem vessels merged and bifurcated as they traverse 

the length of the branch. Xylem segments were defined to start and end with a junction. 

Two cross-sections located within two adjacent slices were defined as belonging to the 

same 3D xylem segment if they are overlapped (Figure 6.5). Conversely, the xylem 

junctions happen when more than one xylem merge into one xylem, or one xylem divides 

into more than one xylem. The junction is apparent in images when a cross-section from 

an image slice is overlapped with more than one cross-section in the preceding or 

proceeding adjacent image slice. Therefore, depending on the cross-sectional overlaps in 

the segmented images, the 3D xylem segments and their junctions are identifiable. Second, 

because the intervessel connections are not directly visible in the images, they were 

identified based on the thickness of the wall between two xylem vessels. The intervessel 

connection occurs in places where the distance between the boundaries of two separate 

cross-sections within an image slice is less than the intervessel threshold (Table 6-1 and 

Figure 6.5.A).  
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Figure 6.5. Three graph representations of xylem networks.  

(A) The Blue boxes represent a segmented xylem cross-section, and each row of the 

blue boxes represents an image slice. 3D xylem segments (X1-X4) begin and end at 

junctions (J1-J6). Some xylem vessels were connected by intervessel connections 

(green arrows and graph edges) that are identified as region where two xylem 

segments are closer than the threshold distances found in SEM images.  The (B) 

xylem-based and (C) junction-based graph representations assign xylems and 

junctions to the vertices, respectively. (D) In the streamline network representation, 

streamlines were defined as all possible paths for water to traverse the sample using 

junctions.  

 

 

We represented the combination of 3D xylem segments, junctions, and intervessel 

connections using three different network representations (i.e., xylem-based, junction-

based, and streamline representations). The xylem-based network (Figure 6.5.B) represents 

the 3D xylem segments as the graph vertices, while the junction-based network (Figure 
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6.5.C) represents the junctions as the graph vertices. Consequently, the xylem-based 

network represents the junctions and intervessel connections using the graph edges, while 

the junction-based network represents 3D xylem segments and intervessel connections 

using the graph edges. Alternatively, the streamline network (Figure 6.5.D) traces all the 

possible distinct water streamlines between the first and last image slices based on the 

junctions. Therefore, streamline network represents the streamlines as the graph vertices 

and the intervessel connections between streamlines as the graph edges.  

In order to characterize these networks using geometrical measures, each cross-

section was fit to a centroid, and the shortest distance to the boundary was defined as the 

diameter. The diameter of each xylem vessel was defined as the median of the measured 

cross-sections. Correspondingly, the xylem length, number of intervessel connections, and 

total length of intervessel connections are measured for each xylem vessel.  

Topological metrics characterize the graphs in terms of the relationships within the 

vertices. Topological metrics are measured on the graph as a whole (e.g., density) or 

measured for each vertex or edge independently (i.e., closeness). The edge- or vertex-based 

topological metrics results in measurement distributions, which can be summarized in 

terms of their mean (μ) and standard deviation (σ). The implications of the topological 

metrics can be illustrated using an analogy based on the United States Highway System 

(USHS). 

The density measures the degree of connectedness within the network based on the 

ratio of the current number of edges and the maximum possible number of edges. In USHS, 
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the number of highways in the current system that connects cities is compared to the case 

of maximum density in which each city is connected to all other cities directly.  

The centrality metrics are topological metrics measuring the importance of edges, 

vertices, or paths. The centrality metrics utilize the identified shortest path between all pairs 

of vertices. The edge- and vertex-betweenness measure the number of shortest paths that 

include an edge or vertex, respectively. Similarly, closeness measures the average shortest 

path to other vertices demonstrating the level of influence of this vertex on other vertices. 

In USHS, betweenness illustrates the magnitude of effects in the case of city entrances or 

a highway closure due to constructions or catastrophic events. The betweenness is the 

number of shortest paths that are eliminated by the closure. Correspondingly, closeness 

shows the importance of a city and how congestion in that city may have a ripple effect on 

other cities.  

The clustering and assortativity measure the amount of the closed loop within the 

system and the level of clustering with similar edge types. In USHS, when a city is 

connected to two different cities, whether those two cities are connected is correlated with 

the level of interconnections and clustering in the network. The assortativity measures how 

similar highways are connected for instance main highways vs. controlled access highways 

(e.g., US I-95 vs. US I-495).  

The graph connection can be recorded using the adjacency matrix, whose indices 

represents the vertices and the entry are non-zero when there is an edge between the 

corresponding vertices. The maximum eigenvalue and its eigenvector of the adjacency 
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matrices represent the importance of the main pattern of edge connections within the graph 

and Katz utilized the same concept to measure the relative degree of influence of vertices.  

6.3.1 Geometrical comparisons 

Figure 6.6 and Table S 6-1 summarized the geometrical comparisons between 

species based on the 3D segment graph representation. F. pennsylvanica and Q. montana 

have larger average xylem diameters compare to the other four species, with both being 

about double the diffuse-porous trees. Similarly, C. ovata has a larger average xylem 

diameter compared to diffuse-porous species. Nevertheless, only F. pennsylvanica has a 

significantly larger average xylem segment length compare to all other species. In terms of 

intervessel connections, F. sylvatica and P. x canadensis have larger average xylem 

intervessel frequency per xylem segment compared to C. ovata and F. pennsylvanica, 

while, just P. x canadensis has a larger average xylem intervessel frequency compared to 

L. tulipifera and Q. montana. Likewise, F. pennsylvania has a significantly larger average 

xylem intervessel length (Total length of intervessel connections per xylem segment) 

compare to all other species. On the other hand, Figure 6.7 and Table S 6-2 summarized 

the geometrical comparisons between species based on the streamline graph representation. 

While xylem diameters results based on the streamline representations imitate the results 

based on the 3D segment graph representations, other three geometrical metrics are not 

significantly different between species except for the intervessel frequency of C. ovata.  
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A.  

      

B. 

   

C. 

 

D. 

       

Figure 6.6. Anatomical characteristics based on the 3D segment representation. 

Comparison of vessel diameters (A), vessel lengths (B), total number of intervessel 

connections (C), and total length of intervessel connections (D) per vessel segment 

between Fagus sylvatica (Fa), Liriodendron tulipifera (Li), Poulus x canadensis (Po), 

Carya ovata (Ca), Fraxinus pennsylvanica (Fr), and Quercus montana (Qu). 

Calculations are based on the 3D segment analysis. Statistical differences are given in 

Table S 6-1.  
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A.  

     

B. 

 

C. 

      

D. 

 

Figure 6.7. Anatomical characteristics based on the streamline representation.  

Comparison of vessel diameters (A), vessel lengths (B), total number of intervessel 

connections (C), and total length of intervessel connections (D) per streamline between 

Fagus sylvatica (Fa), Liriodendron tulipifera (Li), Poulus x canadensis (Po), Carya ovata 

(Ca), Fraxinus pennsylvanica (Fr), and Quercus montana (Qu). Calculations are based 

on the streamline analysis. Statistical differences are given in Table S 6-2.  
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6.3.2 Topological comparisons  

The geometrical comparison results describe the noticeable visual differed between 

samples of species qualitatively. In contrast, topological comparisons quantify the 

differences that are not detectable by visual inspections because they result from aggregate 

network properties. Figure 6.8 summarizes the topological comparisons based on the 

metrics described in the network analysis method section measured on the 3D segment 

graph representations. While it is evident that ring-porous species have a higher density, 

compare to diffuse-porous species due to the extremely lower number of xylems at each 

image, Katz, clustering, and assortativity demonstrates similar discrimination between 

wood types. On the other hand, C. ovata, P. x canadensis, Q. montana have higher centrality 

metrics such as closeness and betweenness compare to the other three species. This division 

cannot be described based on wood types or other geometrical or topological differences.  

On the other hand, the topological comparisons measured on the streamline graph 

representations (Figure 6.10), show an additional aspect of the topological differences 

between species. For instance, only Q. montana has a higher density compared to all other 

species based on this representation, while only F. sylvatica has a high eigenvalue compare 

to all other species. These differences were not observed in the topological comparison 

based on the 3D segment representations. Instead, Katz, clustering, and assortativity still 

discriminate between wood types except for C. ovata. In contrast, the closeness metric in 

this representation discriminates between wood types in the opposite direction.  

Another way to visualize the nature of the networks is to use circle graphs by 

aligning all the nodes along the circle and draw the edges between nodes.  Even though, 
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the intervessel connectivity depicted in the Figure 6.9 and Figure 6.11 illustrate the evident 

difference between wood types in terms of amount of connectivity shown as a high number 

of edges, location variation of connectivity shown as edges closer to the center of the circle, 

and strength of the connections shown as the width of the edges perpendicular to the 

perimeter. These observations match with the visual assessments of the images of the 

species and serve as a confirmation of the various analysis pipelines proposed in this study.  
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Figure 6.8. Network analysis based on the 3D segment representation.  
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Boxplots of fourteen network metrics (A-N) are characterizing the xylem network of 

Fagus sylvatica (Fa), Liriodendron tulipifera (L), Poulus x canadensis (P), Carya ovata 

(C), Fraxinus pennsylvanica (Fr), and Quercus montana (Q). Data are calculated based 

on the 3D network analysis. All matrices are combined in a heat map (O) in which 

each row represents a sample and each column one of the network metrics (A-N). 

Data in the heatmap are normalized (0-1) based on data range and the warmer color 

correspond to higher values. 
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A. 

 

B. 
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D. 
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Figure 6.9. Graph illustration based on the 3D segment representation.  

Network presentations of Fagus sylvatica (a), Liriodendron tulipifera (b), Poulus x 

canadensis (c), Carya ovata (d), Fraxinus pennsylvanica (e), and Quercus montana (f) 

based on 3D network analysis. One representative network per species is show. 

Network resentations for all replicates are in the supporting information (Figure S 

6.5). All vertices are aligned along the circle perimeter and edges drawn between 

vertices. The edge thickness perpendicular to the circle perimeter is proportional to the 

sum of the length of the intervessel connections between two connected vertices. 
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Figure 6.10. Network analysis based on the streamline segment representation.  
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Boxplots of fourteen network metrics (A-N) are characterizing the xylem network of 

Fagus sylvatica (Fa), Liriodendron tulipifera (L), Poulus x canadensis (P), Carya ovata 

(C), Fraxinus pennsylvanica (Fr), and Quercus montana (Q). Data are calculated based 

on the streamline analysis. All matrices are combined in a heat map (O) in which each 

row represents a sample and each column one of the network metrics (A-N). Data in 

the heatmap are normalized (0-1) based on the data range and the warmer color 

correspond to higher values. 
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Figure 6.11. Graph illustration based on the 3D segment representation.  

Network presentations of Fagus sylvatica (A), Liriodendron tulipifera (B), Poulus x 

canadensis (C), Carya ovata (D), Fraxinus pennsylvanica (E), and Quercus montana (F) 

based on the streamline analysis. One network per species is shown representative for 

the species. Network presentations for all replicates are in the supporting information 

(Figure S 6.6). All vertices are aligned along the circle perimeter and edge drawn 

between vertices. The edge thickness perpendicular to the circle perimeter is 

proportional to the total length of the connection between two connected vertices. 
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6.3.3 Fluid simulations and P50 comparisons 

As a measure of robustness, we used computational fluid dynamics methods to 

simulate the flow of water through a sample at constant pressure and characterized the 

change in flow due to the elimination of increasing fractions of randomly selected xylem 

vessels (dropout). Relative conductance decreased in all networks with an increasing vessel 

dropout probability (Figure 6.12). The ring-porous tree species C. ovata and Q. montana 

showed the highest decreasing rate in relative conductance, with a 100% conductance loss 

at a vessel dropout rate of 2% (Figure 6.12.D & F). In contrast, the dropout probability that 

causes a 100% conductance loss in F. pennsylvanica varies between 1-90 % due to the high 

variability within the three replicates (Figure 6.12.E). In the diffuse porous tree species, F. 

sylvatica and P. x canadensis show a total conductance loss at 10% vessel dropout (Figure 

6.12.A & C), while the 100% conductance loss of L. tulipifera varies between 10% and 

38% due to the variability within the samples (Figure 6.12.B).  

Empirical P50 values range from – 0.02 MPa for F. pennsylvanica to -2.07 MPa 

for F. sylvatica (Figure 6.14). Ring-porous tree species have higher P50 values than diffuse 

porous tree species, with the exception of C. ovata and P. canadensis. C. ovata is with a 

P50 value of -0.9 MPa more drought resistant than P. canadensis that has a P50 value of -

0.69 MPa. Fitting parameter a and b are all highly significant, except fitting parameter b 

for F. pennsylvanica, indicating that a more simplistic model fit would have been sufficient 

for this species (Table S 6-3). 

The simulated P10 and P50 values are calculated based on the decrease in relative 

conductance with increasing vessel dropout. Both P10 and P50 are not significantly 



 

 309 

different between the species (Figure 6.13.A & B). Simulated mean P10 values are reached 

between 0.002 % and 0.005% vessel dropout (Figure 6.13.B), while simulated P50 values 

are reached between 0.01% and 0.04% vessel dropout probability (Figure 6.13.A). The 

simulated dropout rate (the exponential decay rate of dropout curves) does not differ either 

between tree species (Figure 6.13.C). 
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Figure 6.12. Computational fluid dynamics and embolism simulation:  

Relation between relative conductance of xylem networks of Fagus sylvatica (A), 

Liriodendron tulipifera (B), Poulus x canadensis (C), Carya ovata (D), Fraxinus 

pennsylvanica (E), and Quercus montana (F) and increasing vessel dropout probability 

(3 replicates per species). Quercus montana sample 2 has a higher average 

conductance compare to based line for droput rates less than 20%.   
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Figure 6.13. Comparison between simulations and experientially measured P50.  

Relation between simulated P10 (A), P50 (B), and dropout rate (C), which is the 

exponetntial decay rate of dropout curves, based on embolism simulation analysis and 

P50 values calculate based on hydraulic conductance measurements of Fagus 

sylvatica, Liriodendron tulipifera, Poulus x canadensis, Carya ovata, Fraxinus 

pennsylvanica, and Quercus montana  (three replicates per species). 
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Figure 6.14. Percent loss of hydraulic conductivity (PLC).  

Fitted lines were obtained by fitting the exponential sigmoidal equation PLC = 100/ (1 

+ exp{a[Ψx -b]}), to the data, where a describes the slope of the curve and b is the water 

potential (Ψx) at which PLC is reduced 50% (P50, red line) (Pammenter and Vander 

Willigen, 1998). Values for a, b, are given in table 3. 
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6.4 Discussion 

3D segment analysis and streamline analysis provide two different topological 

analyses to characterize xylem networks (Figure 3 and 4). While 3D segmentation looks at 

anatomical characteristics of xylem vessels, the streamline analysis focuses on network 

characteristics based on potential water pathways (streamlines), which will traverse 

through multiple different xylem segments. For example, the 3D segment analysis revealed 

that F. pennsylvanica has the widest vessel diameter and the longest vessel length in this 

study. However, when considering anatomical characteristics on a network level, we can 

see that the average streamline length is 10-fold higher than the average 3D segment length. 

The dichotomy of these two results is important because it highlights the degree to which 

the factors impacting network robustness remain unknown.  

In order to evaluate differences between the xylem networks, we calculated 

different centrality parameters based on the 3D segment analysis and the streamline 

analysis. The advantage of these metrics is that they are normalized, which facilitates 

comparison between the different xylem networks. For example, the density parameter 

revealed that the xylem network of F. pennsylvanica is relatively well connected compared 

to the other tree species, even though the 3D segment analysis revealed that F. 

pennsylvanica has relatively few connections between the xylem vessels.  

Overall, we can see a lower variability in the standard deviation of the network 

metrics from the streamline analysis, making it a stronger analysis. However, the heat maps 

of both analyses showed that there is high variability within the samples, stressing that 
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more replicates are needed to make better predictions about the actual value of these 

matrices and reduce the variability within the tree species.  

All species show an exponential decline in their relative conductance with 

increasing vessel dropout. Because vessel dropout was assigned randomly in the 

simulation, these results correspond to randomly occurring cavitation events within the 

pore network. However, the model does not include the effects of air embolisms 

propagation from air seeding, and therefore, at this time we are unable to conclude if higher 

connectivity leads to more embolism resistant networks or more vulnerable networks. In 

order to simulate air-seeding in xylem networks, we will perform a follow-up simulation 

in which randomly dropped vessels will also trigger the removal of all vessels in connection 

to this one. The lack of strong differences in the simulated P10 and P50 values, the 

decreasing rate of relative conductance, and the experimentally determined P50 value 

based on hydraulic conductance measurements might be due to the variability between 

samples. However, differences in experimental P50 values based on hydraulic 

measurements were also not observed. Nevertheless, the conductance loss of 50% 

(simulated P50) occurred between 0.01-0.04% dropout probability. This value seems low 

in comparison to other biological networks such as mouse and human cortical capillary 

networks in which a 50% reduction in blood flow occurred when 20% capillaries are stalled 

with blood flow (Cruz Hernández et al. 2019). 

Combinations of geometrical and topological differences based on both graph 

representations reveal the complexity of this correlation between the xylem network 

characteristics and drought vulnerability. For each species, we can consider each of these 

characteristics as an agent, which may strengthen or weaken the tree during drought 
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incidents. The result is a multi-agent complex system with various stochastic processes, 

which determine the probability of survival at a given drought episode speculation.  

In this study, we were able for the first time to produce a large data set and to 

reconstruct xylem networks based on actual data. Furthermore, we presented different 

metrics to characterize vessel and streamline topology with which we can characterize 

differences between xylem networks. However, to identify network metrics that are 

specific to ring- and diffuse porous xylem networks, we need more specific analysis, for 

example, the suggested air seeding dropout simulation.  
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6.5 Supporting information  

 

Figure S 6.1. Vessel length distribution of three diffuse porous (filled symbols) and 

three ring-porous (unfilled symbols) tree species.  

Per species six branches were sampled and compiled before fitting vessel distribution 

according to Christmann et al. 2009.) 
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Table S 6-1. Comparisons between means of vessel diameter, vessel length, intervessel 

connection frequency and connection length  

of three ring- (F. sylvatica, P. x canadensis, L. tuilipifera) and three diffuse-porous tree 

species (C. ovata, Q. montana, F. pennsylvanica) based on the 3D segment analysis 

(ANOVA and Tukey-Kramer multi-comparison correction). 

 

  

3D Segment Networks Diameter (μm) Length (μm) 
Connection 

Frequency 

Connection Length 

(μm) 

Species 1 Species 2 Δμ P Δμ P Δμ P Δμ P 

F. sylvatica L. tulipifera -0.99 0.987 -2.13 1.000 3.14E-3 0.292 -0.01 1.000 

F. sylvatica P. x canadensis -0.65 0.998 16.64 0.958 -2.85E-3 0.385 -0.03 1.000 

F. sylvatica C. ovata -6.54 0.014 * 20.08 0.912 6.94E-3 0.004 ** -0.26 0.996 

F. sylvatica F. pennsylvanica -13.17 <.001 *** -106.97 0.002 ** 6.47E-3 0.006 ** -5.02 <.001 *** 

F. sylvatica Q. montana -14.07 <.001 *** -32.97 0.597 4.04E-3 0.112 -1.78 0.056 

L. tulipifera P. x canadensis 0.34 1.000 18.77 0.932 -5.99E-3 0.011 * -0.02 1.000 

L. tulipifera C. ovata -5.56 0.039 * 22.20 0.874 3.80E-3 0.147 -0.25 0.997 

L. tulipifera F. pennsylvanica -12.19 <.001 *** -104.84 0.002 ** 3.32E-3 0.244 -5.01 <.001 *** 

L. tulipifera Q. montana -13.09 <.001 *** -30.84 0.658 8.99E-4 0.986 -1.76 0.058 

P. x canadensis C. ovata -5.89 0.028 * 3.43 1.000 9.79E-3 <.001 *** -0.23 0.997 

P. x canadensis F. pennsylvanica -12.53 <.001 *** -123.61 <.001 *** 9.32E-3 <.001 *** -4.99 <.001 *** 

P. x canadensis Q. montana -13.43 <.001 *** -49.61 0.214 6.89E-3 0.004 ** -1.75 0.061 

C. ovata F. pennsylvanica -6.63 0.013 * -127.04 <.001 *** -4.75E-4 0.999 -4.75 <.001 *** 

C. ovata Q. montana -7.53 0.005 ** -53.05 0.166 -2.90E-3 0.368 -1.51 0.123 

F. pennsylvanica Q. montana -0.90 0.991 73.99 0.030 * -2.42E-3 0.545 3.24 <.001 *** 
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Table S 6-2. Comparisons between means of streamline diameter, streamline length, 

intervessel connection frequency and connection length  

of three ring- (F. sylvatica, P. x canadensis, L. tuilipifera) and three diffuse-porous tree 

species (C. ovata, Q. montana, F. pennsylvanica) based on the streamline analysis 

(ANOVA and Tukey-Kramer multi-comparison correction). 

Streamline Networks Diameter (μm) Length (μm) 
Connection 

Frequency 

Connection Length 

(μm) 

Species 1 Species 2 Δμ P Δμ P Δμ P Δμ P 

F. sylvatica L. tulipifera -1.25 0.833 642.79 0.985 1.30E+0 0.391 275.25 0.973 

F. sylvatica P. x canadensis 0.42 0.998 586.31 0.990 8.26E-1 0.789 235.66 0.986 

F. sylvatica C. ovata -2.74 0.169 941.26 0.929 2.30E+0 0.035 * 379.40 0.905 

F. sylvatica F. pennsylvanica -9.73 <.001 *** 526.58 0.994 1.80E+0 0.127 402.89 0.882 

F. sylvatica Q. montana -13.93 <.001 *** -1885.4 0.458 -3.06E-1 0.996 -571.80 0.655 

L. tulipifera P. x canadensis 1.67 0.618 -56.48 1.000 -4.69E-1 0.974 -39.59 1.000 

L. tulipifera C. ovata -1.49 0.717 298.47 1.000 1.01E+0 0.634 104.15 1.000 

L. tulipifera F. pennsylvanica -8.48 <.001 *** -116.2 1.000 5.01E-1 0.966 127.64 0.999 

L. tulipifera Q. montana -12.68 <.001 *** -2528.2 0.193 -1.60E+0 0.203 -847.05 0.280 

P. x canadensis C. ovata -3.16 0.089 354.95 0.999 1.48E+0 0.268 143.74 0.999 

P. x canadensis F. pennsylvanica -10.15 <.001 *** -59.73 1.000 9.70E-1 0.667 167.23 0.997 

P. x canadensis Q. montana -14.35 <.001 *** -2471.7 0.210 -1.13E+0 0.523 -807.46 0.323 

C. ovata F. pennsylvanica -6.99 <.001 *** -414.68 0.998 -5.07E-1 0.965 23.49 1.000 

C. ovata Q. montana -11.19 <.001 *** -2826.6 0.122 -2.61E+0 0.016 * -951.19 0.187 

F. pennsylvanica Q. montana -4.20 0.017 * -2411.9 0.229 -2.10E+0 0.059 -974.69 0.170 
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Figure S 6.2. Characteristics of xylem vessels and their connections  

of Fagus sylvatica, Liriodendron tulipifera, Poulus x canadensis, Carya ovata, Fraxinus 

pennsylvanica, and Quercus montana. Calculations are based on the 3D segment 

analysis. All data are represented on a log scale with the exception of the total number 

of connections per xylem vessel.  

  



 

 320 

 

Figure S 6.3. Characteristics of xylem vessels and their connections  

of Fagus sylvatica, Liriodendron tulipifera, Poulus x canadensis, Carya ovata, Fraxinus 

pennsylvanica, and Quercus montana. Calculations are based on the streamline 

analysis. All data are represented on a log scale with the exception of the total number 

of connections per xylem vessel.  
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Figure S 6.4. Relation between relative conductance of xylem networks  

of Fagus sylvatica (A), Liriodendron tulipifera (B), Poulus x canadensis (C), Carya ovata 

(D), Fraxinus pennsylvanica (E), and Quercus montana (F) and increasing vessel 

dropout probability. Each species is represented by three individual samples (three 

panels).   
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Figure S 6.5. Network presentations  
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of Fagus sylvatica (a), Liriodendron tulipifera (b), Poulus x canadensis (c), Carya ovata 

(d), Fraxinus pennsylvanica (e), and Quercus montana (f) based on 3D network 

analysis. Circle representation can be read as described in Methods and Results. Each 

species is represented by three individual samples (three panels).  
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Figure S 6.6. Network presentations  
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of Fagus sylvatica (a), Liriodendron tulipifera (b), Poulus x canadensis (c), Carya ovata 

(d), Fraxinus pennsylvanica (e), and Quercus montana (f) based on streamline analysis. 

Circle representation can be read as described in Methods and Results. Each species is 

represented by three individual samples (three panels).  

 

Table S 6-3. Values of coefficients a and b from Equation 2,  

where a describes the slope of vulnerability curves presented in Figure 1 and b is the 

predicted water potential at which 50% loss in hydraulic conductance occur. 

Significant parameters are marked by asterisks (*** = P<0.0001). 

Tree species a b 

F. sylvatica 0.84*** -2.07*** 

L. tulipifera 2.92*** -1.47*** 

P. canadensis 1.07*** 0.69*** 

Q. montana 1.13*** -0.51*** 

F. pennsylvanica 3.64***  -0.02  

C. ovata 0.85*** -0.90*** 
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CHAPTER 7  

 CONCLUSIONS AND FUTURE DIRECTIONS 

Quantitative analysis of various biomedical data modalities such as images is an 

essential part of the research and medical settings. This dissertation focused on image 

processing and network analysis of brain vasculature network. Many image analysis tasks 

such as segmentation and object identifications are bottlenecks of biomedical research 

progress and medical diagnosis throughputs. The applicability and effectiveness of the 

developed techniques were demonstrated in studies focused on Alzheimer’s disease using 

mouse models of the disease. Alzheimer’s disease is the sixth leading cause of death in the 

US, and it kills more than breast and prostate cancer combined. Moreover, Alzheimer's is 

the only leading cause of death increasing every year. Therefore, investigation of 

Alzheimer’s is indispensable. 

Chapter 2 is a review of the recent advancement in vessel segmentation and 

centerline extraction. There are different categories of image segmentation methods with 

different pros and cons that allow the researchers and practitioner to choose based on the 

target application. The details of vascular segmentation of different organs and vessel 

segments in health and disease states were discussed as well.  

In Chapter 3, DeepVess, a deep convolutional neural network solution for fast and 

fully automated segmentation of brain vasculature and centerline extraction was discussed. 

I developed new open-source algorithms and software packages using machine learning 

and complex network analysis to compare and describe different vascular networks and to 

study the interactions between brain blood flow and diseases using the properties of 
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vascular networks extracted from mouse models. The resulting software, DeepVess, allows 

researchers to extract vascular networks with unprecedented speed, finally enabling various 

geometrical and topological measurements in large volumes across many samples. These 

data are critical for next level analysis such as computational fluid dynamics and network 

analysis. DeepVess can be applied to other organs and imaging modalities with minimal 

interventions or fine-tuning. There is still room for improvement in obtaining the vessel 

centerlines directly form algorithms instead of as the byproduct of the segmentation results.  

Chapter 4 describes the discovery of the high incidents of stalling capillaries in 

mouse models of Alzheimer’s disease due to the adhesion of the leukocyte. I developed 

different analysis and image analysis methods for this paper including vessel and amyloid-

beta plaques detection, segmentation, and quantification in terms of topological and 

geometrical measurements. DeepVess was used in one section of this study as well. The 

downstream mechanism of the leukocyte adhesion in stalled capillaries still is unknown 

and required further investigation.  

In Chapter 5, our crowdsourcing citizen science project called StallCatchers was 

described. This project was developed to facilitate the stalled capillary detection task with 

the power of citizen science. I was involved in the development of the image processing 

pipeline for this project and investigation of crowd response aggregation methods. This 

project utilized DeepVess as well, and it has more than fifteen thousand users at this time. 

Next steps include the improvement of methods to aggregate the crowd response and the 

addition of methods for the smart distributions of tasks based on the user experiences. 
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In Chapter 6, we tested the application of DeepVess on a very different vasculature 

network than mouse brain vasculature. We studied big datasets of images of xylem 

networks from six different tree species from two categories of trees. In addition to use of 

the DeepVess, computationally efficient preprocessing methods required for big data and 

efficient network analysis metrics were developed. Furthermore, various network 

representations were introduced to facilitate studying these xylem networks from different 

points of views. Finally, a computational fluid dynamic simulation was conducted to study 

the vulnerability of these trees to drought events and embolism incidents. This study paves 

the road for further investigation for more extensive experimental data and other species. 

 


