
Sensor Placement for Plan Monitoring
using Genetic Programming

Felipe Meneguzzi1, Ramon Fraga Pereira1, and Nir Oren2

1 Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
felipe.meneguzzi@pucrs.br

ramon.pereira@acad.pucrs.br
2 University of Aberdeen, Scotland, UK

n.oren@abdn.ac.uk

Abstract. Monitoring plan execution is useful in various multi-agent
applications, from agent cooperation to norm enforcement. Realistic en-
vironments often impose constraints on the capabilities of such moni-
toring, limiting the amount and coverage of available sensors. In this
paper, we consider the problem of sensor placement within an environ-
ment to determine whether some behaviour has occurred. Our model is
based on the semantics of planning, and we provide a simple formalism
for describing sensors and behaviours in such a model. Given the com-
putational complexity of the sensor placement problem, we investigate
heuristic techniques for performing sensor placement, demonstrating that
such techniques perform well even in complex domains.

1 Introduction

Norms are commonly used to obtain desirable behaviour within an open multi-
agent system. Such norms specify obligations, permissions, and prohibitions on
individual behaviour, preventing actions or states of affairs that an agent might
find beneficial, but which will have a negative effect on others or the system
environment as a whole [7]. Given a normative multi-agent system, the question
arises as to how to ensure that agents comply with the norms. While it is pos-
sible to sometimes design the system so that violating a norm is irrational [11],
or design the agents so that they are incapable of violating norms [2], doing
so within an open system is often difficult or impossible. Instead, sanctioning
mechanisms are normally introduced to punish, and therefore disincentivise norm
violation [7]. Recent work has developed an approach to define how norms should
be modified to be monitorable given an available set of imperfect monitors [1],
and the problem we address here is the dual of such work. In turn, we consider
a further problem, namely how to combine a set of so-called primitive sensors
— available within the environment — to form a new sensor that will be able
to detect whether some state of affairs does, or does not hold.

We consider an abstract form of the problem, seeking to identify whether
— with no prior knowledge on agent preferences — some behaviour can be
detected by combining the primitive sensors. For example, consider two cameras

2 F. Meneguzzi, R. F. Pereira, and N. Oren

overlooking different portions of a highway, and assume that each camera can
uniquely identify individual cars. In such a system, the two cameras (i.e., the
sensors) can be combined (synthesised) to form a new sensor which can detect
a vehicle’s average speed (i.e., a behaviour or state-of-affairs) over the stretch of
highway. We refer to this problem as the plan monitoring problem.

We formally describe our primitive sensors and the behaviour we wish to
detect as formulae within a simple logic. Synthesising a new sensor then involves
creating a new formula by joining a subset of the primitive sensor formulae
with operators from the logic. If this new formula is equivalent to the formula
encoding the behaviour we wish to detect, then we are able to form a sensor for
monitoring the behaviour. Since this is clearly a computationally hard problem,
in this paper we consider a heuristic approach for the synthesis of our sensors
using genetic programming.

2 Plan Monitoring

We formalise logic formulas over states in Definition 1 — these are basically
propositional-logic formulas to be evaluated in individual states.

Definition 1 (State Formula). Let F be a set of fluents3. If ϕ ∈ F then ϕ
is a state formula4. If ϕ and ψ are state formula, then ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ
are state formulas. Nothing else is a state formula. State formulas are evaluated
according to a valuation function V : S → F , which returns a set of fluents that
hold at state s ∈ S (set of possible states). We write s |= φ (s is a model of φ)
if φ ∈ V (s); s |= φ ∧ ψ iff s |= ψ and s |= φ; and s |= φ ∨ ψ iff s |= ψ or s |= φ;
and s |= ¬φ iff s 6|= φ.

To formalise plan monitoring tasks, we must express constraints over entire
plans, made up of traces or sequences of states which occur (Definition 2).

Definition 2 (Path Formula). If ϕ is a state formula, then ϕ is a path for-
mula. If ϕ and ψ are path formulas, then ϕ[Y]ψ and ¬ϕ are path formulas. Let
tπ be a trace and ϕ and ϕ[Y]ψ be path formulas. Y represents the number of
steps between state formulas. We write tπ |= ϕ (tπ is model for ϕ) iff any state
si ∈ tπ |= ϕ, and tπ |= ϕ[Y]ψ iff si, sk ∈ tπ; si |= ϕ; si+k |= ψ; and Y ≥ k. We
write tπ |= ¬ϕ iff it is not the case that tπ |= ϕ.

Path formulas can only be evaluated over plan traces (i.e., sequences of
states), so a path formula ϕ[Y]ψ is in a trace if ϕ holds in any state of the
trace, and ψ holds in any state within Y steps or less of when ϕ held. It should
be noted that conjunctions over path formulae can be captured using ϕ[0]ψ.
Together with negation, this provides us with disjunctions over path formulae.

3 Fluents are ground logical predicates, which can either be positive or negated, and
include constants for truth (>) and falsehood (⊥).

4 A state formula is comprised of a finite set fluents that represent logical values
according to some interpretation.

Sensor Placement for Plan Monitoring using Genetic Programming 3

Example 1. Consider the domain model illustrated in Figure 1, and a trace tb,a =
〈[q], [p], [p, q]〉 for a plan 〈b, a〉. Formula q[2](p∧q) is true for this trace, whereas
formula q[1](p∧q) is not.

[]

['q']

c

['p']

b

['q', 'p']

a b c

a

Fig. 1: Propositional domain example.

A sensor is a mechanism that evaluates path formulas over traces, and rep-
resents a concrete and indivisible (atomic) capability to evaluate path formulas
on plan traces, following Definition 3.

Definition 3 (Sensor). Let ϕ be a path formula and tπ be a trace, we say ϕ is
a sensor for tπ iff tπ |= ϕ.

Sensors can be aggregated to form monitors to detect specific desirable for-
mulas, following Definition 4.

Definition 4 (Monitor). Let S = {ϕ1, . . . ϕn} be a set of sensors. A monitor
M is a sensor obtained by combining a subset of S using path operations. M is
a monitor for a trace tπ iff tπ |= M .

We note that this formalisation of sensors and monitors provides a simple
mechanism to describe partially observable monitoring problems. For example,
in Figure 1, if no available sensor has formulas referring to p, then a monitoring
problem for this example is partially observable with respect to p. Algorithm 1
describes a simple function to compute whether a sensor is sensitive to a trace,
returning a set of models for a given sensor, a trace, a state, and a set of actions.

2.1 Decision Problems

So far, we have defined individual sensors and described how these can be ag-
gregated into more complex sensors, which we call monitors. We use these to
represent imperfect sensing capabilities which, much like the real world, may
not be capable of fully distinguishing the states and traces of interest. Thus,
we need to be able to quantify the extent to which the resulting monitors can

4 F. Meneguzzi, R. F. Pereira, and N. Oren

Algorithm 1 Computation of the |= relation.

Input: A sensor σ, a trace tπ, a state S, and a set of actions A.
Output: A set of models (|=) relation.

1: function models(σ, tπ, S,A)
2: if σ is an atom then
3: return σ = > or σ ∈ S
4: else if σ = ¬ϕ then
5: return ¬models(ϕ, tπ, S,A)
6: else . σ is not an atom.
7: (lhs, ∗, rhs)← σ
8: if ∗ = ∧ then
9: return models(lhs, tπ, S,A) and models(rhs, tπ, S,A)

10: else if ∗ = ∨ then
11: return models(lhs, tπ, S,A) or models(rhs, tπ, S,A)
12: else if ∗ = [k] then
13: if k = 0 then
14: return models(lhs, tπ, S,A) and models(rhs, tπ, S,A)
15: else
16: a← first action of tπ
17: t′π ← remainder tπ
18: S′ ← γ(S, a)
19: if models(lhs, tπ, S,A) then
20: if not models(rhs, tπ, S,A) then
21: return models(> [k − 1] rhs, t′π, S

′, A)
22: else
23: return >
24: else . Did not apply to first state, need to check next.
25: return models(σ, t′π, S

′, A)

Sensor Placement for Plan Monitoring using Genetic Programming 5

capture such traces. Building on the definition of sensors and monitors, we can
now formally define the notions of sensitivity and specificity of a sensor with
regards to a set of traces. More specifically, a sensor is sensitive to a set of traces
if the formula of the sensor is true for each trace (Definition 5).

Definition 5 (Sensitive Sensor). Let ϕ be an arbitrary sensor and TΠ =
{tπ1

, . . . tπn} be a set of plan traces (i.e., the sequences of states induced by plans
π ∈ Π) within a planning domain Π. ϕ is sensitive for the traces in TΠ iff
∀tπ∈TΠ (tπ |= ϕ), i.e., ϕ is a sensor for all traces in TΠ .

Conversely, we want to be able to detect when specific plans do not trigger
a sensor, leading to the notion of a specific sensor (Definition 6).

Definition 6 (Specific Sensor). Let ϕ be an arbitrary sensor and TΠ =
{tπ1

, . . . tπn} and T ′Π = {tπm , . . . tπk} be two sets of plan traces (i.e., the se-
quences of states induced by plans π ∈ Π) within a planning domain Π such
that TΠ ∩ T ′Π = ∅ and TΠ ∪ T ′Π = Π (i.e., T ′Π consists of all the plans not in
TΠ). ϕ is specific for the traces in TΠ iff ∀tπ∈T ′Π (tπ 6|= ϕ), i.e., that ϕ is not a
sensor for any of the traces not in TΠ .

Now that we can specify sets of traces for which a sensor is sensitive and
specific to, we can proceed to defining the problem of generating a monitor that
approximates the sensing capabilities of an intended sensor. That is, given a
specific desired sensing capability, which we call an intended sensor, we want to
be able to synthesise a sensor from a set of actual available sensors that covers
as much of the model sensor’s traces as possible. Thus, we define the problem of
synthesising a sensor to agree with a model sensor as follows (Definition 7).

Definition 7 (Monitor Synthesis). Let Φ = {ϕ1, . . . , ϕn} be a set of avail-
able sensors, TΠ and T ′Π be two set of traces such that σ is sensitive to TΠ and
specific to T ′Π , and σ be an intended sensor formula such that no available sen-
sor captures exactly the traces of the intended sensor, that is: ∀ϕ∈Φ∃tπ∈TΠ (tπ |=
σ) ∧ (tπ 6|= ϕ), i.e., no sensor in Φ is sensitive to the same traces as σ; or
∀ϕ∈Φ∀tπ∈T ′Π (tπ 6|= σ) ∧ (tπ |= ϕ), i.e., no sensor in Φ is specific to the same
traces as σ.

The problem of synthesising a monitor for an intended sensor σ consists
of creating a monitor M〈ϕj ,...,ϕj〉 such that {ϕj , . . . , ϕj} ⊆ Φ; ∀tπ∈TΠ (tπ |=
M〈ϕj ,...,ϕj〉) iff (tπ |= σ); and ∀tπ∈T ′Π (tπ 6|= M〈ϕj ,...,ϕj〉) iff (tπ 6|= σ); i.e., the
monitor agrees with the intended sensor for all traces. Synthesising an intended
sensor may not be possible, given restrictions on the actual sensors available.

Since many plan monitoring applications rely on the ability to detect the
execution of specific actions in an environment, we need to define sensors capable
of detecting them. Definition 8 formally describes how such intended sensors can
be built from the action specification.

6 F. Meneguzzi, R. F. Pereira, and N. Oren

Definition 8 (Sensor for Action). Let a be an action of the form 〈pre(a),
eff +(a), eff −(a)〉. We say a sensor built to detect formula: ∧

φ∈pre(a)

φ

 [1]

 ∧
ψ∈eff+(a)

ψ ∧
∧

ψ∈eff−(a)

¬ψ

is a sensor for a.

3 Synthesising Monitors using Genetic Programming

We are now in a position to develop our approach to synthesising monitors using
genetic programming. Consider a desired sensor F , and a set of traces T . We can
partition this set of traces into two mutually exclusive sets, namely T t where for
any t ∈ T t, t |= F , and T f where for any t ∈ T f , t 6|= F . Now given some other
set of primitive sensors {k1, . . . , kn}, we seek to find a formula containing these
primitive sensors which partitions the traces in the same way. To generate such
a formula — a candidate sensor — we must perform a search over the space
of all possible sensors that can be constructed from our primitive sensors. One
approach that has proven successful for performing a search over such a symbolic
space is genetic programming [6], a form of evolutionary computing.

To describe the space of possible individuals within a genetic program, we
must identify the terminal (leaf) nodes, as well as the form that non-terminal
nodes can take. Now within the plan monitoring domain, we consider a set of
primitive sensors consisting of formulae in the language described in Section 2.
Our goal is to combine these primitive sensors in such a way so as to obtain the
same inferences as some other formula, the goal sensor. The primitive sensors
thus comprise one class of terminal nodes.

^̂

[][]

__

bb

a ^ da ^ d

aa

44 ¬c¬c

Fig. 2: An individual genetic program for the formula ((a ∧ b)[4]¬c) ∨ (a ∧ d)
with primitive sensors a, b, ¬c and a ∧ d.

Our logic consists of four operators — negation, conjunction, disjunction,
and the path operator. Each of these forms a potential non-terminal node. We

Sensor Placement for Plan Monitoring using Genetic Programming 7

note that the path operator is a ternary operator which takes in two formulae
as well as an integer. Therefore, the set of integers consists of another class of
terminal nodes available within the genetic program, though this latter class of
terminal nodes can only be used within a path operator. Figure 2 illustrates how
the formula ((a∧ b)[4]¬c)∨ (a∧ d) is represented as a genetic program, where a,
b, ¬c and a ∧ d are primitive sensors.

Given an individual sensor, a set of traces, and a formula representing a
target sensor, we can specify the fitness of the individual by evaluating the
traces over the individual, and the target sensor, summing up the number of true
positive and negative classifications of traces, and subtracting the false positive
and negative trace classifications. For example, if the target sensor returns true
for traces t1, t3 and t4, and false for traces t2 and t5, while the individual returns
true for t1, t2, t3 and t4 (and false for t5), the individual’s fitness would be 1. We
then select fit individuals reproduce them (using copy, mutation and cross-over
operations [6]) to create a new generation of individuals. This process repeats
until a sufficiently fit individual is found encoding the synthesised sensor.

To define the quality of a synthesised sensor, we formally define a monitor
fitness as an F1-Score5 between the traces of the intended sensor and the invisible
traces, following Definition 9.

Definition 9 (Monitor Fitness). Let Φ = {ϕ1, . . . , ϕn} be a set of available
sensors, TΠ and T ′Π be two set of traces, and σ be an intended sensor formula
such that TΠ |= σ, T ′Π 6|= σ. We define quality in terms of the Precision and

Recall of a monitor, where Precision is Pr = |{tπ∈TΠ |MΦ′ |=tπ}|
|TΠ |+|T ′Π |

, and Recall is

Re = |{tπ∈TΠ |MΦ′ |=tπ}|
|TΠ | . The quality of an arbitrary monitor MΦ′ such that

Φ′ ∈ P(Φ) (i.e., Φ′ is an element of the power set of the available sensors)
is the harmonic mean between Precision and Recall, F1-Score, which is quality
Q(MΦ′ , TΠ , T ′Π) = 2 · Pr+RePr∗Re .

4 Related Work

A related approach to ours is the work of Keren et al. [4]. In this work, the authors
introduce the problem of re-designing a domain model in order to facilitate (or
improve) the process of goal and plan recognition, and such problem is called
goal recognition design [4]. Goal recognition design aims to optimize the domain
design so that goal and plan recognition approaches can provide inferences with
as few observations as possible [5].

Alechina et al. [1] developed an approach that considers how norms should
be modified to be monitorable given an available set of imperfect monitors. In
this work, the authors define that a monitor is imperfect for a norm if it does
not have sufficient observational capabilities to determine if an execution trace
of a multi-agent system complies with or violates a given norm.

5 F1-Score is the harmonic mean between Precision (i.e., positive predictive value)
and Recall (i.e., true positive rate).

8 F. Meneguzzi, R. F. Pereira, and N. Oren

5 Conclusions and Future Work

In this work, we have demonstrated that a genetic programming based approach
to sensor synthesis can create useful sensors for detecting the execution of actions
and the occurrence of specific states within planning domains.

We are currently investigating several applications and future extensions of
our work. First, the output of our approach can serve as input to Bayesian
goal and plan recognition algorithms [10], with the quality of the synthesised
sensor serving as a prior probability for the action having taken place. Second,
we can apply our work to normative domains, determining the likelihood that
some obliged or prohibited state of affairs did, or did not take place. Apart from
these applications, we are also investigating more complex forms of the sensor
synthesis problem including creating sensors given some fixed budget. We also
aim to use the the notion of planning landmarks [3] (fluents or actions that
cannot be avoided to achieve a goal from an initial state) in our approach for
monitoring particular states (landmarks), since it has been done successfully for
recognizing goals and detecting commitment abandonment [8,9].

References

1. Alechina, N., Dastani, M., Logan, B.: Norm approximation for imperfect moni-
tors. In: Proc. of the 13th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). pp. 117–124 (2014)

2. Grossi, D., Aldewereld, H., Dignum, F.: Coordination, Organizations, Institutions,
and Norms in Agent Systems II. chap. Ubi Lex, Ibi Poena: Designing Norm Enforce-
ment in E-Institutions, pp. 101–114. Springer-Verlag, Berlin, Heidelberg (2007)

3. Hoffmann, J., Porteous, J., Sebastia, L.: Landmarks in Planning. Journal of Arti-
ficial Intelligence Research 22(1), 215–278 (2004)

4. Keren, S., Gal, A., Karpas, E.: Goal Recognition Design. In: International Confer-
ence on Automated Planning and Scheduling (ICAPS) (2014)

5. Keren, S., Gal, A., Karpas, E.: Goal Recognition Design with Non-Observable
Actions. In: Proc. of the 31st AAAI Conference on Artificial Intelligence (2016)

6. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

7. Luck, M., Mahmoud, S., Meneguzzi, F., Kollingbaum, M., Norman, T., Criado, N.,
Fagundes, M.: Normative Agents. In: Ossowski, S. (ed.) Agreement Technologies,
pp. 209–220. Springer Netherlands (2013)

8. Pereira, R.F., Oren, N., Meneguzzi, F.: Detecting Commitment Abandonment by
Monitoring Sub-Optimal Steps during Plan Execution. In: Proc. of the 16th Inter-
national Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
pp. 1685–1687 (2017)

9. Pereira, R.F., Oren, N., Meneguzzi, F.: Landmark-Based Heuristics for Goal Recog-
nition. In: Proc. of the 32nd AAAI Conference on Artificial Intelligence (2017)

10. Ramı́rez, M., Geffner, H.: Probabilistic Plan Recognition Using Off-the-Shelf Clas-
sical Planners. In: Proc. of the 24th AAAI Conference on Artificial Intelligence
(2010)

11. Shoham, Y., Tennenholtz, M.: On Social Laws for Artificial Agent Societies: Off-
Line Design. Artificial Intelligence 73(1-2), 231–252 (1995)

	Sensor Placement for Plan Monitoring using Genetic Programming

