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Understanding the neural bases of language comprehension is to understand the im-

plementation of language processing in the brain and how it affects language perfor-

mance. Within a neurolinguistic study, we can examine the connection between linguistic

competence and language performance at the cerebral level and whether the distinctions

that we draw in linguistic theory map on to particular brain systems. Recently there has

been an increase in psycholinguistic and neurolinguistic research using naturalistic stim-

uli following Willems’s (2015) encouragement to investigate the neural bases of language

comprehension with greater ecological validity. Along with naturalistic stimuli, apply-

ing tools from computational linguistics to neuroimaging data can help us gain further

insight into naturalistic, online language processing as computational modeling makes it

easier to study the brain responses to contextually situated linguistic stimuli. (Brennan

2016).

Utilizing this approach, in this dissertation I focus on two topics: noncompositional

expressions (MWEs) and verbal argument structure. Across seven studies, I show how we

can utilize various models and metrics from computational linguistics to operationalize

cognitive hypotheses and help us better understand the neurocognitive bases of language

processing. This dissertation is based on a large-scale fMRI dataset based on 51 partici-

pants listening to Saint-Exupéry’s The Little Prince (1943), comprising 15,388 words and

lasting over an hour and a half. While previous work has examined individual types of

noncompositional expressions (such as idioms, compounds, binomials; see §3.2.1), this

work combines this heterogeneous family of word clusters in a single analysis. Associa-



tion measures are metrics from corpus and computational linguistics to identify colloca-

tions. This research contributes a gradient approach to these noncompositional expres-

sions by repurposing association measures and demonstrates how they can be adapted as

cognitively plausible metrics for language processing, among other findings. This disser-

tation also investigates the neural correlates of argument structure and corroborates pre-

vious controlled, task-based experimental work on the syntactic and semantic constraints

between a verb and its argument. Another finding is that the Precuneus, not traditionally

considered a core part of the perisylvian language network, is involved in both processing

noncompositional expressions and diathesis alternations for a given verb. Overall, based

on this interdisciplinary approach, this dissertation presents empirical evidence through

neuroimaging data, linking linguistic theory with language processing.
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CHAPTER 1

INTRODUCTION: NONCOMPOSITIONALITY AND ARGUMENT STRUCTURE

IN THE BRAIN

Listening to stories is a common human experience. Not only are we hearing a spoken

narrative, but we are simultaneously comprehending it. The goal of this dissertation is to

examine different aspects of such an online language comprehension scenario. By apply-

ing computational models and metrics, word-by-word comprehension difficulty during

online language processing can be estimated and these complexity metrics can be used to

answer various research questions and operationalize cognitive hypotheses. The research

presented here uses complexity metrics across different levels of linguistics analysis to

study whether the distinctions that we draw in linguistic theory map on to particular

brain networks. Through this interdisciplinary approach, I contribute empirical evidence

through English neuroimaging data linking linguistic theory with language processing.

Specifically, I address the following research questions:

• Do noncompositional expressions have different neural correlates compared to com-

positional expressions? Consequently, do the cognitive processes of composition

and retrieval have distinct functional localizations?

• Can the differences in the grammatical category of noncompositional expressions

be observed at the cerebral level? Is the brain sensitive to the internal structure of

these “frozen” expressions?

• Can expressions be binarized as compositional and noncompositional or are there

finer-grained distinctions along a continuum?

• Do the different components of argument structure (such as subcategorization, diathe-

sis, selectional restrictions) have different neural substrates?

• How do the different components of argument structure influence online sentence

processing?
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1.1 fMRI Methodology sketch

In this section, I explain how we can use neuroimaging data to answer our research ques-

tions.

Utilizing complexity metrics, we can translate a linguistic question into a quantifiable

measure which can be used as a predictor in a fMRI study. The linking hypothesis is

between the observed neural activation and the convolved predictor (which represents

an underlying cognitive process).

The General Linear Model (GLM) typically used in fMRI data analyses is a time se-

ries linear regression (Poldrack et al. 2011). It is a hierarchical model with two levels.

At the first level, the data for each subject is modelled separately to calculate subject-

specific parameter estimates and within-subject variance such that for each subject, a re-

gression model is estimated for each voxel against the time series. The second-level model

takes subject-specific parameter estimates as input. It uses the between-subject variance

to make statistical inferences about the larger population.

The methodology described here is based on Brennan et al.’s (2012) approach to study

the different operations that contribute to natural language comprehension, under rel-

atively naturalistic conditions, without the potential confound of artificial experimental

task demands. Their naturalistic experimental design was adapted and developed from

a technique used to study visual processing while subjects watch a popular movie. Fol-

lowing Brennan et al. (2012) in using a spoken narrative as a stimulus, participants hear

the story over headphones while they are in the scanner. The sequence of neuroimages

collected during their session becomes the dependent variable in a regression against

word-by-word predictors, derived from the text of the story, as seen in Figure 1. The pre-

dictors are convolved with the canonical HRF to create the estimated fMRI signal (BOLD),

which is compared against the observed BOLD signal during passive story listening.

2



Figure 1: Deriving an expected BOLD signal for one sentence in a naturalistic text. (A)
shows a segment of the spoken stimulus, with word boundaries in light blue. (B) illus-
trates a predictor for verbs, here diathesis alternations and the verbs in the sentence above
are highlighted In (C) the value of these word-by-word predictors are shown together,
where the verbs are annotated with the scores to reflect the number of diathesis alterna-
tions. Panel (D) shows the expected BOLD response, after these predictors are convolved
with a haemodynamic response function (HRF).
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1.2 Roadmap

Chapter 2 describes the fMRI dataset that will be used in the analyses described in the re-

maining chapters. It explains how the experiment was designed and presented, and how

the data was collected and preprocessed, ending with a discussion about the advantages

of such a naturalistic dataset.

In Chapter 3, I examine noncompositional expressions to shed light on memory re-

trieval and structure building processes, using neuroimaging evidence. I study these

expressions grouped together along with breaking them down into smaller groups on

the basis of grammatical category, such as verbal expressions versus other expressions.

Chapter 4 follows up on Chapter 3 by further investigating alternate ways to study and

classify these expressions by adapting different metrics from corpus and computational

linguistics to illustrate the gradience within these noncompositional expressions. Chap-

ter 5 extends the theme of verbal expressions from Chapter 3 and explores how different

components of verbal argument structure play a role in sentence processing. Chapter 6

concludes with a discussion of the overall results against the architecture of several con-

temporary neurobioloigcal models of language processing and a summary of the main

findings about noncompositionality and argument structure across the seven studies pre-

sented in this dissertation.
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CHAPTER 2

NEUROIMAGING DATASET

2.1 Overview

The dataset created for this project comprises of fMRI images based on naturalistic stim-

ulus. In this neuroimaging study, spoken narrative is used as a stimulus, following Bren-

nan et al. (2012). Participants hear the story over headphones while they are in the scan-

ner. The sequence of neuroimages collected during their session becomes the depen-

dent variable in a regression against word-by-word predictors, derived from the text of

the story. The set of these fMRI images is the dataset for all the subsequent data analyses

in the following chapters. It will be referred to as the Le Petit Prince dataset (henceforth

abbreviated as LPP).

2.2 Stimuli

The audio stimulus was a literary text, Antoine de Saint-Exupéry’s Le Petit Prince (The

Little Prince), translated from French to English by David Wilkinson and read by Na-

dine Eckert-Boulet. The text constitutes a fairly lengthy exposure to naturalistic language,

comprising 15,388 words and lasting over an hour and a half. There are 1,388 sentences

in the story and it provides a variety of different constructions in an ecologically valid

setting. The narrative consists of both direct and indirect speech along with extensive

dialogue. Apart from English, the original French text has been translated multiple times

across 300 languages (Earle 2018) which also makes it suitable for cross-linguistic com-

parisons.
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2.3 Participants

Participants were fifty-one volunteers (32 women and 19 men, 18-37 years old) with no

history of psychiatric, neurological, or other medical illness or history of drug or alcohol

abuse that might compromise cognitive functions. All strictly qualified as right-handed

on the Edinburgh handedness inventory (Oldfield 1971)1. They self-identified as native

English speakers and gave their written informed consent prior to participation, in accor-

dance with Cornell University IRB guidelines.

2.4 Presentation

After giving their informed consent, participants were familiarized with the MRI facil-

ity and assumed a supine position on the scanner gurney. The presentation script was

written in PsychoPy (Peirce 2007). Auditory stimuli were delivered through MRI-safe,

high-fidelity headphones (Confon HP-VS01, MR Confon, Magdeburg, Germany) inside

the head coil. The headphones were secured against the plastic frame of the coil using

foam blocks. Using a spoken recitation of the US Constitution, an experimenter increased

the volume until participants reported that they could hear clearly.

Participants then listened passively to the audio storybook for 1 hour 38 minutes. The

story had nine chapters and at the end of each chapter the participants were presented

with a multiple-choice questionnaire with four questions (36 questions in total), concern-

ing events and situations described in the story. These questions were used to confirm

their comprehension and were viewed by the participants via a mirror attached to the

head coil and they answered through a button box. Examples of comprehension ques-

tions designed for this study is given below in Fig. 2 and the layout of the answer choices

corresponded to the orientation of the button box. The entire session lasted around two

1Complete list of questions provided in Appendix A
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and a half hours. Overall, participants had a 90% accuracy (SD = 3.7%) and all 51 partici-

pants’ quiz scores are listed in the Appendix A.

Figure 2: Four sample comprehension questions from the study. Full list of 36 compre-
hension questions used in the study given in Appendix A.

One of the central themes in the story is the difference between adults and children,

especially the lack of imagination in the former. To make his point, the narrator uses the

visual cues of different drawings to convey his message and these drawings are present in

the original text. In the study, to help the participants understand this point, these visual

cues were incorporated during the audio presentation for the first chapter and these are

included below in Fig. 3.
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Figure 3: (A) Illustration of a boa constrictor swallowing its prey whole (B) Drawing
One: Mistakenly assumed to be a hat (C): Drawing Two: Boa constrictor swallowing an
elephant

2.5 Data Collection

Imaging was performed using a 3T MRI scanner (Discovery MR750, GE Healthcare, Mil-

waukee, WI) with a 32-channel head coil at the Cornell MRI Facility. Blood Oxygen Level

Dependent (BOLD) signals were collected using a T2* -weighted echo planar imaging

(EPI) sequence (repetition time: 2000 ms, echo time: 27 ms, flip angle: 77deg, image

acceleration: 2X, field of view: 216 x 216 mm, matrix size 72 x 72, and 44 oblique slices,

yielding 3 mm isotropic voxels). Anatomical images were collected with a high resolution

T1-weighted (1 x 1 x 1 mm3 voxel) with a Magnetization-Prepared RApid Gradient-Echo

(MP-RAGE) pulse sequence.
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2.6 Preprocessing

fMRI data is acquired with physical, biological constraints and preprocessing allows us

to make adjustments to improve the signal to noise ratio. FSL’s Brain Extraction Tool

(Jenkinson et al. 2012) was used for skullstripping with a fractional intensity threshold

setting of 0.5. Subsequent preprocessing steps were carried out using AFNI version 16

(Cox 1996). Anatomical and functional images were co-registered using the in-built AFNI

function 3dseg, images were normalised to the MNI–152 template, and images were

resampled to 2mm isotropic voxels.

Multi-echo independent components analysis (ME-ICA) was used (Kundu et al. 2012,

2013) to improve the signal-to-noise ratio in these data. ME-ICA splits the T2* signal into

BOLD-like and non BOLD-like components. Removing these non-BOLD components

mitigates noise due to participants’ head motion, physiology and scanner conditions such

as thermal changes (Kundu et al. 2017). There were no exclusions based on degree of head

movement. Nor was any high-pass filtering or smoothing applied at this stage.

2.7 Advantages of a naturalistic dataset

Traditionally, language processing has been studied in tightly controlled experimental de-

signs due to concerns about replicability and reproducibility, and control of experimental

stimuli, variables and confounds. However, as Kandylaki and Bornkessel-Schlesewsky

(2019) point out, in addition to raising questions about the generalizability of such re-

sults to natural language use, these designs impose limitations on the types of research

questions that can be examined.

Willems (2015) explains that the study of language in more ecologically valid condi-

tions is possible in practice. He suggests ideas of bringing real-world complexity into

experimental settings, free from artificial task demands. Furthermore, he argues that it is

9



more advantageous, if the ultimate goal is to understand how the brain engages with dis-

course, dialogue and even literary texts, not only how it represents and processes words

and sentences. The LPP dataset described in this chapter uses naturalistic stimuli and this

kind of dataset offers several advantages.

Rich contextual settings of naturalistic stimuli provide an opportunity to investigate

the comprehension of multiple linguistic levels of representation simultaneously. The

levels of phonemes, syllables, words, phrases, sentences and discourse naturally un-

fold at different timescales and can be examined within a single dataset (Kandylaki and

Bornkessel-Schlesewsky 2019). It creates new avenues for linking hypotheses between

various linguistic representations and neurobiological architectures in the brain. Natural-

istic experimental designs can also be used to complement and corroborate experimen-

tal approaches with controlled task-based designs. Apart from these benefits, naturalis-

tic experimental designs also enable us to study language processing in populations for

which more controlled experimental designs might not be feasible such as people with

Autism Spectrum Disorder (ASD) or speakers of indigenous languages in remote loca-

tions through field-based experiments.

Lastly, naturalistic stimuli encourage Open Science practices of reproducability and

reusability. With openly shared datasets, it is easy to rerun analyses on naturalistic stim-

uli without rerunning the entire experiment. Since the dataset is not task-specific, the

nature of the stimuli opens up the possibility of multiple researchers testing out different

research questions on the same dataset.
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CHAPTER 3

NEURAL BASES OF NONCOMPOSITIONAL EXPRESSIONS

3.1 Introduction: Operationalizing compositionality and non-

compositionality

This chapter provides a study on noncompositional expressions, often referred to as Mul-

tiword Expressions (MWEs) in the computational linguistics literature. While this term

originates from computational linguistics, in this chapter these expressions are studied

from a psycholinguistic perspective. Essentially, MWEs are word clusters or expressions

formed by more than a single word. They are also referred to as collocations, phraseology,

formulaic language, etc in the literature. While there has been a huge increase in research

about multiword expressions or MWEs in recent years, there is no standard, universal

definition for it. Some definitions are given below:

• “fixed and recurrent pattern of lexical material sanctioned by usage” (Grant and

Bauer 2004)

• “sequences of words that acts as a single unit at some level of linguistic analysis”

(Calzolari et al. 2002)

• “over-learned, literal and non-literal word clusters whose representations are stored

in semantic memory” (Cacciari 2014)

• “expressions for which the syntactic or semantic properties of the whole expression

cannot be derived from its parts” (Sag et al. 2002)

Siyanova-Chanturia (2013) provides examples of MWEs in English to illustrate the wide

variety among these expressions:

An earlier version of this chapter appears in Bhattasali et al. (2019).
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Linguistic phenomena Examples
fixed phrases per se, by and large
noun compounds black coffee, cable car
verb compounds give a presentation, come along
binomials heaven and hell, safe and sound
complex prepositions in spite of
idioms break the ice, spill the beans

Table 1: A wide variety of linguistic phenomena that are considered to be MWEs.

What unifies cases of MWEs is the absence of a compositional linguistic analysis.

Based on the examples from the LPP dataset below, MWEs (in bold) loosely groups a wide

variety of expressions including idioms, conventionalized greetings and personal titles:

(1) So I thought a lot about the adventures of the jungle and in turn, I managed with

a coloured pencil to make my first drawing.

(2) My little fellow, I don’t know how to draw anything except boa constrictors,

closed and open.

(3) When I drew the baobabs, I was spurred on by a sense of urgency.

(4) ‘What are you doing there?’, he said to the drinker who he found sitting in silence

in front of a number of empty bottles and a number of full bottles.

(5) You must see to it that you regularly pull out the baobabs as soon as they can be

told apart from the rose bushes to which they look very similar to when they are

young.

(6) “Good morning”, said the little prince politely, who then turned around, but saw

nothing.

MWEs raise an important theoretical question about language processing, namely

the balance between productivity and reuse (Goldberg 2006; Jackendoff 2002; O’Donnell

2015). If MWEs indeed lack internal structure, then perhaps their comprehension pro-

ceeds through a single, unitary memory retrieval operation, rather than some kind of

12



multistep composition process. Proceeding from this hypothesis, through the lens of

MWEs, this study investigates whether the cognitive processes of composition and re-

trieval evoke different patterns of activation by providing a functional localization. Fur-

thermore, this study also investigates if the differences in the grammatical category of

MWEs affect its processing and whether it is observable at the neuronal level.

3.2 Background

3.2.1 Previous MWE Processing studies

MWE comprehension has been shown to be distinct from other kinds of language process-

ing. For instance, it is well-established at the behavioral level that MWEs are produced

and understood faster than matched control phrases due to their frequency, familiarity,

and predictability (Siyanova-Chanturia and Martinez 2014), in accordance with incre-

mental processing (Hale 2006). This would follow if MWEs were remembered as chunks,

in the sense of Miller (1956) that was later formalized by Laird et al. (1986); Rosenbloom

and Newell (1987).

Eye-tracking and EEG work further documents this processing advantage across a

wide range of MWE sub-types, e.g.

• Binomials (Siyanova-Chanturia et al. 2011b),

• Phrasal verbs (Yaneva et al. 2017),

• Complex prepositions (Molinaro et al. 2013, 2008),

• Nominal compounds (Molinaro and Carreiras 2010; Molinaro et al. 2012),

• Lexical bundles (Tremblay and Baayen 2010; Tremblay et al. 2011),

• Idioms (Underwood et al. 2004; Siyanova-Chanturia et al. 2011a; Strandburg et al.

1993; Laurent et al. 2006; Vespignani et al. 2010; Rommers et al. 2013).
13



For example, Siyanova-Chanturia et al. (2011b), found their eye-tracking results illus-

trate that binomial MWEs such as bride and groom are processed faster that the reversed

three-word phrase groom and bride, due to the high-frequency nature of the former expres-

sion.

However, previous work has focused on a particular subtype of MWEs and none of

them have implemented a fMRI study of MWEs within a naturalistic text to either study

them collectively as a single group of expressions or contrast between different categories

of MWEs.

3.3 Computational Models and Methodology

3.3.1 Identifying MWEs

Within the LPP text, 669 unique MWEs were identified using a transition-based MWE an-

alyzer Al Saied et al. (2017), as illustrated in Figure 4, for a total of 1292 attestations in the

stimulus text. Al Saied et al. use unigram and bigram features, word forms, POS tags and

lemmas, in addition to features such as transition history and report an average F-score

0.524 for this analyzer across 18 different languages which reflects robust cross-linguistic

performance. Al Saied and Matthieu Constant trained the analyzer on examples from the

Children’s Book Test, CBT (Hill et al. 2015) from the Facebook bAbI project to keep the

genre consistent with our literary stimulus. This corpus consists of text passages that are

drawn from the Children’s section of Project Gutenberg, a free online text repository. Ex-

ternal lexicons were used to supplement the MWEs found with the analyzer. The external

lexicons included the Unitex lexicon (Paumier et al. 2009), the SAID corpus (Kuiper et al.

2003), the Cambridge International Dictionary of Idioms (White, 1998), and the Dictio-

nary of American Idioms (Makkai et al. 1995).
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Figure 4: Tagging the multiword expression see to it using feature templates to help the
classifier choose the right actions (Bhattasali et al. 2019). Figure created by Hazem Al
Saied.

3.3.2 Bottom-up Parsing as Structure Building

In contrast to MWEs, other expressions are less likely to have been explicitly memorized

and therefore call for some degree of structural composition, in comprehension. This sort

of processing can be formalized using parsing algorithms (Hale 2014). The intermedi-

ate states of this parsing algorithms quantify the amount of structure-building work that
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Figure 5: Panel (A) depicts hierarchical structure for John loves Mary to be recognized via
processes of syntactic composition with the word-by-word parser action counts given in
orange. Panel (B) shows the sequences of parser actions (i.e. shift and reduce) that
would build the color-coded tree nodes during bottom-up parsing. Figure created by
John Hale and Murielle Fabre.

an idealised system would do, in the course of processing the naturalistic stimulus.

In this study, a bottom-up parsing algorithm was used. Bottom-up parsing amounts

to a repeated cycle of choice: whether to shift to the next word or reduce a sequence

of transient elements held in memory. As shown in Figure 5 reduce actions are individ-

uated by particular grammar rules. The number of parser actions required at each word

defines an incremental complexity metric, also seen in Figure 6. Following Brennan et al.

(2012); Brennan (2016), the analyses reported below both use this complexity metric to
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quantify structure-building effort in the brain.

Figure 6: Phrase structure tree with bottom-up parser action counts in purple, as deter-
mined by the Stanford parser (Klein and Manning 2003).

3.4 Analysis

3.4.1 Analysis 1: Presence of MWEs

This analysis comprised of six word-by-word regressors in the GLM along with six regres-

sors to account for the visual stimuli (as discussed in §2.4 and explained further below)

for a total of 12 regressors.

The word-by-word predictors described below in were regressed against fMRI time-

courses recorded during passive story-listening in a whole-brain analysis. For each of
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the 15,388 words in the story, their timestamps were estimated using Praat TextGrids

(Boersma 2002). Along with the parser action count and MWE indicators of theoretical

interest, four “nuisance” variables of non-interest were entered into the GLM analysis.

These serve to improve the sensitivity, specificity and validity of activation maps (Bull-

more et al. 1999; Lund et al. 2006).

Bottom-up parser action count

This predictor formalizes structure-building using a standard bottom-up parsing algo-

rithm, as explained in §3.3.2. The number of reduce actions that an incremental, bottom-

up parser would be required to take, word-by-word, to build the correct phrase structure

tree as determined by the Stanford parser (Klein and Manning 2003) was calculated and

taken as an index of structure-building effort.

Categorical MWE predictor

This predictor formalizes memory retrieval by marking MWEs in the text (identifica-

tion outlined in §3.3.1). As mentioned previously, an underlying assumption is that

since MWE are not compositional, their processing probably does not involve structure-

building, but rather proceeds via memory retrieval.

The final word of the MWEs was annotated with a 1 while the non-final words of the

MWEs and the other words were annotated with a 0. This coding scheme expresses the

idea that a different process occurs at the end of multiword expressions, and this provi-

sionally assumes a very conservative approach to the Configuration Hypothesis (Cacciari

and Tabossi 1988; Tabossi et al. 2009). While the Configuration Hypothesis is given for id-

ioms, this idea is adopted in this study and extended for all MWEs. Full list of 669 MWEs

is provided in Appendix B.
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Word rate

Based on the Praat TextGrids, this predictor marks the offset of each spoken word in time.

Lexical Frequency

This predictor represents the log-frequency of the individual word in movie subtitles

taken from SUBTL spoken-language database (Brysbaert and New 2009) and is added

in the model to control for lexical frequency effects.

f0

This predictor represents the fundamental frequency of the narrator’s voice, which re-

flects pitch and is in the model to control for acoustic effects.

RMS Amplitude

This predictor represents the Root Mean Square Amplitude of the narrator’s voice, which

reflects intensity, an acoustic correlate of volume. Similar to f0, this predictor is also in the

model to control for acoustic effects.

Apart from these six predictors, three “picture events” conditions and “picture blocks”

conditions are also included in the analysis to account for the visual stimuli presented to

participants, described in §2.4, and its associated neural activation. The “picture events”

occur at the 10 second, 35 second, and 60 second timepoints in the first section of the

story while the “picture blocks” also occur at the 10 second, 35 second, and 60 second

timepoints in the first section and last for 15 seconds, 20 seconds, and 15 seconds respec-

tively. These conditions match the presentation and duration of the visual stimuli and the

mention of particular plot points in the narrative.
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3.4.2 Analysis 2: Verbal MWEs vs Non-verbal MWEs

Analysis 2 uses the same 12 predictors as in Analysis 1, except that the categorical indica-

tors for MWEs are further subdivided into the presence/absence of verbal expressions for

a total of 13 regressors in this analysis. The Stanford POS tagger and the NLTK POS tag-

ger were used to annotate the words within the MWEs with their grammatical categories

(Bird and Loper 2004; Manning et al. 2014).

Bottom-up parser action count

As explained in in Analysis 1 (§3.4.1), this predictor operationalizes structure-building.

Verbal MWE predictor

56% of the MWEs were tagged as verbal (375 MWEs) and these consist of verb participle

constructions, light verb constructions, and verb nominal constructions among others.

Similar to Analysis 1, the last word of the MWE was marked with 1 to indicate presence

of verbal MWE. Full list of verbal MWEs provided in Appendix B.

Non-verbal MWE predictor

The remaining 44% of MWEs were tagged as non-verbal (294 MWEs) and these consist

of nominal compounds, greetings, personal titles, character names, and complex prepo-

sitions. Similar to Analysis 1, the last word of the MWE was marked with 1 to indicate

presence of non-verbal MWE. Full list of non-verbal MWEs provided in Appendix B.

Word rate

Same as in Analysis 1 (§3.4.1).
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Lexical Frequency

Same as in Analysis 1 (§3.4.1).

f0

Same as in Analysis 1 (§3.4.1).

RMS Amplitude

Same as in Analysis 1 (§3.4.1).

3.4.3 Group-level Analysis

In the second-level group analysis, each contrast was analysed separately at the group-

level. An 8 mm FWHM Gaussian smoothing kernel was applied on the contrast im-

ages from the first-level analysis to counteract inter-subject anatomical variation. All the

group-level results reported in the next section underwent FWE voxel correction for mul-

tiple comparisons which resulted in T-scores > 5.3.

3.5 Results

All whole-brain effects reported survived a p < 0.05 Family-Wise-Error threshold at the

voxel level. These results were surface rendered in Mango (Lancaster and Martinez 2006)

using the Colin-27 template (Holmes et al. 1998).
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3.5.1 Analysis 1: Presence of MWEs

Results for Composition

Table 2 shows the significant clusters of activation for bottom-up parser action count and

peak activation voxels, using brain region labels from the Harvard-Oxford Cortical Struc-

ture Atlas.

Bottom-up parser action count shows a broad activation pattern both in right and left

hemisphere. The peak activation is right lateralised in the anterior temporal lobe within

a main cluster of activation which extends through the middle and superior temporal

gyri. While anterior temporal activation is bilateral, both middle temporal gyrus and

posterior superior temporal gyrus are only right lateralised. The second strongest cluster

of increased activation is observed in the left inferior frontal gyrus stretching over pars

orbitalis and triangularis and extending to the anterior insula and the putamen. A similar

increased activation is observed in the right inferior frontal gyrus.

3.5.1.1 Results for MWE Presence

The categorical MWE predictor gives rise to two clusters of activation both in the right

precuneus cortex, as seen in Table 3 and Figure 7. Brain region labels from the Harvard-

Oxford Cortical Structure Atlas were used.

3.5.2 Analysis 2: Verbal MWEs vs Non-verbal MWEs

Analysis 2 serves to provide further insight into noncompositional expressions by divid-

ing them across grammatical categories to observe if they are processed differently. Table

4 shows the significant clusters of activation for verbal and non-verbal MWEs and peak

activation voxels, using brain region labels from the Harvard-Oxford Cortical Structure
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Regions for Bottom-up Parser Action Count Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak level)

R Anterior Temporal 4816 52 6 -20 0.000 13.20
R Middle Temporal Gyrus 50 -20 -10 0.000 11.31
R Supramarginal Gyrus/Superior Temporal Gyrus 60 -40 -10 0.000 10.11

L IFG Orbitalis/Triangularis (BA47) & Anterior Insula 2461 -36 18 -14 0.000 10.40
L Temporal Pole -50 6 -26 0.000 8.30
L Putamen -30 8 -4 0.000 6.99

R Supplementary Motor Area/Superior Frontal Gyrus (BA9) 6495 10 18 62 0.000 9.35
R Medial Superior Frontal Gyrus (BA9) 12 58 32 0.000 8.62
L Superior Frontal Gyrus -8 18 66 0.000 8.24

L Cerebellum – Crus I/II 448 -24 -74 -30 0.000 8.96
R Cerebellum – Crus I/II 941 26 -74 -36 0.000 8.15

R Cerebellum 36 -60 -32 0.021 5.16
L Middle Occipital Gyrus/Fusiform Gyrus 1084 -34 -78 12 0.000 7.59

L Fusiform Gyrus/Temporal Occipital Cortex -30 -58 -10 0.000 7.19
L Occipital Fusiform Gyrus -28 -70 -14 0.010 5.85

R Precentral Gyrus 159 42 0 48 0.000 7.57
L Supramarginal Gyrus/Parietal Lobe (BA40) 665 -54 -56 30 0.000 7.35

L Parietal Lobe -48 -66 50 0.032 5.45
L Supramarginal Gyrus -52 -58 50 0.036 5.41

R Temporal Occipital Cortex/Fusiform Gyrus (BA19) 164 30 -50 -10 0.001 6.75
L IFG Orbitalis/Frontal Pole (BA11) 252 -44 46 -12 0.001 6.61

L Frontal Pole -36 60 -6 0.013 5.75
L Middle Frontal Gyrus (BA9) 252 -42 24 44 0.001 6.49
L Precuneus 154 -10 -52 38 0.003 6.25
R Middle Occipital Gyrus 160 28 -72 22 0.003 6.19
L Caudate 54 -14 16 10 0.005 6.07
R/L Anterior Cingulate Gyrus (BA24) 49 0 22 22 0.011 5.82
L Cerebellum 21 -6 -58 -40 0.018 5.64
L Superior Parietal Lobule (BA7) 5 -32 -58 62 0.024 5.54
R Lateral Occipital Cortex (BA19) 12 40 -64 -8 0.027 5.51
R Cerebellum – Vermis 4-5 6 4 -48 -8 0.038 5.39
R Putamen 3 32 -8 -6 0.041 5.37

Table 2: Significant clusters of increasing activation for bottom-up parser action count
after FWE voxel-correction for multiple comparisons with p < 0.05. Peak activation is
given in MNI Coordinates and p-values are reported at peak-level after voxel-correction.

Atlas.

Whole-brain contrasts show that these two types of MWEs activate different brain re-

Regions for Multiword Expression Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak level)

R Precuneus 209 6 -70 56 0.000 7.15
R Precuneus 18 6 -48 50 0.019 5.63

Table 3: Significant clusters of increasing activation for multiword expressions after FWE
voxel correction for multiple comparisons with p < 0.05. Peak activation is given in MNI
Coordinates and p-values are reported at peak-level after voxel-correction.
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Figure 7: Whole-brain images with significant group-level activation clusters. Panel (A)
shows the significant clusters for Bottom-up parser action count in orange; Panel (B)
shows the significant clusters for Multi-word Expressions in blue. All images underwent
FWE voxel correction for multiple comparisons with p < 0.05. .

gions with no overlap. Verbal MWEs appear right-lateralized compared to non-verbal

ones in IPL and in IFG triangularis (Fig. 8). The opposite contrast yielded a mostly right-

lateralized and wider pattern of activation, including bilateral Supramarginal Gyrus ex-

tending to STG and right SMA together with smaller activation clusters in Pars Opercu-

laris and MTG (Fig. 8). Contrasts were inclusively masked with the main effect of all

MWEs from Analysis 1.
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Regions Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak level)

VERBAL MWES >NON-VERBAL MWES
R IFG Pars Triangularis 71 46 36 14 0.000 7.38
R Inferior Parietal Lobule 57 50 -40 52 0.002 6.38

NON-VERBAL MWES >VERBAL MWES
R Angular Gyrus 585 56 -42 14 0.000 9.43
R Supplementary Motor Area 235 12 20 60 0.000 8.91
L Cerebellum 58 -22 -72 -30 0.002 7.85
L Supramarginal Gyrus 32 -60 -50 34 0.001 6.50
R IFG Pars Triangularis/Opercularis 28 56 22 8 0.001 6.51

Table 4: Significant cluster for contrasts between verbal MWEs and non-verbal MWEs
after FWE voxel correction for multiple comparisons with p < 0.05. Peak activation is
given in MNI Coordinates and p-values are reported at peak-level after voxel-correction.

Figure 8: Whole-brain contrast images with significant clusters for [Verbal MWEs > Non-
verbal MWEs] in pink and for [Nonverbal MWEs > Verbal MWEs] in green. All images
underwent FWE voxel correction for multiple comparisons with p < 0.05.

3.6 Discussion

3.6.1 Brain areas involved in composition and noncompositionality

Processing MWEs evokes a pattern of activation that is spatially distinct from the pattern

evoked by compositional processes. The results for MWEs and parser action counts in

Analysis 1 supports a dissociation between Temporal and Parietal brain structures and
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anterior Frontal regions such as IFG and ATL, as respectively sub-serving the retrieval

of memorized expressions and structure-building processes. These findings are broadly

consistent with the proposals of Hagoort (2016), Friederici and Gierhan (2013) and Ull-

man (2015)2. Overall, these results suggest that retrieval and composition are localized

to different brain regions and thus, they are two separate cognitive processes recruiting

different neural substrates.

Precuneus

The Precuneus has been implicated in larger memory networks such as for verbal ma-

terial (Halsband et al. 2002). The Precuneus also plays an important role in the Default

Network, situated within the dorsal-medial subsystem. This subsystem supports story

comprehension and other aspects of self-generated thought (Andrews-Hanna et al. 2014).

While the Precuneus also has been designated as part of the Protagonist’s Perspective In-

terpreter Network (Mason and Just 2006) and implicated in naturalistic reading by Wehbe

et al. (2014), the Precuneus activation observed in the study cannot be due to reference to

story characters since less than 2% of the MWEs in the stimuli are names of story charac-

ters.

Within the Precuneus, a functional subdivision has been proposed between anterior

and posterior portions, for higher-order cognitive functions (Cavanna and Trimble 2006).

Successful retrieval from episodic memory is linked to more posterior localisation, whereas

Default Network-related activation and self-centered imagery was observed in more ante-

rior portion of Precuneus, together with theory of mind and mental tasks like navigation.

Furthermore, the postero-medial portion of the parietal lobe has already linked to

processing of complex lexical information by previous studies. e.g., argument structure

(Shetreet et al. 2007) and sentential embeddings (Shetreet et al. 2010a). Although the

Precuneus is not part of the traditional perisylvian language network, these studies col-

2The models proposed by them are discussed further in §6

26



lectively suggest that the Precuneus is a language-relevant region.

Anterior Frontal and Anterior Temporal Regions

Word-by-word syntactic structure-building effort, quantified in terms of bottom-up parser

actions, correlates in Analysis 1 with a highly bilateral pattern across several areas in the

language network. Frontal regions encompassing different sub-parts of IFG and ante-

rior Insula are commonly attributed a role in composition and structure-building pro-

cesses (Friederici and Gierhan 2013; Snijders et al. 2009; Zaccarella and Friederici 2015).

While there is disagreement about the role of ATL in sentence comprehension, some

studies do report bilateral activation of ATL in sentence comprehension (Rogalsky and

Hickok 2009). The structure-building effect observed bilaterally in anterior temporal lobe

is consistent with previous work on syntactic processing in naturalistic narrative (Bren-

nan et al. 2012). It confirms and extends results on two-word structure-building (Bemis

and Pylkkänen 2011), as well as findings reporting anterior temporal sensitivity to para-

metric variation of constituent size (Pallier et al. 2011). This result highlights the involve-

ment of anterior Temporal Lobe in basic composition processes.

3.6.2 Brain areas involved in processing verbal and nonverbal MWEs

Broca’s area and IPL

Significant clusters for verbal and non-verbal MWEs illustrate spatially distinct patterns

of activation and a dorso-ventral gradient is observed in Broca’s area for verbal versus

non-verbal MWEs. Activation patterns for verbal MWEs suggest that verbal argument

structure relations in these noncompositional expressions implicate right hemisphere ac-

tivity in Brocaś area and IPL. In the case of non-verbal MWEs, we do not make a strong

conclusion since it is a mixed bag of nominal compounds, complex prepositions, greet-

ings, personal titles among other types. We did not contrast between verbal and nominal
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MWEs since our dataset is skewed towards verbal MWEs and we have very few attesta-

tions of nominal MWEs in the text (< 10%).

Overall, our results point to a spatial differentiation between verbal MWEs and non-

verbal MWEs since they localize to different areas of the brain. Crucially, these findings

also suggest that the brain is sensitive to the grammatical category of noncompositional

expressions and more generally, the internal structure of these “frozen” expressions. Tra-

ditionally, all noncompositional expressions are regarded as a homogeneous group of

“frozen” expressions but the results suggest otherwise. Finer-grained metrics are needed

to investigate the heterogeneity and gradience amongst these expressions. Such metrics

will be discusses in the next chapter (§4).

3.6.3 Future Work

Another approach to follow up and verify the results reported above would be to com-

pare a compositional expression like a VP against a noncompositional verbal MWE (e.g.

kick the ball vs. kick the bucket. Morphosyntactically, these would be structurally sim-

ilar yet they should be processed differently if our hypothesis about the neurocognitive

mechanisms underlying language processing is correct. Based on our prediction, the neu-

roimaging data should illustrate a spatial dissociation between compositional VPs and

noncompositional verbal MWEs.

Additionally, overall we can observe a surprisingly right-lateralized network in both

sets of results reported for Analysis 1 and Analysis 2. This could be due to the semantic

richness of MWEs (Price et al. 2015) or due to the naturalistic stimuli used in the study.

In the case of the latter, Wehbe et al. (2014) also find unexpected right-laterlization dur-

ing naturalistic reading and they attribute it to the contextual richness of the naturalistic

stimuli. This suggests that the way the human brain processes linguistic stimuli within a

contextually rich setting, one more similar to the everyday language environment, shows

a strongly bilateral involvement of the language network. Future work that parametri-
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cally varies contextual richness, from more isolated to more naturalistic stimuli, could

investigate the bilaterality further and may shed light on this speculation.
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CHAPTER 4

NONCOMPOSITIONAL EXPRESSIONS: GRADIENT APPROACH

4.1 Introduction: Capturing heterogeneity within MWEs

In the previous chapter, the heterogeneous family of MWEs was discussed as one

group and also as differentiated by grammatical category. However, as seen through

previous examples in the LPP text, MWEs exhibit more gradience and cannot be strictly

binarized as compositional and non-compositional or just categorized verbal and non-

verbal. These expressions can be differentiated based on various aspects e.g., they can

fall along a graded spectrum of compositionality. To capture this graded nature of MWEs

on a neural level, two different gradient metrics are utilized, explained below. Utilizing

these quantitative measures to qualitatively describe MWEs and the different ways to

express their association sheds further light on the subprocesses of MWE comprehension

and language processing in general.

4.2 Background

4.2.1 Association Measures

Association Measures are a family of common metrics in corpus linguistics and compu-

tational linguistics and more informative than raw attestation counts. While these mea-

sures are commonly used in computational linguistics to identify MWEs since ngrams

with higher scores are likely to be MWEs (Evert 2008), in this study they are repurposed

as a gradient predictor to describe the MWEs within the text.

An earlier version of this chapter appears in Bhattasali et al. (2019).
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Krenn (2000) suggests that PMI and Dice are better-suited to identify high-frequency

collocations whereas other association measures such as log-likelihood are better at de-

tecting medium to low frequency collocations. Since MWEs are inherently high-frequency

collocations, these two association measures were chosen to describe the strength of as-

sociation between these word clusters.

Pointwise Mutual Information

The first measure is called Pointwise Mutual Information (PMI) (Church and Hanks 1990).

Intuitively, its value is high when the word sequence under consideration occurs more

often together than one would have expected, based on the frequencies of the individ-

ual words (Manning et al. 1999). More formally, PMI is a log-ratio of observed and ex-

pected counts:

PMI = log2
c(w1

n)

E(w1
n)

(4.1)

MWEs that receive a higher PMI score are seen as more conventionalized, as we can

see in Table 5 which provides examples of 10 MWEs from the LPP dataset with the highest

PMI scores associated with it.

MWE PMI

heart skipped a beat 10
have nothing to do with 9.104284373
forehead with a handkerchief 8.290288776
burst into tear 8.26368970
once upon a time 7.942578059
boa constrictor 7.934566291
peal of laughter 7.5182748424
at the same time 7.226966969
gust of wind 7.18210107
rumble like thunder 7.054874199

Table 5: 10 MWEs from the LPP dataset with the highest PMI values. Full list of MWEs
with their corresponding Association Measures are given in Appendix B.
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Dice’s Coefficient

The second measure used in this study is Dice’s Coefficient (Dice 1945; Sørensen 1948).

Dice’s coefficient is used to identify rigid MWEs with strong association (Evert 2008;

Smadja et al. 1996). It is the ratio of the frequency of the sequence over the sum of the

unigram frequency of the words in the sequence. E.g., for a bigram the two ratios are

averaged by calculating their harmonic mean. The harmonic mean only assumes a value

close to 1 (the largest possible Dice score) if there is a strong prediction in both directions,

from w1 to w2 and vice versa. The association score will be much lower if the relation

between the two words is asymmetrical.

This measure takes into account the length of the MWEs and the value ranges between

0 and 1:

Dice =
n× c(w1

n)

Σn
i=1c(wi)

(4.2)

A higher value for the Dice Coefficient indicates that the two tokens do not occur to-

gether by chance. Since Dice coefficient focuses on cases of very strong association rather

than the comparison with independence, it can be interpreted as a measure of predictabil-

ity. Table 6 provide examples of 10 MWEs from the LPP dataset with the highest Dice’s

coefficient associated with it.

MWE Dice

boa constrictor 10
fairy tale 6.422389807
volcanic eruption 4.566947869
you know 3.382710888
look at 3.079620739
each other 2.705594598
come back 2.475590017
at least 2.320820589
no longer 2.307564864
year old 2.285531715

Table 6: 10 MWEs from the LPP dataset with the highest Dice values. Full list of MWEs
with their corresponding Association Measures are given in Appendix B.
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4.2.2 Linking Association Measures with Cognitive Processes

While existing work has focused on individual types of MWEs, this study investigates

the cognitive processes underlying the comprehension of heterogeneous MWEs differing

along the lexical association of the words that compose them. Specifically, it is expected

that different association measures would map onto different cognitive aspects of MWEs,

such as how predictable they are, how cohesive they are, how conventionalized they are,

how frozen they are etc.

MWE PMI Dice

boa constrictor 7.934948602 10
fairy tale 6.16476593 6.422385484
coloured pencil 6.545610815 1.925855827
heart skipped a beat 10 0.0006670005821
gesture of weariness 5.124696746 0.00000002229179732
object of curiosity 5.096267996 0.00009852974441
a dirty trick 5.603255371 0.0002759423777
united states 1.859726247 0.004874108327
against all odds 6.011525024 0.01272124699
sense of urgency 6.255194902 0.004011177732
christmas tree 4.484999817 1.233571486
good morning 3.782589879 1.432966049
find out 3.479684666 1.24034032
come into 3.066762622 0.6832262366

Table 7: Example of MWEs with two Association Measures: Pointwise Mutual Infor-
mation and Dice’s Coeffecient. Full list of MWEs with their corresponding Association
Measures are given in Appendix B.

Thus, these association measures are adapted and used to describe different facets of

MWEs. PMI is taken to quantify the degree of conventionalization within these MWEs.

Dice is taken to represent the degree of predictability of these MWEs. In Table 7, we

can compare these measures. For example, expressions like object of curiosity, gesture of

weariness, and heart skipped a beat would be considered highly conventionalized given their

high PMI score but not predictable, given their low Dice score. As per these metrics, both

boa constrictor and fairy tales are highly conventionalized and highly predictable whereas
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expressions like united states and come into are neither highly conventionalized nor highly

predictable.

If we visually compare these scores for all 669 MWEs, as in Figure 9 below, we can

also notice an interesting pattern. The values for PMI are spread across the axis and thus,

the expressions are along a graded spectrum of conventionalized and have more fine-

grained distinctions. On the other hand, since Dice is used to identify rigid MWEs, it

tends to cluster the expressions around each end of the spectrum.

4.3 Computational Models and Methodology

669 MWEs were tagged as described in §3.3 and annotated with their respective associ-

ation measures. Both association measures are based on corpus frequency counts from

the Corpus of Contemporary English (COCA, Davies 2008), and were calculated using

mwetoolkit (Ramisch et al. 2010; Ramisch 2012) and the formulas given above. COCA

is a large, genre-balanced corpus of American English and contains contains more than

560 million words of text, equally divided among spoken, fiction, popular magazines,

newspapers, and academic texts.

4.4 Analysis

4.4.1 Analysis 3: Pointwise Mutual Information

Similar to GLM analyses described in §3.4.1 and §3.4.2, there were 12 regressors in total

with one regressor of interest: Pointwise Mutual Information, taken to represent the de-

gree of conventionalization within noncompositional expressions. To keep the analyses

comparable and account for sentence-level compositional processes, a regressor formaliz-

ing syntactic structure building, based on a bottom-up parsing algorithm, was included.
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Additionally, there were the same four regressors of non-interest from previous studies:

word rate, lexical frequency, f0, rms. As in previous analyses, the last word of the MWE

was marked with the corresponding Pointwise Mutual Information, all other words were

marked with a 0.

4.4.2 Analysis 4: Dice’s Coefficient

Similar to GLM analyses described in §3.4.1 and §3.4.2, there were 12 regressors in to-

tal with one regressor of interest: Dice’s Coefficient, taken to represent the degree of

predictability within noncompositional expressions. To keep the analyses comparable

and account for sentence-level compositional processes, a regressor formalizing syntactic

structure building, based on a bottom-up parsing algorithm, was included. Additionally,

there were the same four regressors of non-interest from previous studies: word rate, lex-

ical frequency, f0, rms. As in previous analyses, the last word of the MWE was marked

with the corresponding Dice’s coefficient, all other words were marked with a 0.

4.4.3 Group-level Analysis

In the second-level group analysis, each contrast was analysed separately at the group-

level. An 8 mm FWHM Gaussian smoothing kernel was applied on the contrast im-

ages from the first-level analysis to counteract inter-subject anatomical variation. All the

group-level results reported in the next section underwent FWE voxel correction for mul-

tiple comparisons which resulted in T-scores > 5.3.

4.5 Results

All whole-brain effects reported survived a p < 0.05 Family-Wise-Error threshold at the

voxel level. These results were surface rendered in Mango (Lancaster and Martinez 2006)
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using the Colin-27 template (Holmes et al. 1998).

4.5.1 Analysis 3: Pointwise Mutual Information

Increasing MWE conventionalization, as seen through the positive correlation with PMI,

yields a single cluster in the right Precuneus.

Left-lateralised activity in superior frontal gyrus, angular gyrus, pars triangularis, pos-

terior middle temporal gyrus, and frontal pole was observed in proportion to decreasing

conventionalization, as seen through the negative correlation with PMI scores. These are

detailed in Table 8 and in Figure 10.

Regions for PMI Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak level)

CORRELATED WITH INCREASING CONVENTIONALIZATION
R Precuneus 244 6 -68 56 0.000 7.33

CORRELATED WITH DECREASING CONVENTIONALIZATION
L Superior Frontal Gyrus 2039 -18 32 52 0.000 8.39

L Precentral Gyrus (BA9) -44 8 40 0.000 7.26
L Middle Frontal Gyrus -38 22 46 0.000 6.89

L Angular Gyrus 688 -42 -58 34 0.000 7.27
L Inferior Parietal Lobule (BA40) -48 -46 50 0.012 5.76

L Posterior Middle Temporal Gyrus 320 -60 -44 -4 0.000 7.25
L IFG Pars Triangularis (BA46) 211 -46 30 18 0.002 6.41

L IFG Pars Triangularis -46 34 10 0.002 5.41
L Anterior Middle Temporal Gyrus 152 -56 0 -32 0.001 6.49

L Anterior Inferior Temporal Gyrus -54 -8 -32 0.009 5.85
L Frontal Pole/Medial Frontal Gyrus (BA10) 50 -6 64 -20 0.009 5.88
R Superior Frontal Gyrus 33 14 52 28 0.004 6.15
L IFG orbitalis 27 -38 48 -18 0.023 5.55
R Anterior Inferior Temporal Gyrus/Fusiform Gyrus 21 58 -10 -32 0.012 5.78
R Superior Frontal Gyrus/ SMA (BA6) 14 12 24 58 0.007 5.94

Table 8: Significant clusters for PMI after FWE voxel-correction for multiple comparisons
with p < 0.05. Peak activation is given in MNI Coordinates and p-values are reported at
peak-level after voxel-correction.

4.5.2 Analysis 4: Dice’s Coefficient

Increasing MWE predictability, as seen through the positive correlation with Dice, corre-

lates with bilateral activation in the Precuneus along with right-lateralized activation in
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Middle Frontal Gyrus/Precentral, Superior Temporal Gyrus, and IFG.

Left-lateralized activation in the Anterior temporal regions, Superior Frontal Gyrus,

Medial Frontal Gyrus along with a cluster in the right Inferior Temporal gyrus was ob-

served in proportion to decreasing MWE predictability, as seen through the negative cor-

relation with Dice scores. These are detailed in Table 9 and in Figure 11.

CORRELATED WITH INCREASING PREDICTABILITY
Regions Cluster size MNI Coordinates p-value T-score

(in voxels) x y z (corrected) (peak-level)

L Precuneus (BA 7) 254 -10 -66 40 0.000 7.89
R Middle Frontal Gyrus/Precentral Gyrus 96 42 6 48 0.001 6.58
R Superior Temporal Gyrus 82 52 -42 16 0.006 6.04
R Precuneus (BA 7) 37 10 -62 30 0.011 5.83
R Inferior Frontal Gyrus 36 50 22 24 0.021 5.60

R IFG Triangularis 46 24 12 0.023 5.58
R IFG Orbitalis/Triangularis 16 2 -74 50 0.022 5.59

CORRELATED WITH DECREASING PREDICTABILITY
L Anterior Middle Temporal Gyrus 237 -58 -4 -24 0.000 7.07
L Superior Frontal Gyrus/Medial Frontal Gyrus 306 -10 44 46 0.001 6.65
R Inferior Temporal Gyrus 11 56 -8 -34 0.001 5.69
L Superior Frontal Gyrus 237 -10 56 30 0.001 5.51

Table 9: Significant clusters for Dice after FWE voxel-correction for multiple comparisons
with p < 0.05. Peak activation is given in MNI Coordinates and p-values are reported at
peak-level after voxel-correction

4.6 Discussion

4.6.1 Association Measures as Cognitively Plausible Metrics

The noncompositional, lexicalized expressions discussed in this chapter have a frequency

aspect that generative grammar cannot capture. Traditionally, all these expressions would

simply be classified as noncompositional expressions. However, our findings show that

there is a gradability to these expressions and they cannot simply be binarized as compo-

sitional or noncompositional. Results from Analysis 3 and Analysis 4 confirm that using

two Association Measures, Pointwise Mutual Information and Dice’s coefficient, we can
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quantify different aspects of noncompositional expressions such as conventionalization

and predictability of these expressions. Furthermore, since these metrics are calculated

based on corpus frequency counts, as seen in §4.2.1, these measures also capture the fre-

quency aspect of these expressions, while being more informative than raw attestation

counts. Based on these two metrics, we observed two different patterns of activation in

the brain, mapping onto two different cognitive subprocesses. The former involved pro-

cessing noncompositional expressions and implicates the Precuneus in its retrieval pro-

cess while the latter suggests that the less conventionalized and predictable expressions

might not actually be retrieved from memory. Thereby, this study demonstrates how met-

rics from computational linguistics can be adapted into a cognitively plausible measure

and in this way, shed light on cognitive processes at the cerebral level.

Precuneus and Noncompositionality

Analysis 3 and Analysis 4 extend the results of Analysis 1 and corroborate the central-

ity of the Precuneus in processing noncompositional MWEs. It suggests that only truly

lexicalized linguistic expressions rely on this areas rather than traditional left-lateralized

frontal and temporal nodes of the language network. As discussed in §3.6, the functional

characterization of the precuneus as part of a network sub-serving memory tasks has been

reported for different memory-based processes, such as verbal memory, spatial memory,

episodic memory, and memory-related imagery. Taken together, this suggests that the

Precuneus is involved in memory-related tasks, along with a linguistic functionalization.

Perisylvian Areas and Composition

Less conventionalized and less predictable MWEs evoke a pattern of activation that il-

lustrates the core language areas in the perisylvian language network. The regions that

show sensitivity to the decreasing MWE conventionalization are the left superior frontal

gyrus along with the left inferior frontal gyrus, or Broca’s area (pars triangularis and pars
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orbitalis), and also anterior and posterior regions of the left temporal gyrus. There is rel-

atively less negative activation in the case of decreasing predictability and the areas that

are significantly correlated to it form a subset of the first group of perisylvian regions

reported above.

4.6.2 Future Work

While these two metrics described above are used to represent the gradience in the de-

gree of conventionalization and degree of predictability within these noncompositional

expressions, there are other aspects of MWEs that can be captured with other measures.

Apart from an association measure like PMI and Dice, there are alternate approaches to

describes MWEs such as word space models (based on distributional semantics) which

could also serve as a metric of compositionality for these noncompositional word clus-

ters. This type of metric would utilize the distributional patterns of words collected over

large text data to represent semantic similarity between words in terms of spatial prox-

imity (Sahlgren 2006). However, in the current study we were not trying to model the

semantic opacity of these expressions but this could be an area to explore in the future to

investigate another facet of MWEs.
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Figure 10: Significant cluster for the increasing and decreasing conventionalization of
MWEs after FWE voxel correction for multiple comparisons with p < 0.05. Increasing
conventionalization represented in blue and decreasing conventionalization represented
in orange. Peak activation is given in MNI Coordinates.

Figure 11: Significant cluster for the increasing and decreasing predictability of MWEs af-
ter FWE voxel correction for multiple comparisons with p < 0.05. Increasing predictabil-
ity represented in green and decreasing predictability represented in orange. Peak activa-
tion is given in MNI Coordinates.
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CHAPTER 5

VERBAL ARGUMENT STRUCTURE AND SENTENCE PROCESSING

5.1 Introduction: Role of verbs in sentence processing

In this chapter, the goal is to investigate how verbal argument structure plays a role in

sentence processing using computational metrics and fMRI data. Sentence processing

is more than decoding linear strings of words. There are hierarchical structures and re-

lationships which affect language comprehension and verbal argument structure is one

such example. As Boland (1993) explains, verbs provide the interface between lexical

access and sentence processing. Furthermore, they also illustrate the integration of syn-

tactic and semantic representations since they impose syntactic and semantic constraints

on its arguments. When verbs precede their arguments (e.g., in SVO languages), knowl-

edge associated with the verb, such as its semantic roles, subcategorization, or selectional

restrictions can help the listener anticipate upcoming arguments and prime their expec-

tations. Conversely, when verbs follow their arguments (as in head-final languages), this

implicit information about the verb’s argument structure could confirm earlier interpreta-

tions or introduce new knowledge that might cause a reinterpretation. Thus, in this way

verbs play a central role in sentence processing.

This study examines different components of argument structure, such as diathesis

alternations, subcategorization, and selectional restrictions in English and investigates

whether they have differing neural substrates across three analyses. Furthermore, an-

other related question is how these different components of argument structure of a verb

affect prediction and uncertainty about the rest of the sentence during natural language

comprehension and thereby, influence real-time sentence processing.

An earlier version of this chapter appears in Bhattasali and Hale (to appear).
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5.2 Background

5.2.1 Argument Structure: Behavioral and Theoretical Perspectives

Psycholinguistic studies have shown that argument structure information is accessed and

used during real-time sentence processing e.g. Boland (2005, 1993); Ferretti et al. (2001);

Friedmann et al. (2008); MacDonald et al. (1994); Trueswell and Kim (1998); Trueswell

et al. (1993) among others. In a lexical decision task setting, Shapiro et al. (1991, 1987)

illustrated that reaction times to visual stimuli was longer after hearing verbs like hear

with multiple subcategorization options in comparison to a verb like hit with a single

option. Similarly, Gorrell (1991) found a difference in reaction times between transitive

verbs like hit and intransitive verbs like sneeze. Thus, these results indicate that once a

verb is encountered, its argument structure properties are activated and the processing

time is directly related to the complexity of these properties, accounting for delays in

concurrent visual lexical decision (Thompson and Meltzer-Asscher 2014).

These experimental findings are consistent with a lexicalist view. As per Chomsky

(1981), the lexical information associated with a verb consists of a list of the thematic roles

that the verb assigns, as well as subcategorization frames. This lexical information asso-

ciated with verbs determines the syntactic structure in which the verb appears, as well

as the interpretation of its accompanying arguments. This account follows the traditional

linguistic approach to argument structure, as exemplified in Jackendoff (2002); Williams

(1981); Levin and Hovav (1995); Reinhart (2003); Horvath and Siloni (2011) to name a few.

While this study does not probe into the lexical representation of argument structure in

the lexicon, the assumption is that when a verb is heard in the narrative, the tacit infor-

mation about the verb’s argument structure is available to the listener and employed in

real-time sentence processing.
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5.2.2 Previous Neurolinguistic Work

Prior neuroimaging studies with healthy participants have investigated activation pat-

terns by examining specific aspects of argument structure complexity. Argument struc-

ture complexity can be captured and quantified along various dimensions. Previous stud-

ies have demonstrated the role of verbal lexical information and its corresponding syntac-

tic and semantic information by utilizing the subcategorization frames of a given verb, the

number of arguments, and varying thematic roles for a verb (theta grid) e.g., Ben-Shachar

et al. (2003); Shetreet et al. (2007, 2009b, 2010a,b); Thompson et al. (2007, 2010); Meltzer-

Asscher et al. (2013, 2015); den Ouden et al. (2009) (see Thompson and Meltzer-Asscher

2014 for review). Generally, all these studies taken together suggest that posterior brain

regions comprising the left posterior superior temporal sulcus, supramarginal gyrus, and

angular gyrus are involved in processing argument structure, along with MFG and other

temporal regions.

Ben-Shachar et al. (2003) conducted an auditory study in Hebrew and found increased

bilateral superior temporal sulcus (STS) activation as the number of arguments in the sen-

tence increased, which suggests that these areas are relevant for verbal argument struc-

ture processing in sentences. In order to investigate theta roles, Newman et al. (2010)

manipulated the semantic relatedness within English sentences by varying the semantic

associations of the sentence constituents. The theta role violations correlated with acti-

vation in left IFG and posterior STS. Shetreet et al. (2007) altered the number of thematic

options, subcategorization options, and number of verbal complements in a Hebrew au-

ditory study. They observed increased activation in the the right Precuneus and right

anterior Cingulate for the number of verbal complements and the left STG and IFG for

the other two conditions, indicating that these regions are part of the neural circuitry for

argument structure processing. Through lexical decision tasks in English, Thompson et al.

(2007, 2010) illustrated differential activation patterns associated with verbs with differ-
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ent number of arguments and they suggest that posterior perisylvian regions, specifically

the bilateral Angular Gyrus, is important for processing verbs with more arguments com-

pared to verbs with fewer arguments.

In order to investigate the processing of verbs with multiple thematic options and sub-

categorization options, Shetreet et al. (2009b,a, 2010b,a) have carried out auditory fMRI

studies in Hebrew and have shown a left hemisphere network which includes the left

STG, IFG, MFG, SFG, MTG, indicating their relevance for processing verbal argument

structure. den Ouden et al. (2009) conducted a verb naming task based on pictures and

videos in English and found that for increased number of arguments, clusters were ob-

served in left IFG, Angular Gyrus, and Supramarginal Gyrus. In a study comparing

alternating transitives with simple transitives, Meltzer-Asscher et al. (2013) discovered

increased activation in bilateral Angular Gyrus and MFG. They argue that the posterior

activation reflects processing associated with the greater number of thematic roles as-

sociated with the transitive reading of alternating verbs whereas the frontal activation

reflects the processing of lexical ambiguity arising from the multiple thematic options

for the alternating verbs. In a follow-up study, Meltzer-Asscher et al. (2015) found that

unaccusativity correlated with increased activation in left IFG.

Fabre (2017) investigated argument structure processing in French and through prob-

ing multiple conditions such as unaccusative verbs with additional locative argument

compared to simple transitive verbs, or one argument unaccusatives compared to tran-

sitives among others, they found a brain network, which includes anterior STS, MFG,

SFG, bilateral Precuneus, IPL, and Supramarginal Gyrus. These areas are consistent with

earlier studies in other languages and confirms the centrality of these areas in processing

of argument structure. In an fMRI reading study in English, Malyutina and den Ouden

(2017) found increased activation in left SFG and MTG with greater number of subcate-

gorization options and increased activation in left IFG with greater number of thematic

options. In a recent study, Matchin et al. (2019) tested whether areas like the Angular
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gyrus, STS, and IFG were relevant for processing argument structure or general struc-

tural relations by matching VPs with lexically-matched NPs as a contrast. They found

that only STS and IFG showed increased activation for VPs relative to NPs.

While these studies give us an overview of the brain network implicated in argument

structure processing, all of these are controlled, task-based designs and often test specific

constructions such as unergative vs. unaccusative. In this study, similar research ques-

tions are asked about verbs but in a broader manner and in an ecologically valid setting

to study whether similar activation patterns are observed. Furthermore, selectional re-

strictions have not been specifically investigated in a neuroimaging study and in §5.3.2, I

explain how this component of argument structure is leveraged in our study.

5.2.3 Verbs in LPP

There are 2,948 verbs in total which were tagged with the NLTK toolkit and Stanford

POS tagger. Excluding modals, auxiliaries, gerunds, adjectival verbs and negation con-

tractions (e.g., shouldn’t and wouldn’t), there are 1,970 verbs attested in the story with 401

unique verb types. Many of the verbs occur frequently in the story and a wide variety of

verb-argument structural relations are attested. For example, one can compare the exam-

ples of two verbs come and drink below. Although both of them are attested several times

in the story, the former appears in varied different subcategorizations frames (as seen in

(7–13), while the latter appears only in three (as seen in (14–18).

(7) So you also come from the sky?

(8) He replied, “Oh, come on!”

(9) It could come in useful sometimes.

(10) She did not want to come out all rumpled like the poppies.

(11) Let them come.

(12) So the little prince, despite the good will of his love, had soon come to doubt her.
46



(13) The information came slowly as his thought wandered.

(14) You could take one pill a week and and you no longer felt the need to drink any-

thing.

(15) I have nothing left to drink.

(16) All the stars will pour out fresh water for me to drink.

(17) I had hardly enough water to drink for a week.

(18) I drank the last drop of my water supply.

5.3 Computational Models and Methodology

In this study, three computational metrics are used to formalize diathesis alternations,

selectional restrictions, and subcategorization, as described in the sections below.

5.3.1 PropBank: Formalizes diathesis alternations

PropBank (Kingsbury and Palmer 2002) is a lexical resource that consists of all the sen-

tences from the Penn Treebank annotated with semantic roles. Based on the annotation,

each verb is tagged with all the various semantic roles it can assign and the variations in

meaning associated with it, if any. For example, the verb hang has the following 8 entries

in PropBank and is assigned a score of 8:

• hang, suspend, suspending

• hang, exist, be

• hang on ,wait

• hang on, maintain possession of

• hang up, terminate a phone call
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• hang up, stuck on

• hang out, spend time socially

• hang, execution

This score can be used to estimate the cardinality of a given verb’s set of semantic

role labels and formalize diathesis alternations. Diathesis alternations are “changes in the

argument structure of a verb that are sometimes accompanied by changes in meaning”

(Levin 1993). This diathesis score is used as a predictor where higher score indicates more

diathesis alternations. Some verbs from The Little Prince annotated with their diathesis

scores from PropBank are in Table 13. These PropBank scores are thus taken to repre-

sent the diathesis alternations for a given verb. Out of the 401 unique verbs in LPP, 397

are given a score based on PropBank annotations since 4 of the verbs are missing from

PropBank.

Verb PropBank Score

take 33
come 30
get 30
go 28

make 23
break 20
pass 20

Verb PropBank Score

disappear 1
inflict 1
laugh 2
sleep 5
write 7
bring 8
pull 9

Table 10: Example of LPP verbs with PropBank scores to represent diathesis alternations.
Full list of verbs with the scores are given in Appendix C.

The intuition behind this metric is that the diathesis score should be directly propor-

tional to the uncertainty about the remaining sentence after the verb since higher the

number of diathesis alternations, there are more possibly ways for the sentence to be

completed. On the other hand, this score is inversely related to the prediction strength

of the verb since if the score is low, then there are minimal alternations and based on the

verb, the listener can better predict the upcoming portion of the sentence.

48



5.3.2 Selectional Preference Strength: Formalizes selectional restrictions

Another component of argument structure is the selectional restrictions imposed by a

verb on the semantic class of its arguments. For example, some verbs require animate

arguments, some verbs require physical locations as arguments, etc. Resnik (1996) pro-

poses a selectional association model where he defines selectional preference strength as

“the amount of information a verb can tell us about the semantic class of its arguments”.

The formula is given below and it is based on estimating verb-direct object pairs from

a corpus and then calculating the number of different WordNet (Miller 1995) semantic

classes a given verb’s direct objects falls into and the final scores is the inverse of that.

Higher selectional restrictions scores indicate the verb is more particular about the kinds

of arguments it takes as its direct object.

Pr(v,c) =
1

N

∑
n∈words(c)

1

|classes(n)|
freq(v,n) (5.1)

Figure 12: The 25 noun semantic classes in WordNet (Miller 1995)

Originally Resnik calculated the selectional preference strength for a limited set of

verbs across different corpora, such as the Brown corpus (Francis and Kucera 1964). How-
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ever, these scores only covered 27 of the 401 verb types in LPP (6.73%). In order to analyze

all the verbs in LPP, these scores were recalculated by estimating verb-direct object pairs

from the Gigaword (Ferraro et al., 2014) and WaCkypedia (Baroni et al., 2009) corpora

and then calculating their distribution across the 25 different WordNet semantic classes,

as illustrated in Fig 12. Some sample verbs with their selectional preference strength are

provided in Table 11. For example, a verb like pour has a high score since it is quite partic-

ular about the semantic class of its argument (typically some kind of liquids). In contrast,

a verb like find is quite flexible and can accept arguments from most semantic classes and

thus, has a relatively low score.

Verb Selectional Preference Strength

pour 4.8
drink 4.38

eat 3.51
hang 3.35
pull 2.77

Verb Selectional Preference Strength

bring 1.33
show 1.39
hear 1.7
want 1.52
find 0.96

Table 11: Example of LPP verbs with their selectional preference strength to represent the
selectional restrictions between the verb and its direct object. Full list of verbs with the
scores are given in Appendix C.

In terms of uncertainty about the rest of the sentence, the selectional preference strength

is inversely related to it since higher scores narrow down the semantic class of the verb’s

argument and thus, lower the uncertainty. Selectional preference strength is directly re-

lated to the prediction strength of the verb since low scores are uninformative about the

semantic class of the verb’s complement and thus, do not help inform the listener’s ex-

pectation about the remaining sentence as much whereas higher scores does help prime

the listener’s expectation and are more predictive.

5.3.3 SCF Entropy: Formalizes syntactic subcategorization

While the first two metrics formalized semantic constraints, Subcategorization Frame

(SCF) Entropy operationalizes the syntactic constraint of subcategorization present in ar-
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gument structure. Furthermore, this measure incorporates frequency into the subcatego-

rization frame metric, as suggested by Hale (2003).

The subcategorization frame entropy (SCF entropy) is a measure indexing uncertainty

about the syntactic constituent following a verb. The entropy of the subcategorization

frame distribution is a combined measure of the number of possible syntactic frames of

a verb and the extent to which their distribution is balanced, reflecting the degree of

uncertainty about the syntactic category of the verb’s complement. As formalized by

Linzen et al. (2013), if a verb X has n possible frames, and the probability of the i-th frame

is pi, its subcategorization frame entropy will be as follows:

H(X) = −
n∑

i=1

pilog2pi (5.2)

The SCF entropy values were initially from Sharpe et al. (2019), which are based

on Linzen et al. (2013). Their entropy values were calculated using the formula above

and subcategorization distribution from VALEX databse Korhonen et al. (2006) which in-

cludes subcategorization frame and frequency information for English verbs. However,

this only covered 100 of the 401 verb types in LPP. In order to supplement these scores,

the SCF entropy for the remaining verbs was calculated using the subcategorization dis-

tribution provided in Gahl et al. (2004), as per Linzen’s formula mentioned above, which

covered 56% of the verb attestations in LPP. The remaining verbs could not be tagged

since apart from these two databases, the other verb subcategorization resources have

limited coverage, limited ecological validity, and divergent coding criteria. Table 12 gives

some examples of verbs in LPP with their SCF entropy. Higher entropy indicates more

uncertainty about the syntactic constituent following the verb.

SCF entropy is directly proportional to the uncertainty about the rest of the sentence

since it represents the uncertainty about the upcoming syntactic constituent. Similar to

PropBank, this score is inversely related to the prediction strength of the verb since if the

score is low, then there is less uncertainty about syntactic category of the verb’s comple-
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ment and the listener can better predict the remaining portion of the sentence.

5.4 Analysis

The three components of argument structure discussed above, lend themselves to three

separate analyses.

5.4.1 Analysis 5: Diathesis Alternations

Comparable to GLM analyses described in earlier chapters, there 11 regressors in total

with one regressor of interest: diathesis alternations, as represented through the Prop-

Bank scores. Additionally, there were the same four regressors of non-interest from pre-

vious studies: word rate, lexical frequency, f0, rms. Each verb was marked with its Prop-

Bank score (described in §5.3.1), otherwise it was marked with a 0.

5.4.2 Analysis 6: Selectional Restrictions

Similar to Analysis 5, Analysis 6 has all the same 11 regressors except instead of diathe-

sis alternations, this analysis has Resnik’s selectional preference strength as the predictor

which formalizes selectional restrictions between a verb and its direct object. Addition-

Verb Subcategorization Frame Entropy

bring 3.036947593
break 2.893574237
advise 2.820062941
appear 2.795889371
warn 2.779808611
learn 2.772242084

Verb Subcategorization Frame Entropy

disappear 0.1539041273
cause 0.6457729254
solve 0.7784798323

attempt 0.8048097562
kill 0.9286728433
rise 1.012193608

Table 12: Example of LPP verbs with their subcategorization frame entropy to represent
the subcategorization between the verb and its direct object. Full list of verbs with the
scores are given in Appendix C.
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ally, there were the same four regressors of non-interest from previous studies: word

rate, lexical frequency, f0, rms. Each verb was annotated with its selectional preference

strength (described in §5.3.2), otherwise it was marked with a 0.

5.4.3 Analysis 7: Syntactic Subcategorization

Analysis 7 has the SCF entropy as a predictor to operationalize subcategorization subpro-

cess of argument structure. It also the same four regressors of non-interest from previous

studies: word rate, lexical frequency, f0, rms and six regressors for the visual stimuli

(§2.4), for a total of 11 regressors in the GLM. Each verb was tagged with its subcatego-

rization frame entropy (described in §5.3.3), otherwise it was marked with a 0.

5.4.4 Group-level Analysis

In the second-level group analysis, each contrast was analysed separately at the group-

level. An 8 mm FWHM Gaussian smoothing kernel was applied on the contrast im-

ages from the first-level analysis to counteract inter-subject anatomical variation. All the

group-level results reported in the next section underwent FWE voxel correction for mul-

tiple comparisons which resulted in T-scores > 5.3.

5.5 Results

All whole-brain effects reported survived a p < 0.05 Family-Wise-Error threshold at the

voxel level. These results were surface rendered in Mango (Lancaster and Martinez 2006)

using the Colin-27 template (Holmes et al. 1998).
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5.5.1 Analysis 5: Diathesis Alternations

Table 13 shows the significant clusters of activation for diathesis alternations and peak

activation voxels, using brain region labels from the Harvard-Oxford Cortical Structure

Atlas.

The largest clusters for diathesis alternation was observed in the bilateral Precuneus,

the Supramarginal gyrus, Middle Temporal gyrus, Middle Frontal gyrus, and Superior

Frontal gyrus on the right and the Middle Occipital on the left, as seen in Fig. 13 in green.

Regions Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak-level)

Precuneus (bilateral) 2416 8 -56 44 0.000 10.92
L Precuenus -8 -62 54 0.000 7.47

R Supramarginal Gyrus 2037 56 -44 30 0.000 10.65
R Middle Temporal Gyrus 50 -50 18 0.000 8.46
R Middle Occipital Gyrus 44 -64 26 0.000 7.01

R Middle Frontal Gyrus 1080 24 28 44 0.000 8.70
R Superior Frontal Gyrus 18 12 60 0.000 7.10
R Superior Frontal Gyrus 22 26 58 0.000 6.06

R Medial Frontal Gyrus/Anterior Cingulum 523 10 50 14 0.000 7.38
R Superior Medial Frontal Gyrus 10 54 6 0.000 7.28
R Medial Frontal Gyrus (BA 10) 6 56 -6 0.000 5.92

L Middle Occipital 102 -40 -76 34 0.002 6.37
L Cuneus/Precuneus 45 -12 -62 24 0.006 6.03
R Middle Temporal Gyrus (BA 21) 63 56 -8 -16 0.006 6.01
R Mid Cingulum 19 4 -20 40 0.008 5.92
R Superior Frontal Gyrus (BA 10) 36 16 66 22 0.017 5.66

R Superior Frontal Gyrus (BA 10) 22 62 12 0.022 5.57

Table 13: Significant clusters for diathesis alternations after FWE voxel correction. Peak
activation is given in MNI coordinates and p-values are reported at peak-level after voxel-
correction.
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5.5.2 Analysis 6: Selectional Restrictions

Table 14 shows the significant clusters of activation for selectional restrictions and peak

activation voxels, using brain region labels from the Harvard-Oxford Cortical Structure

Atlas. Three main clusters of right-lateralized activation can be observed in Fig. 13 (in

blue): Supplementary Motor Area, Inferior Frontal gyrus Pars Orbitalis/Triangularis, and

Superior Temporal gyrus.

Regions Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak-level)

R Superior Temporal Gyrus 1442 52 -38 12 0.000 8.56
R IFG Orbitalis/Triangularis 367 52 26 -6 0.000 7.05
R Supplementary Motor Area 200 6 12 66 0.004 6.13

Table 14: Significant clusters for selectional restrictions after FWE voxel correction. Peak
activation is given in MNI coordinates and p-values are reported at peak-level after voxel-
correction.

5.5.3 Analysis 7: Syntactic Subcategorization

Table 15 shows the significant clusters of activation for subcategorization and peak activa-

tion voxels, using brain region labels from the Harvard-Oxford Cortical Structure Atlas.

Largest clusters are observed in Medial Frontal gyrus on the right and Inferior Parietal

Lobule on the left, as seen in Fig. 13 in orange.
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Regions Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak-level)

R Middle Temporal Gyrus 800 50 -20 -10 0.000 8.13
R Superior Temporal Gyrus 58 -36 12 0.018 5.66
R Middle Temporal Gyrus (BA 21) 598 52 6 -24 0.000 7.27
R Inferior Temporal Gyrus 50 6 -36 0.000 7.17

R Superior Medial Frontal Gyrus 334 6 56 12 0.001 6.47
R Superior Medial Frontal Gyrus 12 58 24 0.002 6.36
R Superior Frontal Gyrus (BA 9) 14 58 34 0.012 5.80

R Superior Frontal Gyrus 43 10 24 60 0.003 6.21
R Superior Temporal Gyrus/Inferior Parietal Lobule 33 58 -42 22 0.020 5.62
R IFG Orbital/Triangularis 6 54 24 -4 0.029 5.49

Table 15: Significant clusters for syntactic subcategorization after FWE voxel correction.
Peak activation is given in MNI coordinates and p-values are reported at peak-level after
voxel-correction.

Figure 13: Whole-brain contrast images with significant clusters for diathesis alternations
in green, for selectional restrictions in blue, and for subcategorization in orange. All im-
ages underwent FWE voxel correction for multiple comparisons with p < 0.05.
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5.6 Discussion

5.6.1 Brain network involved in argument structure

This section examines the different brain areas that were significantly activated across

Analysis 5, Analysis 6, and Analysis 7. For the most part, our results corroborate exist-

ing work and the relevant brain areas reported. This is notable since prior neuroimaging

studies were controlled, task-based designs, and often included lexical decision tasks.

However, this study differs in that the neural bases of argument structure was investi-

gated in an ecologically valid setting within a naturalistic language comprehension study

and we found comparable results.

Precuneus

Significant bilateral Precuneus activation is observed for diathesis alternations in Analysis

5, which is consistent with previous studies. Examining verb processing at the sentence

level, Shetreet et al. (2007) found significant activation in medial Precuneus and the an-

terior cingulate cortex. Similarly, Shetreet et al. (2010a) also found the medial Precuneus

while investigating the effect of the numner of complements on brain activations. Fur-

thermore, in den Ouden et al. (2009), the precuneus was implicated in verb production.

Thus, this suggests that the Precuneus is involved in processing argument structure, as

well as processing noncompositional expressions, as discussed in §3.6 and §4.6.

Supramarginal

The Supramarginal gyrus is one of the largest clusters observed for diathesis alterna-

tions in Analysis 5. Thompson et al. (2007) also find bilateral activation in Supramarginal

gyrus while conducting a lexical decision task with intransitive, transitive, and ditransi-

tive verbs. Bilateral Supramarginal gyrus activation was also observed in verb production
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(den Ouden et al. 2009).

Inferior Parietal Lobule

Activation in the IPL is observed in Analysis 7, correlated with SCF entropy. Thompson

et al. (2007) also identifies the IPL as a region implicated in processing argument struc-

ture. The IPL is also involved in the processing of verbs with multiple thematic options

(Meltzer-Asscher et al. 2013). Also, Wernicke’s aphasic individuals do not exhibit normal

sensitivity to subcategorization options and this suggests that this knowledge and per-

haps knowledge about argument structure in general involves the IPL (along with poste-

rior temporal regions), since these areas are often damaged in this population (Dronkers

et al. 2004b; Kertesz and Lesk 1977; Kertesz et al. 1979). This area is implicated within the

eADM model (Bornkessel-Schlesewsky and Schlesewsky 2013)3 as relevant to the pro-

cessing of information related to sequential order. SCF entropy formalizes the sequential

relationship between a verb and its syntactic constituent and thus, sequential information

processing situates this region within Bornkessel-Schlesewsky and Schlesewsky’s model.

Superior Frontal Gyrus and Middle Frontal Gyrus

Significant clusters are observed in SFG and MFG across Analysis 5 and Analysis 7, cor-

related with diathesis alternations and SCF entropy respectively. MFG is implicated both

in verb processing (Shetreet et al. 2007) and verb production (den Ouden et al. 2009). In

their study on verbs with alternating transitivity, Meltzer-Asscher et al. (2013) found acti-

vation in bilateral Superior Frontal gyrus (BAs 8 and 9). They suggest that this activation

is due to ambiguity associated with alternating verbs since MFG and SFG are also impli-

cated in processing lexical ambiguity of nouns (Chan et al. 2004; Mason and Just 2007).

This is consistent with the results presented above since both diathesis alternations and

SCF entropy involve processing ambiguity in terms of semantic and syntactic constraints

3This model is discussed further in §6.
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respectively.

Inferior Frontal Gyrus

Significant activation is observed in the right IFG in Analysis 6 with selectional restric-

tions. In most previous work on argument structure, the left IFG is implicated e.g.,

Shetreet and Friedmann (2014); Friederici (2012) but we do not observe any activation in

that region. Furthermore, there are no prior neuroimaging work looking at selectional re-

strictions between a verb and its argument. However, this pattern of activation is consis-

tent with other neuroimaging studies related to lexical-semantic processing and semantic

ambiguity (Kuperberg et al. 2000; Zempleni et al. 2007).

Superior Temporal Gyrus and Middle Temporal Gyrus

Significant clusters were observed in posterior Temporal regions namely, STG and MTG

across Analysis 4 and Analysis 5 for diathesis alternations and selectional restrictions re-

spectively. Ben-Shachar et al. (2003) found increased bilateral superior temporal sulcus

activation as the number of arguments in the sentence increased as a function of the num-

ber of thematic roles associated with a verb, similar to Shetreet et al. (2007)’s finding.

Hadar et al. (2002) also reports STG and MTG activation associated with verbs. Evidence

from Wernicke’s aphasia mentioned above also indicates that these posterior temporal

regions are implicated in argument structure processing (Dronkers et al. 2004a; Kertesz

and Lesk 1977; Kertesz et al. 1979).

Posterior MTG has often been associated with lexical processes, such as the retrieval of

words and their associated features as formulated by Hickok and Poeppel (2007) and Ha-

goort and Indefrey (2014). In a study examining argument structure complexity, Meltzer-

Asscher et al. (2015) suggests that MTG is involved in representation of lexical-semantic

information, which is consistent with our selectional restrictions results.

Furthermore, Friederici (2012) states that the MTG is engaged for retrieval of argument
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structure information. Thompson et al. (2007) concurs that these regions are engaged for

processing argument structure information associated with verbs, especially information

referring to the number of thematic roles. This corroborates our finding of posterior tem-

poral activation with diathesis alternations.

5.6.2 Neurocognitive Models of Sentence Processing

Figure 14: Neurocognitive model of verb argument structure processing proposed by
Thompson and Meltzer-Asscher (2014)

Thompson and Meltzer-Asscher (2014) propose a neurocognitive model of argument

structure processing, based on the existing work investigating the neural substrates of

verb processing. They posit that initial syntactic parsing and structure building involves

the left IFG. Once verbs are encountered, the bilateral angular/supramarginal gyri are

activated to support retrieval of associated argument structure information. This infor-

mation, along with the initial structure, is transmitted to posterior temporal regions (MTG

and STG) for sentence-level semantic and syntactic integration. This model is represented

in Fig. 14. While no left IFG activation is observed in our results for processing argument
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structure, our results do map onto the areas they propose for argument structure infor-

mation retrieval (Supramarginal gyrus) and verb-argument integration (posterior MTG

and STG).

Thompson and Meltzer-Asscher’s model is comparable to the model for sentence pro-

cessing proposed in Friederici (2012). Friederici’s model consists of left-lateralized net-

works involving the temporal cortex and the inferior frontal cortex, which are shown

to support syntactic processes, whereas less lateralized temporo-frontal networks sub-

serve semantic processes4. While we do not observe a left-lateralized network, we do

see a right-lateralized pattern of activation in the temporo-frontal regions which would

subserve the semantic subprocesses of argument structure processing according to this

model.

5.6.3 Future Work

Incorporating morphology

All the analyses described in §5.4 are based on verb lemmas. Verb lemmas entail both syn-

tactic and semantic information but are not specified for phonological form (Thompson

and Meltzer-Asscher 2014). Thus, verb lemmas can include argument structure informa-

tion such as diathesis alternations, selectional restrictions, and SCF entropy. As a result

of using verb lemmas, all the forms of a given verb receive the same score and verbal

morphology is not accounted for in this study. But given the number and diversity of our

tokens along with the relative lack of rich English verbal morphology, the contribution

of morphology to the overall statistical result would be minimal and would possibly be

averaged out.

However, verbal morphology can also be a predictive cue and can help the listener

infer the semantic role assignment or the upcoming syntactic constituent. For example,

4This model is discussed more in detail in §6
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if a verb has passive morphology, we know it is likely that the syntactic constituent will

be a prepositional phrase (by phrase), a verbal participle, or no constituent, even if these

options are not the most frequent subcategorization frame for that verb, given corpus dis-

tribution information. Similarly, passive morphology would also prime our expectation

that the semantic role assignment following the verb would be an THEME or GOAL, with

an optional AGENT after it. In future analyses, I would like to leverage verbal morphology

as a predictive cue for processing argument structure alongside the existing metrics and

investigate its overall contribution.

Collostruction strength

According to Wiechmann (2008), collostruction strength is the degree of attraction that a

word Cj exhibits to a construction Ck. It can be used to estimate the degree of attraction

between a verb and its complementation patterns. In a way, this extends the idea of

association measures (discussed in §4.2.2) and applies it to argument structure. However,

rather than estimating the lexical association within a collocation, it abstracts away from

words and provides a gradient metric to reflect the association between verbs and its

syntactic frames.

Wiechmann tests 47 different association measures against human reading times, be-

havioural measure to index processing cost. He discovers that the metric of minimum

sensitivity (Pedersen and Bruce 1996) is the most predictive of the reading times and thus

the most cognitive plausible metric to estimate collostruction strength. In order to follow-

up the current analyses on argument structure presented in this chapter, implementing

an analyses with collostruction strength, especially minimum sensitivity will help us gain

further insight into argument structure and language processing in general.
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Whole brain model comparison

The three analyses described in this chapter employs the standard GLM analysis in SPM12

(described in §1.1) and is quite commonly used to provide functional localization of vari-

ous cognitive processes. As seen above, the group-level results in each of the three studies

gives us neural correlates of the different components of argument structure processing.

Although this helps us gain further insight into brain areas implicated in processing

argument structure during real-time sentence processing, it does not answer one of the

initial questions that I had proposed in §1: how do the different components of argument

structure influence real-time sentence processing? The answer to this question goes be-

yond the scope of a GLM localization analysis. It would require a whole brain model

comparison analysis which is not readily available through standard neuroimaging data

analysis software packages. Earlier work by Li et al. (2016) used fMRI timecourses in spe-

cific ROIs to compare different complexity metrics by implementing a regression analysis

in R. However, this study uses whole brain fMRI timecourses and picking certain ROIs

would not be informative enough to answer our question.

Currently, Christophe Pallier at INSERM is developing a new methodology to imple-

ment a statistical test which would allow us to do this sort of comparison. In this analysis,

known as a R2 analysis, we can test how much each regressor contributes to the fMRI sig-

nal variance. In this way, we can test regressors within the same model e.g., f0 and RMS

if we wanted to compare the effect of these acoustic parameters; or we can test regressors

from different models e.g., we can compare diathesis alternations, selectional restrictions,

and SCF entropy and check how much each regressor contributes to the overall signal

variance. Based on such an analysis, we can infer which regressor, and thus the cogni-

tive process it formalizes, is more influential during online sentence processing in certain

brain regions.
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CHAPTER 6

DISCUSSION & CONCLUSION

This chapter discusses the key findings across the seven studies presented and situates

the results presented in earlier chapters within the framework of several contemporary

neurobiological models of language processing. It concludes with an overview of the

main contributions of this dissertation.

6.1 General Discussion

Overall, across seven studies presented in §3 - §6, these are the key findings summarized

below:

• Noncompositional expressions have different neural substrates compared to phrases

built compositionally. The former mainly implicates the Precuneus while the lat-

ter involves areas such as Anterior Temporal and Anterior Frontal regions, which

have been involved in studies related to syntax. Furthermore, these two expres-

sions were taken to represent the cognitive processes linked to memory retrieval and

composition and consequently, in this study the results suggest that these processes

have distinct functional localizations. Thus, language productivity (as exemplified

through composition) and language reuse (exemplified through memory retrieval)

were shown here to implicate different brain networks.

• The differences in the grammatical category of noncompositional expressions is ob-

servable at the cerebral level, which shows that the brain sensitive to the internal

structure of these “frozen” noncompositional expressions, especially the inherent

argument structure of verbal expressions. This suggests that these noncomposi-

tional expressions are not as “frozen” as traditionally assumed or there is a gradient

spectrum of frozenness along which these expressions can be situated.
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• Expressions cannot be strictly binarized as compositional and noncompositional.

There are finer-grained distinctions that can be captured by using a gradient ap-

proach, such as the ones suggested in §4 by adapting different metrics from cor-

pus and computational linguistics to reflect the degree of conventionalization and

degree of predictability within this MWEs. Furthermore, while highly convention-

alized and highly predictable MWEs are plausibly retrieved from memory and in-

volved the Precuneus, less conventionalized and less predictable MWEs are pos-

sibly not retrieved, and instead processed compositionally, as evidenced through

their neural correlates highlighting the perisylvian language network.

• The different components of argument structure such as diathesis alternations, se-

lectional restrictions, and SCF entropy have distinct neural correlates, which indi-

cates that different subprocesses map onto different brain areas to illustrate a net-

work relevant for processing argument structure. Furthermore, these results cor-

roborate findings from previous controlled, task-based experimental designs.

• Based on the results for noncompositional expressions and argument structure, the

Precuneus is implicated in two different areas of language processing. Thus, this

suggests that the language network extends beyond the traditional perisylvian re-

gions and should include the Precuneus.

Based on the findings from these studies, we can examine connections between lin-

guistic competence and language performance at the cerebral level. For example, in Anal-

ysis 1 structure-building effort is taken to be part of competence. However, the retrieval

of memorized elements during real-time language comprehension reflects language per-

formance at the brain level. Analysis 2, Analysis 3, and Analysis 4 offer similar examples

since they all deal with MWE retrieval in various ways. Analysis 5 with diathesis alter-

nations offers a slightly different perspective. The diathesis alternations for a given verb

is abstract, tacit knowledge and therefore, can be counted as competence. However, this
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tacit knowledge is leveraged during sentence processing and thus, also instantiates lan-

guage performance. Selectional restrictions in Analysis 6 and SCF entropy in Analysis

7 both reflect linguistic competence in terms of the abstract linguistic knowledge they

encapsulate. However, both of them also incorporate a frequency distribution, either in

terms of semantic classes or syntactic constituents, and thus exemplify an instantiation of

language performance at the brain level during natural language comprehension.

6.2 Neurobiological Models of Language Processing

In this section, I discuss some of the contemporary neurobiological models of language

processing and situate my work within those.

6.2.1 Friederici’s Model of Language Comprehension

Friederici (2012) proposes a model of language comprehension with two dorsal and two

ventral streams relevant for language. The two dorsal pathways support auditory-to-

motor mapping and the processing of syntactically complex sentences, respectively. The

two ventral pathways subserve semantic and basic syntactic processes, respectively (Friederici

and Gierhan 2013).

The findings for different components of argument structure such as diathesis alterna-

tion, selectional restrictions, and SCF entropy, are consistent with Friederici’s model with

a caveat. In the ventral semantic stream, lexical-semantic information is retrieved from

the MTG and transferred via anterior temporal regions to anterior IFG, whereas dorsal

route connects the posterior IFG to posterior temporal regions and is involved in com-

plex syntactic computation (e.g. movement) and verb-argument integration. However,

this is in line with our results from Analysis 5 - 7 if do not assume a strict left-lateralization

since most of the significant clusters we report for argument structure processing is in the

right hemisphere.
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6.2.2 Declarative/Procedural Model

The declarative/procedural model posited by Ullman (2001) is based on upon a distinc-

tion that contrasts memory-related with non-memory-related processing. In this model,

the ventral stream is tied to declarative memory while the dorsal stream is tie to proce-

dural memory. Ullman (2015) links rule-based mechanisms to frontal regions and sub-

cortical structures, while memory for words is supported by medial temporal regions.

In this model subcategorization is linked to declarative memory, which is supported by

MTL and this is tied to prediction. This fits in with the results from the current study

where the MTG is implicated in both diathesis alternation and SCF entropy for a given

word. Ullman also claims that the IFG, specifically BA 45/47 seems to be involved verbal

working memory but no similar pattern of activation was observed in this study.

6.2.3 Extended Argument Dependency Model (eADM)

The eADM (Bornkessel-Schlesewsky and Schlesewsky 2009, 2013) divides up language pro-

cessing in a different way. In this model sequential information (for instance about word or-

der) is handled by a dorsal stream, while dependency information (as expressed through

case-marking) is handled by a ventral stream. If MWE comprehension is sequential pro-

cessing in this sense, then structures along this dorsal stream, including the Inferior Pari-

etal Lobule, should be involved. On the other hand, structure-building should activate

temporal regions along the ventral stream. Our results from Analysis 1 consistent with

this view.

However, this model is “category-neutral” and words are not designated as nouns

or verbs. Instead there are unification operations and these take place within the tem-

poral (and parietal) regions that form part of the dorsal and ventral streams. Argument

structure involves both sequential ordering and dependency information, so according to

this model, our results from Analysis 5 - 7 would map onto both temporal regions of the
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dorsal stream and parietal regions of the ventral stream.

6.2.4 Memory, Unification, and Control (MUC)

In this framework structure-building falls under the scope of the Unification operation

and is assigned to frontal areas. Regarding the Memory aspect of their model, Hagoort

and colleagues agree partly with Ullman, associating that function (among others) to pos-

terior temporal regions (Hagoort and Indefrey 2014; Hagoort 2009). Recruitment of the

posterior language network for verb argument structure processing is also in line with

this model of language processing. This model suggest that entries in the mental lexi-

con are associated with syntactic properties, such as grammatical class and in the case of

verbs, syntactically relevant sub-categorization frames.

6.2.5 Dual Streams Model

The Dual Streams model (Hickok and Poeppel 2007) locates the Lexical Interface, where

individual words would be processed, to posterior Middle Temporal Gyrus. Syntac-

tic phrases would be composed, part-by-part, by a Combinatorial Network in the An-

terior Temporal Lobes. Furthermore, they state that verbal working memory is a special

case of auditory–motor integration, and involve Broca’s area and STG. While we do not

find the former in our study, Analysis 6 - 7 implicate STG.
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6.3 Conclusion: Noncompositionality and Argument Struc-

ture from a Neurolinguistic Perspective

In conclusion, this dissertation brings together neurolinguistics and computational lin-

guistics to focus on two topics: noncompositional expressions (MWEs) and verbal argu-

ment structure. Across seven studies, I show how we can utilize various models and

metrics from computational linguistics to operationalize cognitive hypotheses and help

us better understand the neurocognitive bases of language processing. I present a large-

scale fMRI dataset based on 51 participants listening to Saint-Exupéry’s The Little Prince

(1943), comprising 15,388 words and lasting over an hour and a half in §2. While pre-

vious work has examined individual types of noncompositional expressions (such as id-

ioms, compounds, binomials), I unify this heterogeneous family of word clusters in a

single analysis in §3 and illustrate that they are processed differently from compositional

phrases. In this way, memory retrieval and composition are shown to have different neu-

ral correlates. This research also contributes a gradient approach to these noncomposi-

tional expressions by repurposing association measures (from computational linguistics)

and demonstrates how they can be adapted as cognitively plausible metrics for language

processing in §4. Furthermore, this gradient approach also suggests that highly conven-

tionalized and highly predictable MWEs are retrieved from memory while less conven-

tionalized and less predictable MWEs are processed compositionally. This dissertation

also probes the neural correlates of argument structure and corroborates previous con-

trolled, task-based experimental work on the syntactic and semantic constraints between

a verb and its argument in §5 to illustrate a network of brain areas implicated in process-

ing argument structure and its different linguistic subprocesses. Another finding is that

the Precuneus, not traditionally considered a part of the core perisylvian language net-

work, is involved in both processing noncompositional expressions and diathesis alterna-
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tions for a given verb. Overall, based on this interdisciplinary approach, this dissertation

presents empirical evidence through neuroimaging data, linking linguistic theory with

language processing.
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APPENDIX A

QUIZ COMPREHENSION QUESTIONS AND PARTICIPANTS’ SCORES

This appendix consists of experimental materials used in the study, along with infor-

mation about the participants. The list below gives the exclusion criteria used in the study

based on handedness. Figures 15 – 23 illustrate the comprehension questions presented

to participants at the end of each section. Table 16 contains each participant’s gender and

age information, as provided by them, and their quiz scores.

The following questions, adapted from the Edinburgh inventory (Oldfield 1971), were

uses to assess handedness in the study. Anyone who answered left to more than two

questions were excluded from the study.

What hand do you prefer to use when:

• Writing?

• Drawing?

• Throwing?

• Using Scissors?

• Using a Toothbrush?

• Using a Knife (without a fork)?

• Using a Spoon?

• Using a Broom(upper hand)?

• Striking a match?

• Opening a box (holding the lid)?

• Which foot do you prefer to kick with?

• Which eye do you use when only using one?
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Subject number Gender Age Quiz score

57 F 20 34

58 M 22 33

59 F 21 33

61 F 25 36

62 M 23 36

63 M 22 36

64 M 19 33

65 F 21 31

66 F 19 33

67 F 21 35

68 M 19 33

69 F 21 34

70 F 20 34

72 F 18 34

73 F 19 36

74 F 18 34

75 M 18 35

76 M 20 30

77 M 22 35

78 F 19 27

79 F 21 35

80 F 22 34

81 F 22 35

82 F 28 33

83 F 20 36

72



Table 16 continued from previous page

Subject number Gender Age Quiz score

84 F 22 32

86 M 19 33

91 M 20 21

92 M 21 32

93 F 20 31

94 F 21 30

95 F 20 35

96 F 18 30

97 F 21 32

98 F 24 31

99 F 37 24

100 F 19 35

101 M 23 30

102 F 18 30

103 F 19 34

104 F 19 18

105 M 20 34

106 F 19 30

107 M 21 35

108 M 18 32

109 M 19 34

110 F 21 33

111 F 20 23

113 F 21 31
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Table 16 continued from previous page

Subject number Gender Age Quiz score

114 M 20 33

115 F 20 27

Table 16: List of participants in the LPP study with their respective gender, age, and quiz

scores.

Figure 15: Comprehension questions based on section 1 of LPP. (A): Question 1 (B): Ques-
tion 2 (C): Question 3 (D): Question 4
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Figure 16: Comprehension questions based on section 2 of LPP. (A): Question 1 (B): Ques-
tion 2 (C): Question 3 (D): Question 4
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Figure 17: Comprehension questions based on section 3 of LPP. (A): Question 1 (B): Ques-
tion 2 (C): Question 3 (D): Question 4
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Figure 18: Comprehension questions based on section 4 of LPP. (A): Question 1 (B): Ques-
tion 2 (C): Question 3 (D): Question 4
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Figure 19: Comprehension questions based on section 5 of LPP. (A): Question 1 (B): Ques-
tion 2 (C): Question 3 (D): Question 4
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Figure 20: Comprehension questions based on section 6 of LPP. (A): Question 1 (B): Ques-
tion 2 (C): Question 3 (D): Question 4
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Figure 21: Comprehension questions based on section 7 of LPP. (A): Question 1 (B): Ques-
tion 2 (C): Question 3 (D): Question 4
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Figure 22: Comprehension questions based on section 8 of LPP. (A): Question 1 (B): Ques-
tion 2 (C): Question 3 (D): Question 4
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Figure 23: Comprehension questions based on section 9 of LPP. (A): Question 1 (B): Ques-
tion 2 (C): Question 3 (D): Question 4
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APPENDIX B

LIST OF MWES IN LPP

This appendix consists of the list of MWEs used in the study. Table 17 lists all 669

MWEs in LPPand each are marked as verbal or non-verbal expressions while Table 18

lists all the MWEs that are also verb particle constructions. Table 19 also lists all the

MWEs in LPP along with their two respective Association Measures: Pointwise Mutual

Information (PMI) and Dice’s Coefficient (Dice).

MWE Non-Verbal Verbal

a dirty trick X

a few X

a lot X

a number X

a well X

abandoned shell X

about to X

above all X

absence of reproach X

absolute monarch X

active volcano X

against all odds X

agree with X

air of authority X

all alone X

all at once X

all kind of X

all of X

83



Table 17 continued from previous page

MWE Non-Verbal Verbal

all the X

all the same X

am a man X

and all X

and all day X

and all road X

and how X

answer question X

answer to X

any day X

anything but X

apart from X

apparent hurry X

appear on earth X

apple tree X

arrive on earth X

as best can X

as far as X

as for X

as if X

as long as you X

as soon as X

as to X

ask of X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

ask yourselves X

at all X

at all afraid X

at first X

at first glance X

at home X

at last X

at least X

at once X

at random X

at that X

at that moment X

at the moment X

at the other X

at the same time X

at the time X

attack of rheumatism X

back home X

back tomorrow X

back up X

bad dream X

bad luck X

bad plan X

bad seed X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

base on X

be a man X

be a scholar X

be about X

be an admirer X

be at X

be at risk X

be eleven X

be everything X

be for X

be good for X

be guide X

be hundred X

be in X

be in order X

be in the wrong X

be inside X

be king X

be like fire X

be like music X

be nobody X

be nothing X

be object X

be on one X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

be order X

be out X

be problem X

be something X

be subject X

be sure to X

be thank X

be traveler X

be twenty-two X

be wealthy X

be well X

be worried X

beautiful drawing X

because of X

big book X

big presentation X

big time X

bit lonely X

bit sad X

bit wrong X

blow in X

boa constrictor X

boring job X

bother anyone X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

break in X

break into X

breakfast in the morning X

breathed easily X

bring back X

bring to X

bring to life X

brisk pace X

burst into X

burst into tear X

buy thing X

by chance X

call out X

can do X

can do anything X

care for X

career as a painter X

carry out X

catch out X

catch sight of X

cause havoc X

chase after X

christmas tree X

clean out X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

close up X

closed eye X

collect butterfly X

color of honey X

coloured pencil X

come across X

come as X

come at just X

come back X

come come X

come down X

come down on X

come from X

come in X

come in useful X

come into X

come now X

come on X

come out X

come to X

come to doubt X

come to know X

come to learn X

come to mind X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

come to see X

come to that X

come to visit X

come up X

complete tour X

complicated flower X

conceited man X

conceited people X

condemn anyone X

confuse everything X

cool night X

cover in X

cover with X

cry out X

danger of death X

dear fellow X

deep sadness X

demand obedience X

depend on X

die for you X

die of X

difficult repair X

difficult thing X

dirty trick X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

discovery in question X

do anything X

do calculation X

do no good X

do nothing X

do with X

do you know X

down on X

down to earth X

draw anything X

dreadful noise X

dress in purple X

drink anything X

drinking water X

each other X

eat bread X

eat everything X

eat flower X

eat shrub X

eat up X

eat weed X

eighth day X

emerge from X

empty bottle X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

end of trouble X

enormous book X

enough exercise X

enough room X

enough water X

enter into X

entire plane X

entire world X

entry on stage X

establish bond X

eternal thing X

european fashion X

even as X

exact spot X

explain thing X

express train X

extinct volcano X

extraordinary thing X

eye to X

eye toward the sky X

faded away X

fairy tale X

false idea X

familiar task X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

far away X

feel good X

few step X

fifth day X

fifth plane X

find nothing X

find out X

first came X

first drawing X

first glance X

first moment X

first night X

first thing X

first time X

first traveller X

fond of X

foot of the wall X

for example X

for fun X

for it X

for once X

for the first time X

for the world X

for you X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

forehead with a handkerchief X

fourth day X

fourth plane X

fragile treasure X

fresh water X

from afar X

from time to time X

full bottle X

funny animal X

funny hat X

funny idea X

gather in X

gaze at X

gesture of weariness X

get away X

get back X

get impatient X

get lose X

get out X

get stuck X

get to it X

get to know X

girl of the village X

give explanation X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

give it to X

give name X

give way X

given names X

glance at X

go away X

go back X

go down X

go far X

go for X

go off X

go on X

go out X

go round X

go to X

god know where X

golden bracelet X

golden curl X

golden hair X

golden thing X

good evening X

good for X

good look X

good morning X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

good plan X

good reputation X

good seed X

good will X

grave doubt X

great consequence X

great difficulty X

great mystery X

great prince X

green chamber X

grow thorn X

grow up X

grown ups X

gust of wind X

half dead X

hammer in X

happen on X

have friend X

have get old X

have gun X

have horn X

have idea X

have nothing X

have nothing to do with X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

have plan X

have star X

have thing X

have time X

have to X

hear anyone X

hear anything X

hear nothing X

heart skipped a beat X

heavy body X

heavy drinker X

herd of elephant X

here and there X

high mountain X

hint of sadness X

hold it X

home today X

hour in silence X

human habitation X

hundred of other X

i say X

i tell you X

idea of the size X

imminent disappearance X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

important point X

important thing X

impose on X

in a hurry X

in case of X

in circles X

in front of X

in hand X

in midair X

in order X

in peace X

in question X

in response X

in silence X

in that X

in the form of X

in the middle X

in the past X

in the same way X

in the sand X

in the way X

in the wind X

in the world X

in the wrong X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

in time X

in time to X

in turn X

inside of X

instead of X

intelligent man X

international astronomy X

intoxicate man X

it be not for the X

judge by X

judge someone X

just for fun X

just in time X

just like that X

just the same X

kind of X

know anything X

know of X

know someone X

lamp light X

land of tear X

landscape in the world X

large animal X

large mountain X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

large plane X

large stone X

last drop X

last for day X

last time X

laugh at X

lazy man X

lead life X

lead to X

lead up to X

lean on X

lean over X

learn something X

leave aside X

leave for X

leave in X

leave to X

let go X

let go of X

lie in X

life of leisure X

life story X

light up X

little boy X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

little fellow X

little prince X

little sheep X

live in X

live on X

lock of hair X

locomotive engineer X

long journey X

long time X

long while X

look after X

look around X

look at X

look for X

lose in X

lose on X

lot of space X

love anyone X

magnificent career X

make friend X

make mistake X

make of X

man of consequence X

matter of consequence X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

matter of discipline X

matter of life X

mental effort X

metallic sound X

middle of the ocean X

mile wide X

million of star X

million of year X

miraculous apparition X

moment of regret X

moment of silence X

moral character X

move about X

much less charming X

much trouble X

much work X

my eye X

my foot X

my life X

new friend X

next day X

next evening X

next to X

no end X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

no good X

no harm X

no longer X

no use X

north america X

north pole X

nose up X

not at all X

not much X

nothing in the universe X

nothing like X

now that X

number one X

number two X

object of curiosity X

occur to X

of a kind X

of course X

of its X

old day X

old house X

old monarch X

on earth X

on top X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

once upon a time X

one day X

out of X

out there X

pacific isle X

pain of death X

passer by X

peal of laughter X

peculiar sense X

perfect order X

person of consequence X

pile up X

play with X

pluck up X

point out X

pour out X

prepare for X

pretend to X

pretty thing X

previous page X

primeval forest X

provide proof X

public square X

pull out X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

pull up X

put down X

put out X

quench thirst X

rag doll X

raise in salute X

real purpose X

reasonable order X

red brick X

reflective silence X

reign over X

reply to X

rest of the day X

rest of the night X

reveal to X

rid of X

right here X

right place X

right there X

rise up X

rumble like thunder X

run away X

sad life X

same day X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

same moment X

same one X

same star X

same time X

same way X

sand dune X

say about X

say anything X

say goodbye X

say in response X

say nothing X

see through X

see to it X

sense of grief X

sense of urgency X

sensible man X

serious look X

set off X

set out X

sheet of paper X

sigh of regret X

silent meditation X

sit down X

sit in X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

sit in silence X

size of the earth X

sketch out X

sleep on X

small child X

so as to X

so far X

so much X

so that X

so what X

sort of X

sound of the wind X

south america X

south pole X

speak for X

speak in riddle X

speak to X

special festival X

spin round X

spur on X

stand back X

start off X

stay in X

step back X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

stir in X

stone wall X

strike by lightning X

subtle gesture X

succeed in X

such a X

sudden apparition X

sweep out X

swell up X

take advantage of X

take away from X

take heart X

take it away X

take out X

take over X

take pleasure X

take seriously X

take up X

talk to X

tell apart X

tell lie X

thanks to X

that be all X

the idea X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

the other side of X

think of X

this be it X

time of day X

tire of X

to be sure X

to bed X

to do X

to it X

to light X

to my mind X

to order X

to piece X

to rest X

to the eye X

tolerate insubordination X

tomorrow evening X

travel in X

turn to X

united states X

up against X

up to X

use to be X

use to know X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

use to say X

veritable army X

very well X

volcanic eruption X

wait for X

wake up X

wander off X

watch over X

water can X

water supply X

weak creature X

wheat field X

white as snow X

whole herd X

wide eyed X

wild animal X

wild bird X

with it X

wonderful day X

wonderful spectacle X

work out X

worth it X

worth the effort X

write about X
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Table 17 continued from previous page

MWE Non-Verbal Verbal

year old X

you know X

young judge X

Table 17: List of MWEs in LPP split into verbal and non-verbal expressions.

Verb particle MWEs

agree with

answer to

ask of

back up

base on

blow in

break in

break into

bring back

bring to

burst into

call out

care for

carry out

catch out

chase after

clean out

close up
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Table 18 continued from previous page

Verb particle MWEs

come back

come down

come in

come into

come on

come out

come to

come up

cover in

cover with

cry out

danger of death

depend on

die of

do with

down on

eat up

emerge from

enter into

faded away

find out

fond of

foot of the wall

gather in
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Table 18 continued from previous page

Verb particle MWEs

gaze at

get away

get back

get out

glance at

go away

go back

go down

go off

go on

go out

go to

grow up

hammer in

happen on

have to

hold it

impose on

judge by

know of

laugh at

lead to

lean on

lean over
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Table 18 continued from previous page

Verb particle MWEs

leave aside

leave for

leave in

leave to

let go

lie in

light up

live in

live on

look after

look around

look at

look for

lose in

lose on

make of

move about

occur to

pile up

play with

pluck up

point out

pour out

prepare for
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Table 18 continued from previous page

Verb particle MWEs

pretend to

pull out

pull up

put down

put out

reign over

reply to

reveal to

rid of

rise up

run away

say about

set off

set out

sit down

sit in

sketch out

sleep on

speak for

speak to

spin round

spur on

stand back

start off
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Table 18 continued from previous page

Verb particle MWEs

stay in

step back

stir in

succeed in

sweep out

swell up

take out

take over

take up

talk to

tell apart

thanks to

think of

tire of

travel in

turn to

wait for

wake up

wander off

watch over

work out

worth it

write about

Table 18: List of 137 MWEs in LPP which are also verb particle constructions.
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MWE PMI Dice

a dirty trick 5.603255371 0.0002759423777

a few 3.032724651 0.6356183935

a lot 3.181476617 0.9144775916

a number 2.530413226 0.1580497945

a well 0.4663553966 0.006027426043

abandoned shell 2.717490489 0.007867680275

about to 1.369079386 0.08876049899

above all 2.873667492 0.154997287

absence of reproach 4.892815597 0.00000002229179732

absolute monarch 4.49911388 0.0931259473

active volcano 4.685132224 0.2457447529

against all odds 6.011525024 0.01272124699

agree with 3.398989544 0.2695830127

air of authority 3.800706225 0.0001905948676

all alone 2.294427813 0.03781463912

all at once 4.650977219 0.04352637912

all kind of 4.510631127 0.03799290727

all of 2.057417795 0.3871219338

all the 1.906837324 0.2938203479

all the same 3.310298804 0.005154528828

am a man 3.455299324 0.0008153414073

and all 1.551042223 0.1298666856

and all day 2.118132377 0.0004702267422

and all road 1.61844799 0.00003477520391

and how 1.867929885 0.1377558097
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Table 19 continued from previous page

MWE PMI Dice

answer question 3.591418736 0.4509127932

answer to 2.172468711 0.03083720815

any day 2.106931694 0.06943989265

anything but 2.404057242 0.0983273307

apart from 3.297275157 0.132646763

apparent hurry 2.546209713 0.004862557389

appear on earth 4.599369837 0.0005599959462

apple tree 4.071819355 0.2999517239

arrive on earth 5.025841789 0.0004473017258

as best can 0.933714636 0.00000918422052

as far as 5.185718323 0.2102030106

as for 1.228174727 0.09232110644

as if 2.611567099 0.8895607549

as long as you 6.258122852 0.02424815746

as soon as 5.484284784 0.2079170603

as to 0.987709617 0.07659012023

ask of 1.071313459 0.004285167043

ask yourselves 3.625349106 0.0184454865

at all 2.542034404 0.7908373563

at all afraid 3.304162419 0.0004213627349

at first 2.422941424 0.3400003452

at first glance 6.128653731 0.03229187974

at home 2.940224379 0.5700293486

at last 2.266632365 0.1686845689
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Table 19 continued from previous page

MWE PMI Dice

at least 3.849968621 2.320740627

at once 2.633064695 0.2030255396

at random 2.896447512 0.02253424705

at that 1.53872565 0.186334989

at that moment 4.333430064 0.0269337661

at the moment 4.013977341 0.01726722981

at the other 2.75921054 0.007633000284

at the same time 7.227143048 0.09205983012

at the time 3.793228065 0.07299293145

attack of rheumatism 5.378732163 0.000004480651273

back home 2.878539938 0.3779895889

back tomorrow 2.636000069 0.03950236347

back up 2.428569156 0.2838684532

bad dream 3.322739047 0.1342686068

bad luck 4.200911265 0.5102535819

bad plan 1.569669961 0.005790346869

bad seed 2.924575131 0.02150352161

base on 3.967920376 0.9077802402

be a man 3.968810001 0.03799842273

be a scholar 3.974433769 0.0007939237277

be about 2.64018876 0.9651733027

be an admirer 5.608242329 0.001541578025

be at 2.390079904 0.7835056651

be at risk 4.919796144 0.03938775706

119



Table 19 continued from previous page

MWE PMI Dice

be eleven 2.830805121 0.01322464092

be everything 2.233055428 0.05790157

be for 1.831509425 0.2903584748

be good for 4.249078982 0.07011986088

be guide 2.570358328 0.02675987835

be hundred 0.5210398012 0.0004280269658

be in 2.412160271 1.266708361

be in order 3.357419243 0.003171556125

be in the wrong 4.806747075 0.001251888834

be inside 2.531205187 0.08779013705

be king 2.15463678 0.02134599062

be like fire 3.014364983 0.0003772689513

be like music 3.081963508 0.0007636688765

be nobody 2.545632829 0.03851193138

be nothing 3.222114047 0.5847096751

be object 0.6044661994 0.0002970258277

be on one 2.608766541 0.005038873243

be order 0.7279066576 0.001837747417

be out 2.456118986 0.5784753892

be problem 0.7908014451 0.002901099739

be something 3.096628559 0.8531870379

be subject 2.880442448 0.1032479318

be sure to 4.092248017 0.0254832437

be thank 1.367740531 0.007440723681
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Table 19 continued from previous page

MWE PMI Dice

be traveler 1.941273774 0.0007048553827

be twenty-two 2.931756616 0.004506166551

be wealthy 2.506177041 0.00863152184

be well 2.309279896 0.2698862184

be worried 3.46591264 0.181745522

beautiful drawing 2.411106528 0.01026833684

because of 2.261606475 0.3059329781

big book 2.128594099 0.0308918776

big presentation 2.255583808 0.005089845529

big time 2.045580485 0.05480063201

bit lonely 2.65512056 0.008697149808

bit sad 2.866827865 0.02915570285

bit wrong 1.600581022 0.00515602617

blow in 2.152337371 0.006251391408

boa constrictor 7.934948602 10

boring job 2.596664282 0.006376821942

bother anyone 3.088198492 0.02654374585

break in 1.981506581 0.02134344234

break into 3.211546505 0.2811606732

breakfast in the morning 5.501763034 0.00007423168527

breathed easily 3.736112681 0.0382615587

bring back 3.24194958 0.3333634577

bring to 2.316339114 0.05137360442

bring to life 3.991437903 0.001992216203
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Table 19 continued from previous page

MWE PMI Dice

brisk pace 5.024040944 0.3703415459

burst into 3.800739567 0.1473233088

burst into tear 8.263764682 0.05852311616

buy thing 2.708026825 0.06777500963

by chance 2.232642726 0.02897101252

call out 2.811567979 0.2339401296

can do 2.552520306 0.6109804529

can do anything 4.575346176 0.02185449024

care for 2.58348581 0.150337751

career as a painter 7.040508411 0.0001154715104

carry out 3.835140188 0.5045344552

catch out 1.87700713 0.006634726343

catch sight of 6.126202332 0.005121940936

cause havoc 4.131722746 0.05427842963

chase after 3.308298774 0.05714850168

christmas tree 4.484999817 1.233571486

clean out 2.715463178 0.0513100131

close up 2.420781124 0.07190285939

closed eye 3.169917038 0.084237673

collect butterfly 3.705356663 0.03102948629

color of honey 3.826388756 0.00005350031371

coloured pencil 6.545610815 1.925855827

come across 3.342719683 0.527987544

come as 1.934481682 0.07457660891
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Table 19 continued from previous page

MWE PMI Dice

come at just 2.277288466 0.0003116760709

come back 3.705900007 2.475595177

come come 0 0.0006282068071

come down 3.324489833 0.9732215442

come down on 4.235328479 0.01394988401

come from 3.23999946 1.199771269

come in 2.452111449 0.245243706

come in useful 3.265456864 0.00009429430291

come into 3.066762622 0.6832262366

come now 1.507171053 0.02297411519

come on 2.629979024 0.3400249803

come out 3.440524829 1.663744497

come to 2.725312069 0.4474018142

come to doubt 3.44712491 0.0001647363826

come to know 3.565151303 0.006309517176

come to learn 3.838642618 0.0009943580381

come to mind 4.685477857 0.01019076319

come to see 4.103473386 0.01363218712

come to that 2.528456208 0.003871079443

come to visit 4.789180567 0.005906858447

come up 3.462097051 1.732337711

complete tour 2.16520491 0.006587988471

complicated flower 1.917493601 0.001469866864

conceited man 2.466332084 0.0001125735768
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Table 19 continued from previous page

MWE PMI Dice

conceited people 2.349868285 0.00008649217383

condemn anyone 3.187080317 0.008220791273

confuse everything 2.519380299 0.001754194466

cool night 2.488089078 0.02715216434

cover in 2.194883762 0.02388120603

cover with 2.085564181 0.01865781091

cry out 3.542465101 0.1467854588

danger of death 4.020961276 0.0001511383862

dear fellow 3.244951389 0.04486769888

deep sadness 3.663782727 0.04912267466

demand obedience 3.890166957 0.02860683107

depend on 4.08202221 0.2683176186

die for you 2.904930981 0.0005319899778

die of 2.347620992 0.02623551094

difficult repair 1.695840755 0.001307020418

difficult thing 2.87971906 0.1113827345

dirty trick 4.720905491 0.575574878

discovery in question 2.837895746 0.000008136506043

do anything 3.136998914 0.4688710406

do calculation 0.6777397466 0.00004257733299

do no good 3.686242775 0.006686122929

do nothing 2.760040654 0.2099558399

do with 2.14707799 0.4305243569

do you know 4.593179968 0.1901475333
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Table 19 continued from previous page

MWE PMI Dice

down on 2.358368015 0.2521719027

down to earth 4.254878034 0.003087280801

draw anything 2.046938322 0.006700054085

dreadful noise 3.520235676 0.01433745634

dress in purple 4.778708072 0.00009786099049

drink anything 0.3545607889 0.000204415782

drinking water 4.136754766 0.6148612078

each other 3.739906925 2.705545791

eat bread 3.257295141 0.06084981137

eat everything 2.83745831 0.0610643678

eat flower 2.635270522 0.00931901255

eat shrub 2.481895193 0.0007840376114

eat up 2.516785904 0.0400627577

eat weed 2.954462086 0.007484745172

eighth day 2.645366166 0.008410350723

emerge from 4.012968029 0.2167821034

empty bottle 3.867268161 0.1894031741

end of trouble 3.014517033 0.00006598372024

enormous book 1.863263568 0.003841855191

enough exercise 2.042132314 0.009203907492

enough room 2.485704312 0.07665031827

enough water 2.482595673 0.07773622943

enter into 3.69313297 0.2518827888

entire plane 2.032648721 0.005919697205
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Table 19 continued from previous page

MWE PMI Dice

entire world 3.039840858 0.1285644094

entry on stage 3.588820871 0.00001232736395

establish bond 2.855687611 0.01373206547

eternal thing 2.278100768 0.002481163953

european fashion 2.793560301 0.02421194595

even as 2.101694591 0.1641713882

exact spot 3.854847665 0.1328628747

explain thing 2.710797853 0.04446253407

express train 3.710505936 0.1087428615

extinct volcano 5.320513901 0.4535895102

extraordinary thing 3.220521381 0.05666056349

eye to 2.062473995 0.01676296228

eye toward the sky 6.795327612 0.0000153367566

faded away 4.161558006 0.2182951302

fairy tale 6.16476593 6.422385484

false idea 2.673758958 0.01722495461

familiar task 2.258577284 0.008173950215

far away 3.544036621 0.8023207029

feel good 3.208196867 0.4753203459

few step 3.285208485 0.2290200528

fifth day 2.925439931 0.03295395105

fifth plane 2.36725683 0.006665982292

find nothing 2.747617019 0.1285383087

find out 3.479684666 1.24034032
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Table 19 continued from previous page

MWE PMI Dice

first came 2.443110894 0.1185035648

first drawing 1.626846072 0.002571548845

first glance 3.722813418 0.1184983883

first moment 2.032862472 0.02888010428

first night 2.42059295 0.1095790168

first thing 3.09414536 0.5006711851

first time 3.279392631 1.530334581

first traveller 2.714041087 0.0006455013277

fond of 2.984914086 0.008830049152

foot of the wall 4.73183441 0.00001094527251

for example 4.081873901 0.978636213

for fun 2.101960771 0.01617263373

for it 1.386242756 0.1671058257

for once 1.589449203 0.02189264307

for the first time 6.554962969 0.07283111991

for the world 2.681821683 0.004920993833

for you 1.64178101 0.2606417871

forehead with a handkerchief 8.290292687 0.00010231935

fourth day 2.865885451 0.04938865533

fourth plane 2.573124955 0.01445214957

fragile treasure 2.929128682 0.006393060021

fresh water 3.375852602 0.2090902108

from afar 3.90321081 0.01897637418

from time to time 6.207466472 0.02097889017
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Table 19 continued from previous page

MWE PMI Dice

full bottle 2.712043783 0.02114358248

funny animal 2.470273617 0.01061508839

funny hat 3.347827004 0.05353760586

funny idea 2.383819007 0.01299632089

gather in 2.73851285 0.01641345246

gaze at 2.537342764 0.01132269285

gesture of weariness 5.124696746 0.00000002229179732

get away 3.128842823 0.5772950956

get back 2.968513729 0.7200689363

get impatient 3.171401753 0.01114760748

get lose 2.188025582 0.0170896806

get out 2.980898489 0.9629909736

get stuck 3.467764827 0.1321862031

get to it 2.229575636 0.003061860154

get to know 3.946934938 0.0265093568

girl of the village 4.335540517 0.000003254602417

give explanation 1.094115262 0.0005843154772

give it to 3.659263687 0.0198551429

give name 1.312684792 0.004924919613

give way 2.951966441 0.2985556812

given names 3.176471754 0.09920940946

glance at 3.91285267 0.1810548888

go away 3.335462958 0.8209580432

go back 3.510676021 1.979029396
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go down 3.256757066 1.00237732

go far 2.667560692 0.1494024836

go for 2.165125718 0.1701668768

go off 3.043653531 0.5533021918

go on 3.041634968 1.109177983

go out 3.124580916 1.069711111

go round 2.65189028 0.03905603862

go to 3.260720381 1.954144147

god know where 5.516392881 0.006818914214

golden bracelet 3.418145061 0.01266041168

golden curl 4.311143703 0.09874368047

golden hair 3.428859187 0.1218660999

golden thing 1.167042978 0.001062525079

good evening 3.704551873 0.4839170019

good for 2.101736271 0.1434207861

good look 2.465932151 0.1434650806

good morning 3.782589879 1.432966049

good plan 1.990681484 0.02271279924

good reputation 2.798029336 0.02399086636

good seed 1.995814036 0.003106548516

good will 1.673622084 0.04294446545

grave doubt 2.883799275 0.01400021262

great consequence 2.607690959 0.007823507824

great difficulty 3.407218392 0.08711234967
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great mystery 3.191133516 0.05034607291

great prince 1.823596564 0.003039458715

green chamber 1.665238486 0.001415803402

grow thorn 2.747451776 0.001005011996

grow up 4.269095263 1.399913951

grown ups 5.343016936 1.243712494

gust of wind 7.182176689 0.002773719787

half dead 2.156000266 0.01812249111

hammer in 1.993349801 0.001948938551

happen on 2.420436558 0.04709846688

have friend 2.197564566 0.03276712782

have get old 3.702460787 0.003568590306

have gun 1.999346325 0.01078558478

have horn 1.87070406 0.001359215011

have idea 1.247365302 0.00583257603

have nothing 2.81518278 0.2423281845

have nothing to do with 9.104273128 0.03574023782

have plan 0.3117009522 0.0006996037645

have star 1.573965306 0.005923440981

have thing 1.45997231 0.01836253577

have time 1.856172197 0.12128986

have to 2.39541939 1.284723645

hear anyone 2.770566968 0.06426629546

hear anything 3.307818455 0.2968778166
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hear nothing 2.979447355 0.1466836385

heart skipped a beat 10 0.0006670005821

heavy body 2.342995254 0.01934397703

heavy drinker 5.159568003 0.1846389819

herd of elephant 6.484894025 0.0002646913335

here and there 3.542044418 0.01530182281

high mountain 2.714271326 0.04484570037

hint of sadness 5.58830429 0.00007177958756

hold it 2.591723924 0.07726975322

home today 1.736100073 0.02061996257

hour in silence 3.620753037 0.00004636693855

human habitation 4.752990201 0.05389668773

hundred of other 4.154646069 0.002531042485

i say 2.914655335 0.8713794504

i tell you 4.389692374 0.06819122437

idea of the size 4.561946248 0.00002831058267

imminent disappearance 3.723778034 0.02139064641

important point 2.895991824 0.180866171

important thing 3.496656008 0.7237224839

impose on 3.274364634 0.02877805883

in a hurry 4.444439906 0.006759687534

in case of 2.736803603 0.004196729121

in circles 0.7688882893 0.0001921552934

in front of 4.571344073 0.1410503348
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in hand 1.739716803 0.02764103728

in midair 3.167388019 0.003045242573

in order 2.958795048 0.2373677072

in peace 1.837599963 0.01017873124

in question 1.644335574 0.02024691385

in response 2.613707675 0.06202073087

in silence 2.366079748 0.016710451

in that 1.225440492 0.199901885

in the form of 5.220900007 0.0142367731

in the middle 4.205543139 0.06156290437

in the past 3.903870165 0.05961747605

in the same way 5.77551218 0.00797109032

in the sand 3.597446499 0.003400369174

in the way 2.885982252 0.02049025911

in the wind 3.253177053 0.003814557791

in the world 3.649375503 0.07602671186

in the wrong 2.988109035 0.004160781825

in time 1.514468219 0.07175729746

in time to 2.404463457 0.008399138796

in turn 2.301351281 0.06001709648

inside of 1.784823225 0.01810698016

instead of 2.823355115 0.1616562097

intelligent man 3.053338329 0.02416070121

international astronomy 2.546973577 0.005068879906
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intoxicate man 3.480584061 0.0002296586263

it be not for the 5.423699237 0.0006254934337

judge by 2.646026268 0.05272944838

judge someone 1.895065658 0.007648065683

just for fun 4.363663805 0.004815961068

just in time 3.469116515 0.01223540788

just like that 3.470130576 0.01413775835

just the same 3.118827189 0.002290695649

kind of 3.210798104 0.6150896013

know anything 2.792764372 0.2037621118

know of 0.9925532534 0.02391929703

know someone 2.246438057 0.05042430738

lamp light 2.791730248 0.008734129994

land of tear 2.945465878 0

landscape in the world 4.276002218 0.00001246111473

large animal 2.962470825 0.0569123645

large mountain 1.730874223 0.004906415093

large plane 1.815820475 0.004727231566

large stone 2.861211194 0.04604365098

last drop 1.70028168 0.004269225136

last for day 3.04118593 0.0009649213229

last time 2.88675194 0.5001432906

laugh at 3.341583447 0.1127416403

lazy man 2.703048803 0.005314177948

133



Table 19 continued from previous page

MWE PMI Dice

lead life 1.590850646 0.006878844467

lead to 3.085548758 0.2089979129

lead up to 4.514606159 0.01440986166

lean on 3.195067059 0.03619284301

lean over 4.130840391 0.2705976096

learn something 3.190769893 0.2028505255

leave aside 3.389424201 0.12411859

leave for 2.465052844 0.06977735537

leave in 2.207333548 0.04044153299

leave to 2.130362964 0.03433766415

let go 3.127294421 0.438471666

let go of 4.423860268 0.01393600418

lie in 2.819694168 0.04480822278

life of leisure 4.380833367 0.0002053074539

life story 2.553330458 0.09814860548

light up 2.802492099 0.1780336643

little boy 3.471832158 0.4422242248

little fellow 2.494109015 0.02096298741

little prince 2.572624488 0.01577296155

little sheep 2.025644802 0.002260715834

live in 3.040895013 0.3326912235

live on 2.641081586 0.1370140691

lock of hair 5.314451867 0.0009847358164

locomotive engineer 4.698509828 0.08579075913
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long journey 3.392109538 0.08976747035

long time 3.3356009 1.107518452

long while 2.12491929 0.05830294202

look after 2.456587337 0.1538377018

look around 3.341662695 0.8320850534

look at 3.694922457 3.079694239

look for 2.921077757 0.6050248553

lose in 2.475049144 0.0337879239

lose on 2.273249694 0.02166690346

lot of space 3.705272256 0.0007520952693

love anyone 2.194213175 0.02191408516

magnificent career 2.562904113 0.004358042433

make friend 2.82664923 0.1124827526

make mistake 3.642724333 0.2043534275

make of 1.607167664 0.05228729501

man of consequence 3.341818593 0.00003499812188

matter of consequence 4.18148472 0.00005795867319

matter of discipline 3.989903937 0.00007133375161

matter of life 3.842812595 0.001316327637

mental effort 3.002575024 0.05010689762

metallic sound 3.60987029 0.02261147894

middle of the ocean 5.951409996 0.0001997345045

mile wide 4.261477531 0.3980779257

million of star 3.46769228 0.0001852448362
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million of year 4.079367074 0.004970916632

miraculous apparition 4.897362808 0.08383197595

moment of regret 4.11579404 0.00006219411469

moment of silence 5.352119272 0.003668280138

moral character 3.642889139 0.1793403177

move about 2.047582606 0.03025638779

much less charming 4.269003283 0.00008560050193

much trouble 2.955286606 0.09154108575

much work 2.010043571 0.0612884682

my eye 2.753877391 0.07189159949

my foot 2.644255314 0.03902091484

my life 3.137502238 0.8859157529

new friend 2.835328119 0.117485422

next day 3.471774368 1.015913787

next evening 2.56026444 0.03795332812

next to 2.211673618 0.111774512

no end 2.053314797 0.05144907987

no good 2.214187977 0.1282703101

no harm 3.372726811 0.07328707252

no longer 4.173859407 2.307561393

no use 2.059612402 0.06555882982

north america 4.072234927 1.406126414

north pole 4.357144519 0.3460098128

nose up 1.889316515 0.005411735962
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not at all 4.059502006 0.08601389282

not much 2.143569505 0.1453373128

nothing in the universe 4.766164061 0.00001469029447

nothing like 2.615085428 0.1450389825

now that 1.882726227 0.1526043952

number one 2.775963997 0.2422156495

number two 2.710321455 0.1845578993

object of curiosity 5.096267996 0.00009852974441

occur to 2.581575101 0.02037702345

of a kind 2.541133267 0.0026816697

of course 2.957322985 0.394376427

of its 2.231965861 0.2915336273

old day 2.808528176 0.2243270519

old house 2.64370899 0.1414119247

old monarch 2.357863094 0.00102689941

on earth 3.010492921 0.1496627989

on top 2.867751381 0.2480147293

once upon a time 7.942508837 0.00889952184

one day 2.95786375 0.6409495156

out of 2.519642804 0.9125969675

out there 2.66108908 0.7395072851

pacific isle 3.152718509 0.00479539466

pain of death 3.877766972 0.0002440216759

passer by 2.194804365 0.000387663869
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peal of laughter 7.518600302 0.0003676957661

peculiar sense 2.801178773 0.007568836604

perfect order 2.251788167 0.01521347187

person of consequence 3.605030112 0.00002229179738

pile up 3.602475464 0.09329449315

play with 2.712464812 0.1726016778

pluck up 3.118798169 0.0030770497

point out 3.452387534 1.066232245

pour out 3.467669549 0.06701773786

prepare for 3.546654554 0.1429601616

pretend to 3.10982652 0.02112833158

pretty thing 2.281363047 0.03105892627

previous page 3.394269416 0.1247584089

primeval forest 4.892318394 0.07533369474

provide proof 3.144488036 0.03791048429

public square 3.047086538 0.08182269371

pull out 3.845723864 0.5039390449

pull up 3.555874129 0.269014919

put down 2.431407821 0.1124884287

put out 2.679234273 0.2397139985

quench thirst 5.826876395 0.2490540112

rag doll 5.793841592 1.67447644

raise in salute 4.591876127 0.00001471258627

real purpose 2.879827511 0.05323966954
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reasonable order 1.338419875 0.0009452063969

red brick 4.054846036 0.1863819434

reflective silence 2.783329897 0.005078880711

reign over 3.204454794 0.01231993572

reply to 2.549035076 0.006492422121

rest of the day 5.805949305 0.002221136644

rest of the night 5.520923677 0.0007068554631

reveal to 2.006046121 0.004688516093

rid of 3.083759038 0.03620121215

right here 2.826830913 0.4505440519

right place 2.368610391 0.104411141

right there 2.298219957 0.2121805305

rise up 3.207215256 0.1342883493

rumble like thunder 7.055179693 0.0003470398445

run away 3.573764578 0.7032970012

sad life 1.911824819 0.004242617582

same day 2.753965304 0.2257941678

same moment 2.450023841 0.06015173885

same one 1.475144694 0.02108292315

same star 1.863645702 0.009503250376

same time 3.507739678 1.5138162

same way 3.133065499 0.592126085

sand dune 5.235359606 0.2884897356

say about 2.569437437 0.3356464756
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say anything 3.416582883 0.7040290726

say goodbye 4.294414308 0.2398794168

say in response 3.972229343 0.001585228932

say nothing 3.250188076 0.4960428243

see through 2.203986171 0.1088299316

see to it 2.318430215 0.003080673876

sense of grief 4.27523655 0.0001112360689

sense of urgency 6.255194902 0.004011177732

sensible man 2.572484611 0.004041873078

serious look 2.288303545 0.02740411094

set off 3.212926451 0.456795329

set out 2.881634875 0.2859508207

sheet of paper 6.06589467 0.006238120384

sigh of regret 5.172373741 0.00002697307483

silent meditation 3.647455747 0.03180985914

sit down 4.334426948 1.979437294

sit in 3.04341742 0.1334873899

sit in silence 5.568721165 0.00257891622

size of the earth 5.116590476 0.0000552836575

sketch out 3.211888345 0.01573328365

sleep on 2.544918367 0.04021685818

small child 3.165511138 0.2867348069

so as to 2.724048025 0.01126489619

so far 3.507690927 1.098097836
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so much 3.382515256 1.878592443

so that 2.147130371 0.3954525343

so what 2.242583586 0.3176759387

sort of 3.349305234 0.2722219817

sound of the wind 5.618518399 0.0001669655624

south america 3.738238239 0.6264152016

south pole 4.366750296 0.3490972922

speak for 2.646817307 0.05964027819

speak in riddle 5.578483222 0.00009763807252

speak to 2.809850734 0.08558545783

special festival 2.189766081 0.005680419921

spin round 3.722926329 0.08491997872

spur on 2.682086982 0.00308094146

stand back 2.722848638 0.08187593014

start off 2.612221294 0.09471629094

stay in 2.401199155 0.05650810942

step back 3.130666134 0.1869385621

stir in 2.878870703 0.0295036896

stone wall 3.956716147 0.3888747084

strike by lightning 7.047734352 0.007257692616

subtle gesture 3.812471469 0.06422304779

succeed in 3.082549116 0.0326329108

such a 2.404651981 0.2643269275

sudden apparition 2.992383027 0.001820424634
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sweep out 3.007067751 0.01418326383

swell up 3.33271793 0.0140145442

take advantage of 5.984307699 0.04863729478

take away from 5.016008014 0.040789751

take heart 2.204367808 0.03323947308

take it away 4.33954971 0.01088245715

take out 2.666188665 0.3293104859

take over 3.146285007 0.781258114

take pleasure 3.015016497 0.05020916324

take seriously 3.70098418 0.2417780323

take up 2.717991861 0.3659274372

talk to 2.766578937 0.2384396199

tell apart 2.180536817 0.01054882926

tell lie 2.877102357 0.04501865354

thanks to 2.544792973 0.05442275707

that be all 3.895167001 0.1026376395

the idea 2.377027943 0.07015077131

the other side of 6.10436462 0.01760589289

think of 1.785040699 0.1172068954

this be it 2.836115842 0.01468117038

time of day 3.545373713 0.006356808638

tire of 2.131278264 0.00244222973

to be sure 4.116520623 0.02685701626

to bed 2.152197089 0.02582683101
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to do 2.316509343 0.8199469254

to it 0.8583825127 0.08395111562

to light 1.549317374 0.01302610311

to my mind 3.608675708 0.003214284628

to order 1.631539532 0.01349100912

to piece 1.041260803 0.001832254807

to rest 1.866863701 0.01690506178

to the eye 2.306480008 0.000755481973

tolerate insubordination 4.542204862 0.01672889191

tomorrow evening 3.786383119 0.2817223244

travel in 1.669702428 0.005417591509

turn to 2.089235047 0.03806539286

united states 1.859726247 0.004874108327

up against 2.618741764 0.2210102601

up to 2.11577394 0.3710324851

use to be 4.211901237 0.05489372541

use to know 2.951210622 0.00136878783

use to say 4.176366672 0.01166017646

veritable army 3.590376102 0.009239454005

very well 2.888744935 0.5484268571

volcanic eruption 6.489699932 4.566901775

wait for 2.867838806 0.108250239

wake up 3.845229757 0.3021724304

wander off 4.058031267 0.08535031684
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watch over 2.81834068 0.1059749826

water can 1.514348579 0.01660761283

water supply 3.982592907 0.4729411087

weak creature 3.175833505 0.02178404083

wheat field 3.992351338 0.1393318602

white as snow 4.725672969 0.001266103159

whole herd 3.338859338 0.02062702153

wide eyed 4.822948382 0.2749177319

wild animal 4.417466407 0.8481148292

wild bird 3.991297767 0.2643018131

with it 1.47751073 0.1811882223

wonderful day 2.324328266 0.01731327127

wonderful spectacle 2.843457385 0.005322684764

work out 2.446310859 0.2167248312

worth it 2.476426763 0.03805905263

worth the effort 4.887670367 0.001230974593

write about 3.032207379 0.125241063

year old 3.868517062 2.285485688

you know 3.340663447 3.382701932

young judge 1.483068992 0.003370410035

Table 19: List of MWEs in LPP with their respective Pointwise Mutual Information and

Dice’s Coefficient, as explained in §4.2.1
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APPENDIX C

LIST OF VERBS IN LPP

This appendix consists of all the verbs in LPP tagged with its PropBank scores (in

Table 20), its SCF entropy (in Table 21), and its selectional preference strength (in Table

21).

Verb Root PropBank score

abandon 3

abash 1

acclaim 1

accommodate 1

add 5

administer 1

admire 1

adore 1

advise 1

agree 1

allow 3

annoy 1

answer 1

apologize 1

appear 2

apply 4

arouse 1

arrange 1

arrive 1

ask 4
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Verb Root PropBank score

astonished 1

astounded 1

attempted 1

avoid 1

based 2

become 3

beg 1

begin 2

believe 1

belong 1

bends 2

bite 1

blame 1

blow 13

blush 1

born 8

break 20

breathe 2

bring 8

burn 4

burst 4

bury 1

buy 6

call 17
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Verb Root PropBank score

care 4

carry 5

cast 4

catch 7

cause 1

change 2

chasing 1

chewing 2

choose 1

chuckle 1

clap 1

clean 4

climb 2

collect 1

come 30

comforted 1

command 2

concluded 2

condemn 1

confessed 1

confuse 1

conserve 1

considers 2

consulted 1
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Verb Root PropBank score

continued 2

convinced 1

coughed 3

count 4

covered 5

created 1

crossed 5

cry 5

dance 2

daydream 1

decided 1

decorated 1

defend 1

demand 1

depend 1

describe 1

despised 1

destroy 1

detest 1

die 5

digesting 1

disappear 1

disappointed 1

discouraged 1
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Verb Root PropBank score

discover 1

dismantling 1

dispatch 1

disturbed 1

doubt 1

draw 5

dreaming 3

dress 3

drifted 1

drink 3

dug 4

eat 3

elongates 1

emerge 2

empties 2

endure 1

enquired 1

enter 2

establish 1

examining 1

exclaimed 1

excuse 1

exist 1

explain 1
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Verb Root PropBank score

eyed 1

facing 2

faded 1

fall 11

fasten 1

fear 1

feel 6

fill 8

find 3

fit 3

flow 1

fly 5

follow 7

forbid 1

forced 3

forget 1

forgive 1

freeze 3

frighten 3

fumble 1

gathered 3

gazed 1

get 30

give 15
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Verb Root PropBank score

glanced 1

go 28

greet 1

grieve 1

groomed 2

grow 4

guess 1

hang 7

happen 3

hastened 1

hear 1

heating 2

help 3

hesitate 1

hides 2

hoisted 1

hold 16

humble 1

Humiliated 1

hunt 1

hurrying 2

imagine 1

imply 1

imposed 1
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Verb Root PropBank score

improved 2

infested 1

inflict 1

inhabited 1

inquired 1

insisted 1

interesting 1

interrupted 1

irritated 1

judge 1

jumped 8

keep 7

kill 4

knock 10

know 6

lack 1

landed 2

lasted 4

laugh 2

lead 5

lean 1

leap 3

learn 1

leave 13
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Verb Root PropBank score

let 6

like 3

linger 1

listen 1

live 6

lock 6

look 11

loosened 3

lost 6

love 2

maintain 1

make 23

manage 2

matter 1

mean 2

meet 5

missed 3

mix 3

moaned 1

moistened 1

move 6

need 1

neglected 1

nurse 2
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Table 20 continued from previous page

Verb Root PropBank score

obey 1

objected 1

observe 2

occurred 1

open 3

order 2

overwhelmed 1

own 2

panted 2

pardon 2

pass 20

perfumed 1

pick 12

picture 1

pierces 1

piled 4

played 9

please 1

plucked 1

plummeting 1

plunged 2

point 2

postponing 1

pour 2
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Table 20 continued from previous page

Verb Root PropBank score

prefer 1

prepared 2

press 3

pretend 1

produce 2

proposed 1

protect 1

proves 1

provide 1

pull 9

put 15

puzzled 1

quench 1

questioned 2

raise 3

reach 4

read 3

readied 1

realised 2

reassure 1

received 1

recognise 2

record 1

recount 1
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Table 20 continued from previous page

Verb Root PropBank score

redo 1

redraw 1

regretting 1

regulated 1

reign 1

rejected 1

remained 1

remarked 1

remember 1

remind 1

repair 1

repeat 1

replied 1

require 1

respected 1

responded 1

rest 2

restrain 1

retorted 1

return 4

revealed 1

reviving 1

rise 2

rocked 4
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Table 20 continued from previous page

Verb Root PropBank score

rubbed 1

rule 3

rumbling 1

rumpled 2

run 15

rush 1

said 2

saluted 1

sank 1

satisfied 2

save 4

saw 2

search 1

seek 2

seem 1

seized 3

sell 4

send 4

served 4

set 16

sharpened 1

shatter 1

shelter 1

shine 2
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Table 20 continued from previous page

Verb Root PropBank score

shock 1

shook 3

show 4

shrug 3

shut 6

sighed 2

simplified 1

sit 8

sketched 2

skipped 3

skirting 2

sleep 5

slipped 4

smelled 2

smiled 2

snapped 8

solve 1

sort 2

sound 4

speak 5

spend 4

spins 4

sponged 2

spotted 2
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Table 20 continued from previous page

Verb Root PropBank score

sprouted 1

spurred 1

sputtered 1

squashing 1

stand 10

stared 2

start 9

starved 1

stay 4

stirred 4

stop 7

stroll 1

struck 10

studied 2

stunned 1

succeed 3

suffer 1

suffice 1

suggested 2

surprise 1

swallow 2

sweep 5

swell 1

take 33

159



Table 20 continued from previous page

Verb Root PropBank score

talk 3

tame 1

tell 3

tended 2

think 4

throw 7

thundered 2

tie 6

tire 3

tolerate 1

torment 1

touch 8

travel 1

trembled 1

trust 2

try 5

turn 18

understand 1

unscrew 1

use 4

visit 2

wait 3

wake 3

walk 5
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Table 20 continued from previous page

Verb Root PropBank score

wandered 1

want 1

warn 1

waste 1

watch 4

watered 3

weeping 2

weigh 4

wish 1

witnessed 1

wonder 2

wore 6

work 12

worry 2

wrapped 4

write 7

yawn 1

Table 20: List of verbs in LPP annotated with its PropBank scores, taken to represent

diathesis alternations on a verb.
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Verb root SCF entropy

add 2.025611588

administer 1.936478702

advise 2.820062941

agree 2.758439766

allow 2.042284812

answer 2.141467586

appear 2.795889371

apply 1.653004892

arrange 2.440029381

ask 2.089743356

attempted 0.8048097562

beg 2.612133791

believe 2.584110404

belong 1.424861368

bends 1.651732164

bite 1.83106486

blow 2.295778691

blush 1.921031952

break 2.893574237

breathe 2.022416487

bring 3.036947593

burst 2.03261976

buy 2.334690203

call 1.715089656

carry 2.029573649
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Table 21 continued from previous page

Verb root SCF entropy

cause 0.6457729254

change 1.703585131

chasing 1.317683616

chewing 2.244586848

choose 1.772625398

chuckle 1.435195974

clean 2.251431924

climb 1.879765685

collect 1.828385685

comforted 2.057107657

confessed 2.365421466

confuse 1.858979167

continued 2.071387431

convinced 1.924870545

covered 1.897957074

crossed 2.002677836

cry 1.224527958

dance 1.749000651

decided 2.00976869

describe 1.637707353

disappear 0.1539041273

discover 2.079502792

disturbed 1.970794121

doubt 1.981416015
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Table 21 continued from previous page

Verb root SCF entropy

draw 2.275223139

drifted 1.893253379

drink 1.27872856

eat 1.863167257

empties 2.058016941

establish 1.410785734

faded 1.410785734

fall 2.122700877

fear 1.979153575

fill 1.878055415

find 2.174790373

fit 2.205001345

fly 1.616539736

follow 2.185669242

forget 2.345669829

freeze 1.974559633

frighten 1.559957581

gathered 2.430471309

grieve 1.697999793

grow 1.941427008

guess 1.849323628

hang 2.134334628

happen 1.975201575

hear 2.022983298
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Table 21 continued from previous page

Verb root SCF entropy

heating 1.814622557

help 2.121489805

hesitate 1.090467314

hides 1.862017003

hold 2.284681063

humble 1.904141096

hunt 2.487592776

hurrying 2.749207394

imply 2.538951206

improved 1.663017051

judge 2.559765011

jumped 2.063062858

keep 2.025696016

kill 0.9286728433

knock 2.388016142

know 2.232102266

laugh 1.430050119

lean 2.322103467

leap 2.023797893

learn 2.772242084

leave 2.260871102

listen 1.48878289

live 1.717690929

lock 2.436025707
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Table 21 continued from previous page

Verb root SCF entropy

lost 1.595307789

maintain 1.445450308

manage 2.600086285

mix 2.43521842

moaned 1.992435937

move 1.147317835

need 1.85729974

neglected 1.793100526

objected 1.638874549

observe 1.58204139

order 2.580537333

pass 2.032557647

pick 2.724715148

pierces 1.755727678

played 2.192600024

point 2.281754193

prepared 1.924033922

proposed 2.300156211

proves 2.767345558

pull 2.358760792

puzzled 1.689539631

read 1.447255865

readied 1.752503776

realised 1.290108357
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Table 21 continued from previous page

Verb root SCF entropy

recognise 2.303401432

regretting 2.168139868

remember 2.311055064

require 2.374060802

rest 1.092234274

revealed 1.815482794

rise 1.012193608

rubbed 2.44144125

rush 2.195903164

said 1.19750379

save 1.994317439

saw 1.912678707

seem 2.017194354

sell 2.448491131

shatter 1.733222538

shrug 1.939104841

shut 2.109925175

sighed 1.449140195

sit 1.858709304

sketched 2.43270294

slipped 2.461464591

smiled 2.461464591

snapped 2.098010845

solve 0.7784798323
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Table 21 continued from previous page

Verb root SCF entropy

spend 2.01254596

spins 2.337617431

stand 1.72449208

stared 1.44386808

start 2.725627603

stay 2.109508326

stop 1.809812822

struck 1.981151985

studied 1.318761723

suffer 1.737870904

suggested 2.233158896

swallow 1.200495563

sweep 2.338916458

swell 1.869306718

talk 2.146330418

tame 1.666490279

tell 1.801050439

think 2.247217965

throw 2.364540997

tie 2.402085383

tire 1.861728855

touch 1.919501485

travel 1.918814722

try 1.08662064
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Table 21 continued from previous page

Verb root SCF entropy

understand 1.956087539

visit 1.216397757

wait 1.365982811

walk 1.871008515

want 1.732613869

warn 2.779808611

watch 1.886337937

weigh 2.159213457

wore 1.827404627

worry 2.169653646

wrapped 2.325535016

write 2.666174274

Table 21: List of verbs in LPP annotated with its SCF entropy taken to represent the syn-

tactic constraint between a verb and its upcoming argument.
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APPENDIX D

CORRELATION MATRICES

This appendix consists of all the correlation matrices based on the design matrices for

the analyses. Figure 24 – 30 illustrates the correlation between the regressors in Analysis 1

– 7 respectively while Table 22 – 28 shows the variance inflation factors in these analyses.

Figure 31 compares the correlations between all the convolved regressors related to argu-

ment structure and Table 29 shows the variance inflation factors between the argument

structure convolved regressors.

Figure 24: Correlation matrix (Pearson’s r) of the convolved regressors included in the
GLM model reported in Analysis 1

wordrate rms freq bottomup mwe f0

3.056824 1.409968 1.337956 2.411014 1.034463 1.314458

Table 22: Variance Inflation Factors in Analysis 1.
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Figure 25: Correlation matrix (Pearson’s r) of the convolved regressors included in the
GLM model reported in Analysis 2

wordrate freq bottomup verb nonverb f0 rms

3.035677 1.395752 2.431785 1.042754 1.028455 1.320799 1.341813

Table 23: Variance Inflation Factors in Analysis 2.
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Figure 26: Correlation matrix (Pearson’s r) of the convolved regressors included in the
GLM model reported in Analysis 3

wordrate rms freq bottomup pmi f0

3.053261 1.409882 1.337797 2.411620 1.031445 1.314141

Table 24: Variance Inflation Factors in Analysis 3.
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Figure 27: Correlation matrix (Pearson’s r) of the convolved regressors included in the
GLM model reported in Analysis 4

wordrate rms freq bottomup dice f0

3.006189 1.343616 1.396924 2.410851 1.010121 1.316597

Table 25: Variance Inflation Factors in Analysis 4.
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Figure 28: Correlation matrix (Pearson’s r) of the convolved regressors included in the
GLM model reported in Analysis 5

wordrate freq rms f0 propbank

1.754218 1.400773 1.325511 1.285971 1.065054

Table 26: Variance Inflation Factors in Analysis 5.
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Figure 29: Correlation matrix (Pearson’s r) of the convolved regressors included in the
GLM model reported in Analysis 6

wordrate freq rms f0 selPrefStrength

1.662559 1.385525 1.311345 1.287662 1.021331

Table 27: Variance Inflation Factors in Analysis 6.
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Figure 30: Correlation matrix (Pearson’s r) of the convolved regressors included in the
GLM model reported in Analysis 7

wordrate freq rms f0 scfEntropy

1.667823 1.387466 1.310313 1.286459 1.037694

Table 28: Variance Inflation Factors in Analysis 7.
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Figure 31: Correlation matrix (Pearson’s r) to compare between the convolved regressors
related to argument structure

wordrate freq rms f0 propbank selPrefStrength scfEntropy

1.760379 1.404015 1.323452 1.290478 1.090372 1.099160 1.123143

Table 29: Variance Inflation Factors to compare between the convolved regressors related
to argument structure.
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