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Abstract 

SINGLE CELL AND COMBINATORIAL ANALYSES OF CHROMATIN ACCESSIBILITY 

Roman Spektor Ph. D. 

Cornell University 2019 

 

The study of chromatin accessibility and DNA methylation have been fundamentally 

important to the understanding of gene regulation and disease. I developed methyl-

ATAC-seq to query the relationship between DNA methylation and accessibility at 

transposase-hypersensitive chromatin, and to characterize sites of methylation-

dependent accessibility in human colorectal tumor cells. Furthermore, I have 

performed single-cell combinatorial indexing assay for transposase accessible 

chromatin using sequencing (sci-ATAC-seq) to characterize the changes in cellular 

heterogeneity and chromatin accessibility in the cortices of Ts65Dn Down syndrome 

model mice.  Using sci-ATAC-seq I identified 26 distinct cell-types in the cortex; I found 

broad changes in cell-type distribution of varying severity, including a substantial 

increase in abundance of several classes of interneurons corresponding to a decrease 

in excitatory neuron abundance. These efforts provide novel tools for analyzing 

chromatin states and a high-resolution assay of cellular changes that accompany Down 

syndrome.
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“As soon as you’re sure you’re right, there’s no point in your being here.” 
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Chapter 1: Introduction 

1. Regulation of chromatin accessibility 

Despite containing identical DNA, each cell in an organism carries out distinct 

gene expression patterns during development and in response to environmental 

cues. The organization of nucleosomes, binding of transcription factors, and DNA 

modifications are reflective of transcription in a cell. Our understanding of these 

interactions potentially provides a wealth of information to infer activity within cells, 

how that signaling is directed, and how it can go awry in disease. Because of the 

predictive power of these inferences, projects such as ENCODE are a large 

investment to characterize the chromatin landscape of a wide array of tissues and 

cell types as a regulatory reference (Kundaje et al., 2015).  

 

1.1 An overview of chromatin organization 

In eukaryotes, the process of regulating chromatin organization at genes is tightly 

regulated. In the nucleus, DNA is wrapped around nucleosomes to form a DNA-

protein complex, chromatin. Chromatin is formed of units of nucleosomes, 4-subunit 

complexes composed of a pair of each histone: H2A, H2B, H3, and H4 (Richmond et 

al., 1984). Approximately 146bp of DNA wraps tightly around each nucleosome 

(Luger et al., 1997); DNA in between each nucleosome is bound by histone H1 

(Thoma et al., 1979).  

The assembly of histones occurs during DNA replication. During S-phase, CAF-1 is 
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recruited to the replication fork by PCNA and deposits ASF-1-bound H3-H4 complexes 

onto newly synthesized DNA (Sauer et al., 2018). H2A and H2B are then subsequently 

deposited by the NAP-1 complex (Aguilar-Gurrieri et al., 2016). DNA sequence 

encodes nucleosome deposition; in vitro, salt gradient dialysis assays reveal that, in 

yeast, nucleosomes bind to DNA in a pattern roughly resembling in vivo placement at 

promoters, which remain largely nucleosome free (Segal et al., 2006; Zhang et al., 

2011). Spacing downstream and upstream of promoters appear disorganized; to 

recapitulate in vivo nucleosome positioning requires the addition of nuclear extract in 

the presence of ATP, actively regulating nucleosome organization. 

The arrangement of nucleosomes in each cell-type is mediated by ATP-dependent 

chromatin remodeling and accounts for processes such as sliding, ejection of 

nucleosomes, and exchanging of nucleosomes for variants (Clapier et al., 2017).  ISWI 

and CHD subfamily factors evenly space deposited nucleosomes. SWI/SNF factors 

remodel and reposition chromatin, altering accessibility. Transcriptional activity at 

these organized regions can be assayed indirectly by querying the positioning and 

organization of nucleosomes, covalent modifications of histones, and DNA 

modifications. 

When measuring the positioning of nucleosomes, areas depleted of nucleosomes, 

nucleosome depleted regions (NDRs) are referred to as “open chromatin”, while 

areas containing nucleosomes are referred to as “closed chromatin” or 

“heterochromatin”, in the context of large, chromatin-dense domains. Open 

chromatin is often capable of supporting transcription factor binding and is 
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permissive to transcription, whereas closed chromatin is refractive to these. 

 

1.2 Histone modifications 

Each histone subunit contains several amino acids that are amenable to 

modifications, including a N-terminal tail which protrudes out of the nucleosome; 

these modifications are frequently referred to as the “histone code” (Strahl & Allis, 

2000). While dozens of histone modifications have been observed (Zhao & Garcia, 

2015); modifications at H3 are currently the most studied in the context of 

transcriptional regulation. The N-terminal tail of histone H3, contains several lysine 

groups that interact with writers, readers, and erasers that act upon the histone code 

(Arrowsmith et al., 2012; Patel & Wang, 2013).  

Thus far, we have a limited, though quickly expanding, interpretation of the 

histone code. The most characterized and studied modifications are at Histone H3. 

H3K4me1, H3K4me3, and H3K27Ac correlate with positive transcription at open 

chromatin and are present at promoters and enhancers, each carrying distinctive 

combinations of “activating marks”. Opposite of these activating marks, H3K27me3 is 

present at inactive enhancers and H3K9me3 is present at closed chromatin, 

heterochromatin, and correlate inversely to transcription.  

Further marks on histone H3 are reflective of processes such as transcriptional 

elongation (H3K36me3, present over gene bodies), mitosis (H3T3P, H3S10P, 

H3T11/S28P), and DNA repair (H3K14ac, H3K23ac,H4K20me) (Lawrence et al., 2016). 

Similarly, variant histones can mark cellular processes such as phosphorylation of 
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S139 at the variant histone, H2A.X, marking DNA damage (yH2A.X) (van Attikum & 

Gasser, 2009) and  H2A.Z,  which potentially marks nucleosome free regions (Jin et 

al., 2009). 

Many proteins that act on these histone marks to have been characterized. 

Writers such as P300/CBP acetylate histones at H3K27, and SET1A/SET1B, 

MLL1/MLL2/MLL3/MLL4, and PRDM9 methylate histones at H3K4, marking active 

transcription at promoters and enhancers. Opposed to these are writers such a 

Suv39H1/Suv39H2, G9a, and SETDB1, which methylate histones at H3K9 at 

heterochromatin and EZH1/EZH2 which methylate H3K27 at inactive promoters and 

enhancers. Reader proteins feature several functional domains, for example, Bromo-

domain containing proteins bind acetylated histones, while Chromo domains bind 

methylated histones. Erasers such as Histone Deacetylases (HDACs) act upon 

acetylated histones, LSD1/LSD2 and JARID1A/JARID1B/JARID1C deacetylate H3K4; 

JHDM2/JHDM3 and PHF8 demethylate H3K9; UTX, UTY, JMJD3, PHF8, and KIAA1718 

demethylate H3K27 (Calo & Wysocka, 2013; Hyun et al., 2017). 

 

1.3 DNA methylation 

DNA is further subject to modification. The most common DNA modification in 

eukaryotic organisms is 5-methyl-cytosine (5mC). Most studies of 5mC have been 

focused at sequences of cytosines followed by guanines (CpGs). In animals that have 

evolved DNA methylation as a regulatory mechanism, this covalent modification to 

cytosine is indicative of inactive regulatory elements. In mammals, CpGs are 
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frequently found in clusters, “CpG Islands” (Gardiner-Garden & Frommer, 1987).  

Cytosines are modified by the addition of a methyl group to the 5th carbon of 

cytosine. In mammalian somatic cells, methylation is mediated by three DNA 

methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B (Reviewed in Smith & 

Meissner, 2013). DNMT1 is a maintenance methyltransferase, trailing the DNA 

replication complex methylating cytosines complementary to CpGs that are 

methylated on a single strand (hemi-methylated). DNMT3A and DNMT3B are de novo 

methyltransferases, methylating previously unmethylated cytosines. Each of these 

enzymes is essential for viability but are amenable to knockouts in cell-culture 

models (Liao et al., 2015; Sakaue et al., 2010). 

DNA methylation is erased by two known mechanisms; passive and active 

demethylation. Passive demethylation occurs when DNA methylation is not 

maintained across DNA replication. It can be regulated by factors that are 

antagonistic DNMT recruitment and by overall expression of DNMTs (Reviewed in 

Piccolo & Fisher, 2014). Active demethylation is driven by two known processes, by 

TET enzymes and by AID/APOBEC enzymes. Ten-Eleven-Translocation (TET) enzymes, 

which mediate the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), which is 

processed into 5-formylcytosine (5fC), and ultimately to 5-carboxylcytosine (5caC) 

(Ito et al., 2011), which are recognized and excised by thymine–DNA–glycosylase 

(TDG). The remaining abasic site is recognized base excision repair (BER) machinery 

and repaired, leaving behind an unmethylated cytosine (Rasmussen & Helin, 2016). 

The Activation-induced cytidine deaminase/apolipoprotein B editing complex family 
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of enzymes, AID/APOBECs, directly catalyze the deamination of 5mC to Uracil 

(Wijesinghe & Bhagwat, 2012); the resulting mismatch between U and the G on its 

complementary strand is then recognized and repaired by BER machinery. 

Methylation states at regulatory regions are reflective of chromatin state, further 

discussed in Chapter 2. CpGs at open chromatin are predominantly “hypo-

methylated”, being depleted of DNA methylation; similarly, closed, heterochromatin, 

tends to be hyper-methylated and enriched for H3K9me3. Histones at gene bodies 

are methylated at H3K36me3, contain hyper-methylated DNA, and interacts with 

nucleosome placement to prevent “leaky” transcription (Teissandier & Bourc’his, 

2017). 

Though DNMTs have been shown to be catalytically active on naked DNA in vitro 

(Felle et al., 2011), their activities appear to be highly regulated in vivo. DNMTs are 

recruited as part of several repressive complexes; DNMT3B has been demonstrated 

to bind proteins such as SUV39H1, a writer of H3K9me3 and HP1, a protein that binds 

these marks (Fuks et al., 2003), while DNMT3A has been demonstrated to interact 

with SETDB1, another writer of H3K9me3 (Li et al., 2006).  

DNMT knockouts are viable in cell culture models. A major model is the human 

colorectal tumor cell line, HCT116, developed by the Vogelstein group (Rhee et al., 

2002). The DNMT knockout phenotype maintains viability in the absence of DNMT3B 

and of DNMT1. This model has been used to characterize the effect of 5mC depletion 

on transcription factor binding, nucleosome placement (Lay et al., 2015), and the 

interactions between DNA methylation and the histone code (Suzuki et al., 2011). 
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1.4 Transcription Factors 

In order to initiate transcription, transcription factors bind to short, specific 

sequences (motifs) at regulatory elements. Upon binding DNA, transcription factors 

recruit chromatin remodelers, readers and writers of the histone code, DNMTs and 

TET enzymes, and recruit RNA polymerase II.  These enzymes arrange nucleosomes, 

modify surrounding nucleosomes, modify the underlying DNA, and transcribe RNA 

(Jonkers & Lis, 2015). Despite the frequent presence of motifs across the genome, 

most transcription factors that are bound to DNA are found at open chromatin. The 

surrounding chromatin context of a transcription factor binding site (TFBS) and 

underlying DNA modifications modulate transcription factor activity binding. 

Because of their direct effect on transcription and cell fate, the discovery of 

transcription factor motifs and binding sites is important. By sequencing 

immunoprecipitated transcription factor DNA by ChIP-seq, described in section 2.2, 

and forming a position weight matrix (PWM) of represented sequences, motifs can 

be derived. Also, TFBSs have been identified in vitro using systematic evolution of 

ligands by exponential enrichment (SELEX) (Roulet et al., 2002), in which in vitro 

synthesized TFs are bound to known nucleotide sequences on either array chips or 

sequencers. These interactions at transcription factor binding sites are determined by 

their structural interactions with the major and minor grooves of DNA. Most 

transcription factors cannot bind closed chromatin, although class of transcription 

factors, Pioneer Transcription Factors, bind DNA at closed chromatin (Reviewed in 
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Zaret & Mango, 2016). 

Many transcription factors are sensitive to DNA methylation. These interactions 

have been measured in vitro, using a methylation-informative variant of SELEX, 

methyl-SELEX (Yin et al., 2017). The weakness of such assays is apparent because of 

their lack of cellular context such as protein modifications, chromatin accessibility, 

and integration to nearby regulatory elements. Systems to study the cellular contexts 

of DNA methylation have relied on inhibiting DNA methylation using inhibitors such 

as 5-Aza-deoxycytosine and DNA methyltransferase knockouts (Christman, 2002). 

Similarly, approaches such as mSTARR-seq (Lea et al., 2018), quantify this change by 

transfecting methylated (or unmethylated) DNA to query reporter activity states. 

 

2. High-throughput sequencing assays to measure chromatin states, transcription 

factor binding, and DNA modifications 

Section 1 detailed the importance of chromatin organization and DNA 

modifications to our understanding of gene regulation. Several high-throughput 

sequencing assays have been developed in order to assay accessibility, histone 

marks, transcription factor binding, and DNA methylation. These assays rely on the 

same fundamental approach, to isolate DNA at protein or regions of interest, 

perform high-throughput sequencing, and to quantify the result. Inherent limitations 

of whole-tissue or multiple cell, “bulk analysis”, is the investigation of average activity 

of all tissues queried; these limitations and their solutions are discussed in section 3. 

Furthermore, the assays described in this section are limited to querying DNA, they 
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seek to indirectly infer transcriptional activity; assays which directly query 

transcription, such as PRO-seq (Mahat et al., 2016), which are specifically informative 

of actual, rather than inferred, transcription activity are outside the confines of this 

thesis. 

 

2.1 Accessibility 

Chromatin, in the study of accessibility, can be thought of in two contexts, 

accessible euchromatin and inaccessible heterochromatin. Within euchromatin, 

“open” accessible NDRs are indicative of potential transcriptional activation; these 

NDRs are often occupied by transcription factors, transcriptional machinery, and 

contain DNA that is frequently unmethylated.  

Several methods exist to quantify the localization of nucleosomes: DNase-seq 

(Song & Crawford, 2010), MNase-seq (Schones et al., 2008), FAIRE-seq (Giresi, Kim, 

McDaniell, Iyer, & Lieb, 2007), and ATAC-seq (Buenrostro, Giresi, Zaba, Chang, & 

Greenleaf, 2013). DNase-seq and MNase-seq are similar enzymatic treatment to 

target nucleosome depleted regions. DNase-seq relies on sequencing digested DNA 

at NDRs while MNase-seq relies on sequencing DNA protected by nucleosomes 

during digestion. FAIRE-seq relies on sequencing crosslinking-resistant NDRs by 

removing protein-crosslinked-DNA by phenol extraction.  

Finally, ATAC-seq is the current leading method to measure accessibility in the 

genome. ATAC-seq relies on hyperactive mutants of Tn5 Transposase, a bacterially 

derived enzyme. Tn5 Transposase binds mosaic-end (ME) sequences defined by a 
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19bp sequence, 5’-CTGTCTCTTATACACATCT, forming a dimer when bound to DNA. 

Once bound, and in the presence of Magnesium, Tn5 will insert mosaic-end 

containing sequences into DNA in a process referred to as tagmentation (Picelli et al., 

2014). This process is exploited for library generation using PCR-handle containing 

ME sequences, dubbed ME-A and ME-B. Two tagmentation events, leading to 

fragments containing 5’ ME-A sequence and 3’ ME-B sequences must occur to yield 

amplifiable fragments. Tagmentation occurs preferentially at exposed DNA, thus at 

NDRs, yielding fragments enriched at NDRs. Upon PCR amplification, libraries can be 

sequenced in nearly a single step. ATAC-seq exploits this by directly treating nuclei 

with ME-A/ME-B carrying Tn5 transposase yielding directly amplifiable fragments in a 

single step. 

Presently, ATAC-seq is the leading method to measure accessibility in the genome 

owing to its simplified protocol, low background, and low input requirements. 

Overall, it stands as a large improvement over previous protocols because of its 

range of sensitivity across cell/tissue types and quantities. 

 

2.2 Histone modifications and transcription factors 

Sequencing methods to localize histone modifications and transcription factor 

occupancy both rely on identical underlying basic techniques. The most commonly 

used method to isolate and sequence chromatin to localize histone modifications and 

transcription factor occupancy is dubbed, appropriately, Chromatin 

immunoprecipitation sequencing (ChIP-seq) (Johnson et al., 2007). First, DNA is 
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fragmented either via sonication or enzymatically. In order to pull out proteins of 

interest and their underlying DNA, ChIP-seq relies on crosslinking factors to their 

underlying DNA (Gilmour & Lis, 1985), though methods such as Native-ChIP-seq do so 

under physiological (native) conditions. These factors are then isolated, frequently by 

immunoprecipitation. DNA bound to immunoprecipitated crosslinked proteins of 

interest is then freed from surrounding/attached proteins. Finally, adapters are 

added via ligation and this DNA is then sequenced. This method has been employed 

to great success but requires large amounts of input and provides a low-resolution 

localization of TFs and histone modifications in the genome. Re-ChIP assays, by 

performing two consecutive immunoprecipitations of two different factors, query 

coincident factors of interest in the genome (Furlan-Magaril et al., 2009; J. V. 

Geisberg & Struhl, 2004; Joseph V Geisberg & Struhl, 2005). 

Recent advancements have lowered the input requirements of ChIP-seq but have 

been largely superseded by new techniques such as ChIP-Exo (Rossi, Lai, & Pugh, 

2018) and ChIP-NEXUS (He, Johnston, & Zeitlinger, 2015), which attempt to solve 

low-resolution issues by exonuclease digestion to yield strand-specific products 

terminating at bound proteins, which physically block exonucleases. 

Most recently, cleavage under targets and release using nuclease (CUT&RUN) has 

been introduced, allowing for the lowest current input quantities (Skene & Henikoff, 

2017). CUT&RUN relies on a fusion of Protein A and MNase (pA-MN), yielding a 

MNase that is targetable to antibodies. By incubating nuclei with antibodies against 
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proteins of interest, washing off excess, and treating with pA-MN to bind antibodies, 

and adding Ca2+ to activate MNase, DNA nearby antibody-bound proteins is 

selectively cleaved. By allowing this DNA to either diffuse out of nuclear pores or size-

selecting for small fragments, highly targeted ChIP-seq libraries can be easily 

generated using conventional library preparation. Besides its speed and simplicity, 

CUT&RUN is advantageous because of its ability to query insoluble proteins which 

usually reside in the nucleus. 

 

2.3 DNA methylation 

Sites harboring 5mC are identified by bisulfite sequencing (BS-Seq). 5mC primarily 

measured using bisulfite conversion in which an unmethylated cytosine is 

deaminated to uracil, leaving 5mC unchanged (Frommer et al., 1992). Upon PCR, 

these deaminated U bases are written as T. Using this method, methylation at CpGs is 

measured as the proportion of aligned CpGs that either retain a C (methylated, read 

as C) or have been converted to a U (unmethylated, read as T) after bisulfite 

conversion. Whole-genome bisulfite sequencing (WGBS or Methyl-seq) (Lister et al., 

2008, 2009) relies on this process across the genome to measure DNA methylation at 

all CpGs. This method is extremely costly because of two fundamental issues. First, 

WGBS is an untargeted approach requiring whole-genome sequencing. Second, 

because bisulfite conversion depletes Cs in sequencing data, it must be aligned to a 

limited 3-nucleotide genome, decreasing coverage, requiring even further 

sequencing depth. In order to assuage the costs of bisulfite-sequencing, targeted 
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approaches have been developed.  

Reduced Representation Bisulfite Sequencing (RRBS) (Meissner et al., 2005) relies 

on the high CpG content at CpG islands as a method of enrichment. Enrichment is 

performed by enzymatically digesting DNA, usually by Mspi at CCGG sequences, 

enriching for CpG-dense regions within a size-distribution suitable for sequencing. 

The weakness of RRBS rests in its highly-targeted approach, sequencing only CCGG-

flanked regions, which, though frequently at regulatory regions, have exceedingly 

low complexity and frequently do not reflect surrounding DNA (Yong, Hsu, & Chen, 

2016). 

The primary weakness of all BS-seq assays is in its inability to discern the 

presence of additional, less frequent, modifications, described in section 1.3, such as 

5hmC, which are represented as 5mC in BS-seq data. Further modifications to 

existing BS-seq have been investigated to clarify this issue, such as 5hmC specific 

enzymatic modification via TET enzymes using TAB-seq (Yu et al., 2012), APOBECs 

using ACE-seq (Schutsky et al., 2018), and further chemical modifications to discern 

5hmC from 5mC using OxBS-seq (Booth et al., 2012). 

 

2.4 Combinatorial assays 

Several assays have been developed to assay the interplay between DNA 

modifications, histone modifications, and accessibility. These assays have been 

developed to measure several types of data simultaneously to lower cost and provide 

greater information content per read. 
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NOMe-Seq (Kelly et al., 2012) identifies NDRs and measures DNA methylation 

genome wide; this method exploits the pattern of DNA methylation observed in 

mammals at CpG dinucleotides and depletion of DNA methylation at GpC 

dinucleotides. NOMe-seq consists of a GpC methyltransferase treatment of isolated 

nuclei to place 5mC at accessible GpCs that are not occluded by nucleosomes. 

Following this, standard bisulfite treatment, library preparation, and sequencing is 

performed. 5mC measurements at naturally occurring 5mC at CpGs remains identical 

to its Methyl-seq counterpart, while NDRs are identified by the presence of 

unnaturally occurring 5mC at GpCs; accordingly, nucleosome free regions are 

enriched in GpC methylation while nucleosome-containing regions are depleted in 

GpC methylation. This method allows for the identification of simultaneous 

placement of nucleosome and DNA methylation. The weakness of this method is 

identical to that of Methyl-seq in its high expense because of its read-coverage 

requirements. 

Like NOMe-seq, methyl-ATAC-seq, described in Chapter 2, identifies and 

quantifies NDRs via transposase accessibility and queries the underlying DNA 

methylation at NDRs. In order to do so, standard ATAC-seq library preparation is 

performed using modified adapters containing methylated Cytosines, followed by a 

methylated end-repair to preserve complexity during bisulfite treatment. Unlike 

NOMe-seq, it has little coverage of closed chromatin, providing limited information 

about its underlying 5mC. The main advantage of this method is comparably low read 

requirements comparable to ATAC-seq to ascertain the underlying 5mC state at 
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accessible chromatin. The primary weakness of this method is in the limited 

characterization of DNA methylation at closed chromatin. 

Methyl-ChIP is a modification of ChIP-seq in which the final library is bisulfite-

converted in order to assay DNA methylation at immunoprecipitated DNA-bound 

proteins. 

 

3. Single-cell DNA analysis 

Section 2 of this introduction describes bulk measurements of chromatin state 

that measure the average state of tissues and hundreds-to-thousands of cells. While 

this is highly informative when measuring large phenotypic changes in a 

homogeneous population of cells, subtle changes are often overshadowed. For 

example, in a disease caused by a small population of cells undergoing a dramatic 

change, where a 5-fold change in population occurs, from 1% of total cells to 5% of 

total cells, can be missed by bulk analysis, accounting for a minority of change in 

abundance of sequenced data of the whole tissue.  Efforts to enrich for specific cell 

populations in a tissue by cell-sorting requires prior knowledge of cell populations, 

specific antibodies present, and means of purifying these populations. Any method 

other than unbiased sampling of cells from a tissue necessarily imposes a sampling 

bias. Furthermore, all tissue and cell culture are highly heterogeneous, containing 

many independent cell-types.  

Single-cell approaches are currently being developed order to solve issues in 

dealing with tissue heterogeneity. The three common strategies that have emerged 
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for single-cell sequencing consisting of: low-throughput single-cell library preparation 

in wells, high-throughput encapsulation of cells using microfluidic devices, and high-

throughput barcoding of cells using combinatorial indexing. For the purposes of this 

thesis, the methods described in the following sections will be focused on the use of 

single cell ATAC-seq, specifically, the use of combinatorial indexing in section 3.4, 

which has been used in our lab to query cellular heterogeneity in the brains of Down 

syndrome model mice. The primary advantage of this method is its focus on 

regulatory regions, requiring less sequencing coverage compared to whole genome 

sequencing methods while providing regulatory information at queried regions. 

 

3.1 Applications 

Though there are several relevant applications to these methods, they are 

fundamentally identical to those in Chapter 2. In studies measuring chromatin states, 

transcription factor binding, and DNA modifications, single-cell sequencing has been 

predominantly used to query cellular heterogeneity in normal and perturbed tissues. 

A frequent application of single-cell sequencing is the query of cellular heterogeneity 

and lineage in cancer populations; a simple strategy is the use of methods such as 

single-cell whole-genome sequencing to identify abnormal chromosomal 

duplications, deletions, inversion, and translocations (Reviewed in Gawad, Koh, & 

Quake, 2016). This is limited by high coverage required in whole genome sequencing, 

high error rates, and amplification bias. 

The application of single cell methylation has shown promise assaying cellular 
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heterogeneity in tissue, though still requiring higher coverage, regulatory information 

can be inferred from the methylation state of known regulatory regions. Single cell 

bisulfite sequencing has been successfully used to identify cell-types in the brain and 

tumors  (Cancer Genome Atlas Research Network et al., 2017; Luo et al., 2017; 

Mulqueen et al., 2018; Smallwood et al., 2014). 

 

3.2 Well-based methods 

The earliest single-cell library preparations consisted of manually pipetting single 

cells into multi-well plates and assembling their libraries using conventional bulk 

protocols.  This strategy has been applied to most library-types (Chen et al., 2018; 

Kalisky, Blainey, & Quake, 2011; Navin et al., 2011; Stevens et al., 2017). Frequently, 

single cells are isolated using either fluorescence activated cell sorting (FACS), 

limiting dilutions, or single-cell pipetting is used to isolate cells. Well-based strategies 

exclusively use PCR-based barcoding to identify cells. This strategy has limited 

application because of large reaction volumes, considerable pipetting loss, and 

unoptimized reactions. As a strategy, this methodology is frequently no longer 

considered ideal due to its comparably high cost-per-cell, low-throughput, and 

overall tediousness.  

 

3.3 Microfluidics 

Microfluidics have emerged as a practical strategy to prepare single-cell RNA-seq 
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libraries (Reviewed in Hwang, Lee, & Bang, 2018). Primarily, microfluidics strategies 

rely on forming reaction-compartments in aqueous droplets in an oil medium 

containing a single cell and barcode (usually on a bead). Because of scaled-down and 

optimized reactions, read depth from these libraries, when successful, shows 

promise.  

Much of this approach relies on costly, frequently proprietary machinery and 

bead-based barcoding. Because of this high cost, this method has a wide commercial 

adoption, with multiple devices available on the market, (Reviewed in Haque et al., 

2017).  

 

3.4 Combinatorial indexing/split-pool 

Single-cell combinatorial indexing (sci-seq) is a more recent strategy for 

generating large-scale single-cell library preparation. Initially used to sequence 

whole-genome DNA (Adey et al., 2014), recently sci-seq strategies have been applied 

to RNA-seq (Cao et al., 2017), Bisulfite-seq (Mulqueen et al., 2018), and ATAC-seq 

(Darren A. Cusanovich, Reddington, et al., 2018). Sci-seq relies on a split-pool strategy 

described in a paper aptly titled “DNA Sudoku” (Erlich et al., 2009). In this strategy, 

cells themselves act as virtually partitioned barcodes; pools of cells are individually 

barcoded, pooled, and subjected to further barcoding, increasing the overall 

complexity of each barcode. This process can be repeated as many times as 

necessary, leading to large pools of uniquely barcoded cells. Combinatorial indexing 

has been implemented in assays such as ATAC-seq, BS-seq, and RNA-seq. In chapter 
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3, single-cell combinatorial indexing assay for transposase accessible chromatin using 

sequencing (sci-ATAC-seq) (Cusanovich et al., 2015) is leveraged to assay changes in 

the cortex of Down syndrome model mice compared to their control counterparts. 

Sci-ATAC-seq uses combinatorial indexing to perform ATAC-seq inexpensively on 

a large scale. First, tagmentation is performed using Tn5 transposase carrying 

barcoded oligonucleotides to assign unique barcode combinations to 96 initial wells 

containing thousands of nuclei per well. These wells are pooled and FACS sorted at 

20-25 nuclei/well. An additional set of barcodes is added to each well using PCR, 

yielding 9,216 barcode combinations per 96-well plate containing 1,920-2400 nuclei. 

Using this strategy, 87.5%-90% of sequenced cells carry a unique final barcode 

combination. This strategy is limited by its reagent costs which add considerable 

expense to the process, though becomes viable when producing Tn5 transposase in-

house (Hennig et al., 2018; Picelli et al., 2014). This strategy has allowed for large-

scale library preparations of organs and cells and have resulted in several 

publications showing tissue-wide (Cusanovich, Hill, et al., 2018) and organism-wide 

(Cusanovich, Reddington, et al., 2018) atlases of accessibility.  

Within a common disease model, Down syndrome, most analysis studying 

changes in cell-type distribution in the central nervous system (CNS) of mouse-model 

and post-mortem patient tissue has focused on the use of immunofluorescence 

(Reviewed in Contestabile, Magara, & Cancedda, 2017) and bulk sequencing methods 

(Guedj et al., 2016); this has led to insight into broad dysregulation that occurs in 

Down syndrome but fails to accurately quantify specific changes. In chapter 3, I have 
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characterized the change in cell-type distribution and regulatory changes in the 

brains of Ts65Dn Down syndrome model mice using sci-ATAC-seq. 
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Chapter 2: methyl-ATAC-seq measures DNA methylation at accessible chromatin 
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Abstract: 

Chromatin features are characterized by genome-wide assays for nucleosome 

location, protein binding sites, 3-dimensional interactions, and modifications to 

histones and DNA. For example, Assay for Transposase Accessible Chromatin 

sequencing (ATAC-seq) identifies nucleosome-depleted (open) chromatin, which 

harbors potentially active gene regulatory sequences; and bisulfite sequencing (BS-

seq) quantifies DNA methylation. When two distinct chromatin features like these 

are assayed separately in populations of cells, it is impossible to determine, with 

certainty, where the features are coincident in the genome by simply overlaying 

datasets. Here we describe methyl-ATAC-seq (mATAC-seq), which implements 

modifications to ATAC-seq, including subjecting the output to BS-seq. Merging these 
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assays into a single protocol identifies the locations of open chromatin, and reveals, 

unambiguously, the DNA methylation state of the underlying DNA. Such 

combinatorial methods eliminate the need to perform assays independently and 

infer where features are coincident. 

 

Introduction: 

Active promoters, enhancers, and other gene regulatory sequences are typically 

bound by sequence-specific transcription factors (TFs), free of nucleosomes, and 

these facilitate transcription. Such regulatory sequences can be identified by 

methods that detect nucleosome-depleted regions (NDRs), including DNase-seq, 

which identifies NDRs by their hypersensitivity to DNase I (Thurman et al. 2012); 

FAIRE-seq, which identifies NDRs according to their reduced protein content (Gaulton 

et al. 2010); and ATAC-seq, which identifies NDRs based on their increased 

accessibility to Tn5 transposase integration, and accordingly are called Transposase 

hypersensitive sites (THS) (Buenrostro et al. 2013). There is considerable agreement 

among the regions identified by each assay. ATAC-seq has received further use 

recently owing to its simplified workflow, reduced material requirements and lower 

background signals. Additional advancements such as Omni-ATAC (Corces et al. 2017) 

and Fast-ATAC (Corces et al. 2016) have further improved the utility of ATAC-seq. 

 

DNA within NDRs may have different modification states, including methylation at 

the fifth carbon of Cytosine (5mC), and oxidized derivatives. In the mammalian 
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genome, most 5mC is found at CpG dinucleotides, and is generally associated with 

transcriptionally inactive regions. Bisulfite sequencing (BS-seq) uses selective 

chemical deamination of unmodified cytosines to uracil, leaving 5mC unchanged. The 

extent of methylation at a given CpG in a sample is detected after amplification, 

sequencing, aligning reads to the genome, and then assessing the proportion of 

aligned reads that retained a C at a CpG, diagnostic of methylation, vs. a T, which 

reports an unmethylated residue. 

 

Two features of BS-seq dramatically increase costs compared to routine sequencing 

assays. First, bisulfite treatment reduces the yield and complexity of DNA libraries, 

resulting in fewer reads uniquely aligning to the genome. Second, to reliably quantify 

the extent of methylation of a given CpG requires high read coverage. For these 

reasons, Reduced Representation Bisulfite Sequencing (RRBS) (Meissner et al. 2005) 

and derivatives (Boyle et al. 2012; Chatterjee et al. 2012; Garrett-Bakelman et al. 

2015) have been used to focus analysis on CpG dense regions. However, not all gene 

regulatory sequences are detected by RRBS, and many regions that are detected are 

not regulatory.  

 

Integrating results from assays for distinct chromatin features have defined novel 

categories of regulatory elements. These include bivalent promoters (Bernstein et al. 

2006), enhancers (Heintzman et al. 2009), and widely observed chromatin states 

likely to harbor shared regulatory functions (Roadmap Epigenomics et al. 2015). In 
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most of these studies, results from assays for single features are superimposed, and 

when a given locus has signals for multiple features, the features are inferred to be 

coincident on the same molecule. Though many inferences might be accurate, there 

is uncertainty inherent in such approaches, owing to the fact that samples commonly 

contain multiple sub-populations of cells, each with a characteristic chromatin state. 

Accordingly, the population-averaged results might report chromatin states found in 

no individual subpopulation of cells. Methods that combine assays for multiple 

chromatin features in a single protocol can eliminate this ambiguity for the features 

assayed. Here, we describe methyl-ATAC-seq (mATAC-Seq), a modification of ATAC-

seq that combines ATAC-seq with BS-seq, identifying the locations of open 

chromatin, and the methylation state of the underlying DNA. In addition to providing 

more reliable assignments of chromatin states, mATAC-seq can focus DNA 

methylation analyses to accessible regulatory regions of the genome. 

 

Results: 

Fig. 1 shows the workflow and sample results for mATAC-seq. It includes two primary 

modifications during the transposition step of the Omni-ATAC-seq protocol: (1), 

methylated oligonucleotides are loaded onto Tn5 to generate the transposome (Fig. 

1A) which is then used to perform ATAC-seq (Fig. 1B); and (2), 5-methyldeoxycytosine 

triphosphate (5-mdCTP) is substituted for dCTP during the subsequent end repair 

step (Fig. 1C). These modifications protect the Nextera adapter sequences during the 

final step of mATAC-seq library preparation, bisulfite treatment of the tagmented 
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DNA (Fig. 1D). Use of methylated oligonucleotides, and 5-mdCTP during end repair 

protects cytosines in the adaptors from deamination caused by bisulfite treatment, 

which is necessary for successful PCR amplification and sequencing of the resulting 

libraries. Sequenced libraries provide information on both DNA methylation and 

Transposase hypersensitivity (Fig. 1E). 

 

We applied mATAC-seq to nuclei prepared from HCT116 colorectal carcinoma cells. 

mATAC-seq reads in peaks were highly reproducible in biological replicates (r2=0.90, 

Fig. S1A). To validate that mATAC-seq captured open chromatin domains as well as 

conventional methods, we compared Transposase Hypersensitive (THS) sites found 

by mATAC-seq with those we identified using the standard Omni-ATAC-seq protocol 

(Fig. 2A-D) (Corces et al. 2017). Approximately 92% of called peaks found by Omni-

ATAC-seq were found by mATAC-seq (Fig. 2A). There was also strong concordance 

between mATAC-seq and Omni-ATAC-seq with respect to gene features detected by 

both assays, with promoter regions being the most commonly identified features 

(Fig. 2B). In addition, reads in peaks identified by Omni-ATAC-seq and mATAC-seq 

were well correlated (Fig. S1A, B). Regions of greatest divergence include difficult to 

map regions such as repetitive elements, low complexity sequences, and simple 

repeat annotations (Fig. S1C). These analyses demonstrate that mATAC-seq detects 

open chromatin comparably to traditional Omni-ATAC-seq, and that protocol 

modifications that enable subsequent bisulfite sequencing do not compromise 

detection of open chromatin. 
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To validate that mATAC-seq identified DNA methylation patterns as reliably as 

conventional methods, we next compared the mATAC-seq methylation data with 

whole genome bisulfite sequencing (WGBS) data reported for HCT116 cells at THS 

sites and CpG islands (Blattler et al. 2014). DNA methylation detected by mATAC-seq 

replicates was highly reproducible at peaks (r2=0.83) and CpG Islands (r2=0.95) (Fig. 

S2A, B); and methylation levels reported by mATAC-seq correlated well with levels 

reported by WGBS at peaks (r2=0.68) and CpG Islands (r2=0.85) (Fig S2A, B). THS 

peaks identified by mATAC-Seq in HCT116 were predominantly unmethylated, and 

this agrees with existing WGBS data (Fig S2C, D). Fig. 2E and Fig. 2F report DNA 

methylation patterns assayed respectively by mATAC-seq and WGBS across gene 

bodies spanning from 2kb 5' of transcriptional start sites (TSS) to 2kb 3' of 

transcriptional end sites (TES). These patterns are consistent with the high 

correlations described above. We find these high correlations despite the fact that 

the assays were performed by different labs; also, WGBS and mATAC-seq assays are 

different in that mATAC-seq queries DNA methylation at open chromatin, whereas 

WGBS assays the entire genome, regardless of chromatin state. Our mATAC-seq data 

showed a reciprocal relationship between accessibility and 5mC density. These are in 

agreement with previous results from NOMe-seq (Kelly et al. 2012), which can also 

report sites of accessible chromatin and DNA methylation states but requires much 

greater sequencing depth. Both assays reveal that highly accessible chromatin is 

depleted of 5mC, and that there is an abundance of methylation in less accessible 
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chromatin over gene bodies (Fig. 2E, F). Having shown that sites of open chromatin 

and DNA methylation states reported by mATAC-seq, Omni-ATAC-seq, and WGBS are 

in agreement, we concluded that mATAC-seq can be used to simultaneously identify 

the locations of the genome with accessible chromatin, and the methylation state of 

the underlying DNA. Because mATAC-seq measures accessibility and methylation in a 

single assay, it eliminates the inherent uncertainty about coincidence of chromatin 

features that can arise when ATAC and bisulfite assays are performed independently, 

and inferences are made after overlaying the two datasets, and at lower costs. 

 

We extended our analyses of HCT116 cells, performing mATAC-seq on HCT116-

derived DNMT1 and DNMT3B double knock-out cells (DKO) (Rhee et al. 2002) to 

assess the functional significance of these methyltransferases on chromatin 

accessibility and methylation states in parental HCT116 cells. In DKO cells, there were 

23,301 hyper-accessible sites, and 3,166 hypo-accessible sites, compared to parental 

HCT116 cells (Fig. 3A; | log2 fold change | > 1, q < 0.01); 16,170 THS sites observed in 

HCT116 cells were unchanged in DKO cells (| log2 fold change | < 1, q > 0.8). 

Compared to unchanged sites, hyper-accessible sites in DKO cells were depleted of 

DNA methylation (Fig. 3B); these sites were enriched for ATF3, FOSL1, FOSL2, BATF, 

AP1 and JUNB binding motifs (Fig. 3C). These TFs were previously shown to interact 

more strongly to their binding motifs when unmethylated (methyl-minus TFs (Yin et 

al. 2017)). We infer that chromatin hyper-accessibility at these sites in DKO cells was 

due to enhanced binding of the methyl-minus TFs when methylation was diminished; 
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this had the effect of limiting nucleosome deposition, thus enabling increased 

chromatin accessibility. Conversely, hypo-accessible sites in DKO cells were modestly 

depleted of DNA methylation (Fig. 3B), and enriched for SP1, NFYA, SP5, KLF9, KLF14, 

and KLF3 binding motifs (Fig. 3D). These TFs were previously shown to exhibit less 

binding when their sites were unmethylated (methyl-plus TFs (Yin et al. 2017)). We 

infer that chromatin hypo-accessibility at these sites in DKO cells was due to reduced 

binding of the methyl-plus TFs when methylation was diminished, and that this led to 

increased nucleosome deposition, and reduced chromatin accessibility. In support of 

this is the observation that promoters showing the greatest increases in chromatin 

accessibility in DKO cells were also the promoter that were most extensively 

hypomethylated (Fig. 3E). These findings and conclusions are consistent with 

previously described mechanisms whereby TF binding can regulate nucleosome 

density (Zaret and Carroll 2011). These conclusions may be tempered by the fact that 

we are assaying methylation at accessible sequences, the same loci, when in an 

inaccessible state, are underrepresented in our methylation analyses.  

 

To assess how promoter accessibility states detected by mATAC-seq relate to gene 

expression, we queried existing RNA-seq data from HCT116 and DKO cells (Blattler et 

al. 2014). Promoters that were hypo-accessible in DKO cells exhibited no significant 

gene expression changes relative to the corresponding promoters in parental HCT116 

cells. At promoters that exhibited no differences in accessibility in the two cell types, 

there were significant, but very modest differences in mean expression levels. At 



 

41 

 

promoters that were hyper-accessible in DKO cells, we observed substantial and 

significantly higher levels of expression in DKO cells relative to HCT116, with 

expression differences increasing as accessibility increased (Fig. 3F). These are in 

accordance with previous findings (Kelly et al. 2012), further validating the utility of 

mATAC-seq, and demonstrating the concordance between the extent of chromatin 

accessibility at promoters, and promoter activity.  

 

Our analyses so far have separately examined methylation and chromatin 

accessibility results from mATAC-seq. We next combined methylation and 

accessibility data to take advantage of added value of the combined results afforded 

by mATAC-seq. We first performed k-means clustering of DNA methylation levels at 

THS sites in HCT116 and DKO cells. DNA methylation at mATAC-seq peaks in HCT116 

cells formed five distinct clusters (Fig. 4A). In Cluster 1, accessible peaks, and the 1kb 

intervals flanking the peaks, were hypermethylated in HCT116 relative to DKO cells, 

with the flanks exhibiting more hypermethylation. Clusters 2 and 3 were 

hypomethylated at peak centers in both cells; the clusters were respectively 

hypermethylated in HCT116 cells in one or the other of the two intervals flanking the 

peaks. Cluster 4 was hypermethylated over the peaks only in HCT116 cells, and 

hypomethylated in the peak and flanks in DKO cells. Cluster 5 was hypomethylated in 

the peaks and flanks of both cell types (Fig. 4A, C, D). 

 

When we assessed mRNA expression from promoters within the five clusters, 
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differences between DKO and HCT116 emerged that varied according to cluster. 

Promoters in DKO cells from Clusters 1 and 4 were significantly more active than the 

corresponding promoters from the same clusters in HCT116 cells, with respective 

increases in mRNA of 2.5-, and 3.2- fold (Fig. 4B). Clusters 2 and 3 exhibited a modest 

change of 1.3-fold between the cell types. Cluster 5, which was both hypomethylated 

and hyper-accessible in both cell types, showed no difference in expression. 

 

Besides the differences in DNA methylation and expression, the clusters have 

additional distinguishing features. There are more promoters, CpG islands, and exons 

in Cluster 1 compared to Cluster 4; and more intronic and distal intergenic elements 

in Cluster 4 compared to Cluster 1 (Fig. S3A, B). One feature is the broad domain of 

H2A.Z in Cluster 1 that accompanied the loss of DNA methylation in DKO cells (Fig. 

4E). This finding is consistent with reports that DNA modification and H2A.Z are 

mutually antagonistic (Zilberman et al. 2008). In Cluster 4, where hypermethylation 

in HCT116 cells is largely confined to the mATAC-seq peak, there was also an increase 

in H2A.Z in DKO cells, with the increase being more modest and confined to a 

narrower portion of the 2kb window displayed. Additional histone modifications 

associated with active chromatin (H3K4me1, H3K4me3, H3K27ac) were elevated in 

DKO cells near Cluster 1 mATAC-seq peaks, but these effects were limited or absent 

in Cluster 4 (Fig. 4E). Like H2A.Z, H3K27me3 was increased in DKO cells at Cluster 1, 

with the effects also being more modest at Cluster 4 (Fig. 4F). This is also consistent 

with antagonism reported between H3K27me3 and DNA methylation (Lindroth et al. 
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2008). In contrast to these histone modifications and variants, H3K9me3 at mATAC 

peaks was largely unaffected by DNMT-loss. Cluster 5 shows no DNA methylation 

changes between the two conditions, and there were little to no changes in 

deposition of histone modifications and variants.  

 

Motifs for TFs, and CTCF binding also varied by cluster. Cluster 1 is enriched for 

motifs recognized by DNA methyl-plus TFs such as CTCFL, MYC, and BHLHE40; ZFX 

and ZNF711 contain similar motifs to ZNF704, a methyl-minus transcription factor 

(Fig 4H). Of the top five TFs enriched in Cluster 4, three are MEF-family TFs, followed 

by ARNT, which was previously suggested to be methyl-sensitive (Lay et al. 2015) (Fig. 

4I). ARNT motifs share substantial sequence identity with BHLHE40, a methyl-minus 

TF. 

 

Discussion: 

ATAC-seq identifies nucleosome-depleted regions of the genome, which are arguably 

the most relevant for gene regulation within cells. By including bisulfite treatment in 

the workflow, mATAC-seq targets DNA methylation profiling to open chromatin sites 

that are enriched for active regulatory regions of the genome. Accordingly, mATAC-

seq queries the functional methylome of cells, using relatively few reads compared to 

WGBS. This is in contrast to other assays for DNA methylation that query the entire 

genome, or other domains that may not be regulatory. 
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By applying mATAC-seq to the well-characterized HCT116 cell line, and its DNA 

methylation-deficient DKO derivative, we demonstrated that mATAC-seq detects 

DNA methylation patterns that agree with both previously described WGBS results, 

and with our Omni-ATAC-seq results. These tests validated the fidelity, and 

compatibility of combining tagmentation and bisulfite treatment steps in the mATAC-

seq workflow. DKO cells had many hyper-accessible sites relative to parental HCT116 

cells, and these sites exhibited loss of methylation. These same regions were also 

enriched for methyl-minus TF binding sites, which interact more strongly with DNA 

when the sites are in an unmethylated context. This highlights the instructive role of 

TF binding for nucleosome occupancy in the genome. Specifically, our data indicate 

that when DNA is unmethylated, it facilitates the recruitment of methyl-minus TFs, 

and that these in turn enable chromatin to assume an open state. Our data also 

revealed that hyper-accessible and hypomethylated domains in DKO cells were 

enriched for the histone variant H2A.Z, implicating this factor in limiting DNA 

methylation, and nucleosome density at sequences where it is recruited. In contrast, 

regions that displayed no change in methylation showed little change in accessibility. 

We did not observe a depletion of H3K9me3 at sites with increased accessibility, and 

decreased DNA methylation, confirming statements in previous studies (Blattler et al. 

2014). Such findings were made possible by the combination of DNA methylation, 

and open chromatin status provided by mATAC-seq. 

 

We envisage that mATAC-seq could be applied to many other systems. For example, 
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HCT116 derivatives carrying single DNMT knockouts (Rhee et al. 2000; Rhee et al. 

2002) would enable us to identify regulatory elements the different DNMTs 

individually target for methylation, and their respective influences on nucleosome 

placement. The various DNMTs have been shown to regulate DNA methylation states 

by independent, as well as cooperative mechanisms (Liang et al. 2002). Repetitive 

elements are common targets of the DNMTs, and the resulting DNA methylation 

contributes to their silencing. However, silencing can occur when DNMT activities are 

impaired, indicating that compensating mechanisms can silence transposons, likely 

involving H3K9 methylation, and possibly other chromatin modifications (Horard et 

al. 2009; Karimi et al. 2011; Walter et al. 2016; Jorda et al. 2017). Querying the 

specificities of the DNMTs, and their influences on chromatin accessibility at 

repetitive elements using mATAC-seq can elaborate mechanisms underlying repeat 

regulation. 

 

Additionally, by using HCT116 DKO cells, we studied the effects of DNA methylation 

depletion that arose by passive mechanisms due to a lack of DNA methylation 

maintenance. Active demethylation by TET dioxygenases, and AID/APOBEC 

deaminases, occurring during differentiation and response to stimuli, is a distinct 

process. Applying mATAC-seq to stem cell differentiation – including under 

conditions where these active demethylation mechanisms are altered – can reveal 

both the combinatorial changes in accessibility and DNA methylation, and the effects 

active DNA methylation mechanisms have on chromatin state during differentiation.  
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Pioneer transcription factors have the unique property of binding chromatin that is 

generally inaccessible to other transcription factors (Zaret and Mango 2016). 

Application of mATAC-seq to systems where pioneer factor functions are altered can 

reveal the influences these factors have on both chromatin accessibility, and 

methylation state of the underlying DNA. 

 

Our protocol for mATAC-seq can potentially be integrated with existing methods for 

combinatorial detection of other DNA modifications including 5-

hydroxymethylcytosine (Yu et al. 2012; Booth et al. 2013), 5-formylcytosine (Song et 

al. 2013), and 5-carboxycytosine (Wu et al. 2016). ChIPmentation uses Tn5 

tagmentation in a chromatin immunoprecipitation workflow (Schmidl et al. 2015). 

This too could be implemented, using steps we developed for mATAC-seq, to identify 

locations of DNA-bound proteins, and the underlying DNA modification states in a 

combinatorial detection strategy similar to other methyl-ChIP strategies (Brinkman et 

al. 2012; Statham et al. 2012). Combinatorial indexing as a low-cost strategy to query 

single cells can be used to enable the extension of mATAC-seq to a single cell format; 

specifically, methods such as single-cell combinatorial indexing assay for transposase 

accessible chromatin using sequencing (sci-ATAC-seq) (Cusanovich et al. 2015), and 

for methylation analysis (sci-MET) (Mulqueen et al. 2018). Some alterations are 

necessary to adapt our mATAC-seq protocol for single cell sequencing, including, 

extending the indexed adapter set to use methylated sci-ATAC-seq adapters during 
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tagmentation, followed by split-pooling, methylated end-repair, bisulfite conversion 

in a 96-well format, and PCR. The challenge to this approach is the depletion of reads 

due to the destructiveness of bisulfite conversion, and the limited sequence 

complexity in bisulfite converted reads.  

 

Materials and Methods: 

Cell Culture:  

Cultured cells (#28 HCT116 Parental and #343 DKO) were procured from the Genetic 

Resources Core Facility at Johns Hopkins School of Medicine and cultured in McCoy’s 

Modified 5A Medium containing 10% heat-inactivated FBS and 1× Penn/Strep (Gibco 

#15140122). Cells for each experiment were grown apart for at least 2 passages 

before library preparation.  

 

Genotyping: 

DNA from each cell line was extracted using EZ-10 Spin Columns (Bio Basic #BS427) 

following the manufacturer’s protocol. Genotyping PCR was performed on 50ng 

genomic DNA using oligos from Table S2 from (Das and Chadwick 2016) for 40 cycles 

using GoTaq (Promega #M3001) (94°C 2 minutes, 40 cycles of: [94°C 30 seconds, 60°C 

30 seconds, 72°C 30 seconds], 72°C 5 minutes) and run on a 2% agarose gel. Cells 

were confirmed to be Mycoplasma-free and HeLa-free via PCR (Rahbari et al. 2009; 

Young et al. 2010) on 50ng genomic DNA and cell-culture media (Figure S4). 
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Omni-ATAC-seq: 

Cells were trypsinized and subsequently inactivated in cell culture media. Following 

inactivation, cells were pelleted and resuspended in cold PBS (without Ca++ and 

Mg++). Cells were stained with Trypan Blue and counted on a hemocytometer. Lysis 

and tagmentation were performed exactly as described (Corces et al. 2017) with 

modifications to inactivation and size selection. Briefly, 100,000 HCT116 Parental and 

DKO cells were lysed on ice for 3 minutes in 50 µL ice-cold Lysis Buffer (10mM Tris pH 

7.4, 10mM NaCl, 3mM MgCl2, 0.1% NP-40, 0.1% TWEEN 20, 0.01% Digitonin in DEPC 

H2O), resuspended in 1mL ice-cold RBS-Wash (10mM Tris pH 7.4, 10mM NaCl, 3mM 

MgCl2, 0.1% TWEEN 20) and pelleted at 4C at 500 × g for 10 minutes. Tagmentation 

was performed in 1 × Tagmentation Buffer (10mM Tris pH 7.4, 5mM MgCl2, 10% 

DMF, 33% PBS, 0.1% TWEEN 20, 0.01% Digitonin) using 100nM Tn5 Transposase for 

30 minutes at 37°C. Tagmentation was inactivated with the addition of 5 volumes 

SDS Lysis Buffer (100mM Tris pH 7.4, 50mM NaCl, 10mM EDTA, 0.5% SDS in H2O) and 

100μg Proteinase K (Invitrogen #25530049) for 30 minutes at 55°C followed by 

Isopropanol precipitation using GlycoBlue (Invitrogen #AM9516) as a carrier. DNA 

was size selected using Ampure XP beads (Beckman Coulter # A63880) using a 0.5 × 

volumes to remove large fragments followed by a 1.8 × final volume according to the 

manufacturer’s instructions. PCR was performed for using Q5 DNA polymerase (NEB 

#M0491S) with 1 × GC buffer (72°C 5 minutes, 98C 30 seconds, 11 cycles of: [98°C 10 

seconds, 65°C 30 seconds, 72°C 30 seconds], 72°C 5 minutes) followed by a final 

cleanup using a 1.8 × volumes of Ampure XP beads according to the manufacturer’s 
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instructions. 

 

methylATAC-seq: 

Cell lysis was performed identically to Omni-ATAC-seq. Tagmentation was performed 

on 250,000 HCT116 Parental and DKO cells using 700nM Tn5 Transposase assembled 

using pre-annealed Tn5ME-A_mC and Tn5ME-B_mC (Table S3) for 30 minutes at 37°C 

following the addition of 0.01ng of unmethylated Lambda DNA (Promega #D1521). 

We recommend performing a titration of Tn5 transposase to nuclei input to assay 

minimum amounts required as in Figure S5. Inactivation and size-selection were 

performed identically to our modified Omni-ATAC-seq protocol. Tagmented DNA was 

End-Repaired for 30 minutes at 37°C (5U Klenow Exo- (NEB #M2012S), 1 × NEB Buffer 

2, and 0.5 mM/each dATP, dGTP, dTTP, and 5-mdCTP (NEB #N0365S)) similar to T-

WGBS (Lu et al. 2015) and X-WGBS (Suzuki et al. 2018). End repair was cleaned using 

a 1.8 × volumes of Ampure XP beads according to the manufacturer’s instructions. 

10% of the product was kept for quality control PCR (Fig. S6A). Bisulfite conversion 

was performed using EZ DNA Methylation-Lightning (Zymo #D5030T) following the 

manufacturer’s protocol. PCR was immediately performed using PfuTurbo Cx (Agilent 

#600410) (94°C 2 minutes, 13 cycles of: [98°C 10 seconds, 6°5C 30 seconds, 72°C 30 

seconds], 72°C 5 minutes) (Fig S6B) followed by a final cleanup using a 1.8 × volumes 

of Ampure XP beads according to the manufacturer’s instructions.  
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Tn5 Transposase: 

Tn5 was produced exactly as described (Picelli et al. 2014) with no modifications. For 

Omni-ATAC-seq, Tn5 transposase was assembled as described (Adey and Shendure 

2012) using pre-Annealed Tn5MEDS-A and Tn5MEDS-B from Table S3. For 

methylATAC-seq, Tn5 transposase was assembled using pre-Annealed Tn5ME-A_5mC 

and Tn5MEB_5mC oligonucleotides from Table S3. Oligonucleotides were annealed 

by combining ME-A or ME-B oligos to Tn5MErev and incubating for 2 minutes at 94°C 

followed by a 0.1C/s ramp to 25°C. Enzyme was stored at -80°C.  

 

Data Analysis: 

Libraries were quantified using the Qubit dsDNA HS Assay Kit (ThermoFisher 

#Q32854). High-throughput sequencing was performed by the Cornell University 

Genomics Facility on the Illumina NextSeq 500 with single-end 75bp reads. Trimming 

for mATAC-seq and Omni-ATAC-seq was performed using fastp (Chen et al. 2018) -q 

20 -l 20 -a CTGTCTCTTATACACATCT. Trimming for ChIP-seq, RNA-seq, and WGBS data 

was performed using fastp -q 20 -l 20 -a 

AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC. 

 

Alignment to hg19: In this study we used GRCh37 instead of GRCh38 to match 

previous studies using similar cells and methods. These results would not be affected 

by this change because we do not study centromeric sequences and predominantly 

discuss changes at promoters. 
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ChIP-seq hg19: Trimmed FASTQ files were aligned using BWA-MEM (Li and Durbin 

2010) to hg19. Reads were deduplicated using Picard 

[http://broadinstitute.github.io/picard/] MarkDuplicates. HCT116 and DKO ChIP-seq 

data for H2A.Z, H3K4me3, H3K4me1, H3K27Ac, H3K27me3, H3K9me3, and 

H3K36me3 data (Lay et al. 2015) were downloaded from NCBI GEO database 

accession GSE58638. HCT116 and DKO ChIP-seq data for CTCF (Maurano et al. 2015) 

were downloaded from NCBI GEO database accession GSE50610. 

 

RNA-seq hg19: Pair-end trimmed FASTQ files were aligned using HISAT2 (Kim et al. 

2015) to hg19. HCT116 and DKO RNA-seq data (Blattler et al. 2014) were downloaded 

from NCBI GEO database accessions GSE52429 and GSE60106, respectively. 

 

Omni-ATAC and mATAC-Seq: Trimmed FASTQ files were aligned using Bismark 

(Krueger and Andrews 2011) v0.19.0 to hg19 using the following settings: --

score_min L,0,-0.6. Bisulfite reads to be used for MethylKit were filtered for non-

conversion using Bismark’s filter_non_conversion and deduplicated using 

deduplicate_bismark. Methylation was extracted using Bismark’s methylation 

extractor --gzip --bedgraph --counts --ignore 9 --ignore_3prime 9. Reads used for 

peak calling and ATAC-seq visualization were deduplicated using 

deduplicate_bismark without filtering for non-conversion. Conversion rate (Table S1) 

was measured by aligning to the lambda genome (GenBank: J02459.1) and filtered as 
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above; percent conversion rate was calculated as (1-(Total methylated C's in all 

contexts)/(Total number of C's analyzed)) × 100. 

 

WGBS hg19: Trimmed FASTQ files were aligned using Bismark v0.19.0 to hg19 using 

the following settings: --score_min L,0,-0.6. Bisulfite reads to be used for MethylKit 

were filtered for non-conversion using Bismark’s filter_non_conversion and 

deduplicated using deduplicate_bismark. Methylation was extracted using Bismark’s 

methylation extractor --gzip --bedgraph --counts. HCT116 and DKO WGBS data 

(Blattler et al. 2014) were downloaded from NCBI GEO database accession GSE60106. 

 

Methylation: Differential methylation was quantified using MethylKit (Akalin et al. 

2012) at merged HCT116 and DKO mATAC-seq peaks extended to 1kb tiles covering 

at least 3 CpGs. Promoters were defined as being within 1kb of a TSS using 

Genomation (Akalin et al. 2015). 

 

Peak calling: ATAC-seq peaks were called using HOMER (Heinz et al. 2010) findPeaks 

localSize 50000 -size 150 -minDist 50 –fragLength 0 -style dnase. ChIP-seq peaks were 

called using HOMER findPeaks -style histone. CTCF ChIP-seq peaks were called using 

HOMER findPeaks -style factor. Reads were assigned to peaks merged from HCT116 

and DKO cells using featurecounts (Liao et al. 2013) on reads filtered for a minimum 

log2 CPM of 0.5 in at least 2 samples. Differential accessibility was called using 

DESeq2 (Love et al. 2014) lfcShrink. Hyper- and hypo-accessible peaks were defined 
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as having a | log2 FC | > 1 with an adjusted p value < 0.01 in DKO compared to 

HCT116 parental cells. Promoters were defined as being within 1kb of a TSS using 

Genomation. FRiP scores in Table S1 and sample correlation in Fig. S2 were 

quantified using DiffBind (Stark and Brown 2018) on libraries downsampled to 5M 

reads using Picard DownsampleSam using peaks called by HOMER. Peak overlaps for 

Fig. 1A and Fig. S2E were generated using ChIPpeakAnno (Zhu et al. 2010). Feature 

overlaps for Fig. 1B and S3A were generated using ChIPseeker (Yu et al. 2015). Motif 

enriched in changed peaks were called using HOMER findMotifsGenome to the hg19 

genome using unchanged peaks as background. 

 

RNA-seq quantification: Unstranded hg19-aligned reads were assigned to hg19 genes 

using featurecounts inbuilt reference using default settings. Differential expression 

was quantified using DESeq2 lfcShrink on reads filtered for a minimum CPM of 0.5 in 

at least 2 samples. 

 

Genome browser visualizations: ATAC-seq and mATAC-seq bigWig files were made 

using eepTools (Ramirez et al. 2016) bamCoverage --binSize 1 --normalizeUsing RPKM 

--ignoreForNormalization chrM --scaleFactor N and viewed on UCSC genome 

browser. ChIP-Seq bigWigs were made using deepTools bamCoverage --binSize 10 --

normalizeUsing RPKM --ignoreForNormalization chrM --scaleFactor N. Scale factor 

was determined by coverage of peaks called by HOMER shared between HCT116 and 

DKO via bedops --intersect where N = (% reads in shared peaks in HCT116)/(% reads 
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in shared peaks in DKO) when N > 1.1. Scaling was applied to the following samples: 

DKO_mATAC 1.877, DKO_H3K27ac_R2 1.48, H3K4me3_R2 = 1.47. 

 

Gene body heatmaps were produced using deepTools plotheatmap --

beforeRegionStartLength 2000 --regionBodyLength 3000 --afterRegionStartLength 

2000 to Ensembl hg19 APPRIS PRINCIPAL:1 flagged transcripts (Rodriguez et al. 2013). 

Heatmaps for differential peaks were centered on peaks called by HOMER. Peaks 

from HCT116 and DKO were combined using BEDOPS for clustering of DNA 

methylation at THS sites. Clustering was performed using deepTools plotheatmap --

kmeans 5, the output and order of which was used for all subsequent heatmaps. 

 

Data Access: 

All raw and processed sequencing data generated in this study have been submitted 

to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) 

under accession number GSE126215. 
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Figures: 

 
Figure 1: 

Overview of mATAC-seq; (A) Tn5 carrying methylated oligonucleotides (red and blue 

segments) is used to (B) perform tagmentation on nuclei at THS sites. (C) Tagmented 

DNA is end-repaired using 5mdCTP + dDTPs, purified, (D) Bisulfite converted, 
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amplified, and (E) sequenced to measure DNA methylation and accessibility 

simultaneously; sample data are shown for one region in HCT116 cells. Peak height in 

accessibility track is proportional to read abundance; bar height in methylation track 

is proportional to extent of methylation at CpGs. 

 

 
Figure 2: 

Comparison of methods; (A) Omni-ATAC and mATAC share a majority of peaks (B) 

Features at peaks are similar for mATAC and Omni-ATAC. (C) Accessibility in mATAC-

seq is comparable to (D) Omni-ATAC-seq at gene bodies +/- 2kb, n=21,305. (E) 

methylation reported by mATAC is comparable to (F) WGBS at gene bodies +/- 2kb, 

n=21,305, though WGBS includes data absent from mATAC. 
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Figure 3: 

Accessibility and methylation at peaks; (A, B) significantly changed mATAC-seq hyper-

accessible (log2 fold change > 1, q < 0.01, n = 23,310 peaks), hypo-accessible (log2 

fold change < -1, q < 0.01, n = 3,166 peaks), and unchanged peaks (| log2 fold change 

| < 1, q > 0.8 n = 16,170). Motifs enriched in (C) hyper- and (D) hypo-accessible sites 

compared to unchanged sites. (E) DNA methylation changes at promoters binned by 

accessibility, reported as the change in methylation ratio of DKO cells relative to 

HCT116 (DKO/HCT116). (F) mRNA expression changes in DKO cells relative to 

HCT116, reported as log2 CPM, at genes binned by differential accessibility of their 

promoters as in (E). q values are for Wilcoxon tests with Benjamini-Hochberg 

correction. 
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Figure 4: 

Combined Accessibility and methylation analysis. (A) DNA methylation at mATAC-seq 

peaks from HCT116 and DKO cells form 5 distinct clusters by DNA methylation. (B) 

mRNA expression in log2 CPM at identified clusters. Features in clusters 1, 4 and 5 

are depicted according to (C) accessibility, (D) DNA methylation, (E) activating histone 

modifications, (F) silencing histone modifications, and (G) CTCF. Motifs enriched in 

cluster 1 (H), and cluster 4 (I), compared to cluster 5. q values are for Wilcoxon tests 

with Benjamini-Hochberg correction. 
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Supplemental figures: 
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Supplemental Figure 1: 

(A) Scatterplots of HCT116 mATAC-seq reads at peaks in libraries downsampled to 

5M reads. (B) Pairwise Pearson correlations between mATAC-seq and Omni-ATAC-

seq of HCT116 and DNMT1/DNMT3B Double Knockout (DKO) cells in downsampled 

libraries. (C) Annotations from peaks (% total) in Omni-ATAC-seq/mATAC-seq in Fig 

2A. 
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Supplemental Figure 2: 

Scatterplots of HCT116 mATAC-seq libraries vs WGBS at (A) THS sites and (B) CpG 

Islands. DNA methylation in mATAC-seq and WGBS in (C) HCT116 at i. merged 

HCT116 and DKO peaks and ii. CpG islands and (D) DKO at i. merged HCT116 and DKO 

peaks and ii. CpG islands. Grey bars denote an overlap of all labeled samples, orange 

bars denote an overlap of mATAC-seq Replicate1 and Replicate2 samples. 
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Supplemental Figure 3: 

(A) Genomic features, and (B) HOMER annotations for clusters shown in Fig. 4. 
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Supplemental Figure 4: 

Genotyping by PCR to test for presence of DNMT1 (A), DNMT3B (B), GAPDH (C), HeLa 

cell contamination (D), and Mycoplasma (E) in cells used for this study. 
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Supplemental Figure 5: 

Titration of Tn5 transposase compared to input nuclei. An input range of nuclei and 

Tn5 were tested using libraries either (A) Bisulfite converted library amplified with 

PfuTurbo Cx (B) not converted library amplified with Taq to assay viable product for 

sequencing. Samples were run using a 3.5% Agarose gel in TAE; samples were 



 

67 

 

resuspended in loading buffer containing 1X SYBR Gold. 

 
Supplemental Figure 6: 

QC of final methyl-ATAC-seq libraries. PCR was performed on (A) 10% of pre-

converted libraries using Taq (B) bisulfite converted libraries using PfuTurbo Cx. 

Samples were run using a 3.5% Agarose gel in TAE; samples were resuspended in 

loading buffer containing 1X SYBR Gold.  
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Supplemental tables: 

Sample: 

Trimmed 

sequences 

analyzed (M): 

mapping: duplication: 

Conversion 

rate (Lambda 

mC/TotalC): 

FRiP (5M reads): 

mATAC-seq  
32.6 45.40% 63.73% 99.76% 0.45 

HCT116 Rep 1 

mATAC-seq  
25.1 46.60% 38.42% 99.54% 0.49 

HCT116 Rep 2 

mATAC-seq  
24.6 44.70% 25.12% 98.93% 0.31 

DKO Rep 1 

mATAC-seq  
23.2 46.30% 26.22% 99.35% 0.27 

DKO Rep 2 

Omni-ATAC-seq  
15.0 89.30% 17.66% 

 
0.26 

HCT116 Rep 1 

Omni-ATAC-seq  
14.3 89.20% 18.61% 

 
0.28 

HCT116 Rep 2 

Omni-ATAC-seq  
16.5 88.50% 18.92% 

 
0.27 

DKO Rep 1 

Omni-ATAC-seq  
22.7 88.20% 12.84% 

 
0.15 

DKO Rep 2 
 

 

Supplemental Table 1:  
Samples sequenced in this study. Values show millions (M) trimmed sequences 

analyzed, mapping efficiency using Bismark, conversion rate of unmethylated 

Lambda-DNA spike-in after filtering, and Fraction of Reads in Peaks (FRiP) score in 

down-sampled libraries. 
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Genotyping oligonucleotides:  
DNMT1-Gen-F1: AAACTGGCAGGTGCTAACTG 
DNMT1-Gen-R1: AGATGTGATGGTGGTTTGCC 
DNMT3B-Gen-F1: TTGGTTTTGCTCAGAGCCAG 
DNMT3B-Gen-R1: ACGTGTGGGCAAGAGATTTC 
GAPDH-Gen-F1: GAAGGTGAAGGTCGGAGTC 
GAPDH-Gen-R1: GAAGATGGTGATGGGATTTC 
GPO-3 GGGAGCAAACAGGATTAGATACCCT 
MGSO: TGCACCATCTGTCACTCTGTTAACCTC 
VM164A: TGCCTCCTAGATCGTATTCCC 
VM-164B: GCACTCTGTGGCATGAAGGT 
RB164K2: TGGCTCCTCCCTCTATTATCG 

Supplemental Table 2: 

Oligonucleotides used in Figure S4 to genotype and verify cell lines were ordered 

from Integrated DNA Technologies and purified by standard desalting. 

 
 
Tn5 Oligos:  
Tn5MErev: /5Phos/CTGTCTCTTATACACATCT 
Tn5ME-A: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 
Tn5ME-B: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 

Tn5ME-A_mC: 
T/iMe-dC/GT/iMe-dC/GG/iMe-dC/AG/iMe-dC/GT/iMe-
dC/AGATGTGTATAAGAGA/iMe-dC/AG 

Tn5ME-B_mC: 
GT/iMe-dC/T/iMe-dC/GTGGG/iMe-dC/T/iMe-
dC/GGAGATGTGTATAAGAGA/iMe-dC/AG 

i7 Primers: CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG 
i5 Primers: AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC 

Supplemental Table 3: 

Oligonucleotides used to assemble Transposomes and PCR libraries were ordered 

from Integrated DNA Technologies and purified by standard desalting. ‘/iMe-dC/’ 

represents an internal methylated dC. ‘/5Phos/’ represents a 5’ phosphate. ‘[i7]’ 

represents Nextera i7 barcodes. ‘[i5]’ represents Nextera i5 barcodes. 
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Chapter 3: Single cell ATAC-seq identifies broad changes in neuronal abundance and 

chromatin accessibility in Down Syndrome 

Single cell ATAC-seq identifies broad changes in neuronal abundance and chromatin 

accessibility in Down Syndrome 
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Abstract: 

Down Syndrome (DS) is caused by triplication of chr21 and is associated with 

cognitive impairment, Alzheimer’s Disease, and other developmental alterations. The 

Ts65Dn mouse model for DS has triplication of sequences syntenic with human 

chr21, and traits resembling those seen in humans with DS. We performed single-cell 

combinatorial indexing assay for transposase accessible chromatin using sequencing 

(sci-ATAC-seq) on cortices of adult Ts65Dn mice and control littermates. Analyses of 

13,766 cells revealed 26 classes of cells. The most abundant class of excitatory 

neurons was reduced by 17% in Ts65Dn mice, and three of the four most common 

classes of interneurons were increased by 50%. Ts65Dn mice display changes in 
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accessibility at binding motifs for transcription factors that are determinants of 

neuronal lineage, and others encoded within triplicated regions. These studies define 

previously uncharacterized cellular and molecular features of DS, and potential 

mechanisms underlying the condition.  

 

Introduction: 

Down Syndrome (DS), affecting one in 800 births in the United States, causes deficits 

in spatial, long-term, and short-term memory; and impairments in language 

development and new skill acquisition (reviewed in (Antonarakis, Lyle, Dermitzakis, 

Reymond, & Deutsch, 2004)). Alzheimer’s Disease is common in DS, with a much 

earlier age of onset relative to the general population (Schupf et al., 1998). Several 

gross neuroanatomic abnormalities have been described that accompany DS, 

including reduced volumes of the hippocampus (Aylward et al., 1999; Pinter, Brown, 

et al., 2001), dentate gyrus (Guidi et al., 2008), parahippocampal gyrus (Guidi et al., 

2008; Krasuski, Alexander, Horwitz, Rapoport, & Schapiro, 2002), cerebrum (Jernigan, 

Bellugi, Sowell, Doherty, & Hesselink, 1993; Pinter, Eliez, Schmitt, Capone, & Reiss, 

2001), cerebellum (Jernigan et al., 1993), and amygdala (Aylward et al., 1999). There 

are larger subcortical gray matter volumes reported in DS (Pinter, Eliez, et al., 2001), 

and general cortical dysgenesis, particularly affecting the frontal lobe (Wisniewski, 

1990).  

  

Accompanying the gross neuroanatomic abnormalities are cellular changes. 
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GABAergic signaling is altered, which may impair synaptic plasticity, as well as 

learning and memory by altering the balance of excitatory and inhibitory signaling 

(reviewed in (Contestabile, Magara, & Cancedda, 2017)). In the hippocampus, there 

is evidence for less cell proliferation, as fewer cells stain positive for Ki67; and there 

is also evidence for increased apoptosis, as more cells stain positive caspase 3, and 

display pyknotic nuclei (Guidi et al., 2008). Efforts to document changes in specific 

cell-types have shown that neuronal populations are generally reduced in abundance 

and density in the hippocampus, including the dentate gyrus, lateral 

parahippocampal gyrus, entorhinal cortex, presubiculum (Guidi et al., 2008), and in 

cortical layers II and IV (Wisniewski, 1990); in contrast, astrocytes are more abundant 

in human fetal tissue (Guidi et al., 2008). Comprehensive assessments of changes in 

cellular composition of the DS brain have not been possible to date, owing to 

limitations of the available assays. 

  

Studies of DS in human have been aided by mouse models, notably the widely used 

Ts65Dn mouse (Reeves et al., 1995). This model harbors a reciprocal translocation, 

and segmental trisomy, leading to triplication of 132 mouse orthologs of the 225 

genes found on human chr21 (Reinholdt et al., 2011). Behavioral, anatomical, 

histological and molecular analyses of Ts65Dn mice identified traits in common with 

DS in human (reviewed in (Seregaza, Roubertoux, Jamon, & Soumireu-Mourat, 

2006)). Notably, relative to control littermates, Ts65Dn perform worse in various 

learning and memory tasks, and mice have structural abnormalities in several brain 
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regions. Additionally, Ts65Dn mice exhibit hypomyelination of neurons, and have 

slower neocortical action potential transmission (Olmos-Serrano et al., 2016). They 

also share many of the gene expression changes found in humans with DS (Guedj et 

al., 2016). 

  

Among the mechanisms proposed to explain how chr. 21 trisomy leads to DS is the 

gene dosage effect model. This posits that genes within triplicated regions are more 

highly expressed, owing to their increased copy number, and that the elevated 

expression levels of one or more of the 225 triplicated genes are responsible for DS 

traits. An alternative, and not mutually exclusive model to the gene dosage effect 

model is that the triplicated region binds gene regulatory factors that are present in 

limiting amounts, altering their levels in cells, and the chromatin and expression 

states of other critical genes outside of the triplicated region. In support of the gene 

dosage model are results from transcript profiling experiments, which have shown 

that chr. 21 gene expression is elevated for up to 93 transcripts in various tissues 

from individuals with DS, and 54 transcripts in three mouse models for DS; these 

findings are consistent with the gene dosage effect model (Guedj et al., 2016). 

Among the transcripts in the triplicated region that is upregulated in DS and mouse 

models for DS is TTC3, an inhibitor of neuronal differentiation (Guedj et al., 2016), 

which may explain the reductions in neuron abundance and density seen in DS. 

Triplicated genes also include several transcription- and chromatin-regulatory factors 

(BRWD1, HMGN1, PRDM15, DNMT3L, USP16, RUNX1, OLIG2, GABPA, ERG and ETS2), 
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although not all these are upregulated in DS. Chromatin state changes, notably DNA 

methylation, is altered in DS (Kerkel et al., 2010; Mendioroz et al., 2015). These 

changes may be due to triplication of the DNA methyltransferase, DNMT3L, however, 

cellular composition differences among the tissues compared could also be the 

source of DNA methylation changes. These intriguing findings, and the fact that 

transcription- and chromatin-regulatory factors are encoded within the triplicated 

region of DS, provide motivation to evaluate chromatin changes associated with DS.  

  

In order to characterize the cellular and molecular changes associated with DS in 

greater detail, and to gain further insights into the mechanisms influencing DS traits, 

we subjected cortices of adult Ts65Dn mice, and their control littermates to single-

cell combinatorial indexing assay for transposase accessible chromatin using 

sequencing (sci-ATAC-seq). This strategy eliminates the challenges of identifying or 

purifying specific cell-types using antibodies or other reagents, and instead enables 

their identification and quantification based on shared molecular features. It also 

enables the characterization of chromatin state changes associated with DS for the 

different cell populations identified, as well as the sequence features at domains 

undergoing changes in DS. The unbiased approach afforded by sci-ATAC-seq provides 

novel and unprecedented insights into the cellular and molecular features associated 

with DS. 
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Results: 

sci-ATAC-seq library preparation, sequencing, and quality control 

To prepare sci-ATAC-seq libraries using adult tissue we implemented several 

modifications embodied in Omni-ATAC-seq (Corces et al., 2017) to snATAC-seq 

(Preissl et al., 2018). These modifications increase coverage at peaks, remove 

additional cellular debris, and minimize mitochondrial contamination. Briefly, we 

disaggregated two mouse cortices each from control (2n) and Ts65Dn (Ts) littermate 

males using Dounce homogenization, and isolated nuclei using density centrifugation 

to remove myelin debris prior to tagmentation and sorting. We confirmed successful 

disaggregation and removal of debris via microscopy and during fluorescence 

activated nuclei sorting (FANS) (Fig. S1a).  

 

The sci-ATAC-seq workflow relies on combinatorial indexing to acquire data from 

individual nuclei (Cusanovich et al., 2015). In this strategy, nuclei were equally 

distributed in a 96-well plate (~4,800 per well) and subjected to tagmentation of Tn5 

transposase carrying 96 distinct oligonucleotide barcode combinations (Amini et al., 

2014) in Omni-ATAC-seq buffers. After tagmentation, we pooled nuclei from all wells, 

and used FANS to sort 25 nuclei per-well into a second set of 96-well PCR plates and 

subjected the DNA to PCR using an additional 96 barcode combinations per PCR 

plate. This strategy produced 9,216 barcode combinations per PCR plate, containing 

libraries from 2,400 single nuclei (Fig. 1a). 
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We pooled DNAs from single cell library plates, and ascertained library fragment size 

distribution by Agilent Bioanalyzer, observing the size contributions expected from 

nucleosome DNA length, plus oligonucleotide lengths inserted by Tn5 and PCR (Fig. 

S1b). Libraries passing this quality measure were quantified by digital PCR (Fig. S1c) 

(Schweitzer et al., 2014). Sci-seq barcodes incorporated by tagmentation and PCR 

impart large stretches of identical sequences to each sequenced molecule, which can 

produce clustering and base calling problems on Illumina sequencers. In order to 

eliminate this problem, and increase the number of informative reads, we sequenced 

our libraries using dark cycle chemistry, skipping uninformative and identical bases 

(Vitak et al., 2017). We sequenced a total of 19,200 cells to saturation, with a read 

duplication rate of ~80 % (Table S1) on a NextSeq500.  

 

Fig. 1b summarizes our sequencing results, showing the number of unique reads 

from each cell assayed for each replicate. The aggregate data had a bimodal 

distribution; we selected 820 reads/cell at the approximate inflection point as our 

threshold, carrying forward for further analysis the 72 % of cells with reads exceeding 

our cutoff (13,884 cells). We combined the resulting reads from each assigned 

sample and mapped them to the mouse genome to identify peaks from the 

aggregated data, which we define as pseudobulk data. As a further quality control 

criterion, we evaluated the fraction of reads from single cells that mapped to peaks 

(FRiP) and used only cells having a FRiP score greater than 20 % (Fig. S1d), as 

previously used in other sci-ATAC-seq analyses (Cusanovich, Reddington, et al., 
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2018). 72 %, or 13,766 nuclei pass both quality control criteria and showed expected 

insert-size distributions (Fig S1e). 

 

To assess the reproducibility of our sci-ATAC-seq libraries, we prepared Omni-ATAC-

seq libraries from the same tissues in parallel and made two comparisons. First, we 

compared data from two replicate bulk libraries, and found them to be highly 

correlated (R2=0.9 for wild type (WT) cortices, Fig. 1c). Next, we aggregated the 

single cell data from the two corresponding WT sci-ATAC-seq libraries into 

pseudobulk datasets, and evaluated how well they correlated with each other, and 

with the true bulk libraries. R2 values for each comparison were 0.88 or greater (Fig. 

1c). We also extended these analyses to the Ts65Dn libraries and found all R2 values 

were 0.87 or greater (Fig. S2). From these quality control tests, we concluded that 

our sci-ATAC-seq libraries provided reproducible results, and that the total single cell 

data accurately reflected the chromatin states observed in the bulk tissues.  

 

As an additional data quality measure, we estimated the frequency with which single 

cell data were derived from more than one cell. For this test, we made a mixture of 

mouse and human cells, performed sci-ATAC-seq, and identified the collision rate 

(Cusanovich et al., 2015), defined as the frequency with which any identified cell 

barcode had both mouse- and human-specific sequences (Fig. 1d). This value was ~9 

%, within previously reported expectations of ~12.5 % (Cusanovich et al., 2015; 

Cusanovich, Hill, et al., 2018). 
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As a final data quality measure of sequencing coverage, and to confirm proper 

assignment of samples to barcodes, we created pseudobulk datasets from 

demultiplexed samples, and performed Copy Number Analysis (Fig. S3a). We 

expected Ts65Dn pseudobulk data to show evidence for increased copy number of 

reads within the triplicated region of Mmu16 and Mmu17. This is precisely what we 

observed, a triplication of Mmu16 spanning chr16:81,000,000-98,200,000 and of a 

centromeric fragment of Mmu17 at approximately chr17:3,500,001-9,000,000 (Fig. 

S3b), in agreement with triplicated regions previously reported using Array-CGH 

(Duchon et al., 2011). 

 

Cell-type identification and validation 

We used the sci-ATAC-seq reads from 13,766 cells from both WT and Ts65Dn cortices 

to perform dimensionality reduction in Monocle to identify a total of 26 cell clusters 

(Fig. 2a). We assigned the 26 cell clusters identified to the six major cell-types known 

to be found in cortex: Excitatory neurons (EX), Interneurons (IN), Astrocytes (AC), 

Oligodendrocytes (OG), Endothelial cells (EC), and Microglia (MG) (Fig. 2b). To do so 

we aggregated reads from each cluster, preparing cluster- and replicate-specific 

pseudobulk datasets. We then performed hierarchical clustering of the average 

relative accessibility at gene bodies of marker genes in each cell-type for each cluster 

to identify their respective cell-types (Fig. 2c). As confirmation we visually inspected 

read coverage at marker genes for each cluster (Fig. 2d). We determined that 12 cell 



 

79 

 

clusters represent Excitatory neurons (EX), eight clusters represent Interneurons (IN), 

three clusters represent Oligodendrocytes (OG), and one cluster each represent 

Astrocytes (AC), Microglia (MG) and Endothelial cells (EC). To confirm these 

assignments, we performed the same clustering analysis using previously published 

bulk ATAC-seq data, generated using FACS-isolated neuronal subtypes (Gray et al., 

2017; Mo et al., 2015) (Fig. S4).  

 

To classify cells in our EX population, we looked at layer-specific markers. Clusters 

EXc1, EXc2, EXc4, EXc12, EXc13, and EXc23 are accessible at Cux1, Cux2, and Satb2, 

localizing to cortical layers II/III/IV (Leone, Srinivasan, Chen, Alcamo, & McConnell, 

2008). Cluster EXc3, EXc5, EXc6, EXc17, EXc21, and EXc24 are accessible at Bcl11b 

while being inaccessible at layers II/III/IV markers indicating their localization to 

layers V/VI; of these, EXc5 and EXc17 are both more accessible at Foxp2, and Pcp4, 

indicating their localization to layer V (Molyneaux, Arlotta, Menezes, & Macklis, 

2007). In our IN population, we assigned cell-types based on their accessibility at 

interneuron marker genes. INc8 and INc9 are dopamine D2 and dopamine D1 

receptor accessible medium spiny neurons, respectively. Cluster INc14 contains 

Parvalbumin accessible interneurons, INc19 contain Somatostatin accessible 

interneurons, and INc15, and INc22 contain Vip accessible interneurons. We were 

not able to clearly identify the remaining two interneuron clusters; INc10, a class 

hyper-accessible at Frmd7, Sp8, Vipr2, Etv1, and Ntsr1 which appears to resemble 

Int16 in Zeisel et al (Zeisel et al., 2015), possibly localizing to layers V/VI of the cortex 
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(Gong et al., 2007), and INc11 as a class accessible at Lhx8, Zic4, and Myo3a. Of our 

three oligodendrocyte populations, OGc25 contained oligodendrocyte progenitor 

cells accessible at Pdgfra while inaccessible at Mog. 

 

To further confirm our cell-type assignments we identified genic regions and their 

2kbp flanks that are hyper- accessible in each cell-type and cluster relative to all 

other cell-types (Fig. S5a, S5b) and clusters (Fig. S5c-e). Gene Ontology (GO) analysis 

at hyper-accessible gene bodies in each cell-type showed findings were consistent 

with expectations for these cell-types (Fig 2e), providing further confidence in our 

assignment of cells comprising the 26 cell clusters to their corresponding six cell-

types. Neurons showed GO enrichment for genes enriched in categories such as 

regulation of membrane potential, and modulation of synaptic transmission. 

Oligodendrocytes showed GO enrichment for escheatment of neurons and 

gliogenesis. Astrocytes showed less indicative GO categories such as arachidonic acid 

metabolic processes and Keratinocyte differentiation. Microglia showed enrichment 

in genes involved in cytokine production and leukocyte migration. Endothelial cells 

showed enrichment for genes involved in angiogenesis and epithelial cell 

proliferation.  

 

Our assignments match previous reports quantifying cell-types in the cortex (Preissl 

et al., 2018). We observed most cells in WT mice to be excitatory neurons (64 %), 

followed by interneurons (21 %), oligodendrocytes (9 %), microglia (3 %), endothelial 
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cells (2 %), and astrocytes (1 %) (Fig. 2f). For clarity, we have prefixed all clusters to 

their assigned cell-types (Table S2a). 

 

We then identified transcription factor (TF) motifs found at peaks of open chromatin 

that were enriched in each cell-type, relative to others. In EX population, hyper-

accessible peaks were enriched for binding sites for TFs contributing to excitatory 

neuron specification such as NeuroD1 and NeuroG2. Similarly, they were enriched for 

Tbr1 motifs, a factor important to neuronal migration and axonal projection (Huang 

et al., 2014). Hyper-accessible peaks in our IN population were enriched Lhx3 motifs, 

a factor known to have a role in the development of interneurons (Thaler, Lee, 

Jurata, Gill, & Pfaff, 2002) (Fig. 2g). We observed an enrichment of Sox-family TF 

motifs in OGs and ETS-family transcription factors in MG populations. In ACs we 

observed an enrichment of NF1 sites, a regulator of astrocyte proliferation (Bajenaru 

et al., 2002). Within our ECs we observed an enrichment of COUP-TFII motifs, a 

regulator of endothelial identity (Aranguren et al., 2013). Such findings provided 

additional confidence in our assignments of cell clusters to known cell-types.  

 

Changes in cell-type representation in Down Syndrome 

Having identified 26 cell-types in adult cortices, and the six cell-types to which they 

belong, we asked how the Ts65Dn triplication affected these populations. We first 

evaluated cell abundances. Cortices of DS animals had significantly more 

interneurons; and specifically, among the eight cell clusters comprising interneurons, 
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five were significantly larger in Ts65Dn animals (Fig. 3a, Fig. 3b). This finding agrees 

with reports that interneurons are more abundant in DS (Chakrabarti et al., 2010; 

Hernandez-Gonzalez et al., 2015). Specifically, we observed a large change in INc8 

and INc9, which are Drd2 and Drd1 positive medium spiny neurons, respectively, and 

INc10 and INc11. We did not observe a statistically significant change in Parvalbumin 

positive (INc14) or Somatostatin positive (INc19) interneurons (Fig. 3b). 

 

Although the change in abundance of excitatory neurons was not statistically 

significant, among the 12 excitatory neuron clusters, three had significantly fewer 

cells in the Ts65Dn animals, including the most populous of the 12 clusters, and one 

had significantly more cells. Each of these clusters appears to localize to layers 

II/III/IV. This corresponds with known delays in the development of the cortex in 

prenatal Ts65Dn mice; though this change has not been measured in as great a detail 

in adults (Chakrabarti, Galdzicki, & Haydar, 2007). Interestingly, the single increased 

EX cluster showed the highest relative accessibility at Synj1, regulates levels of 

membrane phosphatidylinositol-4,5-bisphosphate; may affect synaptic transmission 

(Trapani, Obholzer, Mo, Brockerhoff, & Nicolson, 2009). Beside these changes in 

neuronal populations, we observed significantly fewer endothelial cells than their WT 

control littermates (Fig. 3a, 3b), a previously undocumented change that may 

influence impaired endothelial function reported in Down Syndrome patients 

(Cappelli-Bigazzi et al., 2004). 
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In addition to performing cell clustering in Monocle, we used a TF-IDF-based pipeline 

(Cusanovich, Hill, et al., 2018), identifying 25 cell clusters (Fig. S6). When we assigned 

these to the six cell-types using the above strategy, we found 92.5 % agreement in 

our identified cell-types and cell-types identities in clusters called using TF-IDF. 

 

Gene ontology at differentially-accessible peaks 

In order to assess biological processes changed in Ts65Dn mice, we performed Gene 

Ontology analysis on genes nearest to differentially-accessible peaks within each cell-

type (Fig 3c) and cluster, (Fig. S7a) relative to WT mice. In our EX clusters, we observe 

significant enrichment in ontologies such as CNS development, cell-to-cell adhesion, 

neuron differentiation, and projection organization. In our IN cell-type, we see 

enrichment for neuron differentiation, axon development, and cell morphogenesis, 

forebrain development, and response to cyclic compounds. In our OG cell-type we 

observe enrichment in CNS differentiation, adhesion, and cell morphogenesis. In 

endothelial cells, we see enrichment of genes involved in the regulation of cell-cycle 

and phase transition; specifically, genes within these functional categories are hypo-

accessible in Ts65Dn, which is likely to correlate with their diminished expression. We 

observe no enrichment of terms in astrocytes and microglia.  

 

In order to further understand the contribution of differentially accessible peaks 

within each cell-type to pathology, we performed Disease Ontology analysis on 

human homologues of genes nearest to differentially-accessible peaks in each cell-
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type (Figure 3d) and cluster (Fig. S7b). We observe genes nearest to differentially 

accessible peaks in neuronal clusters are enriched in mood and developmental 

disorders and epilepsy. Furthermore, in Ts65Dn mice we observe an increased 

representation of epilepsy-related genes, mood-disorder, and developmental-

disorder-related genes in our IN cell-types, with a slight enrichment for genes related 

to developmental disorders of mental health in our EX cell-type.  

 

Transcription factor motifs at differentially-accessible peaks 

In addition to these measures of cell abundance, we identified TF binding motifs at 

differentially accessible peaks between Ts65Dn mice and their WT littermates for 

each of the six cell-types (Fig 3e) and 26 clusters (Fig. S8). Our first expectation was to 

observe increased binding in motifs associated with triplicated transcription factors 

(ERG, GABPA Runx1, and Bach1); which we observed within the top 20 enriched TFs 

at hyper-accessible sites in microglia, matching our expectations. Of the 91 hyper-

accessible peaks in microglia, these transcription factors account for 31 %, 24 %, 20 

%, and 4.4 %, of peaks observed, respectively. 

 

The most radical change at hypo-accessible peaks interneurons of Ts65Dn mice 

occurred at bHLH-family TFs (NeuroD1, Olig2, Atoh1, NeuroG2, Tcf21), which have 

similar motifs, and dictate neuronal differentiation paths. Specifically, we observe 

enrichment of Olig2 motifs, which is encoded in the triplicated region, at both hyper- 

and hypo-accessible peaks in Ts65Dn interneurons. Complementary to this, we 
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observe hyper-accessibility at bZIP-family TFs (AP-1, Fra1, JunB, ATF3, Fra2, BATF, 

Fosl2) in Ts65Dn interneurons; these factors have been shown to be highly active in 

interneurons after hippocampal seizures (Dragunow, Yamada, Bilkey, & Lawlor, 

1992). Outside of this enrichment in interneurons, we observed increased binding at 

MADS-family TFs (Mef2a, Mef2b, Mef2c), which have been shown to specify neural 

differentiation and is implicated in neurodevelopmental disorders (Harrington et al., 

2016; Li et al., 2008; Mayer et al., 2018). Similarly, we observe an increase in 

accessibility at peaks containing motifs matching Eomes, a regulator of neurogenesis 

(Arnold et al., 2008), in Ts65Dn interneurons. Overall these results suggest to us a 

large change in cell-lineage commitment along with potentially aberrant localization 

of Interneurons. 

 

We observe fewer significant changes outside of Interneurons, our most affected 

cell-type. Within excitatory neurons there is an enrichment in Homeobox-family Tfs 

(Lhx1, Lhx2, Lhx3, Isl1, Nkx6.1) at hyper-accessible sites, many of which are involved 

in interneuron/motor neuron differentiation (Hou et al., 2013; Sander et al., 2000; 

Sharma et al., 1998), and bHLH-family Tfs (Myf5, MyoD, MyoG), which have been 

demonstrated to inhibit neuronal differentiation (Delfini & Duprez, 2004). 

 

In oligodendrocytes, we observed an enrichment of CTCF/BORIS motifs at hyper-

accessible peaks. CTCF has been implicated as a marker of oligodendrocyte 

differentiation (Lourenco et al., 2016). This orthogonally matches GO enrichment at 
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terms relating to differentiation in oligodendrocytes. Defects in oligodendrocytes 

have previously been in Down Syndrome (Olmos-Serrano et al., 2016), both in vivo 

and when differentiated in vitro. Concordantly, we see bHLH-family TF motifs (MyoD, 

Tcf21, Ap3, ZBTB18, NeuroG2, Olig2) at hyper-accessible peaks. Interestingly, we 

note no change in either class of oligodendrocytes (OGc7, OGc18) or oligodendrocyte 

progenitors (OGc25). 

 

Discussion: 

Single cell sequencing has become an increasingly powerful method for measuring 

changes in cell populations, and their chromatin states, which are associated with 

disease. In this study, we performed a comprehensive pairwise comparison of 

chromatin accessibility in the Ts65Dn mouse model for Down Syndrome, and their 

wild-type littermates using sci-ATAC-seq. From 13,766 randomly sampled cells that 

met quality control criteria, we identified 26 discernible clusters representing distinct 

cell-types in the brain cortex, and quantitative changes in cell composition of the 

cortex. Additionally, we identified sites of altered chromatin accessibility caused by 

the Ts65Dn triplication. Because sci-ATAC-seq requires no cell purification, our 

identification of cell-types was unbiased, and provides a high resolution of cellular 

and chromatin state changes in Down Syndrome.  

 

Consistent with previous studies, we observed a broad increase in the number of 

interneurons in Ts65Dn mice. Specifically, we observed that dopamine-receptor 
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expressing interneurons were affected disproportionately relative to other clusters. 

Interestingly, our data falls in closer agreement to the studies of Hernandez-Gonzalez 

et al (Hernandez-Gonzalez et al., 2015), which used similarly aged 4-month-old adult 

mice, than to those of Chakrabarti et al (Chakrabarti et al., 2010), which observed 

defects in Somatostatin+ interneurons in 1-4-week-old mice. Our data identified no 

changes in Somatostatin+ and Parvalbumin+ interneurons in adult Ts65Dn mice. 

 

The increase in interneurons was accompanied by a significant decrease in 

abundance of four of the 12 classes of excitatory neurons we detected, most 

probably originating from the upper layers of the cortex. These findings agree with 

other reports that in Ts65Dn mice, there is an imbalance of inter, and excitatory 

neurons, with the former being elevated, and the latter being diminished 

(Chakrabarti et al., 2010). Such cellular changes are likely to contribute to cognitive 

deficits associated with Down Syndrome in Ts65Dn mice, as maternal choline 

supplementation during gestation and lactation - a treatment that partially 

ameliorate the deficits - also partially normalize cell population changes ((Velazquez 

et al., 2013).  

 

In addition to these changes in cell abundances, we identified chromatin domains 

with altered accessibility in Ts65Dn mice relative to their wild-type controls. 

Transcription factor binding motifs present at those domains were consistent with 

previous assertions that increased gene dosage of transcription factors within the 
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triplicated region play a role in the mis-regulation in Down syndrome (Chakrabarti et 

al., 2010; Gardiner, 2004). Specifically, we observed that sites of altered chromatin 

accessibility in Ts65Dn microglia were enriched for binding motifs for RUNX1, GABPA, 

and ERG; and in oligodendrocytes, there was an enrichment of OLIG2 motifs at 

differentially accessible peaks.  

 

Besides these motifs for transcription factors encoded by the triplicated regions, we 

observed that CTCF sites were hyper-accessible in oligodendrocyte chromatin from 

Ts65Dn mice, implying a subtle differentiation defect. Although we did not find 

changes in OG abundance between Ts65Dn mice and their WT littermates, the 

altered accessibility at these sites is likely to impart functional changes in cellular 

behavior. Our lack of statistically significant changes to any of the three 

oligodendrocyte clusters we observed contrasts with the results reported by Olmos-

Serrano et al. However, those studies characterized 1-week old mice, whereas we 

used 10-week old adult mice in our study. We infer that for these cell populations, 

delayed differentiation is occurring in Ts65Dn mice, and this may be one of the 

functional changes caused by altered chromatin accessibility.  

 

Our inferences regarding changes in low abundance cell-types such as endothelial 

cells, astrocytes, microglia, and minor clusters comprising excitatory and 

interneurons are limited by the number of cells we analyzed (13,766). More 

definitive conclusions will require profiling of larger cell numbers. Furthermore, by 
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characterizing mice at a single time point, we cannot define when during 

development regulatory changes, or changes in cell abundance occur. That will 

require analysis of mice at different ages. We anticipate that analyses of other brain 

domains, including hippocampus for example, will reveal additional cellular and 

molecular changes associated with Down Syndrome. A final challenge is discerning 

which of the changes detectable by sci-ATAC-seq are important to Down Syndrome 

traits. This can be facilitated by characterizing brains of Ts65Dn mice whose 

functional deficits are partially suppressed by perturbations such as maternal choline 

supplementation (Ash et al., 2014; Powers et al., 2017; Powers et al., 2016; 

Velazquez et al., 2013), transcription factor dosage compensation (Chakrabarti et al., 

2010), and drug treatments (Latchney, Jaramillo, Rivera, Eisch, & Powell, 2015). 

 

Methods: 

Mice: 

B6EiC3Sn.BLiA-Ts(1716)65Dn/DnJ (Jackson #001924) mice were purchased from 

Jackson and crossed to B6EiC3Sn.BLiAF1/J (Jackson #003647) for maintenance. Mice 

used for sci-ATAC-seq were crossed to B6.Cg-Tg(Thy1-YFP)16Jrs/J (Jackson #003709) 

to express YFP in excitatory neurons for future analysis (unpublished data). 

Genotyping PCR was performed on 50 ng genomic DNA using oligos from Table S3 

from for 40 cycles using GoTaq (Promega #M3001) (94°C 2min, 40 cycles of: [94°C 

30sec, 60°C 30sec, 72°C 30sec], 72°C 5min) and run on a 2 % agarose gel (Fig. S9). 
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Tissue disaggregation: 

Tissue was disaggregated using the Omni-ATAC-seq protocol (Corces et al., 2017) 

with minor modifications. All steps were performed on ice or in a 4°C chilled 

centrifuge. Briefly, mice were sacrificed and cortices were rapidly dissected and 

transferred into a chilled 7 mL Dounce Homogenizer containing 2.5 mL HB (320 mM 

sucrose, 0.1 mM EDTA, 0.1 % NP40, 5 mM CaCl2, 3 mM Mg(Ac)2, 10 mM Tris pH 7.4, 

protease inhibitors (Pierce #88666), 0.016 mM PMSF). Tissue was homogenized using 

a Dounce Tissue Grinder set (Wheaton #357542) with 10 strokes using a loose pestle 

and filtered through a 100 µm nylon mesh (VWR #10199-658) followed by 20 strokes 

using a tight pestle and centrifuged for 1 minutes at 100g. 2 mL of supernatant was 

mixed with 2 mL 50 % iodixanol solution (50 % iodixanol in 1x homogenization 

buffer). 2 mL of a 29 % iodixanol solution (29 % iodixanol in 1x HB containing 480 mM 

sucrose) was layered under the 25 % iodixanol/tissue mixture. 2 mL of a 35 % 

iodixanol solution (35 % iodixanol in 1X homogenization containing 480 mM sucrose) 

was layered underneath the 29 % iodixanol solution. Nuclei were centrifuged for 20 

minutes at 3,000g in a swing-bucket rotor. Nuclei at the 29 % and 35 % interface 

were transferred to a new tube and diluted 1:5 in ATAC-RSB (10 mM Tris-HCl pH 7.4, 

10 mM NaCl, and 3 mM MgCl2 in water) and centrifuged for 5 minutes at 500g. 

Nuclei were resuspended in 1X Tagmentation Buffer (10 mM Tris pH 7.4, 5 mM 

MgCl2, 10 % DMF, 33 % 1X PBS (without Ca++ and Mg++), 0.1 % Tween-20, 0.01 % 

Digitonin (ThermoFisher #BN2006) and counted using Trypan Blue on a 

hemocytometer. 
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Tn5 Transposase: 

Tn5 was produced exactly as described (Picelli et al., 2014) with no modifications. For 

Omni-ATAC-seq, Tn5 transposase was assembled using pre-Annealed ME-A and ME-B 

(Table S3). For sci-ATAC-seq, Tn5 transposomes were assembled using pre-Annealed 

ME-C and ME-D oligonucleotides (Table S3). Oligonucleotides were annealed in H2O 

by combining ME-A, ME-B, ME-C, or ME-D oligos at 25 µM to Tn5MErev and 

incubating for 2 minutes at 94°C followed by a 0.1°C/s ramp to 25°C. ME-A and ME-B 

hybridized oligos were combined in equal quantities at a final concentration of 

2.5µM and incubated with Tn5 transposase at a final concentration of 1.625 µM. ME-

C and ME-D hybridized oligos were each incubated separately at a final concentration 

of 2.5 µM with Tn5 transposase at a final concentration of 1.625 µM to make 

separated strip-tubes each containing a single barcode. The buffer in which 

hybridized Tn5 transposomes were stored consists of a mixture of 40 % glycerol and 

43.5 % Tn5 dialysis buffer (100 mM HEPES-KOH pH 7.2, 200 mM NaCl, 20 mM EDTA, 2 

mM DTT, 20 % Glycerol, 0.2 % Triton X-100 in DEPC H2O). Enzyme was stored at -

80°C.  

 

sci-ATAC-seq: 

Sci-ATAC-seq was performed using a protocol based on snATAC-seq (Preissl et al., 

2018). Nuclei were resuspended at 600,000 cells/mL in 1X Tagmentation Buffer. 8 µL 

of nuclei were aliquoted to each well of a 96-well plate (4,800 cells/well). 1 µL of 



 

92 

 

each ME-C or ME-D carrying barcoded transposome at ~1.5 µM was added to each 

well and gently vortexed. Tagmentation was performed at 37°C for 1 hour, briefly 

vortexing once at 30 minutes. 10 µL of 40 µM EDTA was added each well, briefly 

vortexed, and incubated at 37°C for 15 minutes to inactivate the Tn5. 20 µL sort 

buffer (2 % BSA and 2 mM EDTA in PBS (without Ca++ and Mg++)) was added to each 

well. Nuclei from each well were pooled, filtered through a 35 µm mesh (Corning 

#352235) and Draq7 (Abcam #ab109202) was added to a final concentration of 3 µM 

(35-38 µL). 25 single nuclei were sorted into each well of a 96-well plate using a BD 

FACSAria Fusion and transferred to a -80°C freezer. 

 

Frozen plates containing sorted nuclei were thawed on ice. 2 µL of 0.2 % SDS was 

added to each well and incubated for 7 minutes at 55°C. 2.5 µL of 10 % Triton X-100 

was added to each well. 2 µL of 25 µM Primer i5 and 2 µL of 25µM Primer i7 was 

added to each well. PCR was performed for using Q5 DNA polymerase (NEB 

#M0491S) with 1X GC buffer (72°C 5min, 98°C 30sec, 15 cycles of: [98°C 10sec, 63°C 

30sec, 72°C 30sec], 72°C 5min). In order to minimize batch effect, all PCRs were 

performed sequentially on a single machine. All wells were then pooled and diluted 

5:1 (~24 mL) in Buffer PB (Qiagen #19066) with 1/20th volume of 3 M NaOAc pH 5.2 

(~1.2 mL). This solution was run through MinElute columns (Qiagen #28004) using a 

QIAvac apparatus (Qiagen #19413) and washed once using 750 µL Buffer PE (Qiagen 

#19065). Samples were eluted twice using EB (10 mM Tris pH 8) warmed to 55°C. 

Samples were size selected using a 0.5X Ampure XP cleanup to remove large 
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fragments followed by 3 consecutive 1.5X Ampure XP (Beckman Coulter # A63880) 

bead cleanup followed by a final 1.2X Ampure XP cleanup to completely remove all 

residual primers and resuspended in a final volume of 20 µL EB using the 

manufacturer’s recommended protocol. 

 

Omni-ATAC-seq: 

Tagmentation was performed using the Omni-ATAC-seq protocol (Corces et al., 2017) 

with modifications to inactivation and size selection. Briefly, 100,000 nuclei were 

tagmented in parallel to sci-ATAC-seq in 1X Tagmentation Buffer (10 mM Tris pH 7.4, 

5 mM MgCl2, 10 % DMF, 33 % PBS (without Ca++ and Mg++), 0.1 % Tween-20, 0.01 % 

Digitonin) using 100 nM of ME-A and ME-B bound Tn5 Transposase for 30 minutes at 

37°C. Tagmentation was inactivated with the addition of 5 volumes SDS Lysis Buffer 

(100mM Tris pH 7.4, 50 mM NaCl, 10 mM EDTA, 0.5 % SDS in DEPC H2O) and 100 µg 

Proteinase K (Invitrogen #25530049) for 30 minutes at 55°C followed by Isopropanol 

Precipitation using GlycoBlue (Invitrogen #AM9516) as a carrier. Samples were 

resuspended in EB and size selected using a 0.5X Ampure XP cleanup to remove large 

fragments followed by a 1.8X Ampure XP cleanup using the manufacturer’s 

recommended protocol. PCR was performed for using Q5 DNA polymerase (NEB 

#M0491S) with 1X GC buffer (72°C 5min, 98°C 30sec, 11 cycles of: [98°C 10sec, 63°C 

30sec, 72°C 30sec], 72°C 5min) followed by a final 1.8X Ampure XP cleanup. 
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Cell-culture sci-ATAC-seq: 

Briefly, human A549 cells and mouse Hepa1-6 cells were quickly thawed at 37°C from 

tubes containing 1X freezing medium and resuspended in 10 mL room temperature 

PBS (without Ca++ and Mg++). Cells were spun at 500g for 5 minutes at room 

temperature, resuspended in PBS, and counted using Trypan Blue on a 

hemocytometer. 450,000 A549 cells were mixed with 450,000 Hepa1-6 cells and 

lysed via the Omni-ATAC-seq protocol in 50 µL ice-cold ATAC-RSB-Lysis buffer (10 mM 

Tris pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1 % NP-40, 0.1 % Tween20, 0.01 % Digitonin 

in DEPC H2O). Nuclei were washed in 1 mL (10 mM Tris pH 7.4, 10 mM NaCl, 3 mM 

MgCl2, 0.1 % Tween20) and spun at 500g for 10 minutes. Nuclei were then processed 

identically to our sci-ATAC-seq protocol with no modifications. Reads were counted 

at each barcode in either the mm10 or hg19 genome. Any cell containing both 

human and mouse reads was identified as a collision. Collision rate was calculated as 

2*(collisions/total cells) (Cao et al., 2017). 

 

Library quality control, quantification, and sequencing: 

Library fragment distribution was measured using a bioanalyzer for nucleosome 

patterning. Following this, libraries were subjected to digital PCR (Schweitzer et al., 

2014) on a Bio-Rad QX200 droplet digital PCR system using oligos from Table S3. 

Libraries were loaded at 8pM on a Nextseq500 mid lane PE 150bp. Sequencing was 

performed using a custom recipe for the following, read 1: [36 imaged cycles], Index 

1: [8 imaged cycles, 27 dark cycles, 8 imaged cycles], Index 2: [8 imaged cycles, 21 
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dark cycles, 8 imaged cycles], Read 2: [36 imaged cycles]. 

 

Preprocessing and alignment: 

Libraries were preprocessed and aligned as in Preissl et al (Preissl et al., 2018) with 

minor modifications. Briefly, read names were labeled with combined 32bp index 

reads. Pair-end reads were aligned to mm10 (or mm10 and hg19 for collision tests) 

using Bowtie2 in pair-end mode with parameters, -p 5 -t -X2000–no-mixed–no-

discordant and reads < MAPQ 30 and flag=1804 were removed and deduplicated. 

Barcode arrangement and orientation is altered in our Nextseq500 run compared to 

the HiSeq run used in Preissl et al. Each 8bp Barcode was corrected within a 2bp edit 

distance to their nearest barcode and separated into individual cells based on their 

barcode combination after which PCR duplicates and mitochondrial were removed. 

Cells were filtered by a minimum of 20 % fraction of reads in peaks (FRiP) score and 

an 820 read per cell cutoff. Peaks were called using MACS2 (Zhang et al., 2008) with 

parameters, -g mm -p 0.05 --nomodel --shift 150 --keep-dup all (Table S4). Reads 

were assigned to RefSeq (O'Leary et al., 2016) gene bodies flanked by 2kb on each 

side or to MACS2-called peaks using Rsubread featurecounts (Liao, Smyth, & Shi, 

2013). Insert size metrics were plotted using ATACseqQC (Ou et al., 2018) using 

pseudobulks from aggregated samples. Copy number analysis was performed using 

HMMcopy as in Knouse et al (Knouse, Wu, & Hendricks, 2017) with no modification 

(Figure S3, Table S5). 
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Clustering: 

Features were counted at gene body tiles extended by 2kb using Rsubread 

Featurecounts, covering ~65 % of reads per sample. Dimensional reduction was 

performed on the first 50 principal components using Monocle 3.0 Alpha (Trapnell et 

al., 2014) on the first 50 principal components on gene body reads using UMAP. 

Clusters were called using Louvain clustering (Table S2b). 3D plots were generated 

using plot3D (Soetaert, 2017). Cells were counted by dividing the number of cells 

from each replicate of each cluster by the total number of cells sequenced per 

replicate (% total) (Table S2c). Differential cell counts were visualized and compared 

using ggpubr (Kassambara, 2018). Clustering of the top 20,000 TF-IDF selected peaks 

in Figure S6 was performed as in Cusanovich et al (Cusanovich et al., 2018) with no 

modifications. 

 

Cell-type identification: 

Psuedobulk bam files from called clusters were merged using Samtools. Features 

were called at gene body tiles extended by 2kb using Featurecounts. Reads were 

filtered for a CPM > 1 in at least 4 samples. Cell-types were clustered based on their 

relative average accessibility at marker genes. Cell-type-specific markers (p.adj < 0.05 

log2FC > 1) were called using Limma topTreat (Ritchie et al., 2015)by comparing to 

genes enriched in each cluster or cell-type compared to all other clusters (Table S6) 

or cell-types (Table S7). Plots for cell-type identification were generated using 

log2CPM values normalized per gene across all clusters on a scale of 0 to 1; average 
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scaled values were used for visualizations. Relative accessibility was visualized using 

ggplot2. Clustering was performed using hclust and visualized using ggdendro (de 

Vries, 2016). Cortical layer-specific (Gray et al., 2017) and interneuron (Mo et al., 

2015) ATAC-seq data were downloaded from NCBI GEO database accessions 

GSE87548 and GSE63137, respectively. 

 

Differential accessibility, Gene ontology and disease ontology: 

Pseudobulk bam files from called clusters were combined using samtools. Features 

were called at all peaks using Featurecounts. Differential accessibility (p.adj < 0.05 

and |log2FC| > 0.585) was called using Limma topTable (Table S7). Peaks were 

assigned to their nearest RefSeq gene; RefSeq files were downloaded from UCSC 

table browser (Karolchik et al., 2004). Gene ontology and disease ontology analysis 

was performed on differentially accessible gene bodies and peaks (Table S9) using 

ClusterProfiler (Yu, Wang, Han, & He, 2012) and DOSE (Yu, Wang, Yan, & He, 2015) 

respectively using clusterCompare with fdr correction. Dotplots were visualized using 

ClusterProfiler. Heatmaps were visualized using pheatmap. 

 

Motif Analysis: 

Motif analysis was performed on differentially accessible regions using HOMER 

(Heinz et al., 2010) against a background set of all called peaks (Table S10). HOMER 

data was aggregated using marge (Amezquita, 2018) for downstream analysis.  
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Comparison to Omni-ATAC-seq: 

Omni-ATAC-seq samples single-end reads were aligned to mm10 using Bowtie2 in 

single-end mode with parameters, -p 5 and reads < MAPQ 30 and flag=1804 were 

removed and deduplicated. Read were assigned to peaks called in our sci-ATAC-seq 

libraries using Featurecounts. Libraries were downsampled to approximately 3.3M 

assigned reads using metaseqR downsample.counts (Moulos & Hatzis, 2015). 

Scatterplots and Pearson correlations were visualized LSD (Schwalb et al., 2018). 

 

Genome browser tracks: 

Bigwig files were generated using Deeptools 3.0.2 (Ramirez et al., 2016) 

bamCoverage --binSize 1 --normalizeUsing RPKM --ignoreForNormalization chrM 

using cell-clusters merged using from all samples and displayed using GViz (Hahne & 

Ivanek, 2016). 

 

Data Access: 

All raw and processed sequencing data generated in this study have been submitted 

to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) 

under accession number GSE127257. 
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Figures: 

 
 

Figure 1: 

Experimental design and QC 

(a) The cortex from each brain is disaggregated and nuclei are distributed to 96 wells 
to be barcoded with Tn5 transposase. Wells are pooled and FACS sorted at 25 nuclei 
per well. Wells are barcoded via PCR. Sequenced cells are demultiplexed using 
combinatorial barcodes. (b) Reads per QC-passed nuclei per genotype and replicate. 
Lines denote medians, counts denote means. Line at 820 reads denotes minimum 
read cutoff. (c) log2CPM correlation of each WT brain vs bulk ATAC-seq showing 
Pearson correlation. (d) Collision rate estimates from mixed human and mouse 
samples. 
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Figure 2: 

Cell-type identification 

(a) UMAP of cells showing 26 clusters. (b) Clusters from (a) labeled by cell-type (c) 
Clusters are identified using cell-type specific markers. (d) Browser shots from 
clusters in (a) at cell-type specific markers: EX (Neurod6), IN (Gad2), OG (Olig1), EC 
(CD31), AC (Dio2), and MG (C1qa). (e) Genes ontology of genes enriched in each cell-
type in (b). (f) Cell-type distribution of WT cortex as percent of total. (g) Top 
transcription factor motifs enriched at peaks in each cell-type (p<1e-20). Values 
denote Z-scores of -log10 p-values of transcription factor motifs. 
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Figure 3: 

Changes in Ts mice: 

(a) Changes in cell-type (top) and (b) cell cluster (bottom) abundances in WT (blue) 
and Ts (green) mice. P values indicate Student’s t-test. (c) Gene Ontology at genes 
nearest to differentially accessible peaks (p<0.05, FC>1.5) in Ts mice. (d) Significantly 
enriched Disease Ontology in Ts mice at genes from b. (e) Top 20 transcription factor 
motifs in Hyper-accessible (up arrow) or Hypo-accessible (down arrow) peaks in Ts 
mice in each cell-type. Values denote Z-scores of -log10 p-values of transcription 
factor motifs.  
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Supplemental figures: 

 
Supplemental Figure 1: 

Library QC. (a) Representative FANS results showing FSC, SSC, and DRAQ7 gating 
(R670/30-A). (b) Bioanalyzer library sizes; figure has been globally contrast-adjusted 
for clarity. (c) Representative ddPCR results from a single library and control. (d) 

Distribution of FRiP per cells with reads > 820. (e) Fragment distribution of 
pseudobulks from QC-passed cells in each mouse. 
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Supplemental Figure 2: 

Sample correlations. Pearson correlation of all mice in bulk libraries (bulk) and 
pseudobulk libraries. Reads shown in log2CPM. 
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Supplemental Figure 3: 

Copy number confirmation. (a) Copy number across genome compared to 2n 
animals at 500kb tiles using mm10. (b) Copy number zoomed in to chr15-18. Blue 
dots denote 2n state. Red dots denote 3n state at chr16:81,000,000-98,200,000 and 
chr17:3,500,001-9,000,000. 
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Supplemental Figure 4: 

Comparison to FACS-sorted data. Cell-type specific markers at identified clusters and 
FACS sorted ATAC-seq data. 
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S5a (top) S5b (bottom), cell-types: 

 
S5c EX clusters: 
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S5d: IN clusters 
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S5e: glia clusters 

 
Supplemental Figure 5: 

Cell-type and cluster-enriched genes. log2 Fold-change vs Rank at gene bodies in 
each cell-type showing (a) marker genes and (b) top 10 genes. Top10 hyper-
accessible genes at each cluster sorted by EX (c), IN (d), and glia (e). Black dots 
denote p.adj < 0.05 and log2 fold-change > 1 
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Supplemental Figure 6: 

Comparison to TF-IDF. (a) t-SNE from 20,000 TF-IDF selected peaks. (b) Clusters in (a) 
overlaid on Fig. 2a UMAP. (c) Mismatched cell-type assignments. (d) Change in tell-
type distribution. (e) Change in cell-type distribution per cluster. Blue bars denote 2n 
mice, green bars denote Ts mice.  
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Supplemental Figure 7: 

Gene ontology and disease ontology changes per clusters. (a) Gene ontology at 
nearest changed genes in Ts mice per cluster. Values denote fdr adjusted p. values 
filtered to a p value < 0.0001. (b) Disease ontology at nearest changed genes in Ts 
mice per cluster. Values denote fdr adjusted p. values filtered to a p value < 0.05. 
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Supplemental Figure 8: 

Motifs at differentially accessible peaks in clusters. Motifs changed at differentially 
accessible peaks in all clusters with a minimum p. value of 0.01 in at least one 
sample. 
 

 
Supplemental Figure 9: 

Genotype. PCR against the chr16-chr17 breakpoint in Ts65dn (top) and YFP (bottom) 
in Ts65Dn males used in sci-ATAC-seq. Mouse 5-8 were used in this study. 
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Supplemental tables: 

Sequencing 

Lanes: Read: % Dups % GC M Reads Samples: 

Lane1 Read1 75.6% 50% 259.5 Ts1_R1 

 Read2 82.2% 51% 259.5 2n1_R2 

 Index1 99.3% 51% 259.5 Ts2_R1 

 Index2 99.5% 46% 259.5  
Lane2 Read1 78.0% 51% 230.3 2n1_R2 

 Read2 80.2% 52% 230.3 Ts2_R2 

 Index1 99.3% 51% 230.3 2n2_R1 

 Index2 99.6% 45% 230.3  
Lane3 Read1 79.9% 51% 219.8 2n1_R1 

 Read2 82.9% 51% 219.8 2n2_R2 

 Index1 99.4% 51% 219.8 Ts1_R2 

 Index2 99.6% 45% 219.8  
Lane4 Read1 63.6% 49% 235.0 Collision  

 Read2 66.5% 50% 235.0 Tests 

 Index1 99.3% 52% 235.0  

 Index2 99.5% 44% 235.0  

      

sci-ATAC-seq samples:     

Mouse 

Fraction of reads in 

peaks (FRiP) Deduplicated Reads (M)  
WT_1 0.72 21.8    

WT_2 0.72 24.1    

Ts_1 0.70 25.4    

Ts_2 0.71 24.0    

      

Library Concentrations:     

Name Concentration (nM) i7 PCR set (Table S3) i5 PCR set (Table S3) 

2n1_R1 1.3 I7_1 I5_3   

2n1_R2 1.3 I7_1 I5_4   

2n2_R1 1.3 I7_2 I5_3   

2n2_R2 1.7 I7_2 I5_4   

Ts1_R1 1.4 I7_1 I5_1   

Ts1_R2 1.4 I7_1 I5_2   

Ts2_R1 1.1 I7_2 I5_1   

Ts2_R2 1.4 I7_2 I5_2   

Collision  I7_2 I5_1   
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Supplemental Table 1: 

Samples sequenced in this study. Values show millions (M) sequences analyzed, and 
Fraction of Reads in Peaks (FRiP) score in down-sampled libraries, and 
oligonucleotide sets used. 
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Cluster Cell-type Name Total (nuclei/cluster) Specifics 

1 EX EXc1 1440 Layer II/III/IV 

2 EX EXc2 1187 Layer II/III/IV 

3 EX EXc3 1164 Layer V/VI 

4 EX EXc4 1146 Layer II/III/IV 

5 EX EXc5 890 Layer V 

6 EX EXc6 872 Layer V/VI 

7 OG OGc7 739 Oligodendrocytes 

8 IN INc8 697 Drd2+ MSN 

9 IN INc9 526 Drd1+ MSN 

10 IN INc10 512 Interneurons (unknown) 

11 IN INc11 487 Interneurons (unknown) 

12 EX EXc12 480 Layer II/III/IV 

13 EX EXc13 414 Layer II/III/IV 

14 IN INc14 405 Parvalbumin + 

15 IN INc15 392 Vip + 

16 MG MGc16 369 Microglia 

17 EX EXc17 341 Layer V 

18 OG OGc18 339 Oligodendrocytes 

19 IN INc19 283 Somatostatin + 

20 EC ECc20 256 Endothelial cells 

21 EX EXc21 241 Layer V/VI 

22 IN INc22 191 Vip + 

23 EX EXc23 132 Layer II/III/IV 

24 EX EXc24 119 Layer V/VI 

25 OG OGc25 77 Oligodendrocyte progenitors 

26 AC ACc26 67 Astrocytes 

 
Supplemental Table 2: 

Characterized clusters and cell-types, their total number of nuclei queried per cluster, 
and their specific cell-type localization.* 
 
*This table has been altered from submission for size constraints; it previously 
contained percentages per sample per cluster and top10 representative differentially 
accessible gene bodies per cluster. 
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ddPCR (Ordered IDT with HPLC purification):  NOTES 

F AGCAGAAGACGGCATACGAGAT   

R ATACGGCGACCACCGAGATC   

Int 
/56-
FAM/TCTTATACACATCTGAGGCGG/3BHQ_1/  At Index 1 

    

Genotyping (Ordered from IDT with standard desalting):  NOTES: 

Ts65Dn_F GTGGCAAGAGACTCAAATTCAAC  From JAX 275bp 

Ts65Dn_R TGGCTTATTATTATCAGGGCATTT   

YFP_F CCACCTACGGCAAGCTGACC   
YFP_R GGTAGCGGGCGAAGCACT  114bp Product 

    

Sequencing Oligos (Ordered from IDT with PAGE purification):  NOTES 

Read 1 Sequencing 

Primer GCGATCGAGGACGGCAGATGTGTATAAGAGACAG  From: Vitak et al. 
Read 2 Sequencing 

Primer CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG  

doi: 
10.1038/nmeth.4154 

Index 1 

Sequencing Primer CTGTCTCTTATACACATCTGAGGCGGAGACGGTG   

Index 2 

Sequencing Primer CTGTCTCTTATACACATCTGCCGTCCTCGATCGC   

    

Transposome Reverse (Ordered from IDT with standard desalting):   

Tn5ME_Rev /5Phos/CTGTCTCTTATACACATCT    

Transposome: BARCODE 

Tn5 i5 

Oligos:   

C15_ME_1 
TCGTCGGCAGCGTCTCCACGCTATAGCCT 

AGGCTATA 
GCGATCGAGGACGGCAGATGTGTATAAGAGACAG 

C15_ME_2 
TCGTCGGCAGCGTCTCCACGCATAGAGGC 

GCCTCTAT 
GCGATCGAGGACGGCAGATGTGTATAAGAGACAG 

C15_ME_3 
TCGTCGGCAGCGTCTCCACGCCCTATCCT 

AGGATAGG 
GCGATCGAGGACGGCAGATGTGTATAAGAGACAG 

C15_ME_4 
TCGTCGGCAGCGTCTCCACGCGGCTCTGA 

TCAGAGCC 
GCGATCGAGGACGGCAGATGTGTATAAGAGACAG 

C15_ME_5 
TCGTCGGCAGCGTCTCCACGCAGGCGAAG 

CTTCGCCT 
GCGATCGAGGACGGCAGATGTGTATAAGAGACAG 

C15_ME_6 
TCGTCGGCAGCGTCTCCACGCTAATCTTA 

TAAGATTA 
GCGATCGAGGACGGCAGATGTGTATAAGAGACAG 

C15_ME_7 
TCGTCGGCAGCGTCTCCACGCCAGGACGT 

ACGTCCTG 
GCGATCGAGGACGGCAGATGTGTATAAGAGACAG 

C15_ME_8 
TCGTCGGCAGCGTCTCCACGCGTACTGAC 

GTCAGTAC 
GCGATCGAGGACGGCAGATGTGTATAAGAGACAG 
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Tn5 i7 

Oligos:  
BARCODE 

D15_ME_1 
GTCTCGTGGGCTCGGCTGTCCCTGTCCCGAGTAAT 

ATTACTCG 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_2 
GTCTCGTGGGCTCGGCTGTCCCTGTCCTCTCCGGA 

TCCGGAGA 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_3 
GTCTCGTGGGCTCGGCTGTCCCTGTCCAATGAGCG 

CGCTCATT 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_4 
GTCTCGTGGGCTCGGCTGTCCCTGTCCGGAATCTC 

GAGATTCC 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_5 
GTCTCGTGGGCTCGGCTGTCCCTGTCCTTCTGAAT 

ATTCAGAA 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_6 
GTCTCGTGGGCTCGGCTGTCCCTGTCCACGAATTC 

GAATTCGT 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_7 
GTCTCGTGGGCTCGGCTGTCCCTGTCCAGCTTCAG 

CTGAAGCT 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_8 
GTCTCGTGGGCTCGGCTGTCCCTGTCCGCGCATTA 

TAATGCGC 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_9 
GTCTCGTGGGCTCGGCTGTCCCTGTCCCATAGCCG 

CGGCTATG 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_10 
GTCTCGTGGGCTCGGCTGTCCCTGTCCTTCGCGGA 

TCCGCGAA 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_11 
GTCTCGTGGGCTCGGCTGTCCCTGTCCGCGCGAGA 

TCTCGCGC 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

D15_ME_12 
GTCTCGTGGGCTCGGCTGTCCCTGTCCCTATCGCT 

AGCGATAG 
CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG 

 
 

i7 PCR:    

Name Total sequence BARCODE PCR SET 

N701 CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGG TAAGGCGA I7_1 

N702 CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGG CGTACTAG I7_1 

N703 CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGG AGGCAGAA I7_1 

N704 CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGG TCCTGAGC I7_1 

N705 CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGG GGACTCCT I7_1 

N706 CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGG TAGGCATG I7_1 

N707 CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGG CTCTCTAC I7_1 

N710 CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTGGGCTCGG CGAGGCTG I7_1 

N711 CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTCGTGGGCTCGG AAGAGGCA I7_1 

N712 CAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTCGTGGGCTCGG GTAGAGGA I7_1 

N714 CAAGCAGAAGACGGCATACGAGATTCATGAGCGTCTCGTGGGCTCGG GCTCATGA I7_1 
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N715 CAAGCAGAAGACGGCATACGAGATCCTGAGATGTCTCGTGGGCTCGG ATCTCAGG I7_1 

N716 CAAGCAGAAGACGGCATACGAGATTAGCGAGTGTCTCGTGGGCTCGG ACTCGCTA I7_2 

N718 CAAGCAGAAGACGGCATACGAGATGTAGCTCCGTCTCGTGGGCTCGG GGAGCTAC I7_2 

N719 CAAGCAGAAGACGGCATACGAGATTACTACGCGTCTCGTGGGCTCGG GCGTAGTA I7_2 

N721 CAAGCAGAAGACGGCATACGAGATGCAGCGTAGTCTCGTGGGCTCGG TACGCTGC I7_2 

N722 CAAGCAGAAGACGGCATACGAGATCTGCGCATGTCTCGTGGGCTCGG ATGCGCAG I7_2 

N723 CAAGCAGAAGACGGCATACGAGATGAGCGCTAGTCTCGTGGGCTCGG TAGCGCTC I7_2 

N724 CAAGCAGAAGACGGCATACGAGATCGCTCAGTGTCTCGTGGGCTCGG ACTGAGCG I7_2 

N726 CAAGCAGAAGACGGCATACGAGATGTCTTAGGGTCTCGTGGGCTCGG CCTAAGAC I7_2 

N727 CAAGCAGAAGACGGCATACGAGATACTGATCGGTCTCGTGGGCTCGG CGATCAGT I7_2 

N728 CAAGCAGAAGACGGCATACGAGATTAGCTGCAGTCTCGTGGGCTCGG TGCAGCTA I7_2 

N729 CAAGCAGAAGACGGCATACGAGATGACGTCGAGTCTCGTGGGCTCGG TCGACGTC I7_2 

X730 CAAGCAGAAGACGGCATACGAGATTACCAGAGGTCTCGTGGGCTCGG CTCTGGTA I7_2 

X731 CAAGCAGAAGACGGCATACGAGATGGATGGAAGTCTCGTGGGCTCGG TTCCATCC I7_3 

X732 CAAGCAGAAGACGGCATACGAGATATTGAGGCGTCTCGTGGGCTCGG GCCTCAAT I7_3 

X733 CAAGCAGAAGACGGCATACGAGATCGGATAGAGTCTCGTGGGCTCGG TCTATCCG I7_3 

X734 CAAGCAGAAGACGGCATACGAGATTGGTAGACGTCTCGTGGGCTCGG GTCTACCA I7_3 

X735 CAAGCAGAAGACGGCATACGAGATACCTGGTTGTCTCGTGGGCTCGG AACCAGGT I7_3 

X736 CAAGCAGAAGACGGCATACGAGATCAGTTCTGGTCTCGTGGGCTCGG CAGAACTG I7_3 

X737 CAAGCAGAAGACGGCATACGAGATTCGAACGTGTCTCGTGGGCTCGG ACGTTCGA I7_3 

X738 CAAGCAGAAGACGGCATACGAGATCGTTGCTTGTCTCGTGGGCTCGG AAGCAACG I7_3 

X739 CAAGCAGAAGACGGCATACGAGATTACCGTTCGTCTCGTGGGCTCGG GAACGGTA I7_3 

X740 CAAGCAGAAGACGGCATACGAGATTAGGTTGCGTCTCGTGGGCTCGG GCAACCTA I7_3 

X741 CAAGCAGAAGACGGCATACGAGATGAGGCTAAGTCTCGTGGGCTCGG TTAGCCTC I7_3 

X742 CAAGCAGAAGACGGCATACGAGATCGACCATAGTCTCGTGGGCTCGG TATGGTCG I7_3 

X743 CAAGCAGAAGACGGCATACGAGATAGGCAGTAGTCTCGTGGGCTCGG TACTGCCT I7_4 

X744 CAAGCAGAAGACGGCATACGAGATATCAAGCGGTCTCGTGGGCTCGG CGCTTGAT I7_4 

X745 CAAGCAGAAGACGGCATACGAGATCATTGAAGGTCTCGTGGGCTCGG CTTCAATG I7_4 

X746 CAAGCAGAAGACGGCATACGAGATCGACTTATGTCTCGTGGGCTCGG ATAAGTCG I7_4 

X747 CAAGCAGAAGACGGCATACGAGATTCTATACGGTCTCGTGGGCTCGG CGTATAGA I7_4 

X748 CAAGCAGAAGACGGCATACGAGATAGCATTAGGTCTCGTGGGCTCGG CTAATGCT I7_4 

X749 CAAGCAGAAGACGGCATACGAGATAATTGGCAGTCTCGTGGGCTCGG TGCCAATT I7_4 

X750 CAAGCAGAAGACGGCATACGAGATAGATTCGTGTCTCGTGGGCTCGG ACGAATCT I7_4 

X751 CAAGCAGAAGACGGCATACGAGATTTCATGACGTCTCGTGGGCTCGG GTCATGAA I7_4 

X752 CAAGCAGAAGACGGCATACGAGATTGAACTTGGTCTCGTGGGCTCGG CAAGTTCA I7_4 

X753 CAAGCAGAAGACGGCATACGAGATATGGCATAGTCTCGTGGGCTCGG TATGCCAT I7_4 

X754 CAAGCAGAAGACGGCATACGAGATCGTAATTCGTCTCGTGGGCTCGG GAATTACG I7_4 
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i5 PCR:    

Name Total sequence BARCODE PCR Set 

S502 AATGATACGGCGACCACCGAGATCTACACCTCTCTATTCGTCGGCAGCGTC ATAGAGAG I5_1 

S503 AATGATACGGCGACCACCGAGATCTACACTATCCTCTTCGTCGGCAGCGTC AGAGGATA I5_1 

S505 AATGATACGGCGACCACCGAGATCTACACGTAAGGAGTCGTCGGCAGCGTC CTCCTTAC I5_1 

S506 AATGATACGGCGACCACCGAGATCTACACACTGCATATCGTCGGCAGCGTC TATGCAGT I5_1 

S507 AATGATACGGCGACCACCGAGATCTACACAAGGAGTATCGTCGGCAGCGTC TACTCCTT I5_1 

S508 AATGATACGGCGACCACCGAGATCTACACCTAAGCCTTCGTCGGCAGCGTC AGGCTTAG I5_1 

S510 AATGATACGGCGACCACCGAGATCTACACCGTCTAATTCGTCGGCAGCGTC ATTAGACG I5_1 

S511 AATGATACGGCGACCACCGAGATCTACACTCTCTCCGTCGTCGGCAGCGTC CGGAGAGA I5_1 

X512 AATGATACGGCGACCACCGAGATCTACACTCGACTAGTCGTCGGCAGCGTC CTAGTCGA I5_2 

X513 AATGATACGGCGACCACCGAGATCTACACTTCTAGCTTCGTCGGCAGCGTC AGCTAGAA I5_2 

X514 AATGATACGGCGACCACCGAGATCTACACCCTAGAGTTCGTCGGCAGCGTC ACTCTAGG I5_2 

X515 AATGATACGGCGACCACCGAGATCTACACGCGTAAGATCGTCGGCAGCGTC TCTTACGC I5_2 

X516 AATGATACGGCGACCACCGAGATCTACACAAGGCTATTCGTCGGCAGCGTC ATAGCCTT I5_2 

X517 AATGATACGGCGACCACCGAGATCTACACGAGCCTTATCGTCGGCAGCGTC TAAGGCTC I5_2 

X518 AATGATACGGCGACCACCGAGATCTACACTTATGCGATCGTCGGCAGCGTC TCGCATAA I5_2 

X519 AATGATACGGCGACCACCGAGATCTACACATCTGAGTTCGTCGGCAGCGTC ACTCAGAT I5_2 

X520 AATGATACGGCGACCACCGAGATCTACACGGATACTATCGTCGGCAGCGTC TAGTATCC I5_3 

X521 AATGATACGGCGACCACCGAGATCTACACTAAGATCCTCGTCGGCAGCGTC GGATCTTA I5_3 

X522 AATGATACGGCGACCACCGAGATCTACACAAGAGATGTCGTCGGCAGCGTC CATCTCTT I5_3 

X523 AATGATACGGCGACCACCGAGATCTACACAATGACGTTCGTCGGCAGCGTC ACGTCATT I5_3 

X524 AATGATACGGCGACCACCGAGATCTACACGAAGTATGTCGTCGGCAGCGTC CATACTTC I5_3 

X525 AATGATACGGCGACCACCGAGATCTACACATAGCCTTTCGTCGGCAGCGTC AAGGCTAT I5_3 

X526 AATGATACGGCGACCACCGAGATCTACACTTGGAAGTTCGTCGGCAGCGTC ACTTCCAA I5_3 

X527 AATGATACGGCGACCACCGAGATCTACACATTCGTTGTCGTCGGCAGCGTC CAACGAAT I5_3 

X528 AATGATACGGCGACCACCGAGATCTACACAGGATAACTCGTCGGCAGCGTC GTTATCCT I5_4 

X529 AATGATACGGCGACCACCGAGATCTACACTTCATCCATCGTCGGCAGCGTC TGGATGAA I5_4 

X530 AATGATACGGCGACCACCGAGATCTACACAACGAACGTCGTCGGCAGCGTC CGTTCGTT I5_4 

X531 AATGATACGGCGACCACCGAGATCTACACTGCCTTACTCGTCGGCAGCGTC GTAAGGCA I5_4 

X532 AATGATACGGCGACCACCGAGATCTACACCGAATTCCTCGTCGGCAGCGTC GGAATTCG I5_4 

X533 AATGATACGGCGACCACCGAGATCTACACGGTTAGACTCGTCGGCAGCGTC GTCTAACC I5_4 

X534 AATGATACGGCGACCACCGAGATCTACACTCCGGTAATCGTCGGCAGCGTC TTACCGGA I5_4 

X535 AATGATACGGCGACCACCGAGATCTACACTTACGACCTCGTCGGCAGCGTC GGTCGTAA I5_4 

 

Supplemental Table 3: 

All oligonucleotide sequences used in this study. 
 
Supplemental Table 4-10: 

Listed tables are not included in this thesis due to size constraints. It previously 
contained the following tables: 
4. TableS4 snATAC234_peaks.narrowPeak.txt, all MACS2 called peaks 
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5. TableS5 HMMcopy states per mouse.xlsx, copy number per 500kb tile 
6. TableS6 Enriched genes per cluster.xlsx, enriched genes per cluster vs all others 
7. TableS7 Enriched genes per cell-type.xlsx, enriched genes per cell-type vs all others 
8. TableS8 Tsvs2n Differential accessibility at peaks.xlsx, differentially accessible 
peaks in Ts mice 
9. TableS9_GO and DO TsvsWT allclusters at peaks.xlsx, gene and disease ontology at 
genes nearest to peaks in Ts mice 
10.TableS10_Homer Motifs.xlsx, representation of motif PWMs per cluster and cell-
type  
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Chapter 4: Extended discussion 

mATAC-Seq 

In the second chapter of my thesis, I presented a modification to ATAC-seq, 

methyl-ATAC-seq, which queries accessible chromatin and its underlying DNA 

methylation. In this study, I performed mATAC-seq on a standard model studying 

depletion of DNA methylation, HCT116, and its respective DNMT knockouts. We 

observed an increase in accessibility that accompanies a depletion of DNA 

methylation. Hypo-methylated and hyper-accessible promoters produce an increased 

quantity mRNA. Transcription factors associated with these changes are methylation-

sensitive, confirming methyl-SELEX (Yin et al., 2017) results in vivo. We can further 

cluster our peaks; segmenting them into different methylation-sensitive clusters, 

each showing a bias for methylation-sensitive transcription factor occupancy and 

differential expression. Thus far we have only published data studying DNA 

methylation at accessible chromatin in HCT116 lines in a highly simplified experiment 

and model. In the context of these cells, we have performed PRO-Seq (Mahat et al., 

2016) to further characterize the transcriptional changes that occur at active 

enhancers and transposable elements; at transposable elements, we have observed a 

decrease in DNA methylation and an increase in accessibility preferentially at 

relatively young transposons (unpublished data). 

Studies of HCT116 cells can be extended in several ways to assess chromatin state 

and the consequences of DNMT perturbation.  Disrupting global DNA methylation in 

a controlled manner using 5-azacytidine, an inhibitor of DNA methylation to study 
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changes to accessibility and passive DNA methylation over time. From the opposing 

end of this query, using inducible overexpression of TET enzymes, we can query the 

consequences of active demethylation at accessible chromatin to provide us with 

further understanding of the time course of active, rather than passive, 

demethylation. Similarly, we can query changes and consequences of DNA 

methylation by using controlled expression of DNMT enzymes. To further query the 

interactions between remodeling machinery and 5mC we can disrupt histone 

remodeling machinery known to interact with 5mC such as LSD1 and SUV39H1. 

Further topics of interest include the study of stem cells and embryogenesis 

which show a massive remodeling of their chromatin and DNA methylation landscape 

during differentiation (Messerschmidt, Knowles, & Solter, 2014) and the adaptation 

of sci-ATAC-seq to mATAC-seq. With mATAC-seq we can query these changes in high 

resolution. mATAC-seq is also highly amenable to 5hmC analysis using TET-enzyme 

based methods such as TAB-seq and APOBEC-based method such as ACE-seq to 

further modify ATAC-seq to measure 5hmC. 

 

sci-ATAC-seq 

In the third chapter of this thesis, I performed single cell ATAC-seq on the nuclei 

of Down syndrome model mice using a modified version of sci-ATAC-seq. Using 

optimizations from Omni-ATAC-seq we were able to recover highly informative 

single-cell data of exceptionally high quality, with a mean FRiP greater than 70%, 

compared to a reported mean FRiP of 22% reported in Preissl et al. using snATAC-
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seq. Using this, we were able to show changes that occur in Down syndrome model 

mice with resolution that has not been previously available. The predominant result 

that we observed was an extreme enrichment of interneurons (~50%) in the cortex, 

with interneurons accessible at Drd1 and Drd2 showing the greatest change, and a 

corresponding depletion of excitatory neurons (~12%) localized to the upper layers of 

the cortex. At these cell-types, we frequently observed a change in motifs 

representing triplicated transcription factors, but also several cell-type specific 

changes. 

Though this was a study performed at high resolution, we lack temporal 

resolution to track the changes that we observed as these experiments were 

performed in adult mice. In order to address each of these issues, we would have to 

perform sci-ATAC-seq on a time-course of animals to track where and how changes in 

population arise. Furthermore, we queried a single, large region of the brain, the 

cortex. Several regions of the brain have been shown to be dysfunctional in Down 

Syndrome models, and little is known about precisely what changes in each cell-type. 

The Soloway lab has expressed interest in therapeutic or preventative options in 

mitigating the effects of Down Syndrome. Such methods include gene therapies 

(Chakrabarti et al., 2010) and dietary supplementation (Ash et al., 2014). Both models 

have implied a change in cell-type composition and their veracity can be easily tested 

using sci-ATAC-seq.  As we home in on precise changes that occur, it will become 

viable to test pharmaceutical interventions to more precisely assay treatments. 

The weakness of this data is that although we query the regulatory changes in 



 

128 

 

accessible chromatin, we do not measure changes in gene expression. Combinatorial 

single-cell methods are currently being developed and show promise in correlating 

changes in accessibility and gene expression (Cao et al., 2018; Clark et al., 2018). In 

parallel, labs have begun to simultaneously analyze single cell accessibility and 

expression data, showing that changes in accessibility do not necessarily correlate to 

increased transcription (Jia et al., 2018). As costs continue to decrease and 

availability of data increases it will become important to integrate other single-cell 

datasets into future analysis. 

The primary purpose of this study was to test the effectiveness of sci-ATAC-seq in 

identifying changes in a heterogenous population in disease states. In this sense it 

was a complete success. Currently, we have optimized our protocol to increase our 

total number of unique reads per cell (unpublished data) without compromising our 

FRiP score using increased temperatures during tagmentation. With this success, 

ease, and low-cost of this technique, we are now beginning to apply sci-ATAC-seq to 

other tissue-types, disease models, and organisms. 
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