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The	genetic	improvement	of	Manihot	esculenta,	or	cassava,	has	historically	

been	slow,	largely	because	its	biology	renders	traditional	breeding	techniques	

inefficient	and	because	of	little	interest	from	the	private	sector.	The	goal	of	the	Next	

Generation	Cassava	Breeding	project	(NEXTGEN)	is	to	assist	breeding	institutions	in	

Nigeria,	Uganda,	and	Tanzania	with	increasing	the	rate	of	genetic	improvement	of	

cassava	through	implementation	of	genomic	selection	(GS).	The	three	chapters	of	

my	thesis	outline	my	work	and	involvement	with	the	NEXTGEN	project.	The	first	

chapter	details	our	investigation	of	two	questions:	1)	can	we	use	existing	imputation	

methods	developed	by	the	human	genetics	community	to	impute	missing	genotypes	

in	datasets	derived	from	non-human	species	and	2)	are	these	methods,	which	were	

developed	and	optimized	to	impute	ascertained	variants,	amenable	for	imputation	

of	missing	genotypes	at	next-generation	sequencing	(NGS)-derived	variants?	In	the	

second	chapter,	we	introduce	a	statistical	method,	BIGRED	(Bayes	Inferred	

Genotype	Replicate	Error	Detector),	for	detecting	mislabeled	and	contaminated	

samples	using	shallow-depth	sequence	data.	BIGRED	addresses	key	limitations	of	

existing	approaches	and	produced	highly	accurate	results	in	simulation	

experiments.	In	the	third	chapter,	we	outline	how	we	used	the	multi-generational	

pedigree	and	genotyping-by-sequencing	(GBS)	data	from	the	International	Institute	
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of	Tropical	Agriculture	(IITA)	to	characterize	the	recombination	landscape	across	

the	18	chromosomes	of	cassava.	We	detected	SNP	intervals	containing	crossover	

events	using	SHAPEIT2	and	duoHMM,	constructed	a	genetic	map	using	these	

intervals,	compared	it	to	an	existing	map	constructed	by	the	International	Cassava	

Genetic	Map	Consortium	(ICGMC),	and	constructed	sex-specific	genetic	maps	to	see	

if	cassava	displays	sexual	dimorphism	in	crossover	distribution	and	frequency.	
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CHAPTER	1	

EVALUATING	IMPUTATION	ALGORITHMS	FOR	LOW-DEPTH	GENOTYPING-BY-

SEQUENCING	(GBS)	DATA1	

	

ABSTRACT	

Well-powered	genomic	studies	require	genome-wide	marker	coverage	

across	many	individuals.	For	non-model	species	with	few	genomic	resources,	high-

throughput	sequencing	(HTS)	methods,	such	as	Genotyping-By-Sequencing	(GBS),	

offer	an	inexpensive	alternative	to	array-based	genotyping.	Although	affordable,	

datasets	derived	from	HTS	methods	suffer	from	sequencing	error,	alignment	errors,	

and	missing	data,	all	of	which	introduce	noise	and	uncertainty	to	variant	discovery	

and	genotype	calling.	Under	such	circumstances,	meaningful	analysis	of	the	data	is	

difficult.	Our	primary	interest	lies	in	the	issue	of	how	one	can	accurately	infer	or	

impute	missing	genotypes	in	HTS-derived	datasets.	Many	of	the	existing	genotype	

imputation	algorithms	and	software	packages	were	primarily	developed	by	and	

optimized	for	the	human	genetics	community,	a	field	where	a	complete	and	accurate	

reference	genome	has	been	constructed	and	SNP	arrays	have,	in	large	part,	been	the	

common	genotyping	platform.	We	set	out	to	answer	two	questions:	1)	can	we	use	

existing	imputation	methods	developed	by	the	human	genetics	community	to	

impute	missing	genotypes	in	datasets	derived	from	non-human	species	and	2)	are	

these	methods,	which	were	developed	and	optimized	to	impute	ascertained	

																																																								
1	A.	W.	Chan,	M.	T.	Hamblin,	and	J.-L.	Jannink,	“Evaluating	Imputation	Algorithms	for	
Low-Depth	Genotyping-By-Sequencing	(GBS)	Data.,”	PLoS	One,	vol.	11,	no.	8,	p.	
e0160733,	2016.	
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variants,	amenable	for	imputation	of	missing	genotypes	at	HTS-derived	variants?	

We	selected	Beagle	v.4,	a	widely	used	algorithm	within	the	human	genetics	

community	with	reportedly	high	accuracy,	to	serve	as	our	imputation	contender.	We	

performed	a	series	of	cross-validation	experiments,	using	GBS	data	collected	from	

the	species	Manihot	esculenta	by	the	Next	Generation	(NEXTGEN)	Cassava	Breeding	

Project.	NEXTGEN	currently	imputes	missing	genotypes	in	their	datasets	using	a	

LASSO-penalized,	linear	regression	method	(denoted	‘glmnet’).	We	selected	glmnet	

to	serve	as	a	benchmark	imputation	method	for	this	reason.	We	obtained	estimates	

of	imputation	accuracy	by	masking	a	subset	of	observed	genotypes,	imputing,	and	

calculating	the	sample	Pearson	correlation	between	observed	and	imputed	

genotype	dosages	at	the	site	and	individual	level;	computation	time	served	as	a	

second	metric	for	comparison.	We	then	set	out	to	examine	factors	affecting	

imputation	accuracy,	such	as	levels	of	missing	data,	read	depth,	minor	allele	

frequency	(MAF),	and	reference	panel	composition.		

	

INTRODUCTION	

Well-powered	genomic	studies	require	genome-wide	marker	coverage	

across	many	individuals.	Many	genotyping	methods	exist,	and	one	typically	selects	a	

genotyping	platform	based	on	budgetary	constraints	and	the	available	molecular	

tools	for	the	species	in	question.	Genetic	variation	in	the	human	genome,	for	

instance,	has	largely	been	captured	using	single-nucleotide	polymorphism	(SNP)	

arrays	that	can	assay	up	to	2.5	million	variants	[1].	The	per-sample	and	array-design	

costs	of	these	assays,	however,	make	them	accessible	only	to	well-funded	model	
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systems.	For	species	lacking	a	complete	reference	genome	or	predesigned	high-

density	SNP	genotyping	arrays,	high-throughput	sequencing	(HTS)	methods,	such	as	

Genotyping-By-Sequencing	(GBS),	offer	an	economic	approach	for	surveying	

variants	at	the	genome	level.	The	multiplex	capabilities	of	HTS	methods	allow	for	

great	flexibility	in	experimental	design.	For	instance,	given	a	fixed	number	of	

sequencing	reads	and	genome	size,	one	can	choose	to	sequence	a	small	number	of	

individuals,	allocating	the	reads	among	a	small	number	of	individuals,	or	one	can	

choose	to	distribute	the	reads	among	a	larger	sample	of	individuals.	The	former	

framework	generates	datasets	with	relatively	low	levels	of	missing	data.	The	small	

sample	size	limits	the	number	of	detected	variants,	but	this	may	be	a	moot	point	

depending	on	the	biological	question	one	wishes	to	address.	For	studies	requiring	

large	sample	sizes	and	dense	genome-wide	marker	coverage,	e.g.	genome-wide	

association	studies	(GWAS)	and	genomic	selection	(GS),	the	latter	genotyping	

framework	is	preferable,	and	one	can	impute	or	infer	missing	genotypes	with	

appropriate	imputation	methods	[2].		

Genotype	imputation	is	a	well-established	statistical	technique	for	estimating	

unobserved	genotypes.	Many	genotype	imputation	algorithms	and	software	

packages	exist,	but	most	were	primarily	developed	by	and	optimized	for	the	human	

genetics	community,	a	field	where	a	complete	and	accurate	reference	genome	has	

been	constructed	and	SNP	arrays	have,	in	large	part,	been	the	common	genotyping	

platform.	These	algorithms	differ	in	their	details	but	all	essentially	pool	information	

across	individuals	in	either	a	study	sample	or	a	reference	panel	or	both	to	estimate	

haplotype	frequencies	from	the	observed	genotype	data,	imputing	missing	
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genotypes	simultaneously.	Although	the	statistical	methods	for	genotype	imputation	

are	now	highly	developed	and	widely	used,	selecting	the	set	of	haplotypes	to	include	

in	the	reference	panel	for	maximum	imputation	accuracy	in	a	given	study	

population	remains	unclear.	Selection	schemes	typically	take	one	of	two	

approaches:	a	‘best	match’	approach,	which	attempts	to	construct	a	reference	panel	

that	closely	matches	the	ancestry	of	the	study	sample,	or	a	‘cosmopolitan’	approach,	

which	makes	use	of	all	available	haplotypes	[3].		

To	assess	the	applicability	of	human-tailored	imputation	algorithms	in	non-

model	species	datasets,	we	evaluated	the	imputation	performance	of	Beagle	v.4,	a	

widely	used	haplotype-phasing	algorithm	with	reportedly	high	accuracy,	in	low-

depth	GBS-generated	data	collected	from	the	species	Manihot	esculenta	(commonly	

referred	to	by	its	colloquial	name	‘cassava’).	We	compared	Beagle	v.4	to	a	LASSO-

penalized,	linear	regression	imputation	method	(denoted	glmnet).	We	chose	Beagle	

v.4	over	other	haplotype-phasing	programs	because	the	algorithm	1)	scales	well	to	

large	sample	sizes	(>1000)	while	other	algorithms	require	some	form	of	parameter	

space	reduction	to	be	computationally	competitive,	2)	requires	no	parameter	

specification,	e.g.	effective	population	size,	3)	takes	genotype	likelihoods	as	input,	

and	4)	performs	genotype	calling	[4].	The	Next	Generation	(NEXTGEN)	Cassava	

Breeding	Project	currently	employs	glmnet	to	impute	missing	genotypes	in	

NEXTGEN	datasets;	we	selected	glmnet	to	serve	as	a	benchmark	method	for	this	

reason.	Glmnet	takes	a	linear	regression	approach	to	genotype	imputation.	The	

algorithm	assumes	that	any	locus	on	a	given	chromosome	can	be	modeled	as	a	

linear	combination	of	other	intra-chromosomal	loci,	independent	of	locus	distance	
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and	locus	order.	Such	methods	model	only	the	statistical	correlations	between	loci	

and	make	no	attempts	at	relating	observed	correlations	to	underlying	biological	

phenomena,	such	as	linkage	disequilibrium	(LD;	the	nonrandom	association	of	

alleles	among	linked	loci).	Results	from	[5]	show	that	imputation	of	unordered	

markers	can	be	accurate,	particularly	when	LD	between	markers	is	high	and	when	

individuals	in	the	study	sample	share	recent	common	ancestry.		

We	evaluated	Beagle	and	glmnet	under	three	imputation	scenarios:	

imputation	guided	by	1)	no	reference	panel,	2)	a	reference	panel	with	large	genetic	

diversity	(reference	panel	A),	and	3)	a	reference	panel	that	closely	matches	the	

ancestry	of	the	study	sample	(reference	panel	B).	We	describe	the	composition	of	

reference	panel	A	and	B	in	greater	detail	in	the	Methods	and	Materials	section.	We	

provide	a	schematic	drawing	of	reference	panel	A	and	B	in	Appendix	Figure	1.1A	

and	of	the	three	imputation	scenarios	in	Appendix	Figure	1.1B.	We	performed	a	

series	of	cross-validation	experiments	using	GBS	data	collected	from	the	species	

Manihot	esculenta	by	NEXTGEN.	For	simplicity,	we	focused	on	the	situation	where	

the	reference	haplotypes	in	scenario	2	and	3	are	defined	on	the	same	set	of	

polymorphic	sites	as	those	found	in	the	study	sample.	For	each	cross-validation	

experiment,	we	measured	imputation	accuracy	at	both	the	site-	and	individual-level,	

using	the	sample	Pearson	correlation	statistic	as	an	estimate	of	accuracy.	We	

assessed	the	impact	of	missing	data,	read	depth,	minor	allele	frequency	(MAF),	and	

reference	panel	composition	on	imputation	accuracy.	We	report	the	computation	

requirement	and	a	scalar	summary	of	imputation	accuracy	measured	at	the	site	and	

individual	for	Beagle	and	glmnet	under	each	scenario.		
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MATERIALS	AND	METHODS	

We	evaluated	the	performance	of	Beagle	and	glmnet	under	three	imputation	

scenarios	using	data	collected	at	biallelic	SNPs	on	chromosome	5	from	two	

NEXTGEN	cassava	populations:	the	International	Institute	of	Tropical	Agriculture’s	

(IITA)	Genetic	Gain	(GG)	population,	a	collection	of	historically	important	clones,	

and	IITA’s	Cycle	1	(C1)	population.	We	first	describe	how	the	sequence	data	was	

generated	and	processed	then	provide	a	description	of	the	two	IITA	populations.	

	

Data	generation	and	variant	calling	

ApeKI	GBS	libraries	were	constructed	at	the	Institute	for	Genomic	Diversity	

at	Cornell	University	and	sequenced	on	the	Illumina	HiSeq	2000/2500	at	the	

Biotechnology	Resource	Center	at	Cornell	University	following	the	protocol	outlined	

in	[6].	Converting	the	raw	read	data	into	a	final	set	of	SNP	calls	involved	a	number	of	

steps;	a	complete	description	of	the	protocol	is	beyond	the	scope	of	this	paper.	We	

refer	the	reader	to	[7]	and	https://bitbucket.org/tasseladmin/tassel-5-

source/wiki/Tassel5GBSv2Pipeline	for	a	detailed	description	of	version	4	and	5	of	

the	TASSEL-GBS	bioinformatics	pipeline,	respectively.	SNPs	were	extracted	from	the	

raw	sequence	data	using	the	TASSEL	5.0	GBS	discovery	pipeline	with	alignment	to	

the	Manihot	esculenta	v.6	assembly.	Sequence	reads	generated	by	GBS	assays	were	

trimmed	or	padded	to	64	bases	and	subjected	to	quality	filters	(refer	to	section	

‘Favoring	allelic	redundancy	over	quality	scores’	of	[7]).	The	filtered	sequence	reads	

were	aligned	to	the	cassava	reference	genome	version	6	assembly.	Genotype	calling	
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then	proceeded	for	each	individual	by	counting	the	number	of	times	each	allele	was	

observed	and	using	empirically	determined	thresholds	for	genotype	calls.	SNP	

calling	was	then	performed	using	the	inferred	genotypes.	To	minimize	

ascertainment	bias,	all	NEXTGEN	samples	(in	addition	to	non	NEXTGEN	samples)	

sequenced	to	date	were	used	for	variant	detection.	Putative	SNPs	were	filtered	

based	on	a	minimum	minor	allele	frequency	(mnMAF)	of	0.001.	NEXTGEN	opted	to	

use	a	relatively	low-stringency	filter	since	false-positive	variants	can	be	filtered	out	

in	subsequent	steps.	We	obtained	18	VCF	files	(one	VCF	file	per	chromosome)	after	

processing	the	raw	GBS	sequence	reads	from	NEXTGEN	samples.	The	raw	VCF	file	

for	chromosome	5,	a	chromosome	approximately	30	Mbp	in	length,	contained	

30018	entries	(variant	sites)	and	15750	samples,	164	of	which	were	blank	negative	

controls.	Appendix	Figure	1.2	shows	the	distribution	of	variants	across	the	length	of	

chromosome	5.	As	of	writing	this	manuscript,	the	data	we	analyzed	are	free	and	

publically	available	at	www.cassavabase.org.		

Each	sample	ID	(i.e.	column	name)	in	the	VCF	files	follows	the	following	

format:	‘ShortName:LibraryPrepID’.	Upon	closer	examination,	we	found	554	

‘ShortNames’	that	appear	>2	times	in	the	VCF	file	for	chromosome	5.	Samples	

sharing	an	identical	‘ShortName’	represent	(supposed)	technical	or	biological	

replicates	of	a	unique	individual.	Before	merging	the	sequence	data	from	samples	

sharing	an	identical	‘ShortName’,	we	applied	an	Expectation-Maximization	(EM)	

algorithm	to	detect	mislabeling	of	samples	among	technical	and	biological	replicates	

(unpublished).	We	merged	the	sequence	data	for	cases	where	the	algorithm	

detected	no	error.	We	then	removed	non-biallelic	sites	from	the	dataset,	leaving	a	
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total	of	20302	biallelic	SNPs	for	analysis.	Appendix	Figure	1.2	shows	the	distribution	

of	biallelic	SNPs	across	the	length	of	chromosome	5.		

The	FORMAT	field	of	the	VCF	file	consists	of	five	colon-separated,	sub-fields:	

genotype	(GT),	allelic	read	depth	(AD),	read	depth	(DP),	genotype	quality	(GQ),	and	

Phred-scaled	likelihood	(PL).	For	our	purposes,	we	were	interested	in	only	the	AD	

subfield,	which	encodes	the	observed	counts	of	each	of	the	two	alleles	in	individual	

d	at	site	v:	!!(!) = !!(!,!),!!(!,!) ,	where	!!(!,!)	and !!(!,!)	denote	the	observed	

counts	of	allele	A	and	allele	B,	respectively,	in	individual	d	at	site	v.	To	ensure	that	

genotype	likelihoods	were	calculated	in	a	consistent	manner,	we	computed	

genotype	likelihoods	for	each	individual	at	each	site	using	the	data	stored	in	the	AD	

subfield	rather	than	using	those	provided	in	the	PL	subfield	of	the	VCF	file.	Given	

observed	data	!!(!)	and	fixed	sequencing	error	rate	e	=	0.01,	we	computed	the	

likelihood	for	genotype	!!(!) = !.	We	calculated	genotype	likelihoods	for	a	single	

individual	at	a	single	site	independent	of	all	other	individuals	and	sites	in	the	sample	

using	the	following	equation:		

! !!! |!!! = !, ! = !!!,! + !!!,!  
!!!,!  

1− !! !!
!,! (!!)!!

!,!
	

	

!! =
!,

0.50,
1− !,

 
when
when
when

 
! = !!
! = !"
! = !!

	.	

We	estimated	posterior	probabilities	for	the	three	genotypes	using	the	

likelihoods	defined	above	and	assuming	a	uniform	genotype	prior.	We	summarized	

posterior	probabilities	into	genotype	dosages	since	the	glmnet	algorithm	can	only	
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take	scalar-valued	genotypes	as	input.	Genotype	dosages	take	values	in	[0,2]	or	NA	

for	the	case	where	no	data	is	observed	for	a	given	individual	at	a	site.	We	converted	

genotype	likelihoods	into	normalized,	Phred-scaled	likelihoods	to	use	as	input	for	

Beagle.			

	

Germplasm	

IITA	has	a	large	GG	population	for	which	there	are	many	years	of	historical	

phenotype	data	collected	in	many	environments.	NEXTGEN	selected	a	subset	of	GG	

individuals	to	serve	as	a	training	population	(TP)	for	genomic	selection	(GS)	at	IITA.	

NEXTGEN	selected	an	individual	if	plant	material	still	existed	for	the	individual	(i.e.	

DNA	could	be	extracted	to	obtain	genotype	data)	and	if	phenotype	records	for	the	

individual	were	based	on	a	sufficient	number	of	observations.	As	of	writing	this	

report,	694	individuals	met	these	criteria	[8].	From	this	point	forward,	we	refer	to	

these	694	individuals	as	the	GG	population.	Genomic	estimated	breeding	values	

(GEBVs)	were	obtained	using	the	genomic	best	linear	unbiased	prediction	(BLUP)	

method	and	the	top	GG	individuals	were	selected	to	serve	as	founders	of	the	IITA	GS	

breeding	program.	To	avoid	inbreeding	depression,	NEXTGEN	designed	a	crossing	

framework	based	on	results	from	a	k-means	clustering	analysis,	crossing	two	GG	

individuals	only	if	they	belonged	to	different	clusters.	Based	on	pedigree	records,	a	

total	of	y	≥474	crosses	were	made,	with	only	a	subset	of	these	crosses	(134	crosses	

using	82	individuals)	producing	viable	progeny.	The	large	variation	in	viable	

progeny	number	among	attempted	crosses	results	from	the	wide	variation	in	

flowering	time,	rate,	and	fertility	in	cassava	[9].	Viable	progeny	from	GG	crosses	
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collectively	form	the	C1	population.	Two	randomly	sampled	individuals	from	the	C1	

population	are	nominally	related	in	one	of	three	possible	ways:	the	two	individuals	

are	1)	full	siblings,	2)	half	siblings,	or	3)	unrelated.	We	have	pedigree	records	for	

2207	C1	individuals	but	found	2490	individuals	in	the	VCF	file	whose	sample	IDs	

indicate	C1	population	membership	(i.e.	samples	with	sample	name	prefix	“2013_”	

and	“TMS13”).	We	used	all	2490	C1	individuals	as	the	target	of	imputation	for	

scenarios	2	and	3.	

Inconsistencies	among	sources	of	information	(i.e.	the	pedigree	record,	the	

sequence	data	in	the	VCF	file,	and	the	list	of	694	GG	individuals)	influenced	the	

design	of	the	two	reference	panels	used	in	imputation	scenarios	2	and	3.	According	

to	the	pedigree	record,	82	individuals	gave	rise	to	the	C1	population;	however,	only	

78	of	these	82	supposed	C1	parents	appear	in	the	list	of	694	GG	individuals.	We	

expected	all	C1	parents	to	appear	in	the	list	of	GG	individuals.	We	found	sequence	

data	for	these	78	individuals	in	the	VCF	file.	Of	the	remaining	four	individuals	listed	

as	C1	parents	in	the	pedigree	record,	we	found	sequence	data	for	only	two	

individuals	B9200061	and	B9200068	in	the	VCF	file.	We	expected	all	C1	parents	to	

have	sequence	data	since	this	information	was	required	for	estimation	of	breeding	

values.	We	found	no	sequence	data	for	individuals	I970466	and	I974769	in	the	VCF	

file.	

The	694	GG	individuals	served	as	the	reference	panel	for	scenario	2	

(reference	panel	A,	representing	a	“cosmopolitan”	reference	panel).	The	80	

individuals	listed	as	C1	parents	in	the	pedigree	record	for	whom	we	have	sequence	

data	served	as	the	reference	panel	for	scenario	3	(reference	panel	B,	representing	a	
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“best-match”	reference	panel).	The	intersection	of	reference	panel	A	and	panel	B	

consists	of	78	C1	parents.	We	provide	a	schematic	drawing	of	reference	panel	A	and	

B	in	Appendix	Figure	1.1A.	

The	two	reference	panels	collectively	contain	696	unique	individuals	(the	

union	of	reference	panel	A	and	panel	B).	We	performed	a	principal	component	

analysis	(PCA)	to	explore	whether	there	is	any	evidence	of	population	structure	

among	the	696	reference	panel	individuals.	We	calculated	the	realized	additive	

relationship	matrix	for	the	696	reference	panel	individuals	at	a	subset	of	the	20205	

biallelic	SNPs	using	the	function	“A.mat”	from	the	R	package	“rrBLUP”	[10],	[11].	We	

excluded	sites	with	>50%	missing	data	(max.missing=0.5)	from	the	calculation	and	

imputed	missing	dosage	values	using	the	“EM”	option	(impute.method=”EM”).	We	

then	performed	PCA	through	eigenvalue	decomposition	of	the	realized	additive	

relationship	matrix	(covariance	matrix)	using	the	R	function	“prcomp”	and	plotted	

the	first	two	principal	components	(Appendix	Figure	1.3).	We	observed	little	

evidence	of	subpopulation	structure	among	the	696	reference	panel	individuals.	

	

Dataset	for	scenario	1	(imputation	using	no	reference)		

If	each	individual	and	each	site	in	the	study	sample	have	a	low	proportion	of	

missing	data,	no	reference	panel	is	needed	to	impute	the	missing	genotypes	in	the	

sample;	the	almost	complete	data	from	the	other	individuals	and	the	high	marker	

density	should	provide	sufficient	information	to	impute	with	high	accuracy.	We	

tested	this	concept	using	the	694	GG	individuals	as	our	study	sample.	We	extracted	

the	genotype	dosages	and	normalized,	Phred-scaled	likelihoods	for	the	GG	
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individuals	at	biallelic	sites	(n	=	20302).	Appendix	Figure	1.4	shows	the	distribution	

of	the	proportion	of	missing	data	per	site.	The	term	“missing”	denotes	zero	reads	

observed	at	a	given	site	for	a	given	individual.	We	removed	sites	with	>90%	missing	

data,	leaving	a	total	of	20205	sites	for	cross-validation	experiment	1.	We	use	this	

same	set	of	sites	for	imputation	scenario	2	and	3	for	reasons	given	in	the	proceeding	

section.	Appendix	Figure	1.5A	and	S5B	show	the	distribution	of	the	mean	read	depth	

per	site	averaged	across	all	694	GG	individuals	and	across	all	696	reference	panel	

individuals,	respectively.	

	

Datasets	for	scenario	2	and	3	

We	assessed	the	impact	of	reference	panel	composition	on	imputation	

accuracy	using	C1	individuals	(n	=	2490)	as	the	target	of	imputation.	We	

constructed	two	reference	panels,	one	designed	to	represent	a	cosmopolitan	

reference	panel	for	imputation	scenario	2	and	the	other	designed	to	represent	a	

best-match	reference	panel	for	scenario	3.	Variants	absent	from	the	reference	panel,	

but	present	in	the	study	sample,	cannot	be	imputed.	We,	therefore,	focused	on	the	

situation	where	the	reference	panel	is	defined	on	the	same	set	of	polymorphic	sites	

as	those	found	in	the	study	sample,	using	the	same	set	of	20205	biallelic	SNPs	

defined	in	scenario	1.	

We	extracted	genotype	dosages	and	normalized,	Phred-scaled	likelihoods	for	

the	2490	C1	individuals.	To	construct	the	reference	panels	for	scenario	2	and	3,	

which	collectively	consist	of	696	individuals,	we	extracted	genotype	dosages	and	

normalized,	Phred-scaled	likelihoods	for	the	696	reference	panel	individuals.	We	
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ran	the	glmnet	and	Beagle	imputation	algorithms,	using	the	extracted	genotype	

dosages	and	normalize,	Phred-scaled	likelihoods	for	the	696	individuals	as	input,	

respectively.	We	constructed	the	cosmopolitan	reference	panel	for	Beagle	(glmnet)	

using	the	inferred	haplotypes	(imputed	genotype	dosages)	from	the	694	GG	

individuals;	we	constructed	the	best-match	reference	panel	for	Beagle	(glmnet)	

using	the	inferred	haplotypes	(imputed	genotype	dosages)	from	the	80	C1	parents.	

Although	a	reference	panel	cannot	be	explicitly	specified	when	imputing	with	

glmnet,	the	algorithm	can	still	make	use	of	the	information	encoded	in	non-study	

sample	individuals.	The	increased	sample	size	of	the	training	data	should,	in	theory,	

increase	imputation	accuracy.	

	

Glmnet	Algorithm	

We	used	the	R	package	glmnet	to	fit	a	LASSO-penalized,	linear	regression	

model	to	the	observed	genotype	data	[12].	The	glmnet	imputation	algorithm	

described	here	employs	a	combination	of	both	variable	selection	and	the	least	

absolute	angle	and	selection	operator	(LASSO).	LASSO	penalized	estimates	are	

solutions	to	an	optimization	problem	of	the	form:		

! = !"#$%&! !! − !! − !!"!!!
!!!

! + !!
!!! !!

!!
!!! .	

We	set	q	=	1.	The	variable	!	is	a	regularization	parameter	that	controls	the	trade-offs	

between	lack	of	fit	and	model	complexity;	! ≥ 0	[13].	In	addition	to	shrinking	

estimates	toward	zero,	LASSO	can	perform	variable	selection,	setting	a	subset	of	

regression	coefficients	to	zero	[13].	The	algorithm	initializes	by	imputing	missing	

genotypes	at	site	v	to	the	mean	genotype	at	site	v.	Although	the	LASSO	performs	
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variable	selection	on	its	own,	we	performed	an	initial	round	of	variable	selection	to	

decrease	computation	time	--	shrinking	the	variable	search	space	to	a	subset	of	60	

markers	rather	than	using	all	markers	on	a	chromosome	as	potential	predictors	of	

genotype.	We	calculated	pairwise	correlations	between	the	target	marker	and	all	

intra-chromosomal	markers,	retaining	the	60	markers	that	showed	the	strongest	

correlation	with	the	target	marker.	We	selected	a	maximum	retention	number	of	60	

arbitrarily.	Other	approaches	for	shrinking	the	variable	search	space	exist	but	were	

not	explored	in	this	study.	By	default,	glmnet	selects	a	lambda	value	using	10-fold	

cross-validation,	looking	at	100	different	lambda	penalty	coefficients.	To	decrease	

computation	time,	5-fold	cross	validation	was	performed	on	10	lambda	values.		

	

Beagle	v.4		

Beagle	v.4	is	an	iterative	algorithm	for	fitting	a	local	haplotype	hidden	

Markov	model	(HMM)	to	genotype	data.	The	algorithm	alternates	between	model	

building	and	sampling,	using	stochastic	expectation	maximization	(EM)	to	converge	

towards	the	most	probable	solutions	[14].	There	are	five	components	to	an	HMM:	1)	

hidden	states,	2)	observed	values,	3)	state-transition	probabilities,	4)	emission	

probabilities,	and	5)	initial-state	probabilities	[15].	The	underlying	hidden	states	of	

an	HMM	generate	the	observed	data,	and	the	state-transition	probabilities,	emission	

probabilities,	and	initial-state	probabilities	are	parameters	of	the	HMM.	In	the	

context	of	haplotype	phase	and	missing	genotype	inference,	the	observed	data	are	

the	unphased	genotypes,	while	the	hidden	states	represent	haplotype	membership	
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and	the	true,	underlying	genotypes.	Beagle	estimates	state-transition	probabilities,	

emission	probabilities,	and	initial-state	probabilities	from	the	data.		

The	algorithm	begins	by	imputing	missing	genotypes	according	to	allele	

frequencies	and	randomly	phasing	heterozygous	genotypes.	Beagle	v.4	then	uses	

these	initial	haplotype	estimates	to	obtain	estimates	of	the	HMM	parameters.	The	

algorithm	constructs	a	directed	acyclic	graph	(DAG)	using	the	haplotype	data	and	

estimates	the	HMM	parameters	using	observed	haplotype	counts	and	the	

assumption	of	Hardy-Weinberg	Equilibrium	(HWE).	[16].	Browning	provides	a	

detailed	explanation	of	how	the	algorithm	constructs	the	graphical	model	in	[16].	

After	constructing	the	model,	Beagle	samples	four	pairs	of	haplotypes	per	individual	

from	the	posterior	distribution	of	haplotypes	conditioned	on	the	observed	

genotypes.	These	sampled	haplotypes	serve	as	input	for	the	next	iteration	to	re-

estimate	the	model	parameters.	The	model	building	and	sampling	procedure	

repeats	for	five	burn-in	iterations,	followed	by	an	additional	five	iterations.	Beagle	

v.4	outputs	a	consensus	haplotype	for	each	individual,	which	is	constructed	from	the	

20	haplotypes	sampled	during	the	non	burn-in	iterations.	In	addition	to	consensus	

haplotypes,	Beagle	v.4	outputs	imputed	genotype	dosages	(also	known	as	posterior	

mean	genotypes)	for	each	individual	at	each	site.	A	reference	panel	can	be	specified	

in	Beagle	v.4	with	the	ref	parameter.	All	genotypes	in	the	reference	panel	must	be	

non-missing	and	phased.	

	

Measuring	imputation	accuracy	
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There	are	various	metrics	of	imputation	accuracy:	imputation	correlation,	

the	Pearson	correlation	between	observed	and	imputed	genotypes,	imputation	

concordance,	the	proportion	of	correctly	imputed	genotypes,	imputation	quality	

score	(IQS),	the	concordance	adjusted	for	chance	agreement),	etc.	[17].	We	selected	

the	Pearson	correlation	coefficient	to	serve	as	our	metric	of	imputation	accuracy	at	

the	site	level	since	its	interpretation	does	not	depend	on	MAF.	The	sample	Pearson	

correlation	between	two	variables	is	defined	as	the	covariance	of	the	two	variables	

divided	by	the	product	of	their	standard	deviations:	! = !!!! !!!!!
!!!

!!!! !!
!!! !!!! !!

!!!
.	

When	computing	the	sample	Pearson	correlation,	r,	at	site	v,	X	denotes	the	site’s	

vector	of	observed	genotype	dosages	and	Y	denotes	the	site’s	vector	of	imputed	

genotype	dosages.	The	sample	Pearson	correlation	is	calculated	with	the	

assumption	that	the	genotype	dosages	are	accurately	estimated.	The	sample	

Pearson	correlation	is	a	function	of	two	vectors,	both	of	length	L.	The	value	of	L	

varies	across	sites	for	two	reasons:	the	random	nature	of	the	masking	scheme	and	

non-uniform	representation	of	sites	within	the	set	of	validation	genotypes	defined	

by	Caller	A	and	B.	The	Pearson	correlation	coefficient	is	undefined	when	either	L<2	

or	when	the	vector	of	imputed	genotype	dosages	is	invariant.		

To	calculate	imputation	accuracy,	we	masked	a	set	of	validation	genotype	

dosages,	imputed,	and	calculated	the	sample	Pearson	correlation	between	observed	

and	imputed	genotype	dosages.	We	employed	two	different	methods,	Caller	A	and	

Caller	B,	to	define	the	set	of	validation	genotypes	for	cross-validation	experiments.	

Caller	A	returns	a	genotype	dosage	for	individual	d	at	site	v	if	individual	d	was	
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surveyed	a	minimum	of	seven	times	at	site	v	and	returns	NA	otherwise.	The	second	

method,	Caller	B,	returns	a	genotype	dosage	for	individual	d	at	site	v	if	the	most	

likely	genotype	is	at	least	10	times	more	likely	than	the	second	most	likely	genotype	

and	returns	NA	otherwise.	We	found	that	cross-validation	experiments	using	Caller	

A	and	B	validation	genotypes	returned	similar	results	for	imputation	scenario	1	

(data	not	shown),	resulting	in	our	decision	to	run	scenario	2	and	3	using	only	Caller	

B	validation	genotypes.		

We	simulated	a	scenario	where	genotypes	were	missing	in	a	random	fashion	

across	the	genome	and	obtained	estimates	of	imputation	accuracy	using	10-fold	

cross	validation.	The	masking	scheme	is	best	visualized	by	describing	the	datasets	

as	matrices,	where	the	rows	represent	biallelic	sites	and	the	columns	represent	

individuals.	The	elements	in	a	matrix	represent	genotypes:	individual	d	has	

genotype	!!(!) = !	at	marker	v.	We	extracted	each	genotype’s	read	depth	from	the	

VCF	file	using	VCFtools	[18].	We	partitioned	the	set	of	validation	genotypes	into	10	

equally	sized,	disjoint	subsets:	M1,	M2,	…,	M10.	Each	subset	corresponds	to	a	fold	in	

the	10-fold	cross-validation	scheme.	As	an	example,	we	generated	the	masked	

dataset	for	fold	1	by	taking	the	original	data	matrix,	finding	the	coordinates	of	the	

genotypes	belonging	to	the	set	M1,	and	setting	the	elements	in	these	coordinates	to	

missing.	This	masking	scheme	resulted	in	10	masked	datasets	(i.e.	10	folds).	We	

calculated	the	imputation	accuracy	on	a	per-site	basis	for	each	fold	and	the	

imputation	accuracy	on	a	per-individual	basis	for	each	fold.	We	then	calculated	the	

median	imputation	accuracy	per-marker	and	the	median	imputation	accuracy	per-

individual	across	the	10	folds.	
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Measuring	computation	cost	

We	measured	computation	time	as	the	number	of	CPU	minutes	required	to	

complete	the	imputation	of	one	dataset.	All	jobs	were	submitted	to	the	

Computational	Biology	Service	Unit	at	Cornell	University,	which	uses	an	eight	core	

Linux	(Centos	6.2)	Dell	PowerEdge	M600	with	16GB	RAM.		

	

RESULTS	

Imputation	with	No	Reference	Panel		

We	imputed	masked	genotypes	at	20205	SNPs	on	chromosome	5	in	a	sample	

of	694	individuals	from	the	GG	population.	In	this	section,	we	report	the	results	from	

cross-validation	experiments	where	the	set	of	validation	genotype	dosages	was	

defined	using	Caller	B	(see	Methods).		

The	sample	Pearson	correlation	is	a	function	of	two	vectors,	both	of	length	L.	

The	value	of	L	varies	across	sites	and	individuals	because	genotype	masking	occurs	

at	random	and	because	genotype	call	rates	vary	across	the	20205	sites	(see	

Methods).	The	sample	correlation	coefficient	at	site	v	is	undefined	under	two	

scenarios:	when	L<2	(true	for	34	of	the	20205	sites	in	the	dataset)	and	when	the	

vector	of	imputed	genotype	dosages	at	site	v	has	a	variance	equal	to	zero.	The	latter	

occurs	when	imputation	returns	identical	genotype	dosages	for	all	L	masked	

genotypes	at	site	v.	We	obtained	accuracy	estimates	for	Beagle	at	13028	sites	(set	A)	

and	19933	sites	(set	B)	for	glmnet.	Set	A	is	a	subset	of	B,	i.e.	every	member	of	set	A	is	

also	a	member	of	set	B.	Figure	1.1	presents	estimated	accuracy	as	a	function	of	L	for	
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sites	in	set	A	imputed	with	Beagle.	As	might	be	expected,	we	observed	greatest	

variation	among	accuracy	estimates	for	small	L	(Figure	1.1).	We	removed	sites	with	

L<30	from	our	analysis,	leaving	us	with	9737	sites	(set	C)	to	analyze.	We	selected	a	

filter	threshold	of	30	somewhat	arbitrarily	but	opted	for	a	moderate-stringency	

filter	to	avoid	removing	a	large	subset	of	sites	from	our	analysis.	

	

	

	

	

	

	

	

	

	

	

	
	
	
Figure	 1.1	 Estimates	 of	 accuracy	 as	 a	 function	 of	 L	 for	 13028	 sites	 imputed	
with	 Beagle.	 Imputation	 accuracies	 were	 estimated	 using	 the	 sample	 Pearson	
correlation	 coefficient,	 r.	 The	 sample	 Pearson	 correlation	 is	 a	 function	 of	 two	
vectors,	both	of	length	L.	Figure	1.1.	presents	estimated	accuracy	as	a	function	of	L	
for	 set	A	 sites	 (n=13028).	The	 range	of	L	 is	 divided	 into	 a	 series	 of	 seven	 equally	
sized	bins	(i.e.	0	<	L	≤	100,	100	<	L	≤	200,	…,	600	<	L	≤	700).	Accuracy	estimates	were	
divided	 into	 bins	 according	 to	 their	 corresponding	 values	 of	 L.	 Bin	 means	 and	
medians	are	presented	as	red	and	blue	points,	respectively.	

	

Figure	1.2	summarizes	and	compares	the	accuracy	of	Beagle	and	glmnet	

imputation	at	the	site	and	individual	level.	Both	Beagle	and	glmnet	produced	
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bimodal	distributions	of	per-site	accuracies,	with	median	per-site	imputation	

accuracies	of	0.76	and	0.82,	respectively	(Figure	1.2B).	We	argue	that	this	

bimodality	results	from	an	overrepresentation	of	low-frequency	variants,	a	

hallmark	of	HTS-derived	datasets.	Both	methods	produced	left-skewed	distributions	

of	per-individual	Pearson	correlations,	with	nearly	identical	medians	(0.991	and	

0.992	for	Beagle	and	glmnet,	respectively;	Figure	1.2D).	

	

	
Figure	1.2.	A	summary	and	comparison	of	per-site	and	per-individual	
imputation	accuracy	from	Beagle	and	glmnet	imputation.		
(A	and	B)	The	x-	and	y-axes	report	estimates	of	imputation	accuracy	for	glmnet	and	
Beagle,	respectively.	Each	point	represents	the	estimated	accuracy	for	a	single	site	
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(A)	and	individual	(B).	(C)	Both	Beagle	and	glmnet	produced	bimodal	distributions	
of	 per-site	 accuracies,	 with	 median	 per-site	 imputation	 accuracies	 of	 0.76	 (black	
vertical	 line)	and	0.82	(red	vertical	 line),	respectively.	(D)	Both	methods	produced	
left-skewed	 distributions	 of	 per-individual	 accuracies,	with	median	 per-individual	
accuracies	of	0.991	and	0.992	for	Beagle	and	glmnet,	respectively.	
	

Proportion	of	missing	data	and	read	depth	

We	examined	the	effect	of	the	proportion	of	missing	data	on	imputation	accuracy	at	

the	site	and	individual	level	(Figure	1.3).	As	might	be	expected,	we	observed	a	

decline	in	imputation	accuracy	as	the	level	of	missing	data	increased.	Beagle	

appears	to	show	greater	sensitivity	to	levels	of	missing	data	relative	to	glmnet,	

particularly	when	the	proportion	of	missing	data	at	a	site	falls	within	the	(0.1,	0.5]	

interval	(Figure	1.3A	and	3B).	We	observed	essentially	no	difference	between	the	

two	imputation	methods	when	examining	accuracy	at	the	individual	level	(Figure	

1.3B).	
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Figure	 1.3.	 Per-site	 and	 per-individual	 imputation	 accuracy	 as	 a	 function	 of	
missing	data	and	median	read	depth.		
(A)	Beagle	and	glmnet	imputation	accuracy	as	a	function	of	missing	data	for	sites	in	
set	C	(n	=	9737).	(B)	The	x-	and	y-axis	display	the	proportion	of	missing	data	and	the	
accuracy	difference	between	Beagle	and	glmnet	at	the	site	and	individual	level.	The	
range	of	x	is	divided	into	ten-equally	sized	bins	(i.e.	0.00	<	x	≤	0.10,	0.10	<	x	≤	0.20,	…,	
0.90	<	x	≤	1.00),	and	accuracy	differences	are	divided	into	bins	according	to	levels	of	
missing	 data.	 Bin	means	 and	medians,	 summarizing	 the	 data	within	 each	 bin,	 are	
displayed	 as	 red	 and	 blue	 points,	 respectively.	 Points	 falling	 on	 the	 black	 vertical	
line	at	y	=	0	 indicate	no	observed	accuracy	difference	between	Beagle	and	glmnet	
imputation.	Points	 falling	below	y	=	0	represent	cases	where	glmnet	 imputes	with	
higher	accuracy	relative	to	Beagle.		
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Minor	allele	frequency	

We	estimated	the	minor	allele	frequency	(MAF;	the	minor	allele	at	a	site	could	be	

either	the	reference	or	alternative	allele	listed	in	the	VCF	file)	at	all	20205	sites	

using	the	sample	of	694	individuals	from	the	GG	population.	Figure	1.4	presents	per-

site	r	as	a	function	of	estimated	MAF	for	the	9737	sites	in	set	C.	We	divided	the	

range	of	x	into	five-equally	sized	bins	(i.e.	0.00	<	x	≤	0.10,	0.10	<	x	≤	0.20,	…,	0.40	<	x	≤	

0.50),	and	summarized	accuracy	values	within	each	frequency	bin	using	the	mean	

and	median	(Figure	1.4).	We	observed	a	decrease	in	accuracy	as	MAF	decreased	and	

greatest	variance	in	low-frequency	bins	(Figure	1.4	left	and	middle	panel).	These	

two	trends	are	consistent	with	previous	results	suggesting	that	sites	harboring	rare	

alleles	are	more	difficult	to	impute	accurately	relative	to	sites	harboring	more	

common	alleles	[3].	Glmnet	appears	to	impute	with	slightly	higher	accuracy	than	

Beagle	at	all	MAF	bins	(Figure	1.4	right	panel).	

	

	
Figure	1.4.	Imputation	accuracy	as	a	function	of	MAF	
The	 left	 and	 middle	 panels	 show	 per-site	 accuracy	 of	 Beagle	 and	 glmnet	 as	 a	
function	of	(estimated)	MAF.	The	right-most	panel	shows	the	difference	in	accuracy	
between	 Beagle	 and	 glmnet	 at	 each	 site	 as	 a	 function	 of	 MAF.	 We	 observed	 the	
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greatest	 difference	 in	 accuracy	 at	 low-frequency	 variants.	 Low-frequency	 variants	
were	imputed	with	high	variance.		
	

Reference	Panel	Size	and	Composition	

We	next	investigated	the	effect	of	reference	panel	composition	on	imputation	

accuracy	(Figure	1.5).	Figure	1.5	summarizes	Beagle	and	glmnet	imputation	

accuracy	in	a	sample	of	2490	individuals	from	the	C1	population	for	genotypes	

imputed	with	a	reference	panel	of	694	and	80	individuals	(Figure	1.5A).	[19]	

reported	considerable	increases	in	Beagle’s	imputation	accuracy	with	increased	

reference	panel	size	across	all	minor	allele	frequencies,	with	the	greatest	increase	at	

low-frequency	variants.	We,	however,	observed	essentially	no	difference	in	the	

median	per-marker	r	when	imputing	with	the	larger	reference	panel	(Figure	1.5A).	

Sites	with	a	MAF	≤	0.01	appeared	to	benefit	the	most	when	imputing	with	a	larger	

reference	panel,	but	gains	in	accuracy	were	small	(Figure	1.5B).	We	observed	

modest	gains	in	mean	accuracy	across	all	levels	of	missing	data	when	imputing	with	

the	larger	reference	panel	(Figure	1.5C).	Overall,	Beagle	and	glmnet	imputed	

missing	genotype	with	similar	accuracies	regardless	of	the	reference	panel	used.	

Beagle	required	a	slightly	longer	runtime	relative	to	glmnet	(Table	1.1).	
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Figure	1.5.	The	accuracy	difference	between	reference	panel	A	and	panel	B	as	
a	function	of	MAF	and	proportion	of	missing	data	for	11535	sites.		
(A)	Genotypes	in	a	sample	of	2490	C1	individuals	were	imputed	using	two	different	
reference	panels:	 reference	panel	A,	 comprised	of	694	phased	GG	 individuals,	 and	
reference	panel	B,	 comprised	of	80	phased	 individuals	 listed	as	progenitors	of	 the	
C1	population.	(B	and	C)	Points	falling	on	the	black	vertical	line	at	y	=	0	indicate	no	
observed	 accuracy	 difference	when	 imputing	with	 reference	 panel	 A	 or	 B.	 Points	
falling	 below	 y	 =	 0	 represent	 cases	 where	 Beagle	 imputes	 with	 higher	 accuracy	
when	using	reference	panel	B	relative	to	imputing	with	reference	panel	A.	
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Table	1.1.	A	 summary	of	Beagle	 and	 glmnet’s	 computation	 cost	 (in	 seconds)	
and	median	per-site	and	per-individual	accuracy	under	scenario	1,	2,	and	3.		
(Top)	We	calculated	the	mean	computation	time	across	the	10	folds	of	each	cross-
validation	 experiment.	 (Middle)	 We	 calculated	 the	 median	 r	 across	 sites	 and	
reported	 this	 as	 a	 scalar	 summary	of	 imputation	 accuracy	 in	 that	 cross-validation	
experiment.	 (Bottom)	We	calculated	 the	median	r	 across	 individuals	and	reported	
this	as	a	scalar	summary	of	imputation	accuracy	in	that	cross-validation	experiment		
	
Mean	
computation	time	

Scenario	1	
(seconds)	

Scenario	2	
(seconds)	

Scenario	3	
(seconds)	

Beagle	 2249.6	 63713.5	 43935.4	
Glmnet	 12477.86	 56295.45	 34551.17	
	
Median	per-site	r	 Scenario	1	

(percent)	
Scenario	2	
(percent)	

Scenario	3	
(percent)	

Beagle	 76.48	 90.37	 90.05	
Glmnet	 81.94	 90.21	 89.31	
	
Median	per-
individual	r	

Scenario	1	
(percent)	

Scenario	2	
(percent)	

Scenario	3	
(percent)	

Beagle	 99.17	 99.34	 99.36	
Glmnet	 99.09	 99.30	 99.29	
	
	

DISCUSSION	

Imputation	accuracy	was	calculated	as	the	correlation	between	the	observed	

genotype	dosage	(estimated	from	allelic	count	data	in	the	AD	subfield	of	the	VCF	

file)	and	the	imputed	genotype	dosage.	We	note	that	to	obtain	true	measures	of	

imputation	accuracy,	the	imputed	genotype	dosage	should	be	correlated	with	the	

true	genotype,	rather	than	the	observed	genotype	dosage.	Unfortunately,	true	

genotypes	are	not	known	and	observed	genotype	dosages	must	be	used	instead.	The	

accuracy	based	on	correlation	to	the	observed	genotype	dosages	under-estimates	

the	true	imputation	accuracy	in	two	ways.	First,	there	is	error	associated	with	the	

observed	genotype	dosage	(resulting	from	sequencing	errors,	alignment	errors,	etc.)	
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that	reduces	the	correlation.	Second,	the	observed	genotype	dosage	of	individual	i,	

at	site	j	were	computed	using	one	source	of	information	--	the	observed	sequence	

data	from	individual	i,	at	site	j.	The	imputed	genotype	dosage	from	Beagle	and	

glmnet,	in	contrast,	were	computed	using	a	multi-sample	LD	approach.	Multi-sample	

LD	methods	infer	the	genotype	dosage	of	individual	i,	at	site	j	by	jointly	analyzing	

data	from	multiple	individuals	in	the	sample,	at	site	j	and	at	nearby	sites	(i.e.	

information	regarding	LD).	The	use	of	information	from	multiple	individuals	and	

patterns	of	LD	has	been	shown	to	lead	to	significant	improvements	in	genotype-

calling	accuracy	for	low-depth	sequence	data	(for	an	example,	see	[20]).	

Using	a	set	of	validation	genotypes	at	biallelic	SNPs	on	chromosome	5,	we	

found	that	Beagle	and	glmnet	impute	missing	variants	with	similar	accuracies.	

When	comparing	the	two	methods	at	the	site	level,	glmnet	appears	to	impute	with	

(moderately)	higher	accuracy	relative	to	Beagle,	regardless	of	levels	of	missing	data.	

We,	however,	observe	little	difference	between	the	two	methods	when	measuring	

accuracy	at	the	individual	level	(Figure	1.3B).	We	observed	the	greatest	difference	in	

accuracy	between	the	two	methods	in	scenario	1	(imputation	guided	by	no	

reference	panel).	Differences,	however,	were	only	moderate,	suggesting	that	1)	

human-tailored	imputation	algorithms	can	produce	relatively	accurate	genotype	

estimates	when	applied	to	datasets	derived	from	non-human	organisms	and	2)	

these	algorithms,	which	were	developed	and	optimized	to	impute	ascertained	

variants,	appear	amenable	for	imputation	of	variants	discovered	via	an	HTS	

methods	such	as	GBS.		
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The	unique	aspects	of	the	datasets	derived	from	a	non-human	organism,	such	

as	cassava,	and	HTS	methods,	such	as	GBS,	do	not	affect	Beagle’s	imputation	

accuracy	in	ways	we	do	not	understand	or	expect.	For	instance,	we	observed	a	

decrease	in	imputation	accuracy	as	MAF	decreased	(Figure	1.4	left),	consistent	with	

previous	results	suggesting	that	sites	harboring	rare	alleles	are	more	difficult	to	

impute	accurately	relative	to	sites	harboring	more	common	alleles	[3].	Results	also	

indicate	that	the	Beagle	algorithm	is	robust	to	deviations	from	the	HWE	assumption	

that	underlies	the	Beagle	algorithm.	HWE	is	violated	in	domesticated	species,	which	

have	undergone	generations	of	controlled	mating	and	directional	selection.		

The	modest	difference	in	imputation	accuracy	between	Beagle	and	glmnet	

was	in	some	ways	unexpected,	largely	because	the	two	algorithms	employ	

contrastingly	different	approaches	to	modeling	genotype	data.	Glmnet	does	not	

attempt	to	directly	relate	observed	correlation	patterns	to	any	underlying	biological	

process,	whereas	Beagle	specifies	a	statistical	model	for	the	biological	aspect	of	the	

problem	–	namely,	the	haplotypes	that	generated	the	observed	LD	structure.	Both	

algorithms	leverage	data	at	a	subset	of	markers	to	impute	missing	genotypes	at	a	

particular	locus,	but	they	employ	very	different	subset	selection	strategies.	Glmnet	

selects	markers	solely	on	measures	of	pairwise	correlation,	ignoring	locus	order	and	

spacing.	Beagle,	in	contrast,	focuses	on	a	small	number	of	nearby	markers	when	

imputing	missing	genotypes	at	a	particular	site	(localized	haplotype-cluster	model).	

Correlation	between	markers	is	a	localized	phenomenon;	that	is,	there	tends	to	be	

less	LD	between	loci	that	are	far	apart	than	between	loci	that	are	close	together.	The	

apparent	correlations	observed	between	distant	markers	are	largely	statistical	
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artifacts,	i.e.	noise	introduced	by	sampling	variation.	While	glmnet	and	Beagle	

produced	similar	results	in	our	cross-validation	experiments,	we	reason	that	there	

are	situations	in	which	Beagle	will	outperform	glmnet	(e.g.	when	levels	of	spurious	

associations	between	distant	markers	is	high	relative	to	true	levels	of	LD).	In	

addition	to	decreased	sensitivity	to	spurious	associations	between	distant	markers,	

probabilistic,	phasing	methods,	such	as	Beagle,	offer	additional	benefits,	such	as	

providing	phased	haplotypes	and	measures	of	imputation	accuracy	estimated	from	

posterior	genotype	probabilities.	

In	scenario	2	and	3,	we	used	a	sample	of	2490	C1	individuals	to	compare	the	

accuracy	of	genotype	imputation	with	a	cosmopolitan	reference	panel	(reference	

panel	A)	and	a	best-match	panel	(reference	panel	B).	Reference	panel	A	consists	of	

694	individuals,	a	subset	of	who	are	list	as	C1	parents	in	pedigree	records	(n	=	78).	

Reference	panel	B,	in	contrast,	consists	entirely	of	individuals	listed	as	C1	parents	in	

pedigree	records	(n	=	80).	The	set	of	C1	parents	in	panel	A	is	a	subset	of	panel	B.	We	

found	that	imputation	using	reference	panel	A	and	B	resulted	largely	in	similar	

imputation	accuracies	across	sites.	We	find	this	reassuring	for	two	reasons:	1)	the	

617*2	haplotypes	from	the	non-parental	individuals	in	reference	panel	A	appear	to	

serve	as	good	proxies	for	the	haplotypes	of	the	two	C1	parents	that	are	present	in	

panel	B	but	absent	in	panel	A	and	2)	adding	‘extraneous’	haplotypes	to	the	reference	

panel	appears	to	introduce	little	error	to	the	imputation	procedure,	consistent	with	

previous	observations	made	by	those	in	the	human	genetics	community	[3].	

Imputation	with	reference	panel	A	required	more	computation	time	relative	to	

imputation	with	panel	B	(by	approximately	1.5X).	In	practice,	however,	the	task	of	
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constructing	a	best-match	reference	panel	is	considerably	more	challenging	and	

computationally	expensive	than	the	one	presented	here.	We	reason	that	a	

cosmopolitan	reference	panel	is	a	good	fallback	choice	when	the	optimal	panel	

composition	is	unclear	and	if	one	has	the	computational	resources	to	employ	a	large	

reference	panel	for	imputation.	
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CHAPTER	2	

A	STATISTICAL	FRAMEWORK	FOR	DETECTING	MISLABELED	AND	

CONTAMINATED	SAMPLES	USING	SHALLOW-DEPTH	SEQUENCE	DATA2	

	

ABSTRACT	

Researchers	typically	sequence	a	given	individual	multiple	times,	either	re-

sequencing	the	same	DNA	sample	(technical	replication)	or	sequencing	different	

DNA	samples	collected	on	the	same	individual	(biological	replication)	or	both.	

Before	merging	the	data	from	these	replicate	sequence	runs,	it	is	important	to	verify	

that	no	errors,	such	as	DNA	contamination	or	mix-ups,	occurred	during	the	data	

collection	pipeline.	Methods	to	detect	such	errors	exist	but	are	often	ad	hoc,	cannot	

handle	missing	data	and	several	require	phased	data.	Because	they	require	some	

combination	of	genotype	calling,	imputation,	and	haplotype	phasing,	these	methods	

are	unsuitable	for	error	detection	in	low-	to	moderate-depth	sequence	data	where	

such	tasks	are	difficult	to	perform	accurately.	Additionally,	because	most	existing	

methods	employ	a	pairwise-comparison	approach	for	error	detection	rather	than	

joint	analysis	of	the	putative	replicates,	results	may	be	difficult	to	interpret.	We	

introduce	a	new	method	for	error	detection	suitable	for	shallow-,	moderate-,	and	

high-depth	sequence	data.	Using	Bayes	Theorem,	we	calculate	the	posterior	

probability	distribution	over	the	set	of	relations	describing	the	putative	replicates	

and	infer	which	of	the	samples	originated	from	an	identical	genotypic	source.	Our	

																																																								
2	A.	W.	Chan,	A.	L.	Williams,	and	J.-L.	Jannink,	“A	statistical	framework	for	detecting	
mislabeled	and	contaminated	samples	using	shallow-depth	sequence	data,”	BMC	
Bioinformatics,	pp.	1–14,	2018.	
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method	addresses	key	limitations	of	existing	approaches	and	produced	highly	

accurate	results	in	simulation	experiments.	Our	method	is	implemented	as	an	R	

package	called	BIGRED	(Bayes	Inferred	Genotype	Replicate	Error	Detector),	which	

is	freely	available	for	download:	https://github.com/ac2278/BIGRED.		

	

INTRODUCTION	

A	researcher	may	choose,	for	a	number	of	reasons,	to	sequence	an	individual	

multiple	times,	performing	technical	replication,	biological	replication,	or	both.	

Because	sequencing	experiments	involve	many	steps	and	errors	can	occur	during	

any	part	of	the	workflow,	one	motivation	for	sequencing	an	individual	more	than	

once	is	to	allow	researchers	to	compare	these	replicates,	identify	outlier	samples,	

and	evaluate	how	well	a	sequencing	pipeline	is	executed.	This	is	particularly	

important	for	plant	breeders,	as	they	require	ongoing	estimates	of	their	program’s	

error	rates.	Further	discussion	of	reasons	for	intentional	replication	appear	

elsewhere	[1].	In	short,	the	three	aspects	of	replication—sequencing	read	depth,	

technical	replication,	and	biological	replication—each	play	different	roles	in	

mitigating	errors	that	are	introduced	in	the	experimental	pipeline.	Increasing	

sequencing	read	depth	allows	for	improved	variant	calling	while	technical	and	

biological	replicates	allow	for	optimization	of	bioinformatic	filters	[1].	Replication	

can	also	arise	unintentionally	as	a	result	of	human	error	or	naming	inconsistencies,	

and	it	is	in	a	researchers	best	interest	to	make	full	use	of	the	data,	merging	the	

replicate	records	rather	than	discarding	them.	
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Before	merging	the	data	from	biological	or	technical	replicates	or	using	them	

to	inform	quality	filter	thresholds,	it	is	important	to	verify	that	no	erroneous	

samples	exist	among	the	putative	replicates	(i.e.	verify	that	all	putative	replicates	

derived	from	an	identical	individual).	Existing	methods	for	error	detection	include	

performing	pairwise	identity-by-state	and	–by-descent	estimation	[2],	calculating	

the	correlation	between	pairs	of	samples,	and	examining	a	heat	map	of	a	realized	

genomic	relationship	matrix.	These	approaches	require	some	combination	of	

genotype	calling,	imputation,	and	haplotype	phasing,	making	them	unsuitable	for	

low-	to	moderate-depth,	high-throughput	sequence	(HTS)	data	[3].	And	because	

these	methods	employ	a	pairwise-comparison	approach	for	error	detection	rather	

than	joint	analysis	of	the	samples,	results	may	be	inconsistent	when	more	than	two	

replicates	exist.	To	illustrate,	the	general	protocol	for	heat	map	analysis	involves	

starting	off	with	some	collection	of	sequenced	samples	(including	the	replicates	of	

interest),	calling	genotypes,	filtering	based	on	percent	missing,	imputing	missing	

genotypes,	calculating	the	additive	genomic	relationship	matrix,	and	finally	plotting	

a	heat	map	of	the	putative	replicates.	This	method	can	work	well	on	deeply	

sequenced	samples,	but	complications	arise	when	applying	this	method	to	shallow-

depth	sequence	data.	Firstly,	it	requires	genotype	calling,	which	is	difficult	to	do	

accurately	when	we	have	low	read	depth.	Secondly,	it	requires	imputation,	raising	

issues	in	regards	to	reference	panel	and	imputation	method	selection.	Furthermore,	

results	from	imputation	vary	depending	on	which	samples	were	jointly	imputed,	

which	in	turn,	affects	downstream	analyses	that	use	the	imputed	data.	Finally,	a	

third	limitation	of	this	method—common	among	existing	error	detection	
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methods—is	that	it	relies	on	pairwise	comparisons	of	the	putative	replicates,	rather	

than	joint	analysis	of	the	replicates.	For	example,	suppose	we	have	three	putative	

replicates,	A,	B,	and	C.	It	is	possible	that	A	and	B	are	highly	correlated,	A	and	C	are	

highly	correlated,	but	B	and	C	are	only	moderately	correlated.	In	situations	such	as	

this,	deciding	if	all	three	samples	are	replicates	is	not	straightforward.	

Considering	these	issues,	we	propose	a	method	that	addresses	key	

limitations	of	existing	approaches.	The	proposed	method	detects	errors	by	

estimating	the	conditional	posterior	probability	of	all	possible	relationships	among	

the	putative	replicates	(Figure	2.1).	We	call	our	algorithm	BIGRED	(Bayes	Inferred	

Genotype	Replicate	Error	Detector).	BIGRED	requires	no	genotype	calling,	

imputation,	or	haplotype	phasing,	making	it	a	suitable	tool	for	studies	relying	on	

shallow-depth	HTS	data.	We	examined	the	effect	of	read	depth,	the	number	of	sites	

analyzed	(L),	and	minor	allele	frequency	(MAF)	at	the	L	sites	on	algorithmic	

performance,	using	both	real	and	simulated	data.	In	this	paper,	we	used	BIGRED	as	a	

tool	to	verify	reported	replicates;	however,	we	also	envision	individuals	using	our	

algorithm	to	test	unreported	but	suspected	replicates.	Under	this	scheme,	

researchers	would	use	some	initial	screening	method,	such	as	examination	of	the	

genomic	relationship	matrix,	to	identify	cryptic	replicates	among	their	collection	of	

samples	and	then	test	these	suspected	replicates	using	BIGRED.	

	

MATERIALS	AND	METHODS	

The	Proposed	Method	
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We	describe	the	proposed	method	using	a	case	study,	individual	I011206	from	

the	Next	Generation	(NEXTGEN)	Cassava	Breeding	Project	[4].	I011206	is	recorded	

to	have	been	sequenced	k	=	3	times	by	NEXTGEN	(Appendix	Figure	2.1).	We	index	

the	putative	replicates	using	the	variable	d.	The	task	is	to	verify	that	samples	d	=	1,	d	

=	2,	and	d	=	3	are	in	fact	replicates	of	the	same	individual,	checking	all	possible	

combinations	of	replicate	and	non-replicate	status.	We	know	that	the	DNA	samples	

from	these	three	runs	can	be	related	in	one	of	five	possible	ways	(Figure	2.1):		

1. All	three	samples	originate	from	one	source;		

2. Samples	d	=	1	and	d	=	2	originate	from	one	source	while	d	=	3	originates	from	

a	different	source;		

3. Samples	d	=	1	and	d	=	3	originate	from	one	source	while	d	=	2	originates	from	

a	different	source;	

4. Samples	d	=	2	and	d	=	3	originate	from	one	source	while	d	=	1	originates	from	

a	different	source;	

5. All	three	samples	originate	from	different	sources.		

	

We	use	“source	vectors”	to	represent	these	relations	and	enumerate	all	possible	

source	vectors	for	k	=	3	on	the	right	panel	of	Figure	2.1.	By	convention:	(1)	source	

vectors	are	labeled	vectors,	e.g.,	the	first,	second,	and	third	element	of	a	given	source	

vector	describes	the	status	of	sample	d	=	1,	d	=	2,	and	d	=	3,	respectively,	and	(2)	the	

first	element	of	a	source	vector	always	takes	on	the	value	1.	Vector	elements	with	

the	same	value	are	indicated	to	be	from	the	same	source.	
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Figure	2.1.	The	set	of	relations	describing	the	three	putative	replicates	of	an	
individual	and	the	corresponding	source	vectors.	
BIGRED	 calculates	 the	 posterior	 probability	 distribution	 over	 the	 set	 of	 relations	
describing	the	putative	replicates	and	 infers	which	of	 the	samples	originated	 from	
an	identical	genotypic	source.	The	source	vector	S	=	(1,2,1)	represents	the	scenario	
where	sample	d	=	1	and	d	=	3	originate	from	an	identical	source.	Crossed	out	boxes	
represent	samples	without	any	replicate.	
	

BIGRED	detects	errors	by	estimating	the	conditional	posterior	probability	of	each	

source	vector	S,	given:		
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1. Estimates	of	population	allele	frequency	at	L	randomly	sampled	biallelic	

sites,	sampled	at	the	genome-wide	level	and		

2. The	k	putative	replicates’	allelic	depth	(AD)	data	at	the	L	sites.	A	site	is	only	

sampled	if	each	putative	replicate	has	at	least	one	read	at	that	site.	

	

We	make	three	simplifying	assumptions:		

1. The	species	is	diploid;	

2. Each	polymorphic	site	harbors	exactly	two	alleles,	allele	A	and	allele	B,	i.e.	all	

polymorphisms	are	biallelic;	

3. Sites	are	independent.	BIGRED	allows	the	user	to	specify	a	minimum	

distance,	in	base	pairs,	between	any	two	sampled	sites.	The	user	may	also	

filter	sites	based	on	linkage	disequilibrium,	although	this	is	not	a	

functionality	of	BIGRED.	

	

Defining	a	likelihood	function	for	G	

Let	!!(!)	and	!!(!)	denote	the	observed	AD	data	and	the	underlying	

(unknown)	genotype	at	site	v	for	putative	replicate	d,	respectively.	The	AD	data	

records	the	observed	counts	of	allele	A	and	B	at	site	v	for	sample	d:	

!!(!) = (!!(!,!),!!(!,!)).	Given	observed	data	!!(!)	and	fixed	sequencing	error	rate	e,	we	

compute	the	likelihood	for	genotype	!!(!) = !	at	site	v	for	sample	d	using	a	binomial	

model	as	follows,	where	! ∈ !!,!",!!:	
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! !!(!) !!(!) = !, ! = !!(!,!) +  !!(!,!)
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1− !! !!
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1− !,
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when
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! = 0 !" !!
! = 1 !" !"
! = 2 !" !!

	

	

	

	

(1)	

	

Defining	a	likelihood	function	for	S	

We	walk	through	the	procedure	of	defining	the	likelihood	function	for	S	when	k	=	3,	

continuing	with	individual	I011206	as	an	example:		

	

1. Enumerate	all	possible	source	vectors	of	length	k	=	3	(Figure	2.1).	

2. Enumerate	all	labeled	genotype	vectors	consistent	with	each	source	vector	

(Figure	2.2).	For	instance,	there	are	three	genotype	vectors	consistent	with	

source	vector	S	=	(1,1,1):	(AA,	AA,	AA),	(AB,	AB,	AB),	and	(BB,	BB,	BB).	There	

are	nine	genotype	vectors	consistent	with	S	=	(1,1,2):	(AA,	AA,	AA),	(AA,	AA,	

AB),	(AA,	AA,	BB),	(AB,	AB,	AB),	(AB,	AB,	AA),	(AB,	AB,	BB),	(BB,	BB,	BB),	(BB,	

BB,	AA),	and	(BB,	BB,	AB).	

3. Define	a	likelihood	function	for	S	as	a	function	of	genotype	likelihoods,	

defined	previously	in	Equation	1:		
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	 ! ! ! ! = ! ! ! ,! ! !
! !

 

= ! ! ! ! ! ! ! ! !
! !

 

= ! !!! !!!
!

!!!
! ! ! !

! !
	

	

	

	

	

(2)	

	

The	function	! ! ! ! 	is	the	probability	that	the	k	samples	have	genotype	vector	

!(!) = (!!!!! ,!!!!! ,… ,!!!!! ) given	that	source	vector	S	describes	how	the	k	samples	

are	related.	We	define	! ! ! ! 	using	the	(user-supplied)	population	allele	

frequency	of	allele	B	at	site	v	and	assuming	Hardy-Weinberg	Equilibrium	(HWE;	

Figure	2.2).	For	samples	that	are	encoded	as	identical	in	source	vector	S,	we	treat	

their	genotypes	as	a	single	observation	and	all	non-identical	genotypes	are	modeled	

as	independent	(Figure	2.2).	
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Figure	2.2.	Defining	! ! ! ! 	for	k	=	3.	
We	first	enumerate	all	possible	source	vectors	of	length	k	=	3	(left)	then	enumerate	
all	labeled	genotype	vectors	consistent	with	each	source	vector	(right).	Each	path	in	
a	given	tree	corresponds	to	a	genotype	vector	given	source	vector	S.	For	instance,	if	
the	three	samples	are	related	by	source	vector	(1,1,2),	the	genotype	vector	can	take	
one	of	nine	values.	We	compute	the	probability	of	each	genotype	vector	(given	S)	by	
traversing	each	path	and	taking	the	product	of	the	probabilities	associated	with	the	
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edges	of	the	path.	Note	that	genotype	vectors	not	consistent	with	S	have	probability	
zero	 (we	 omit	 these	 paths	 from	 the	 figure).	 Edge	 probabilities	 are	 defined	 using	
user-supplied,	population	allele	frequencies	and	assuming	HWE.	
	

Estimating	! ! ! 	

Once	we	compute	! ! ! ! 	at	all	L	sites,	we	compute	! ! ! 	jointly	across	

all	L	sites	using	Equation	3	and	assuming	a	uniform	prior	on	S:		

	

! ! ! ! = ! ! !
!

!!!
	

	

! ! ! = ! ! ! !(!)
! ! ! !(!)!

	

	

	

	

	

(3)	

One	may	wish	to	compare	the	posterior	probability	of	two	assignments	of	S,	and	

when	doing	so	via	the	posterior	odds-ratio,	both	the	denominator	and	P(S)	cancel	

from	the	two	posteriors	(since	the	denominator	acts	as	a	normalizing	constant	and	

we	assume	a	uniform	prior	on	S).	The	ratios	of	the	posteriors	are,	therefore,	equal	to	

the	ratios	of	the	likelihoods.	

		

Evaluating	BIGRED	

We	examined	how	changes	in	mean	read	depth,	L,	and	MAF	at	the	L	sites	

affect	the	accuracy	of	BIGRED.	For	simulation	experiments,	we	used	a	fixed	

sequencing	error	rate	of	0.01	and	sampled	sites	such	that	no	two	sites	fell	within	20	

kb	from	one	another.	In	addition	to	accuracy,	we	evaluated	the	sensitivity	of	the	

algorithm.	We	used	high-depth	whole-genome	sequence	(WGS)	data	from	241	
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Manihot	esculenta	individuals	to	simulate	a	series	of	data	sets.	Filtering	the	data	

(e.g.,	removing	sites	with	extremely	low	minor	allele	frequency	and	discarding	

regions	prone	to	erroneous	mapping)	should	be	done	prior	to	applying	BIGRED	to	

remove	potentially	spurious	variants.	We	refer	the	reader	to	the	section	“Alignment	

of	reads	and	variant	calling	of	cassava	haplotype	map	(HapMapII)”	of	[5]	for	a	

description	of	how	the	data	was	generated	and	the	quality	filters	applied.		

	

The	data	

The	WGS	data	consist	of	both	AD	data	and	called	genotypes	for	241	

individuals.	To	detect	the	presence	of	any	population	structure,	we	performed	

principal	component	analysis	(PCA)	using	the	called	genotypes	for	the	241	

individuals.	We	generated	a	pruned	subset	of	SNPs	that	are	in	approximate	linkage	

equilibrium	with	each	other	and	then	performed	a	PCA	using	this	pruned	subset	of	

SNPs	(Figure	2.3).	We	performed	LD-based	SNP	pruning	and	PCA	using	R	packages	

SNPRelate()	and	gdsfmt()	with	a	LD	threshold	of	0.40	[6].	The	241	individuals	

clustered	into	roughly	three	groups.	The	206	individuals	shown	in	orange	represent	

cultivated	cassava.	We	used	these	206	individuals	to	estimate	population	allele	

frequencies	at	sites	and	15	individuals,	previously	found	to	be	genetically	

distinct	[7],	to	simulate	AD	data	for	experiments.	We	limited	our	simulation	

experiments	to	these	15	members	to	ensure	that	all	individuals	truly	represent	

distinct	genotypes	rather	than	only	nominally	distinct.	
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Simulation	experiments	to	evaluate	the	impact	of	mean	read	depth	and	MAF	on	

accuracy	

We	first	evaluated	the	effect	of	mean	read	depth	λ	and	MAF	on	the	algorithm’s	

accuracy,	holding	L	constant	at	1000	sites.	We	outline	the	procedure	to	simulate	AD	

data	for	the	scenario	where	k	=	3	and	S	=	(1,2,1):		

1. Enumerate	all	possible	pairs	of	genotypes,	where	order	does	not	matter	(n	=	

15(14)	=	210).	

2. Sample	one	genotype	pair.	

3. Randomly	assign	the	status	‘source	1’	to	one	of	the	two	genotypes.	Assign	the	

remaining	genotype	‘source	2’	status.	

4. Randomly	sample	L	=	1000	sites	(genome-level)	with	a	specified	MAF.	

5. Simulating	!!!!! :	Sample	Y	alleles	(with	replacement)	from	the	pool	of	allele	

reads	belonging	to	source	1	at	that	site,	where	! ~ !"#$$"%(!).	

6. Simulating	!!!!! :	Sample	Y	alleles	(with	replacement)	from	the	pool	of	allele	

reads	belonging	to	source	2	at	that	site,	where	! ~ !"#$$"%(!).	

7. Simulating	!!!!! :	Sample	Y	alleles	(with	replacement)	from	the	pool	of	allele	

reads	belonging	to	source	1	at	that	site,	where	! ~ !"#$$"%(!).		

8. Feed	the	algorithm	the	simulated	AD	data	and	the	population	allele	

frequency	of	allele	B	at	the	L	sites.	

9. Record	the	conditional	posterior	probability	of	S	=	(1,2,1).	

10. Repeat	steps	2	through	9,	100	times.	When	repeating	step	2,	only	sample	

from	those	genotype	pairs	that	have	not	been	sampled	previously.	
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Note	that	evaluating	scenario	S	=	(1,2,1)	is	equivalent	to	evaluating	scenarios	S	=	

(1,1,2)	and	S	=	(1,2,2).	We	performed	a	full	factorial	experiment	for	the	source	

vectors	associated	with	k	=	2,	k	=	3,	and	k	=	4,	where	λ	=	{1,2,3,6,15}	and	where	we	

sampled	sites	with	a	given	MAF	falling	in	one	of	five	possible	intervals	(0.0,0.1],	

(0.1,0.2],	(0.2,0.3],	(0.3,0.4],	and	(0.4,0.5].	Note	that	in	these	simulation	experiments,	

all	putative	replicates	of	a	given	individual	had	identical	mean	read	depths.	We	later	

tested	the	scenario	where	mean	read	depths	varied	among	the	samples.	

	

Simulation	experiments	to	evaluate	the	impact	of	L	on	accuracy	

To	assess	the	impact	of	L	on	accuracy,	we	repeated	simulation	experiments	

for	S	=	(1,2,1)	and	S	=	(1,2,3),	sampling	sites	with	MAFs	falling	in	(0.2,0.3]	and	

testing	seven	values	of	L:	50,	100,	250,	500,	1000,	2000,	and	5000.	
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Figure	2.3.	PCA	on	241	Manihot	esculenta	genotypes,	using	a	subset	of	SNPs	in	
approximate	linkage	equilibrium.	
The	 x-axis	 and	 y-axis	 in	 this	 figure	 represents	 the	 first	 and	 second	 eigenvector,	
respectively.	 The	 241	 individuals	 clustered	 into	 roughly	 three	 groups.	 We	 used	
cultivated	 cassava	 (orange	 and	 black)	 to	 evaluate	 BIGRED	 in	 simulation	
experiments.	 We	 used	 15	 individuals	 (black)	 to	 simulate	 AD	 data	 and	 all	 206	
(orange	and	black)	individuals	to	estimate	population	allele	frequencies	at	sites.	
	

Simulation	experiments	to	evaluate	BIGRED’s	sensitivity	

We	next	evaluated	the	algorithm’s	sensitivity	by	simulating	the	scenario	

where	S	=	(1,1)	and	corrupting	(i.e.,	contaminating)	p	percent	of	sites	in	sample	d	=	2	
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with	a	second,	randomly	sampled	genotype	source.	We	tested	five	values	of	p	(10%,	

20%,	30%,	40%,	50%)	at	five	mean	depths	(1x,	2x,	3x,	6x,	and	15x).	We	repeated	

this	procedure	100	times	for	each	depth	and	p	combination.	

	

Simulation	experiments	to	evaluate	the	scenario	where	mean	read	depths	vary	

among	the	k	putative	replicates	

We	simulated	data	for	three	source	vectors	S	=	(1,1),	S	=	(1,2),	and	S	=	(1,2,1).	

For	S	=	(1,1)	and	S	=	(1,2),	we	varied	the	mean	read	depth	of	sample	d	=	2	while	

keeping	the	mean	depth	of	sample	d	=	1	constant	at	1x.	We	tested	five	different	λ	

values	for	sample	d	=	2:	1,	2,	4,	6,	and	12.	For	S	=	(1,2,1),	we	varied	the	mean	read	

depth	of	sample	d	=	3	while	keeping	the	mean	depth	of	samples	d	=	1	and	d	=	2	

constant	at	1x.	We	again	tested	five	λ	values	for	sample	d	=	2:	1,	2,	4,	6,	and	12.	We	

held	L	constant	at	1000	across	all	experiments	and	tested	the	same	five	MAF	

intervals	as	before.	

	

Comparing	results	to	hierarchical	clustering	

To	compare	results	from	BIGRED	and	hierarchical	clustering,	we	used	

genotyping-by-sequencing	(GBS)	data	[8]	collected	by	three	of	the	four	breeding	

programs	collaborating	on	the	NEXTGEN	Project:	the	International	Institute	of	

Tropical	Agriculture	(IITA),	the	National	Crops	Resources	Research	Institute	

(NaCRRI),	and	the	National	Root	Crops	Research	Institute	(NRCRI).	We	refer	the	

reader	to	the	section	“Data	generation	and	variant	calling”	of	[9]	for	a	description	of	

how	the	data	were	generated	and	filtered.	We	estimated	non-replicate	rates	for	
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these	three	programs.	The	Euler	diagram	below	shows	the	number	of	cases	where	a	

given	genotype	has	k	>	1	sequence	records,	for	each	breeding	institution	(Figure	

2.4).	We	found	k	=	9	samples	associated	with	TMEB419,	a	genotype	used	in	breeding	

efforts	at	both	IITA	and	NRCRI,	and	excluded	this	genotype	from	our	analysis	due	to	

the	computational	demands	for	cases	where	k	>7.	Appendix	Figure	2.5	plots	the	

number	of	source	vectors	associated	with	k	for	! ∈ {1,… ,8}.	We	also	removed	

putative	replicates	with	a	genome-wide	mean	read	depth	below	0.5.	We	ran	BIGRED	

using	L	=	1000	randomly	sampled	sites	across	cassava’s	18	chromosomes	with	

MAFs	falling	between	(0.4,0.5].	No	two	sites	fell	within	20	kb	from	one	another,	and	

we	assumed	a	fixed	sequencing	error	rate	of	0.01	when	calculating	genotype	

likelihoods.	
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Figure	2.4	An	Euler	diagram	showing	the	number	of	cases	(n)	where	a	given	
genotype	has	been	sequenced	more	than	once.	
We	 found	 n	 =	 475	 genotypes	 (excluding	 TMEB419)	 within	 the	 IITA	 germplasm	
collection	 that	 have	 each	 been	 sequenced	 k	 >1	 times.	 Entries	 falling	 at	 the	
intersection	of	IITA	and	NRCRI	(black)	represent	cases	where	IITA	submitted	DNA	
for	 k-x	 sequence	 runs	 of	 a	 given	 genotype	 and	 NRCRI	 submitted	 DNA	 for	 the	
remaining	x	runs.	There	were	146	such	cases.	We	found	n	=	173	genotypes	within	
the	 NRCRI	 germplasm	 collection	 that	 have	 each	 been	 sequenced	 k	 >1	 times.	 We	
found	n	 =	 119	 genotypes	within	 the	NaCRRI	 germplasm	 collection	 that	 have	 each	
been	sequenced	k	>1	times.	
	

We	compared	results	from	BIGRED	to	results	obtained	from	hierarchical	

cluster	analysis.	Results	from	[10]	show	that	hierarchical	clustering	is	an	effective	

tool	for	matching	accessions	from	farmers’	fields	to	corresponding	varieties	in	an	

existing	database	of	known	varieties,	a	problem	very	similar	to	the	one	being	

addressed	in	this	paper.	We	performed	hierarchical	clustering	on	the	k	putative	
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replicates	of	each	genotype.	To	do	this,	we	first	calculated	the	realized	additive	

relationship	matrix	for	the	1215	sequenced	samples	from	IITA	using	sites	harboring	

biallelic	SNPs.	Sites	were	filtered	using	criteria	based	on	MAF	and	percent	missing.	

Sites	with	a	MAF	falling	within	the	interval	(0.1,0.5]	and	with	<50%	missing	data	

across	the	1215	samples	were	kept,	leaving	us	with	46,862	sites	(out	of	100,267)	to	

analyze.	We	calculated	the	realized	additive	relationship	matrix	using	the	A.mat()	

function	from	the	R	package	rrBLUP	[11].	We	used	a	matrix	of	genotype	dosages	as	

input	and	imputed	missing	dosage	values	using	the	“mean”	option.	We	then	

calculated	a	distance	matrix	between	the	rows	of	the	additive	relationship	matrix	

using	Euclidean	distance	as	the	distance	measure.	We	performed	complete-linkage	

hierarchical	clustering	using	the	hclust()	function	and	the	distance	matrix	as	input	

[12].	For	each	genotype,	the	hclust()	function	returns	a	tree	structure	with	k	leaves,	

each	leaf	representing	a	putative	replicate.	We	determined	the	underlying	

relationship	among	each	genotype’s	putative	replicates	by	cutting	each	tree	at	a	

height	of	0.5.	We	refer	to	this	relationship	as	the	“source	vector”	to	keep	

terminology	consistent	with	that	of	BIGRED’s.	We	compared	results	from	the	

complete-linkage	cluster	analysis	to	results	from	BIGRED.	For	BIGRED,	we	set	a	

posterior	probability	threshold	of	0.99,	i.e.,	BIGRED	would	only	return	an	inferred	

source	vector	if	that	source	vector	had	a	posterior	probability	of	at	least	0.99.	This	

minimum	posterior	probability	threshold	was	met	in	all	cases,	i.e.,	we	were	able	to	

infer	a	source	vector	in	all	cases.	We	repeated	this	procedure	for	NaCRRI	(299	

sequenced	samples	and	48712	sites)	and	NRCRI	(415	sequenced	samples	and	

48320	sites).	



	 53	

For	each	breeding	institution,	we	categorized	the	institution’s	genotypes	into	

groups	based	on	the	number	of	putative	replicates	(k)	each	genotype	had.	We	then	

calculated	a	mean	non-replicate	rate	μk	separately	for	each	k.	To	calculate	this,	we	

computed	a	non-replicate	rate	for	each	individual	that	has	k	putative	replicates	

(when	k	=	2,	this	rate	is	1	-	P(S=(1,1)|X)),	and	then	averaged	these	values	across	all	

individuals	of	a	given	k.	

	

Comparing	the	consistency	of	BIGRED	and	hierarchical	clustering	

To	compare	the	consistency	of	BIGRED	and	hierarchical	clustering,	we	

performed	a	set	of	experiments	using	the	GBS	data	from	the	475	IITA	individuals	

with	1<k<7	putative	replicates.	The	basic	premise	of	these	experiments	is	that	an	

analysis	based	on	a	larger	set	of	sites	is	likely	to	be	correct.	The	first	step	in	these	

experiments	is	to	perform	error	detection	on	an	individual’s	putative	replicates	

using	the	data	at	a	large	number	of	sites	and	to	set	the	inferred	source	vector	as	the	

“truth”.	The	second	step	is	to	perform	error	detection	once	more	on	the	individual’s	

replicates,	this	time	using	the	data	at	a	smaller	number	of	sites	disjoint	from	the	

initial	set.	To	obtain	a	measure	of	consistency,	we	compare	the	results	from	the	first	

(larger)	analysis	with	results	from	the	second	(smaller)	analysis.	

	

To	evaluate	the	consistency	of	hierarchical	clustering,	we	first	filtered	the	

data,	retaining	samples	with	a	genome-wide	mean	read	depth	of	≥0.5	and	sites	with	

MAFs	within	the	interval	(0.3,0.5]	and	with	<50%	missing	data	across	the	filtered	

samples.	This	left	1215	samples	and	16,926	sites	for	analysis.	As	before,	we	called	
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genotype	dosages	using	the	observed	allelic	read	depth	data	and	imputed	missing	

values	at	a	given	site	with	the	site	mean.	We	then	performed	hierarchical	clustering	

on	each	of	the	475	individuals,	using	data	from	2000	randomly	sampled	sites.	We	

set	the	output	of	these	analyses	as	the	“truth”.	We	then	performed	hierarchical	

clustering	on	each	of	the	individuals	a	second	time,	sampling	L	sites	disjoint	from	

the	initial	2000,	and	compared	the	inferred	source	vector	with	the	“true”	source	

vector.	We	tested	five	values	of	L:	50,	100,	250,	500,	and	1000.	We	repeated	the	

experiment	10	times	for	each	value	of	L	and	calculated	a	mean	concordance	rate	

between	the	“true”	source	vector	and	the	source	vector	inferred	from	the	L	sites	

across	the	10	runs	and	475	cases	for	each	L.	

To	evaluate	the	consistency	of	BIGRED,	we	first	filtered	the	data,	keeping	

samples	with	a	genome-wide	mean	read	depth	of	≥0.5	and	sites	with	MAFs	within	

the	interval	(0.3,0.5].	As	with	hierarchical	clustering,	we	defined	the	truth	using	

2000	randomly	sampled	sites.	We	used	a	fixed	sequencing	error	rate	of	0.01	and	

sampled	sites	such	that	no	two	sites	fell	within	20	kb	from	one	another.	We	followed	

the	same	procedure	as	the	one	used	to	evaluate	the	consistency	of	hierarchical	

clustering,	in	particular,	testing	with	the	same	five	values	of	L.	

	

Applying	a	pairwise-comparison	approach	to	real	data	

Methods	that	employ	a	pairwise-comparison	approach	for	error	detection	

rather	than	joint	analysis	of	the	samples	might	produce	ambiguous	results	when	

more	than	two	putative	replicates	exist.	To	demonstrate,	we	applied	a	pairwise-

comparison	method	to	IITA’s	data,	specifically	we	calculated	the	Pearson	correlation	
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between	all	pairs	of	putative	replicates.	We	refer	to	this	method	as	the	“correlation	

method”.	Before	calculating	the	Pearson	correlation	between	replicate	pairs,	we	

filtered	the	data,	retaining	samples	with	a	genome-wide	mean	read	depth	of	≥0.5,	

sites	with	MAFs	within	the	interval	(0.3,0.5],	and	with	<50%	missing	data	across	the	

filtered	samples.	This	left	1215	samples	and	16,926	sites	for	analysis.	We	called	

genotype	dosages	using	the	observed	allelic	read	depth	data	and	imputed	missing	

values	using	glmnet	[9].	We	then	calculated	the	Pearson	correlation	between	all	

pairs	of	putative	replicates	using	the	cor()	function	[12].	For	simplicity,	we	limited	

our	analysis	to	the	154	cases	where	k=3.	Correlations	ranged	from	0.02	to	0.93,	so	

we	selected	0.85	as	the	replicate-call	threshold	(i.e.,	two	putative	replicates	with	a	

correlation	≥0.85	are	considered	true	replicates).	We	also	applied	a	replicate-call	

threshold	of	0.80	to	examine	how	results	changed.	

	

Run	time	

We	measured	computation	time	as	the	number	of	central	processing	unit	

(CPU)	seconds	required	to	run	BIGRED.	All	jobs	were	submitted	to	the	

Computational	Biology	Service	Unit	at	Cornell	University,	which	uses	a	112	core	

Linux	(CentOS	7.4)	RB	HPC/SM	Xeon	E7	4800	2U	with	512GB	RAM.	

	

RESULTS	

Evaluating	the	accuracy	and	run-time	of	BIGRED	

To	evaluate	the	algorithm’s	accuracy	and	run-time,	we	performed	a	full	

factorial	experiment	where	we	simulated	data	for	each	of	the	source	vectors	
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associated	with	k	=	2,	3,	and	4,	varying	the	mean	read	depth	of	samples	and	the	MAF	

of	the	L	=	1000	sites	sampled	by	the	algorithm.	We	use	the	term	“accuracy”	to	refer	

to	the	median	posterior	probability	of	the	true	source	vector.	For	these	experiments,	

we	simulated	the	situation	where	all	k	putative	replicates	had	identical	mean	read	

depths	but	later	tested	the	scenario	where	mean	read	depths	varied	among	the	k	

samples	(refer	to	the	section	“Evaluating	BIGRED’s	accuracy	when	mean	read	

depths	vary	among	the	k	putative	replicates”).	We	observed	qualitatively	similar	

results	for	k	=	2,	3,	and	4,	so	we	present	only	the	results	for	k	=	3	in	the	main	text	

(Figure	2.5).	We	present	the	results	for	k	=	2	and	4	in	Appendix	Figure	2.2	and	2.3,	

respectively.	When	no	erroneous	samples	were	present	among	the	k	putative	

replicates,	the	algorithm	performed	consistently	well	across	all	mean	read	depths	

and	MAF	intervals,	assigning	a	median	posterior	probability	of	one	to	the	true	

source	vector	(Figure	2.5A).	We	observed	a	common	trend	for	the	remaining	two	

source	vectors:	for	a	given	MAF	interval,	accuracy	monotonically	increased	as	mean	

read	depth	increased.	We	observed	this	trend	in	all	cases	except	for	interval	

(0.0,0.1],	whose	median	accuracy	stayed	constant	at	zero	across	all	depths	for	S	=	

(1,2,1)	and	S	=	(1,2,3)	and	intervals	(0.3,0.4]	and	(0.4,0.5],	whose	median	accuracies	

stayed	constant	at	one	across	all	depths	for	S	=	(1,2,1)	and	S	=	(1,2,3)	(Figure	2.5B	

and	5C).	In	addition	to	recording	the	posterior	probability	of	the	true	(simulated)	

source	vector,	we	also	recorded	the	posterior	probability	assigned	to	all	other	

source	vectors.	We	present	the	plots	for	S	=	(1,2,1)	and	S	=	(1,2,3)	experiments	in	

Appendix	Figure	2.4.	These	plots	recapitulate	the	behavior	observed	in	Figure	2.5	

but	do	so	at	a	higher	resolution:	for	a	given	MAF	interval,	with	the	exception	of	
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(0.0,0.1],	BIGRED	shifts	the	probability	away	from	S=(1,1,1)	towards	the	true	

(simulated)	source	vector	as	the	mean	read	depth	of	samples	increases.	The	

algorithm	takes,	on	average,	approximately	three	seconds	to	analyze	all	possible	

source	vectors	when	the	true	source	vector	is	S	=	(1,1,1)	for	all	pairwise	

combinations	of	sample	mean	read	depth	and	site	MAF	interval	(Figure	2.5D).	

Similarly,	the	algorithm	takes,	on	average,	approximately	four	seconds	to	analyze	all	

possible	source	vectors	when	the	true	source	vectors	were	S	=	(1,2,1)	and	S	=	(1,2,3)	

for	all	pairwise	combinations	of	sample	mean	read	depth	and	site	MAF	interval	

(Figure	2.5E	and	5F).	

To	assess	the	impact	of	L	on	the	algorithm’s	accuracy,	we	repeated	

simulation	experiments	for	S	=	(1,2,1)	and	S	=	(1,2,3),	this	time	varying	values	of	L	

and	looking	only	at	sites	with	MAFs	falling	in	(0.2,0.3].	We	tested	the	(0.2,0.3]	

interval	since	median	accuracy	was	one	for	all	earlier	experiments	using	intervals	

(0.3,0.4]	and	(0.4,0.5].	We	tested	seven	values	of	L:	50,	100,	250,	500,	1000,	2000,	

and	5000.	Median	accuracy	drastically	increased	when	L	increased	from	100	to	250	

for	S	=	(1,2,1)	at	2x	mean	depth	(Figure	2.6A).	At	a	given	mean	read	depth,	we	

observed	little	to	no	change	in	median	accuracy	when	increasing	L	for	S	=	(1,2,3)	

(Figure	2.6B).	
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Figure	2.5	Algorithm’s	accuracy	and	run-time	as	a	 function	of	 the	mean	read	
depth	of	samples	and	the	MAF	of	analyzed	sites	for	k	=	3.	
(A,	B,	and	C)	Each	plot	shows	estimates	of	 the	median	posterior	probability	of	 the	
true	source	vector	(y-axis)	as	a	function	of	mean	read	depth	of	samples	(x-axis)	and	
MAF	of	sites	(legend).	Each	data	point	presents	the	median	posterior	probability	of	S	
=	(1,1,1)	across	15	runs,	S	=	(1,2,1)	across	100	runs,	and	S	=	(1,2,3)	across	100	runs	
of	the	algorithm.	(D,	E,	and	F)	Each	plot	shows	the	mean	elapsed	time	in	seconds	for	
each	simulation	scenario.	
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Figure	2.6	The	impact	of	L	on	accuracy.	
The	two	plots	show	estimates	of	the	median	posterior	probability	of	the	true	source	
vector	 (y-axis)	 as	 a	 function	 of	mean	 read	 depth	 of	 samples	 (x-axis)	 for	 different	
values	of	L	(legend).	We	sampled	sites	whose	MAFs	fell	in	the	interval	(0.2,0.3].	
	

Evaluating	the	sensitivity	of	the	algorithm:	

To	evaluate	the	algorithm’s	sensitivity,	we	first	simulated	the	scenario	where	

S	=	(1,1)	then	contaminated	p	percent	of	sites	in	sample	d	=	2	with	a	second	

genotypic	source.	We	then	assessed	how	much	probability	the	algorithm	assigned	to	

source	vector	S	=	(1,1)	in	light	of	these	contaminated	sites.	We	tested	five	different	

values	of	p	in	combination	with	five	sample	mean	read	depths.	The	algorithm	

showed	greater	sensitivity	to	increases	in	p	as	the	mean	read	depth	of	the	samples	

increased	(Figure	2.7).	
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Figure	 2.7	 Algorithm’s	 sensitivity	 as	 a	 function	 of	 the	 mean	 read	 depth	 of	
samples.	
We	assessed	 the	 impact	 of	mean	 read	depth	on	 the	method’s	 sensitivity.	 The	plot	
reports	estimates	of	the	median	posterior	probability	of	the	true	source	vector	S	=	
(1,1)	(y-axis)	as	a	function	of	the	percentage	of	contaminated	sites	(p)	in	sample	d	=	
2	(x-axis)	and	mean	read	depth	of	putative	replicates	(legend).	In	these	experiments,	
samples	d	=	1	and	d	=	2	have	identical	mean	read	depths.	
	

Evaluating	BIGRED’s	accuracy	when	mean	read	depths	vary	among	the	k	

putative	replicates	

We	next	evaluated	the	algorithm’s	accuracy	when	the	read	depths	vary	

among	the	k	samples.	For	these	experiments,	we	examined	three	source	vectors	S	=	

(1,1),	S	=	(1,2),	and	S	=	(1,2,1)	and	used	L	=	1000	sites.	And	as	before,	we	examined	

the	impact	of	MAF	at	the	1000	sites.	When	simulating	data	for	source	vectors	S	=	

(1,1)	and	S	=	(1,2),	we	varied	the	mean	read	depth	of	sample	d	=	2	while	keeping	the	

mean	depth	of	sample	d	=	1	constant	at	1x.	We	tested	five	different	read	depth	

values	for	sample	d	=	2	(λ	=	1,	2,	4,	6,	and	12).	When	simulating	data	for	source	

vector	S	=	(1,2,1),	we	varied	the	mean	read	depth	of	sample	d	=	3	while	keeping	the	
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mean	depth	of	samples	d	=	1	and	d	=	2	constant	at	1x.	We	tested	five	different	read	

depth	values	for	sample	d	=	3	(λ	=	1,	2,	4,	6,	and	12).	We	obtained	results	

comparable	to	those	from	simulation	experiments	where	all	k	putative	replicates	

had	identical	mean	read	depths.	For	S	=	(1,1),	the	algorithm	performed	consistently	

well	across	all	read	depth	differences	and	MAF	intervals,	assigning	a	median	

posterior	probability	of	one	to	the	true	source	vector	(Figure	2.8A).	For	S	=	(1,2)	and	

S	=	(1,2,1),	the	algorithm	performed	consistently	well	across	all	read	depth	

differences	when	analyzing	sites	with	MAFs	falling	in	(0.3,0.5]	and	consistently	

poorly	across	all	read	depth	differences	when	analyzing	sites	with	MAFs	falling	in	

(0.0,0.2]	(Figure	2.8B	and	8C).	For	MAF	interval	(0.2,0.3],	median	accuracy	

monotonically	increased	as	the	difference	between	sample	read	depths	grew,	i.e.	as	

the	mean	read	depth	for	sample	d	=	2	in	S	=	(1,2)	and	d	=	3	in	S	=	(1,2,1)	increased	

(Figure	2.8B	and	8C).	

	

	

Figure	 2.8	 Accuracy	 of	 the	 algorithm	 when	 the	 mean	 read	 depths	 of	 the	 k	
putative	replicates	vary	
Each	data	point	 in	the	three	plots	reports	the	median	posterior	probability	 for	the	
true	source	vector	(y-axis)	as	a	function	of	the	mean	read	depth	for	the	k	samples	(x-
axis)	and	the	MAF	of	sampled	sites	(legend).	
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Estimating	NEXTGEN	non-replicate	rates	

We	estimated	non-replicate	rates	μk	for	IITA,	NaCRRI,	NRCRI,	and	the	

germplasm	used	by	both	IITA	and	NRCRI,	respectively	(Table	2.1).	

	

Table	 2.1	 A	 table	 summarizing	 the	 mean	 non-replicate	 rate	 μk	 of	 each	
breeding	institution.	
For	each	institution,	we	categorized	genotypes	into	groups	based	on	the	number	of	
putative	replicates	each	genotype	had.	Grey	rows	show	the	number	of	genotypes	in	
each	 group	 nk	 for	 each	 breeding	 institution.	 We	 then	 calculated	 the	 mean	 non-
replicate	rate	among	genotypes	of	a	given	k	μk	by	calculating	the	mean	probably	of	
no	errors	then	subtracting	this	value	from	one.	
	
 Institution	 k	=	2	 k	=	3	 k	=	4	 k	=	5	 k	=	6	

nk	 IITA	 272	 154	 37	 11	 1	

μk		 IITA	 0.21	 0.16	 0.14	 0.27	 1	

nk	 NaCRRI	 58	 61	 0	 0	 0	

μk	 NaCRRI	 0.05	 0.21	 -	 -	 -	

nk	 NRCRI	 128	 31	 5	 8	 1	

μk	 NRCRI	 0.37	 0.32	 0.40	 0.25	 1	

nk	 IITA	&	NRCRI	 101	 31	 5	 8	 1	

μk	 IITA	&	NRCRI	 0.33	 0.32	 0.40	 0.25	 1	

	

Method	comparison	

We	compared	results	from	BIGRED	to	results	obtained	from	complete-

linkage	hierarchical	cluster	analysis.	The	two	methods	reported	28,	2,	and	15	

conflicting	results	for	IITA,	NaCRRI,	and	NRCRI,	respectively	(Figure	2.9),	all	of	

which	were	cases	where	hierarchical	clustering	reported	an	error	among	putative	
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replicates	while	BIGRED	reported	no	error,	with	the	exception	of	one	NRCRI	

individual	UG120041.	Both	methods	reported	an	error	for	UG120041	but	reported	

different	errors:	BIGRED	inferred	a	(1,2,3)	relationship	while	hierarchical	clustering	

inferred	a	(1,1,2)	relationship.	

	

	

Figure	 2.9	 Comparing	 results	 from	 complete-linkage	 hierarchical	 clustering	
and	the	proposed	method	
Above	are	three	two-way	contingency	tables	comparing	the	results	from	complete-
linkage	hierarchical	cluster	analysis	and	the	proposed	method	for	IITA	(A),	NaCRRI	
(B),	and	NRCRI	(C).	Conflicts	between	the	two	methods	are	shown	in	red.	The	146	
genotypes	shared	between	IITA	and	NRCRI	(Figure	2.4;	black)	are	represented	twice	
in	 our	 results:	 once	with	 the	 329	 genotypes	 unique	 to	 IITA	 and	 once	with	 the	 27	
genotypes	unique	to	NRCRI.	
	

We	compared	the	consistency	of	BIGRED	with	that	of	hierarchical	clustering.	

Table	2.2	presents	the	mean	concordance	rate	between	the	“true”	source	vector	and	

the	source	vector	inferred	from	L	sites	among	475	cases	across	the	10	runs	of	

hierarchical	clustering	and	BIGRED.	BIGRED	had	a	higher	concordance	rate	than	

hierarchical	clustering	at	every	L,	suggesting	that	BIGRED	is	a	more	consistent	

estimator	than	hierarchical	clustering.	
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Table	 2.2	 A	 table	 comparing	 the	 consistency	 of	 BIGRED	 and	 hierarchical	
clustering	using	the	475	IITA	individuals	with	1<k<7	putative	replicates.	
To	evaluate	 the	consistency	of	 the	 two	methods,	we	performed	error	detection	on	
an	individual’s	putative	replicates	using	the	data	at	2000	sites	and	set	the	inferred	
source	vector	as	the	“truth”.	We	then	performed	error	detection	a	second	time	using	
a	smaller	number	of	sites	 (L)	disjoint	 from	the	 initial	 set.	We	compared	 the	“true”	
source	vector	with	the	source	vector	inferred	from	L	sites.	For	each	IITA	individual,	
we	tested	five	values	of	L	and	repeated	the	experiment	10	times	for	each	value	of	L.	
We	 then	 calculated	 the	mean	 concordance	 rate	 between	 the	 “true”	 source	 vector	
and	the	source	vector	inferred	from	L	sites	across	the	475	cases	and	across	10	runs.	
	

Method	 L=50	 L=100	 L=250	 L=500	 L=1000	

BIGRED	 0.9832		 0.9895	 0.9958	 0.9973	 0.9981	

Hierarchical	clustering	 0.8322	 0.9088	 0.9488	 0.9640	 0.9771	

	

One	motivation	for	BIGRED’s	joint	analysis	framework	is	that	pairwise-

comparison	methods	might	produce	ambiguous	results	for	cases	of	more	than	two	

putative	replicates.	We	introduced	a	hypothetical	example	of	this	in	the	Background	

section	and	found	real	examples	of	these	inconsistencies	when	applying	a	pairwise-

comparison	method	to	IITA’s	data.	More	specifically,	when	examining	cases	of	k=3	

and	using	a	replicate-call	threshold	of	0.85,	we	found	80	cases	(out	of	154)	where	

the	pairwise	method	awarded	any	pair	of	samples	(of	an	individual)	replicate	status.	

Of	these	80	cases,	we	found	10	cases	where	the	method	produced	ambiguous	

results.	When	we	decreased	the	call	threshold	to	0.80,	we	found	146	cases	where	

the	method	inferred	at	least	one	true	replicate	pair	but	six	of	these	cases	had	

ambiguous	results.		

	

DISCUSSION	
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Researchers	may	choose,	for	a	number	of	reasons,	to	sequence	a	given	

individual	more	than	once.	Regardless	of	intent,	it	is	important	to	identify	

potentially	mislabeled	or	contaminated	samples	before	using	the	data	(e.g.	merging	

the	data	from	replicate	sequence	runs	or	using	the	data	to	optimize	bioinformatics	

quality	filters).	Unfortunately,	existing	methods	to	detect	such	errors	are	ad	hoc	and	

ill	suited	for	use	in	shallow-depth	HTS	data	since	they	require	some	combination	of	

genotype	calling,	imputation,	and	haplotype	phasing.	We	have	introduced	a	new	

probabilistic	framework	for	error	detection	that	addresses	key	limitations	of	

existing	methods.	Using	Bayes	Theorem,	we	calculate	the	posterior	probability	

distribution	over	the	set	of	relations	describing	the	putative	replicates	(i.e.	the	set	of	

source	vectors),	allowing	us	to	infer	which	of	the	samples	originated	from	an	

identical	genotypic	source.	

We	examined	the	impact	of	mean	read	depth,	L,	and	MAF	at	the	L	sites	on	the	

accuracy	of	the	proposed	method	through	a	series	of	simulation	experiments.	We	

found	that	the	algorithm	is	most	accurate	when	analyzing	sites	whose	MAFs	fall	in	

the	range	(0.3,0.5],	consistently	across	all	mean	read	depths	when	L	=	1000	(Figure	

2.5).	Sites	with	MAFs	falling	in	the	interval	(0.0,0.1]	relay	little	information	to	the	

algorithm.	When	analyzing	these	sites,	BIGRED	assigns	a	median	posterior	

probability	of	one	to	S	=	(1,1,1),	regardless	of	the	true	source	vector.	Thus	BIGRED	

appears	to	be	biased	towards	inferring	no	error	among	putative	replicates	when	

analyzing	sites	with	low	MAF.	One	reason	for	this	bias	is	our	definition	of	P(G(v)|S)	

(Figure	2.2).	Given	a	site	that	has	a	reference	allele	frequency	of	0.1,	when	k	=	3,	the	

probability	of	G(v)	=	(AA,AA,AA)	given	S	=	(1,1,1),	i.e.	no	erroneous	samples	among	
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the	putative	replicates,	is	0.12,	whereas	the	probability	of	G(v)	=	(AA,AA,AA)	given	

any	other	source	vector	is	≤	0.14.	This	bias	is	compounded	by	the	fact	that	we	

estimated	allele	frequencies	from	a	set	of	206	individuals	but	ran	simulation	

experiments	using	a	subset	of	15.	Some	loci	that	had	low	but	non-zero	MAF	among	

the	206	individuals	appeared	monomorphic	among	the	15	individuals,	making	the	

15	individuals	look	more	similar	than	they	actually	are	in	reality.	We	found	that	

47.14%	and	5.29%	of	sites	with	MAFs	in	the	(0.0,0.1]	and	(0.1,0.2]	interval,	

respectively,	became	monomorphic	among	the	15	individuals.	

To	evaluate	the	impact	of	L	on	the	algorithm’s	accuracy,	we	repeated	

simulation	experiments	for	S	=	(1,2,1)	and	S	=	(1,2,3)	using	different	values	of	L	and	

looking	only	at	sites	with	MAFs	falling	in	(0.2,0.3].	Surprisingly,	we	observed	little	to	

no	change	in	median	accuracy	at	a	given	depth	when	increasing	the	number	of	

sampled	sites.	The	only	exception	was	S	=	(1,2,1)	at	2x	mean	depth,	where	we	

observed	a	drastic	increase	in	accuracy	when	increasing	L	from	100	to	250	(Figure	

2.6).	For	S	=	(1,2,3)	at	2x	and	3x,	we	observed	a	median	accuracy	of	zero	even	when	

sampling	5000	sites.	We	observed	an	increase	in	median	accuracy	only	after	

increasing	the	mean	read	depth	of	samples	to	4x.	These	results	indicate	that	the	

mean	read	depth	of	samples	contributes	more	to	accuracy	than	the	number	of	

sampled	sites.	In	these	simulation	experiments,	all	k	putative	replicates	of	a	given	

genotype	were	assigned	identical	mean	read	depths.	These	results,	however,	were	

robust	to	samples	with	varying	mean	read	depths	(Figure	2.8).	

We	also	assessed	the	sensitivity	of	the	algorithm	as	a	way	to	gauge	how	the	

proportion	of	exogenous	DNA	affects	the	algorithm	and	how	allelic	sampling	bias	
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impacts	results.	The	GBS	protocol	uses	methylation-sensitive	restriction	enzymes	

(REs)	to	avoid	sampling	highly	repetitive	regions	of	the	genome.	One	potential	

complication	when	using	methylation-sensitive	REs	is	allelic	sampling	bias	of	a	

marker	or	unequal	sampling	and	sequencing	of	homologous	chromosomes,	

resulting	from	differential	methylation	in	a	region.	ApeKI,	the	RE	employed	by	

NEXTGEN,	for	instance,	will	not	cut	if	the	3’	base	of	the	recognition	sequence	on	

both	strands	is	5-methylcytosine.	To	test	the	impact	of	imperfect	marker	

“heritability”,	we	simulated	the	scenario	where	S	=	(1,1)	and	corrupted	p	percent	of	

sites	in	sample	d	=	2	with	a	second	genotype	source.	We	tested	the	cases	where	p	=	

{10%,20%,30%,40%,50%}	for	five	different	sample	mean	depths	(λ	=	{1,2,3,6,15})	

and	found	that	the	algorithm	was	robust	to	increases	in	p	for	lower	values	of	λ	

(Figure	2.7).	Not	surprisingly,	the	method	assigned	higher	probability	to	S	=	(1,2)	as	

p	and	mean	depth	increased.	As	mean	depth	increases,	the	algorithm	grows	

increasingly	confident	that	differences	at	sites	reflect	true	biological	differences	

rather	than	sampling	variation	or	error.	

When	applying	BIGRED	and	hierarchical	clustering	on	real	data,	we	found	a	

relatively	high	concordance	rate	between	the	two	methods	(Figure	2.9).	Although	

this	comparison	does	not	directly	tell	the	reader	which	of	the	two	methods	is	more	

accurate,	the	comparison	and	the	analyses	in	this	paper	demonstrate	the	benefits	of	

using	BIGRED	over	hierarchical	clustering.	Firstly,	we	found	that	BIGRED	is	a	more	

consistent	estimator	relative	to	hierarchical	clustering	(Table	2.2).	Secondly,	

BIGRED	employs	a	probabilistic	framework	to	tackle	the	problem	of	error	detection	

rather	than	a	heuristic	one	like	hierarchical	clustering,	making	BIGRED	a	more	
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statistically	rigorous	and	neatly	packaged	method.	Hierarchical	clustering	requires	

the	user	to	make	many	(arguably	arbitrary)	decisions	throughout	the	protocol,	

whereas	BIGRED	requires	the	user	to	make	one	decision	at	the	very	end,	i.e.	the	

probability	at	which	to	“call”	a	source	vector.	Our	results	also	highlight	one	of	the	

major	flaws	of	methods	like	hierarchical	clustering:	results	can	change	depending	

on	what	samples	were	included	in	the	analysis,	specifically	during	imputation.	There	

are	146	genotypes	that	are	used	in	both	IITA’s	and	NRCRI’s	breeding	programs,	and	

these	146	genotypes	appear	in	both	institutions’	data	(Figure	2.4).	We	performed	

hierarchical	clustering	on	these	individuals	a	total	of	two	different	times:	once	in	

combination	with	the	329	genotypes	unique	to	IITA	and	once	in	combination	with	

the	27	genotypes	unique	to	NRCRI.	Ideally,	the	duplicate	runs	of	an	individual	would	

produce	identical	results,	regardless	of	what	other	samples	where	included	in	each	

analysis.	Of	the	146	cases,	however,	we	found	three	cases	where	the	hierarchical	

clustering-based	duplicate	analyses	produced	conflicting	results:	one	case	where	the	

two	analyses	reported	differ	errors	and	two	cases	where	the	IITA	analysis	reported	

no	error	but	the	NRCRI	analysis	reported	an	error.	These	conflicts	likely	resulted	

from	the	imputation	component	of	the	cluster	analysis	procedure	since	sample	

composition	is	known	to	affect	imputation.	These	issues	highlight	the	benefits	of	our	

approach:	when	we	ran	BIGRED	on	these	146	individuals	twice,	we	found	that	all	

duplicate	runs	produced	identical	results.		

In	our	simulation	experiments,	we	estimated	allele	frequencies	from	WGS	

data.	Users	of	BIGRED	will	likely	not	have	this	option	and	will	need	to	estimate	allele	

frequencies	using	low-	to	moderate-depth	sequence	data.	Although	such	frequency	
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estimates	will	in	general	contain	noise,	we	showed	that	BIGRED	is	robust	to	

imperfect	estimates	of	allele	frequency.	We	estimated	allele	frequencies	from	a	set	

of	206	individuals	but	ran	simulation	experiments	using	a	subset	of	15	individuals	

and	were	able	to	recover	the	true	underlying	source	vector	when	analyzing	sites	

with	MAFs	falling	in	the	(0.3,0.5]	interval	(Figure	2.5).	We	also	suggest	that	a	user	

perform	preliminary	analyses	(e.g.,	with	PCA)	to	detect	the	presence	of	population	

structure,	and	when	structure	is	evident,	we	recommend	analyzing	subpopulations	

separately,	estimating	allele	frequencies	from	samples	of	a	given	subpopulation	

then	running	BIGRED	on	the	samples	from	that	subpopulation.	

The	number	of	possible	source	vectors	increases	exponentially	as	k	increases	

(Appendix	Figure	2.5).	For	this	reason,	we	do	not	recommend	using	BIGRED	on	

cases	where	k>7.	We,	however,	do	not	anticipate	many	scenarios	where	a	

researcher	would	have	sequenced	a	given	individual	more	than	seven	times,	but	if	

this	scenario	does	occur,	one	could	either	randomly	select	seven	putative	replicates	

to	analyze	or	divide	the	replicates	into	sets	of	no	more	than	seven	samples.	If	using	

the	latter	scheme,	one	would	run	BIGRED	on	each	set,	merge	the	true	replicates	

within	each	set	(discarding	the	erroneous	samples),	then	combine	the	sets	of	

merged	samples	before	running	BIGRED	once	more.	By	using	a	Poisson	distribution	

to	simulate	AD	data,	we	make	the	assumption	that	reads	are	uniformly	distributed	

across	the	genome.	While	read	data	will	often	be	more	highly	dispersed	than	these	

analyses,	if	at	least	L	of	the	sites	in	those	data	have	read	depth	of	lambda	or	above,	

BIGRED	will	perform	at	least	as	well	as	in	our	analyses	with	these	same	parameters.	
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A	motivation	for	BIGRED’s	joint	analysis	framework	is	that	pairwise-

comparison	methods	might	produce	ambiguous	results	when	more	than	two	

putative	replicates	exist,	and	we	did,	in	fact,	run	into	cases	of	this	when	applying	the	

correlation	method	to	real	data.	Of	the	cases	where	the	method	reported	the	

presence	of	replicates	when	applying	a	replicate-call	threshold	of	0.85	and	0.80,	

12.50%	and	4.11%	contained	pairwise	inconsistencies,	respectively.	By	decreasing	

the	call	threshold,	one	lowers	the	number	of	ambiguous	cases	returned	but	doing	so	

also	increases	the	number	of	false	positives	returned.	And	although	it	may	occur	at	

low	frequency,	the	possibility	of	pairwise	inconsistencies	exists	and	would	be	a	

problem	for	all	methods	that	employ	a	pairwise-comparison	approach.	

In	this	study,	we	introduced	a	statistical	framework	for	detecting	mislabeled	

and	contaminated	samples	among	putative	replicates.	Our	method	addresses	key	

limitations	of	existing	approaches	and	produced	highly	accurate	results	in	

simulation	experiments	even	when	applied	to	samples	with	low	read	depth.	Our	

method	is	implemented	as	an	R	package	called	BIGRED,	which	is	freely	available	for	

download:	https://github.com/ac2278/BIGRED.		
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	CHAPTER	3	

CHARACTERIZING	RECOMBINATION	IN	MANIHOT	ESCULENTA	

	

ABSTRACT	

Recombination	has	essential	functions	in	evolution,	meiosis,	and	breeding.	

Here,	we	use	the	multi-generational	pedigree	and	genotyping-by-sequencing	(GBS)	

data	from	the	International	Institute	of	Tropical	Agriculture	(IITA)	to	characterize	

recombination	in	cassava	(Manihot	esculenta).	We	detected	recombination	events	

using	SHAPEIT2	and	duoHMM,	characterized	the	recombination	landscape	across	

the	18	chromosomes	of	cassava,	constructed	a	genetic	map	and	compared	it	to	an	

existing	map	constructed	by	the	International	Cassava	Genetic	Map	Consortium	

(ICGMC),	and	constructed	sex-specific	genetic	maps	to	see	if	there’s	evidence	of	

sexual	dimorphism	in	crossover	distribution	and	frequency.	The	IITA	pedigree	

consists	of	7,165	informative	meioses	(3,122	female;	3,099	male).	

	

INTRODUCTION	

Although	mutations	introduce	new	genetic	variation	in	a	population,	the	

most	important	mechanism	for	generating	genomic	diversity	in	sexually	

reproducing	species	is	the	production	of	new	combinations	of	already	existing	

alleles,	or	recombination,	a	process	that	occurs	during	prophase	I	of	meiosis	

through	crossing-over.	Meiotic	recombination	increases	the	probability	that	

offspring	from	two	individuals	will	carry	combinations	of	alleles	that	allow	survival	

and	reproduction	in	a	changing	environment.	In	the	context	of	plant	breeding,	
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recombination	is	important	because	it	dictates	the	resolving	power	of	quantitative	

trait	mapping	and	the	precision	of	allele	introgression.	Recombination	has	an	

additional	essential	function	in	that	it	aids	in	homology	recognition	and	helps	

ensure	proper	disjunction,	or	segregation	of	homologous	chromosomes	during	

meiosis	[1].	Improper	disjunction,	or	nondisjunction,	results	in	aneuploidy,	a	

deleterious	outcome	in	which	gametes	have	more	or	less	than	the	typical	

chromosome	number.		

The	number	of	crossovers	per	chromosome	and	the	distribution	of	

crossovers	along	chromosomes	are	tightly	controlled.	Crossover	number	appears	to	

be	constrained	by	both	an	upper	and	lower	bound.	The	reason	for	a	lower	bound	on	

crossover	number	is	clear	since	in	most	species,	there	is	a	need	for	one	obligatory	

crossover	per	chromosome	pair	to	prevent	aneuploidy.	The	reason(s)	for	an	upper	

bound	on	crossover	number,	however,	is	less	obvious.	Results	from	a	recent	study,	

where	crossover	rate	was	significantly	increased	in	mutant	Arabidopsis	thaliana,	

suggest	that	reduced	fertility	(in	the	form	of	reduced	pollen	viability	and	seed	set)	

may	be	associated	with	increased	recombination	[2].	One	plausible	evolutionary	

explanation	for	the	existence	of	an	upper	bound	on	recombination	is	that	beneficial	

alleles	residing	on	the	same	haplotype	may	collectively	act	to	increase	fitness.	

Recombination	can	break	these	associations,	resulting	in	reduced	progeny	fitness	

[3].		

The	distribution	of	crossovers	along	chromosomes	is	not	random	and	is	

influenced	by	chromosome	features	such	as	chromatin	structure,	gene	density,	and	

nucleotide	composition.	Chromatin	structure	strongly	influences	the	position	of	
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crossovers	along	chromosomes.	Like	in	other	eukaryotes,	crossovers	in	plants	occur	

more	frequently	in	decondensed,	euchromatic	regions	and	less	frequently	in	highly	

condensed,	heterochromatin	regions.	The	occurrence	of	a	crossover	at	one	location	

also	reduces	the	likelihood	that	another	crossover	will	occur	in	close	proximity.	This	

nonrandom	placement	of	crossovers,	known	as	chromosomal	interference,	results	

in	a	pattern	where	recombination	events	appear	evenly	spaced	[4].	If	only	a	limited	

number	of	crossovers	can	occur	per	meiosis,	interference	will	result	in	crossovers	

being	more	evenly	distributed	across	chromosomes	(interference	lowers	the	

number	of	crossovers	on	large	chromosomes	and	the	remaining	possible	crossovers	

are	more	likely	to	occur	on	small	chromosomes).	Interference	may	therefore	serve	

as	a	biological	mechanism	to	ensure	that	every	pair	of	homologous	chromosomes	

undergoes	at	least	one	crossover	event,	which	is	necessary	for	proper	disjunction.	

In	many	species,	crossover	frequency	and	distribution	along	chromosomes	

differs	between	female	and	male	meiosis,	a	phenomenon	referred	to	as	

heterochiasmy	[5].	The	direction	and	degree	of	these	differences	are	species-

specific,	and	most	extreme	are	cases	in	which	one	of	the	two	sexes	lacks	meiotic	

recombination	entirely.	Male	Drosophila	melanogaster,	for	example,	do	not	

recombine	during	meiosis.	To	date,	no	investigation	of	sexual	dimorphism	has	been	

conducted	in	cassava.		

Cassava	is	a	diploid	organism	with	an	estimated	genome	size	of	

approximately	772	Mb	spread	across	18	chromosomes	with	the	reference	genome	

spanning	582.28	Mb	[6].	The	International	Cassava	Genetic	Map	Consortium	

(ICGMC)	generated	a	consensus	genetic	map	of	cassava	that	combines	10	mapping	
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populations	[7].	The	10	mapping	populations	consisted	of	one	self-pollinated	cross	

and	nine	biparental	crosses	(14	parents	total;	3,480	meioses).	The	genetic	map	is	

2,412	cM	in	length	and	organizes	22,403	GBS	markers	on	18	chromosomes.	Here,	

we	used	the	multi-generational	pedigree	from	the	International	Institute	of	Tropical	

Agriculture	(IITA)	to	characterize	recombination	in	cassava.	We	used	duoHMM-

corrected,	SHAPEIT2-inferred	haplotypes	to	detect	SNP	intervals	flanking	a	

crossover	event	then	used	these	intervals	to	map	the	recombination	landscape	

across	cassava’s	18	chromosomes	[8].	We	built	a	genetic	map	from	7,165	meioses,	

compared	it	to	ICGMC’s	composite	map,	and	constructed	sex-specific	genetic	maps	

to	see	if	crossover	distribution	and	frequency	differ	significantly	between	the	two	

sexes.	We	also	examined	if	there’s	evidence	of	chromosomal	interference.	

	

MATERIALS	AND	METHODS	

A	description	of	the	IITA	germplasm	population	structure	

The	IITA	pedigree	consists	of	7,432	unique	individuals.	Each	individual	

belongs	to	one	of	four	breeding	groups:	Genetic	Gain	(GG;	n	=	494),	TMS13	(n	=	

2,334),	TMS14	(n	=	2,515),	or	TMS15	(n	=	2,089).	Of	the	494	GG	individuals,	258	are	

the	progeny	of	GG-GG	crosses	and	the	remaining	236	individuals	are	founders	

(individuals	with	no	parents).	All	TMS13	members	are	the	progeny	of	GG-GG	

crosses.	Of	the	2515	TMS14	individuals,	1,881	are	the	progeny	of	TMS13-TMS13	

crosses	and	the	remaining	are	GG-GG	progeny.	The	TMS15	groups	consists	of	920,	

seven,	1,159,	and	three	individuals	that	are	progeny	of	TMS14-TMS14,	TMS13-

TMS14,	TMS13-TMS13,	and	TMS13-GG	crosses,	respectively.	
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Merging	replicate	GBS	records	of	each	proband	

We	found	GBS	data	for	7,294	of	the	7,432	IITA	individuals	(nGG	=	366,	nTMS13	=	

2330,	nTMS14	=	2509,	and	nTMS15	=	2089).	Of	the	366	GG	individuals,	189	had	more	

than	one	GBS	record	(i.e.,	NEXTGEN	sequenced	these	189	individuals	multiple	

times).	We	refer	to	multiple	sequence	records	of	an	individual	as	“replicates”.	Before	

merging	the	data	from	replicate	sequence	runs	of	an	individual,	we	verified	that	no	

erroneous	samples	existed	among	the	putative	replicates	(i.e.	verified	that	all	

putative	replicates	derived	from	an	identical	individual).	We	validated	putative	

replicates	of	an	individual	using	BIGRED	[9].	Using	Bayes	Theorem,	BIGRED	

calculates	the	posterior	probability	distribution	over	the	set	of	relations	(i.e.,	source	

vectors)	describing	the	putative	replicates	of	an	individual	and	infers	which	of	the	

samples	originated	from	an	identical	genotypic	source.	Of	the	189	GG	BIGRED	runs,	

21	produced	ambiguous	results.	An	ambiguous	BIGRED	result	occurs	when	BIGRED	

returns	a	source	vector	where	no	source	has	a	clear	majority	(e.g.	S	=	(1,2)	is	the	

ambiguous	source	vector	for	the	case	where	an	individual	has	two	putative	

replicates	and	S	=	{(1,1,2,2),	(1,2,2,1),	(1,2,1,2)}	for	the	case	where	an	individual	has	

four	putative	replicates).	Because	we	were	unable	to	resolve	these	cases,	we	

excluded	these	21	GG	individuals	from	future	analyses.	We	merged	the	data	for	the	

168	GG	individuals	with	unambiguous	BIGRED	results,	merging	only	the	samples	

that	were	inferred	to	be	true	replicates.	We	repeated	this	process	for	TMS13	and	

TMS14	individuals	(all	individuals	in	the	TMS15	group	were	sequenced	once).	Of	the	

2,330	TMS13	individuals,	156	had	more	than	one	GBS	record	and	10	produced	
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ambiguous	BIGRED	results.	Of	the	2,509	TMS14	individuals,	62	had	more	than	one	

GBS	record,	and	of	the	62	BIGRED	runs,	three	produced	ambiguous	results.	We	

excluded	these	13	TMS13	and	TMS14	individuals	from	further	analyses.	Table	1	

summarizes	these	results.	

	

Table	3.1	Summary	of	data	records	for	each	breeding	group.	
The	 table	 shows	 the	 number	 of	 individuals,	 the	 number	 of	 individuals	 that	 were	
sequenced	more	than	once,	and	the	number	of	individuals	with	ambiguous	BIGRED	
results	for	each	breeding	group.	
	
Group	ID	 Number	of	

individuals	in	
group	

Number	of	
individuals	with	>1	
sequence	record	

Number	of	
individuals	with	
ambiguous	
BIGRED	results	

GG	 366	 189	 21	
TMS13	 2330	 156	 10	
TMS14	 2509	 62	 3	
TMS15	 2089	 0	 0	
	

Validating	IITA	pedigree	records	using	AlphaAssign	

Of	the	remaining	345	(=366-21)	GG	individuals	listed	in	the	pedigree,	187	GG	

individuals	had	at	least	one	listed	parent	with	locatable	GBS	data.	These	parents	also	

belong	to	the	GG	population.	We	used	the	parentage	assignment	algorithm	

AlphaAssign	to	validate	the	existing	pedigree	information	for	these	187	GG	

individuals	[10].	AlphaAssign	frames	the	parentage	assignment	problem	as	a	

relationship	classification	problem.	Rather	than	directly	attempting	to	identify	

target	individual	t’s	parent	from	a	list	of	candidate	individuals,	AlphaAssign,	instead,	

attempts	to	classify	the	relationship	between	target	individual	t	and	each	candidate	

individual	c.	AlphaAssign	considers	four	possible	target-candidate	relationships,	H:	
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the	candidate	individual	is	(1)	a	parent	of	the	target	individual,	(2)	a	full-sibling	of	

the	target	individual’s	parent,	i.e.,	the	target	individual’s	uncle,	(3)	a	half-sibling	of	

the	target	individual’s	parent,	and	(4)	unrelated	to	the	target	individual.	Specifically,	

AlphaAssign	calculates	the	posterior	probability	of	these	four	relations,	given	the	

observed	allelic	depth	(AD)	data	of	c	and	t	(and	if	known,	the	AD	data	for	a	known	

parent	of	t;	if	individual	t	has	no	known	parent,	the	algorithm	makes	use	of	a	

‘dummy	parent’	whose	genotype	probabilities	at	a	given	site	are	calculated	using	

estimated	allele	frequencies	and	assuming	Hardy-Weinberg	Equilibrium).		

Informally,	the	algorithm	first	calculates	for	each	biallelic	site,	the	posterior	

genotype	probabilities	for	target	t	given	the	observed	AD	data	for	target	t	and	the	

posterior	genotype	probabilities	for	target	t’s	known	or	dummy	parent.	It	then	uses	

these	two	posterior	genotype	probability	distributions	to	generate	four	‘proposal	

distributions’	for	candidate	individual	c,	one	proposal	distribution	for	each	of	the	

four	possible	ways	c	and	t	are	related.	The	proposal	distribution	for	relationship	h	=	

1,	for	example,	gives	the	genotype	probabilities	for	individual	c	given	that	c	is	a	

parent	of	target	t.	One	can	think	of	these	proposal	distributions	as	genotype	priors.	

AlphaAssign	then	calculates	the	posterior	probability	of	h	=	1	by	combining	the	

genotype	likelihood	for	candidate	c,	the	proposal	distribution	given	h	=	1,	and	the	

prior	distribution	for	H	across	all	sites	(AlphaAssign	assumes	that	all	sites	segregate	

independently	and	a	uniform	prior	on	H)	and	dividing	by	some	normalizing	

constant.	Once	posterior	probabilities	for	H	are	calculated,	AlphaAssign	assigns	each	

candidate	an	assignment	score:	

	 !!"#$ =  −log (1− Pr ℎ = 1 !! ,!! ,!! )		
for	the	case	where	we	know	one	parent	of	t	

(1)	
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!"#$% =  −log (1− Pr ℎ = 1 !! ,!! ,!! 		

for	the	case	where	we	know	neither	parent	
	

,	where	Xc,	Xt	and	Xk	represent	the	AD	data	for	candidate	c,	target	t,	and	a	known	

parent	of	target	t,	respectively.	Again,	if	target	t	has	zero	known	parents,	

AlphaAssign	makes	use	of	a	‘dummy	parent’	whose	genotype	probabilities	at	a	given	

site	are	calculated	using	the	estimated	allele	frequency	of	the	reference	allele	pA	and	

assuming	HWE.	For	AlphaAssign	to	assign	candidate	c	as	target	t’s	parent,	candidate	

c	must	pass	three	criteria:	(1)	c	must	be	classified	as	a	parent	(i.e.	h	=	1	must	have	

the	highest	posterior	probability),	c’s	assignment	score	must	pass	a	threshold,	and	

(3)	c’s	assignment	score	must	be	the	highest	among	all	candidates.	

Because	AlphaAssign	looks	at	the	relationship	between	pairs	of	individuals	

rather	than	among	triplets,	we	ran	AlphaAssign	a	total	of	two	times	to	validate	

IITA’s	pedigree	information.	We	walk	through	the	validation	procedure	for	GG	

individuals.	In	the	first	run,	we	provided	the	algorithm	with	no	pedigree	information	

(i.e.,	all	calculations	involved	the	use	of	a	dummy	parent).	For	each	target	individual,	

we	listed	all	GG	individuals	as	candidate	parents	(we	did	not	list	an	individual	as	it’s	

own	candidate	parent).	We	fed	the	algorithm	AD	data	from	1,000	randomly	sampled	

sites	across	cassava’s	18	chromosomes.	We	sampled	sites	such	that	no	two	sites	fell	

within	20	kb	from	one	another.	For	each	target	individual,	we	identified	the	

candidate	individual	with	the	highest	score	statistic	and	listed	this	top-scoring	

candidate	as	the	target	individual’s	parent	in	a	(newly	created)	pedigree	file.	We	ran	

AlphaAssign	a	second	time,	this	time	providing	AlphaAssign	with	pedigree	

information,	i.e.,	the	AlphaAssign-inferred	pedigree	generated	from	the	results	of	
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the	first	run.	We	again	identified	the	candidate	individual	with	the	highest	score	

statistic	for	each	target	individual.	Upon	completing	the	two	runs,	each	target	

individual	had	two	AlphaAssign-inferred	parents.	We	compared	the	AlphaAssign-

inferred	pedigree	with	IITA’s	existing	pedigree.	We	repeated	this	analysis	for	the	

TMS13,	TMS14,	and	TMS15	group	and	present	the	results	of	all	four	breeding	

groups	in	Table	2.	We	built	the	list	of	candidate	individuals	for	each	breeding	group	

based	on	how	IITA	generated	each	group	(refer	to	the	section	“A	description	of	the	

IITA	germplasm	population	structure”).	For	TMS13	target	individuals,	we	listed	all	

GG	individuals	as	candidate	parents.	For	TMS14	target	individuals,	we	listed	all	GG	

and	TMS13	individuals	as	candidate	parents.	For	TMS15	target	individuals,	we	listed	

all	GG,	TMS13,	and	TMS14	individuals	as	candidate	parents.	

	

Table	3.2	Results	from	AlphaAssign.	
The	table	shows	the	results	of	our	pedigree	validation	procedure.	Rows	highlighted	
in	yellow	represent	useable	data	(either	duos	or	trios).	An	individual’s	data	is	
labeled	“missing”	when	we	either	could	not	find	GBS	data	for	that	individual	or	
when	we	could	not	resolve	their	BIGRED	results.	
	
	 GG	 TMS13	 TMS14	 TMS15	
Neither	parent	
validated	

43	 197	 361	 765	

One	parent	
validated	
(useable	as	
duos)	

19	 532	 715	 684	

Both	parents	
validated	
(useable	as	
trios)	

9	 1524	 1196	 470	

Missing	data	
for	one	parent	
and	the	other	
parent	was	not	

78	 33	 97	 44	
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validated	
Missing	data	
for	one	parent	
and	the	other	
parent	was	
validated	
(useable	as	
duos)	

38	 33	 137	 122	

Missing	data	
for	both	
parents	

54	 0	 0	 4	

	

Filtering	the	GBS	allele	depth	data	before	calling	genotypes	

We	have	allelic	depth	(AD)	data	for	each	individual	at	each	site.	The	AD	data	

for	individual	d	at	site	v	is	a	record	of	the	observed	counts	of	each	of	the	two	alleles	

in	individual	d	at	site	v:	!!(!) = !!(!,!),!!(!,!) ,	where	!!(!,!)	and !!(!,!)	denote	the	

observed	counts	of	allele	A	and	allele	B,	respectively,	in	individual	d	at	site	v.	We	

removed	sites	with	>70%	missing	data	then	calculated	the	proportion	of	missing	

data	for	each	individual	and	removed	individuals	with	>80%	missing	data.	Here,	we	

defined	“missing”	as	observing	zero	reads	for	a	given	individual	at	a	given	site.	The	

filter	removed	one	individual	IITA-TMS-IBA011610	from	analysis.	Exclusion	of	this	

individual	causes	offspring	IITA-TMS-IBA062021	to	have	no	listed	father	or	mother.	

We	included	IITA-TMS-IBA062021	in	the	analysis	when	phasing	and	imputing.	

Removal	of	this	duo	is	inconsequential	since	this	duo	provides	an	uninformative	

meiosis	(see	the	section	“Filtering	the	SHAPEIT2-duoHMM	output”	below	for	a	

discussion	of	informative	meioses).	We	then	removed	sites	with	a	mean	depth	

greater	than	120	to	avoid	spurious	genotype	calls	within	repeat	regions,	i.e.,	

paralogs.	
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Generating	input	data	files	for	SHAPEIT2	

SHAPEIT2	takes	called	genotypes	as	input.	To	obtain	a	set	of	called	genotypes	

for	our	sample,	we	first	calculated	genotype	posterior	probabilities	for	each	

individual	at	each	site.	Given	observed	data	!!(!)	and	fixed	sequencing	error	rate	e	=	

0.01,	we	computed	the	likelihood	for	genotype	!!(!) = !.	We	calculated	genotype	

likelihoods	for	a	single	individual	at	a	single	site,	independent	of	all	other	

individuals	and	sites	in	the	sample,	using	the	following	equation:		

	
! !!! |!!! = !, ! = !!!,! + !!!,!  

!!!,!  
1− !! !!

!,! (!!)!!
!,!
	

	

!! =
!,
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1− !,
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when
when

 
! = !!
! = !"
! = !!

	.	

(2)	

	

We	estimated	posterior	probabilities	for	the	three	genotypes	using	the	likelihoods	

defined	above	and	assuming	a	genotype	prior	(then	normalizing	by	some	constant).	

This	genotype	prior	varied	depending	on	whether	individual	d	had	zero	validated	

parents	(i.e.,	was	a	founder),	had	one	validated	parent,	or	had	two	validated	parents.	

If	individual	d	had	zero	validated	parents,	we	calculated	its	genotype	prior	for	site	v	

using	the	estimated	frequency	of	the	reference	allele	at	site	v	and	assuming	HWE.	If	

individual	d	had	one	validated	parent,	we	calculated	its	genotype	prior	for	site	v	

using	the	posterior	probability	distribution	of	its	known	parent,	the	genotype	

probability	distribution	of	a	‘dummy’	parent,	and	the	rules	of	Mendelian	inheritance.	

We	calculated	the	genotype	probability	distribution	of	the	dummy	parent	at	site	v	by	
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using	the	estimated	frequency	of	the	reference	allele	at	site	v	and	assuming	HWE.	If	

individual	d	had	two	validated	parents,	we	used	the	posterior	probability	

distributions	of	its	known	parents	and	Mendelian	inheritance	rules	to	calculate	

individual	d’s	prior.	Notice	that	this	scheme	requires	calculation	of	posterior	

genotype	probabilities	in	a	sequential	manner,	propagating	information	down	the	

pedigree	to	subsequent	generations.	

We	called	genotypes	from	these	estimated	posterior	genotype	probabilities,	calling	a	

genotype	for	individual	d	at	site	v	only	if	one	of	the	three	possible	genotypes	had	a	

posterior	probability	greater	than	or	equal	to	0.99.	To	qualitatively	examine	how	

SHAPEIT2	performs	at	different	levels	of	missing	data,	we	generated	seven	datasets:	

datasets	where	we	removed	sites	with	more	than	20%,	30%,	40%,	50%,	60%,	and	

70%	missing	data.	We	observed	that	when	more	markers	are	retained,	SHAPEIT2-

duoHMM	detected	a	larger	number	of	crossovers	but	crossover	intervals	were	

longer.	Results	from	the	20%	dataset	were	very	noisy,	so	we	selected	the	30%	

dataset	to	analyze.	Table	3	shows	the	number	of	sites	after	applying	the	30%	

maximum-missing	filter	for	each	chromosome.	Appendix	Figure	3.1	shows	the	plots	

for	each	chromosome’s	duoHMM-inferred	crossover	intervals	for	the	20%	and	30%	

maximum-missing	datasets.	When	detecting	recombination	events	using	duoHMM,	

the	algorithm	returns	a	file	with	five	columns:	“CHILD”,	“PARENT”,	“START”,	“END”,	

and	“PROB_RECOMBINATION”.	The	first	two	columns	show	the	child	and	parent	

involved	in	the	meiosis.	The	“START”	and	“END”	columns	define	the	regions	(in	bp)	

where	a	crossover	may	have	occurred,	and	the	final	column	lists	the	probability	that	

a	crossover	event	occurred	in	a	given	interval.	Appendix	Figure	3.1	shows	those	
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crossover	intervals	with	probabilities	greater	than	or	equal	to	t	=	0.9	(refer	to	the	

section	“Detecting	recombination	events	using	duoHMM”	for	a	full	description	of	

duoHMM).	

.		

Table	3.3	Number	of	sites	remaining	after	filtering	
The	table	lists	the	number	of	sites	in	the	dataset	before	and	after	application	of	the	
30%	 maximum-missing	 filter	 for	 each	 chromosome	 and	 removing	 monomorphic	
and	singleton	sites.	
	
Chromosome	 Number	of	sites	

before	filter	
Number	of	sites	
after	30%	
maximum-missing	
filter	

Number	of	sites	
after	removing	
monomorphic	and	
singleton	sites	

1	 30575	 17159	 3739	
2	 24151	 14818	 2265	
3	 22156	 14493	 2458	
4	 18271	 9980	 2519	
5	 20750	 14106	 1681	
6	 20174	 12907	 1609	
7	 12226	 7163	 1114	
8	 17991	 11549	 1689	
9	 18267	 12194	 1341	
10	 14985	 8206	 1573	
11	 18816	 11267	 1777	
12	 15906	 9921	 1703	
13	 15851	 9969	 2018	
14	 20635	 11957	 2939	
15	 20048	 13239	 1705	
16	 15447	 9832	 1267	
17	 15390	 8716	 2206	
18	 15053	 9063	 1524	
	

Implementation	of	SHAPEIT2	and	duoHMM	

We	used	SHAPEIT2	and	duoHMM	to	detect	SNP	intervals	flanking	a	

crossover	event	(a	recombination	event	can	only	be	resolved	down	to	the	region	

between	its	two	flanking	heterozygous	markers	in	the	parent).	We	followed	the	
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recommendations	of	O’Connell	et	al.	[8]	to	phase	and	impute	individuals	in	our	

pedigreed	population.	We	ran	SHAPEIT2,	ignoring	all	explicit	family	information	

then	applied	duoHMM	to	combine	the	SHAPEIT2-inferred	haplotypes	with	verified	

family	information	to	correct	switch	errors	(SEs).	We	carried	out	both	steps	

internally	within	SHAPEIT2	by	using	the	‘—duohmm’	flag.	

SHAPEIT2	combines	features	of	SHAPEIT1	and	Impute2.	Specifically,	

SHAPEIT2	uses	the	SHAPEIT1	HMM	to	represent	the	space	of	haplotypes	consistent	

with	a	given	individual's	genotypes	across	a	chromosome	with	the	difference	being	

that	in	SHAPEIT2,	the	transition	probabilities	of	the	HMM	are	estimated	by	applying	

the	Impute2	'surrogate	family'	phasing	approach	in	local	windows	of	size	W.	Under	

this	scheme,	K	informative	haplotypes	are	chosen	to	update	the	transition	

probabilities	of	the	HMM	in	each	window.	We	describe	the	SHAPEIT1	HMM	below.	

Suppose	we	have	a	sample	of	n	diploid	individuals.	Let	G	=	(G1,	…,	Gn)	denote	

the	(observed)	genotypes	of	the	n	individuals	at	L	SNPs,	i.e.	G1	=	(g1,	…,	gL).	The	total	

possible	number	of	distinct	haplotype	pairs	consistent	with	genotype	Gi	is	equal	to	

2(z-1),	where	z	denotes	the	number	of	heterozygous	SNPs	present	in	Gi.	Let	Si	

represents	the	space	of	possible	haplotype	pairs	consistent	with	Gi	and	S	=	(S1,	…,	Sn)	

denote	the	total	haplotype	space	for	the	n	individuals.	Let	ρ	=	(ρ1,	…,	ρL-1)	denote	the	

vector	of	recombination	rates	between	each	pair	of	consecutive	SNPs	as	described	

by	Stephens	and	Scheet	[11].	Let	H	=	(H1,	…,	Hn)	denote	the	true	(unobserved)	

haplotype	pairs	corresponding	to	G	=	(G1,	…,	Gn).	SHAPEIT	regards	H	as	unobserved	

random	quantities	with	sampling	space	in	S	and	aims	to	estimate	the	posterior	

distribution	of	H	given	G	and	ρ.	
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Because	Pr(H|G,	ρ)	cannot	be	calculated	exactly,	SHAPEIT1	uses	Gibbs	

sampling,	a	type	of	Markov	chain-Monte	Carlo	(MCMC)	algorithm,	to	approximate	it	

by	obtaining	an	approximate	sample	from	the	posterior	distribution.	The	algorithm	

starts	with	an	initial	guess	for	H	and	a	random	order	of	treatment	for	the	n	

individuals,	ordering	v.	To	iterate	from	H(t)	to	H(t+1),	SHAPEIT1	updates	the	

haplotype	pair	of	each	individual	i	in	turn	(in	the	order	given	by	v)	by	sampling	from	

the	conditional	distribution	Pr(!!|!,!!!! , ρ),	where !!!! 	is	the	set	of	current	guesses	

for	the	haplotypes	of	all	individuals	except	i.	The	conditional	distribution	

Pr(!!|!,!!!! , ρ)	depends	on	assumptions	about	the	genetic	and	demographic	

history	underlying	the	data,	i.e.	a	“prior”	for	the	population	haplotype	frequencies.	

SHAPEIT1	infers	haplotypes	under	the	genetic	model	of	coalescence	with	

recombination	developed	by	Stephens	and	Donnelly	[12],	which	employs	a	

“coalescent	with	recombination”	prior	to	reflect	the	fact	that	each	sampled	

haplotype	will	be	similar	to	another	haplotype	or	be	a	mosaic	of	other	haplotypes	in	

the	pool	of	2n-2	haplotypes,	altered	by	mutations	and	recombination,	respectively.	

An	iteration	of	the	Gibbs	sampling	procedure	completes	when	all	n	individuals	have	

been	updated.	At	the	end	of	each	iteration,	SHAPEIT1	accepts	or	rejects	new	values	

for	ρ	and	v	according	to	the	Metropolis-Hastings	acceptance	probability.	Repeating	

this	process	enough	times	results	in	an	approximate	sample	from	Pr(H|G,	ρ).	

SHAPEIT1	computes	Pr(!!|!,!!!! , ρ)	via	implementation	of	an	HMM,	where	

the	2n-2	haplotypes	represent	the	hidden	states	of	the	HMM,	ρ	encodes	the	

transition	probabilities,	and	a	constant	mutation	parameter	encodes	the	emission	
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probabilities.	To	compute	the	probability	of	observing	h,	one	must	sum	up	the	

probabilities	of	observing	h	over	all	(2n-2)s	possible	sequences	of	s	different	states.	

This	is	done	efficiently	by	implementation	of	the	forward	algorithm.	SHAPEIT1	and	

PHASE2	differ	in	how	they	represent	the	space	of	possible	haplotype	pairs	Si.	

PHASE2	computes	Pr(!!|!,!!!! , ρ)	from	a	complete	haplotype	list,	whereas	

SHAPEIT1	computes	the	distribution	from	an	incomplete	binary	tree,	permitting	the	

use	of	the	PHASE2	model	on	larger	datasets.	

SHAPEIT2	takes	as	input	a	set	of	genotypes	and	a	genetic	map.	SHAPEIT2	

outputs	either	a	single	set	of	estimated	(most-likely)	haplotypes	or	a	haplotype	

graph	that	encapsulates	the	uncertainty	about	the	underlying	haplotypes.	We	chose	

the	latter	output.	SHAPEIT2	has	multi-threading	capabilities,	but	we	chose	not	to	

use	this	feature	in	order	to	maximize	the	number	of	individuals	that	SHAPEIT2	

conditions	on	during	Gibbs	sampling.	When	running	SHAPEIT2	using	four	threads	

on	a	dataset	of	100	individuals,	the	algorithm	will	phase	four	individuals	

simultaneously,	conditional	upon	the	100-4	other	individuals	in	the	dataset.	We	ran	

SHAPEIT2	with	14	burn-in	iterations,	16	pruning	iterations,	and	40	main	iterations.	

We	increased	the	number	of	conditioning	states	to	200	states	per	SNP.	The	

developers	found	it	slightly	advantageous	to	use	a	window	size	larger	than	2	Mb	

when	large	amounts	of	identical	by	descent	(IBD)	sharing	are	present.	We	used	a	

window	size	of	5	Mb.	We	provided	SHAPEIT2	a	genetic	map	that	specifies	the	

recombination	rate	between	SNPs.	We	generated	this	genetic	map	by	interpolating	

genetic	distances	of	GBS	markers	using	ICGMC’s	composite	genetic	map.	We	used	
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the	default	value	of	15,000	for	the	effective	population	size,	a	parameter	that	scales	

the	recombination	rates	that	SHAPEIT2	uses	to	model	patterns	of	LD.	

The	goal	of	duoHMM	is	to	detect	the	genuine	recombination	events	and	correct	

SEs	in	SHAPEIT2-inferred	haplotypes.	Let	Sv	denote	the	pattern	of	gene	flow	at	locus	

v,	where	Sv	=	(j,k)	denotes	the	scenario	where	parental	haplotype	j	and	child	

haplotype	k	are	IBD.	Here	j,k	∈{1,2},	so	there	are	four	possible	patterns	of	gene	flow	

between	a	parent	and	child	at	a	site	v:	

	

1. the	allele	on	parental	haplotype	1	and	the	allele	on	child	haplotype	1	are	IBD,	

denoted	Sv	=	(1,1)	or	A,	

2. the	allele	on	parental	haplotype	2	and	allele	on	child	haplotype	1	are	IBD,	

denoted	Sv	=	(2,1)	or	B,	

3. the	allele	on	parental	haplotype	1	and	allele	on	child	haplotype	2	are	IBD,	

denoted	Sv	=	(1,2)	or	C,	and	

4. the	allele	on	parental	haplotype	2	and	allele	on	child	haplotype	2	are	IBD,	

denoted	Sv	=	(2,2)	or	D.		

	

The	true	pattern	of	gene	flow	at	each	site	is	unobserved,	and	duoHMM	infers	the	

true	inheritance	states	from	the	(imperfect)	observed	parental	and	child	haplotypes,	

i.e.,	SHAPEIT2-inferred	haplotypes.	Because	the	rate	of	recombination	in	any	given	

meiosis	is	low,	the	HMM	is	parameterized	such	that	the	pattern	of	gene	flow	remains	

constant	over	long	stretches	of	a	chromosome.	Figure	3.1	enumerates	and	explains	

the	possible	transitions	from	site	v	to	site	v+1	for	the	case	where	Sv	=	(1,1).	We	refer	
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the	reader	to	the	duoHMM	paper	for	full	specification	of	the	HMM	(enumeration	of	

all	possible	transition	types,	definition	of	transition	rates,	estimation	of	parameters)	

[8].	After	estimating	parameters	of	the	HMM	using	the	Forward	Backward	

algorithm,	duoHMM	finds	the	most	likely	state	sequence	using	the	Viterbi	algorithm.	

When	duoHMM	infers	a	SE	in	the	Viterbi	sequence	in	either	the	parent	or	child,	

duoHMM	corrects	the	haplotypes	by	switching	the	phase	of	all	loci	proceeding	the	

SE.	The	algorithm	applies	these	corrections	sequentially	down	through	each	

pedigree.	

	

Figure	3.1	Possible	inheritance	state	transitions	from	site	v	to	site	v+1	for	the	
case	where	Sv	=	(1,1)	for	duoHMM.	
When	duoHMM	observes	a	T3	or	T4	transition	in	the	Viterbi	sequence,	it	infers	a	SE	
in	 the	 child	 haplotypes.	 When	 duoHMM	 observes	 a	 T2	 or	 T4	 transition,	 it	 infers	
either	 a	 SE	 or	 a	 recombination	 event	 in	 the	 parental	 haplotypes,	 but	 determining	
which	 of	 the	 two	 events	 actually	 occurred	 is	 difficult.	 The	 algorithm	 makes	 a	
decision	 by	 looking	 at	 all	 the	 offspring	 of	 that	 parent.	When	 one	 of	 the	 T2	 or	 T4	
transitions	 is	 present	 in	 the	 same	 location	 for	 the	 majority	 of	 offspring,	 the	
transition	 is	 most	 likely	 a	 SE	 on	 the	 parental	 haplotypes	 (minimum-recombinant	
solution).	
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Detecting	recombination	events	using	duoHMM	

Once	SHAPEIT-inferred	haplotypes	had	been	corrected	with	duoHMM,	we	

reran	duoHMM	to	infer	recombination	events.	The	HMM	infers	recombination	

events	by	calculating	the	probability	of	a	recombination	event	between	markers.	We	

refer	the	reader	to	the	duoHMM	paper	for	an	explaination	of	how	this	probability	is	

calculated	[8].	To	detect	crossovers,	we	sampled	a	haplotype	pair	for	each	individual	

from	SHAPEIT2’s	diploid	graph	then	calculated	the	probability	of	a	recombination	

event	between	pairs	of	markers.	We	repeated	this	process	a	total	of	10	times	then	

averaged	the	inter-SNP	recombination	probabilities	across	the	10	iterations.	We	

included	a	crossover	interval	in	subsequent	analyses	if	the	interval	had	a	probability	

greater	than	or	equal	to	t.	We	set	t	=	0.5.	

	

Filtering	the	SHAPEIT2-duoHMM	output	

The	power	to	detect	recombination	events	is	dependent	on	the	structure	of	

the	pedigree.	In	a	nuclear	family	with	>2	offspring,	most	crossover	events	should	be	

detectable,	and	we	classify	these	pedigrees	as	informative	towards	recombination.	

We	analyzed	data	from	only	those	pedigrees	having	“informative”	meioses,	which	

we	defined	as	a	nuclear	family	consisting	of	>2	offspring	or	a	pedigree	consisting	of	

three	generations.	We	refer	to	the	parents	of	these	pedigrees	as	“informative	

parents”	and	the	meioses	in	these	pedigrees	as	“informative	meioses”.	Of	the	total	

8,678	meioses	in	the	data	set,	7,165	were	informative	(3,679	female	meioses;	3,486	

male	meioses).	
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Building	the	genetic	maps	

To	build	a	genetic	map,	we	first	calculated	the	number	of	crossover	events	

between	each	inter-SNP	interval.	If	a	crossover	event	spanned	multiple	SNP	

intervals,	we	assigned	a	fraction	of	the	crossover	event	to	each	of	the	spanned	

intervals,	calculated	as	one	divided	by	the	length	of	the	inter-SNP	interval	in	base	

pairs.	We	then	calculated	the	genetic	length	of	each	SNP	interval	on	chromosome	y	

by	dividing	the	number	of	crossovers	in	each	interval	by	n,	where	n	=	(the	genetic	

length	of	chromosome	y	in	the	ICGMC	map)/(the	total	number	of	crossovers	we	

detected	on	chromosome	y).	We	did	this	so	that	our	genetic	map	for	each	

chromosome	ends	at	the	same	genetic	position	as	ICGMC’s	map.	

		

Examining	evidence	of	sexual	dimorphism		

We	next	examined	the	distribution	of	crossover	events	along	each	

chromosome	for	female	and	male	meioses,	separately.	We	divided	each	

chromosome	into	windows	of	1-Mb	and	determined	the	number	of	male	meiotic	

crossovers	and	female	meiotic	crossovers	in	each	window.	To	examine	if	crossover	

counts	in	each	window	varied	between	the	sexes,	we	performed	a	chi-square	test	of	

equal	counts	in	each	window.	To	calculate	the	expected	number	of	male	crossovers	

in	a	given	window,	we	calculated	the	proportion	of	total	meioses	analyzed	that	were	

male	(i.e.,	3,486/(3,6789	+	3,486))	then	multiplied	this	value	by	the	total	number	of	

crossovers	in	the	window.	We	calculated	the	expected	number	of	female	crossovers	

in	a	given	window	in	the	same	way.	We	did	not	test	for	statistical	significance	in	the	
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last	window	of	any	chromosome	since	the	last	window	is	shorter	than	1-Mb	(no	

chromosome	is	perfectly	divisible	by	1-Mb).	We	tested	each	window	at	a	

Bonferroni-corrected	significance	level	of	α/m,	where	α	=	0.05	and	m	=	506	(i.e.,	the	

total	number	of	windows	tested).	We	also	performed	this	test	genome-wide	at	a	

significance	level	of	0.05.	

	

Examining	if	crossover	placements	are	random	and	independent	events	

If	crossover	placements	are	random	and	independent	events,	the	distribution	of	the	

number	of	crossovers	observed	on	a	given	chromosome	in	a	given	parent-offspring	

pair	is	expected	to	follow	a	Poisson	distribution.	We	used	the	deviance	goodness	of	

fit	test	to	test	if	crossover	placements	are	random	and	independent	events.	For	each	

chromosome,	we	performed	a	Poisson	regression	where	we	modeled	the	number	of	

crossovers	observed	in	a	given	parent-offspring	pair	Y	as	a	function	of	the	covariates	

“parent”	and	“sex”.	The	“parent”	covariate	specifies	the	parent	involved	in	the	

parent-offspring	pair,	and	the	“sex”	covariate	species	whether	the	parent	was	a	

female	or	male	(i.e.,	where	the	crossovers	observed	in	a	male	or	female	meiosis).	We	

used	the	residual	deviance	to	perform	a	chi-square	goodness	of	fit	test	for	the	

overall	model.	The	residual	deviance	is	the	difference	between	the	deviance	of	the	

current	model	and	the	maximum	deviance	of	the	ideal	model	where	the	predicted	

values	are	identical	to	the	observed.	If	the	residual	difference	is	small	enough,	the	

goodness	of	fit	test	will	not	be	significant,	indicating	that	the	Poisson	model	fits	the	

data.	We	performed	these	test	at	a	Bonferroni-corrected	significance	level	of	α/m,	

where	α	=	0.05	and	m	=	18	(i.e.,	the	total	number	of	chromosomes	tested).	
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RESULTS	

Using	SHAPEIT2	and	duoHMM,	we	detected	a	total	of	65,771	and	65,287	

crossover-containing	intervals	from	female	and	male	meioses,	respectively,	across	

the	18	chromosomes.	Using	these	crossover	intervals,	we	constructed	a	sex-

averaged	genetic	map,	which	we	compared	to	an	existing	map	constructed	by	

ICGMC,	and	sex-specific	genetic	maps.	Our	sex-averaged	map	has	a	median	

resolution	of	420,366	bp.	The	female	and	male	genetic	maps	have	median	

resolutions	of	397,433	bp	and	433,827	bp,	respectively.	

To	compare	our	map	to	ICGMC’s,	we	plotted	the	genetic	position	(cM)	of	our	

markers	and	ICGMC’s	markers	as	a	function	of	physical	position	(Mb).	Figure	3.2	

shows	the	results	for	chromosomes	1	and	4.	We	show	the	plots	for	each	

chromosome	in	Appendix	Figure	3.2.	At	the	qualitative	level,	the	distribution	of	

crossovers	observed	in	our	map	is	in	good	agreement	with	the	ICGMC	map.	
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Figure	3.2	Comparison	of	our	genetic	map	(AWC)	with	ICGMC’s.	
We	plotted	 the	 genetic	position	of	 our	GBS	markers	 (black)	 and	 ICGMC’s	markers	
(red)	as	a	function	of	physical	position	(Mb)	for	chromosomes	1	and	4.	The	left	plot	
shows	 the	 comparison	 for	 chromosome	 1	 and	 the	 right	 for	 chromosome	 4.		
Centromeric	regions	of	chromosomes	are	shaded	in	blue.	
		
	

We	plotted	the	number	of	crossover	events	in	1-Mb	windows	along	each	

chromosome.	Figure	3.3	shows	the	plot	for	chromosome	1.	Appendix	Figure	3.3	

shows	these	plots	for	all	18	chromosomes.	We	found	that	crossovers	are	suppressed	

around	centromeric	regions	of	chromosomes.	The	correlation	between	the	number	

of	crossovers	on	each	chromosome	and	the	physical	size	of	each	chromosome	was	

0.40.	We	next	examined	the	distribution	of	crossovers	along	each	chromosome	for	

female	and	male	meioses,	separately.	We	again	divided	each	chromosome	into	

windows	of	1-Mb	and	plotted	the	number	of	crossovers	detected	in	female	meioses	

and	male	meioses	in	each	1-Mb	window	(Fig	3.3;	red	and	blue).	The	spatial	

distribution	of	crossovers	along	the	chromosomes	does	not	vary	between	male	and	
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female	meiosis.	To	examine	if	crossover	frequency	in	each	window	varied	between	

the	sexes,	we	performed	a	chi-square	test	of	equal	counts	in	each	window.	We	did	

not	test	for	statistical	significance	in	the	last	window	of	any	chromosome	since	the	

last	window	is	shorter	than	1-Mb.	Of	the	506	intervals	tested,	45	(8.89%)	passed	the	

significance	threshold.	In	these	45	intervals,	female	crossover	count	was	

significantly	higher	than	that	observed	in	males.	Statistically	significant	intervals	did	

not	consistently	appear	in	any	specific	region	of	chromosomes	(Appendix	Fig	3.3).	

We	tested	if	there	is	sexual-dimorphism	in	crossover	number	at	the	genome-

wide	level	and	found	that	the	number	of	crossovers	observed	in	male	and	female	

meioses	significantly	differed	(p-value	<	2.2	x	10-16).	 

	

Figure	3.3	Distribution	of	crossover	events	across	chromosome	1	for	all	
meioses,	female	meioses,	and	male	meioses.	
We	 divided	 each	 chromosome	 into	 1-Mb	 windows	 and	 plotted	 the	 number	 of	
crossovers	falling	within	each	interval	for	all	(black),	female	(red),	and	male	(blue)	
meioses.	 Asterisks	 show	 intervals	with	 significantly	 different	 crossover	 frequency	
between	 male	 and	 female	 meioses.	 Dashes	 represent	 cases	 where	 we	 could	 not	
perform	the	chi-square	test	because	the	expected	frequency	count	for	one	or	more	
classes	 was	 less	 than	 five.	 We	 did	 not	 test	 for	 statistical	 significance	 in	 the	 last	
window	 of	 any	 chromosome	 since	 the	 last	 window	 is	 shorter	 than	 1-Mb	 (no	
chromosome	 is	 perfectly	 divisible	 by	 1-Mb).	 These	 intervals	 are	 annotated	with	 a	
dash.	The	centromere	of	chromosomes	is	shown	in	blue.	We	tested	each	interval	at	a	
significance	level	of	α/n,	where	α	=	0.05	and	n	=	506.		
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	 We	used	the	deviance	goodness	of	fit	test	to	test	if	crossover	placements	are	

random	and	independent	events.	The	goodness	of	fit	test	was	significant	for	all	

chromosomes	except	chromosomes	10,	17,	and	18,	indicating	that	the	Poisson	

model	does	not	fit	the	data	observed	on	chromosomes	1-9	and	11-16	well.	

	

DISCUSSION	

We	used	IITA’s	multi-generational	pedigree,	consisting	of	7,165	informative	

meioses	(3,679	female;	3,486	male),	to	characterize	recombination	in	cassava.	Using	

SHAPEIT2	and	duoHMM,	we	detected	a	total	of	65,771	and	65,287	crossover-

containing	intervals	from	female	and	male	meioses,	respectively,	across	the	18	

chromosomes.	Using	these	crossover	intervals,	we	constructed	a	genetic	map	and	

compared	it	to	an	existing	map	constructed	by	ICGMC.	To	study	recombination	

differences	between	the	sexes,	we	compared	crossover	number	and	spatial	

distribution	along	the	18	chromosomes	between	the	sexes.	

We	observed	similar	spatial	distributions	of	crossover	events	between	the	

ICGMC	map	and	our	map,	although	it	should	be	noted	that	we	used	a	version	of	the	

ICGMC	map	as	input	when	running	SHAPEIT2	and	duoHMM.	Although	not	ideal,	the	

ICGMC	map	only	served	as	a	prior	for	the	SHAPEIT2	HMM,	and	recombination	rates	

between	SNPs	were	updated	at	the	end	of	each	iteration	of	Gibbs	sampling.	The	

Stephens	and	Donnelly	model	are	also	not	sensitive	to	initial	values.	Additionally,	

two	ICGMC	parents	were	also	parents	in	our	pedigree.	In	any	case,	a	less	

confounding	comparison	can	be	made	with	the	results	published	by	Ramu	et	al.,	

where	they	analyzed	recombination	in	241	diverse	accessions	[13].	We	recovered	
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similar	patterns	of	crossover	distribution	in	light	of	using	different	germplasm,	

suggesting	that	recombination	is	stable	among	different	lines	of	cassava.	

Our	map	does	a	slightly	better	job	at	capturing	the	linkage	disequilibrium	in	

regions	that	we	know	have	non-recombining	introgressed	segments	relative	to	

ICGMC’s	(Fig	3.2).	In	the	1930’s,	breeders	crossed	cassava	with	its	wild	

relative	Manihot	glaziovii	in	an	effort	to	introduce	cassava	mosaic	disease	resistance	

into	cassava.	Marnin	et.	al	found	long	segments	of	M.	glaziovii	haplotypes	in	modern	

cassava	germplasm	on	chromosomes	1	and	4	[14].	The	largest	introgressions	were	

detected	on	chromosome	1,	spanning	from	25	Mb	to	the	end	of	the	chromosome,	

and	on	chromosome	4	from	5	Mb	to	25	Mb,	both	of	which	our	map	captures.	

	Differences	between	our	map	and	ICGMC’s	could	result	from	a	number	of	

reasons.	The	data	used	in	our	analysis	was	generated	using	a	substantially	different	

variant	discovery	pipeline	than	that	used	by	ICGMC	[15],[7].	We	found	only	97	SNPs	

(summed	across	all	18	chromosomes)	in	common	between	our	map	and	ICGMC’s.	

The	ICGMC	map	was	generated	using	10	nuclear	families,	each	family	consisting	of	

117	to	256	offspring.	Our	map	was	generated	using	two	multi-generational	families	

(a	family	was	defined	as	all	individuals	reachable	in	the	pedigree	graph	through	

either	ancestors	or	descendants),	one	family	consisting	of	4175	family	members	and	

the	other	consisting	of	22	family	members.	There	is	also	the	question	of	what	value	

of	t	to	use,	as	this	dictates	the	number	of	crossovers	available	for	map	building.	

Using	a	higher	t	value	results	in	more	confident	crossover	intervals	but	also	a	lower	

number	of	crossovers.	
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The	regions	of	suppressed	recombination	on	chromosome	1	and	4	observed	

in	our	genetic	map	coincide	with	the	location	of	these	introgressed	segments,	

supporting	the	hypothesis	that	there	is	some	mechanism	keeping	beneficial	alleles	

in	cis.	It	would	be	interesting	to	plot	the	distribution	of	crossovers	separately	for	M.	

esculenta	with	zero,	one,	and	two	copies	of	these	introgressions.	One	would	think	

that	individuals	carrying	one	copy	of	the	introgression	would	have	suppressed	

recombination	in	that	region	relative	to	individuals	with	zero	and	two	copies.	Since	

a	minimum	number	of	crossovers	must	occur	on	a	given	tetrad	for	proper	

chromosomal	segregation,	it	would	be	interesting	to	see	if	there	are	more	

recombination	events	upstream	of	the	introgression	in	individuals	with	one	copy	of	

the	introgression	relative	to	individuals	with	zero	and	two	copies.	

In	this	study,	we	used	the	multi-generational	pedigree	and	GBS	data	from	

IITA	to	sudy	recombination	in	cassava.	We	characterized	the	recombination	

landscape	across	the	18	chromosomes	of	cassava	and	found	that	crossover	rates	

vary	greatly	along	the	chromosomes	and	that	all	chromosomes	except	

chromosomes	10,	17,	and	18	displayed	crossover	interference.	We	constructed	a	

genetic	map	using	duoHMM-corrected,	SHAPEIT2-inferred	crossover	intervals	and	

compared	it	to	ICGMC’s	composite	map.	We	also	examined	female	and	male	meioses,	

separately	and	found	evidence	that	female	meioses	undergo	more	recombination	

than	male	meioses.	The	spatial	pattern	of	crossovers	along	the	chromosomes,	

however,	does	not	vary	between	male	and	female	meiosis	at	the	qualitative	level.	
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APPENDIX	
	

Appendix	Figure	1.1	Description	of	reference	panel	A	and	B	and	the	three	
imputation	scenarios.		

	
(A)	The	Venn	diagram	shows	the	composition	of	reference	panel	A	and	B.	(B)	We	
evaluated	Beagle	and	glmnet	under	three	imputation	scenarios:	imputation	guided	
by	no	reference	panel	(left),	a	reference	panel	with	large	genetic	diversity	(reference	
panel	A;	middle),	and	3)	a	reference	panel	that	closely	matches	the	ancestry	of	the	
study	sample	(reference	panel	B;	right).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Appendix	Figure	1.2	Distribution	of	variants	across	chromosome	5.	

The	white	and	red	histogram	displays	the	distribution	of	all	variant	sites	(30018)	
and	biallelic	SNPs	(20302)	along	the	length	of	chromosome	5,	respectively.	
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Appendix	Figure	1.3	No	evidence	of	population	structure	among	the	696	reference	
panel	individuals.	

No	records	of	genetic	relatedness	among	the	696	reference	panel	individuals	exist.	
We,	therefore,	performed	a	PCA	to	explore	whether	there	is	any	evidence	of	
population	structure	among	reference	panel	individuals.	Reference	panel	
individuals	contributing	zero	offspring	to	the	C1	population	appear	as	grey	dots.	
Reference	panel	individuals	contributing	>0	offspring	to	the	C1	population	appear	
as	red	dots	with	diameters	scaled	proportionally	to	the	number	of	offspring	
contributed	by	the	individual.	
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Appendix	Figure	1.4	Distribution	of	the	proportion	of	missing	data	per	biallelic	
SNP.	

The	proportion	of	missing	data	at	a	given	site	is	measured	across	the	694	GG	
individuals.	The	term	“missing”	denotes	zero	reads	observed	at	a	given	site	for	a	
given	individual.	We	removed	sites	with	>90%	missing	data,	leaving	a	total	of	20205	
sites	for	cross-validation	experiment	1.	We	used	this	same	set	of	sites	for	scenarios	
2	and	3	for	reasons	given	in	the	main	text.	
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Appendix	Figure	1.5	Distribution	of	the	mean	read	depth	per	site.	

(A)	The	histogram	shows	the	distribution	of	the	mean	read	depth	per	site	averaged	
across	all	694	GG	individuals.	(B)	The	histogram	shows	the	distribution	of	the	mean	
read	depth	per	site	averaged	across	all	696	reference	panel	individuals.	The	red	
vertical	line	marks	the	mean	of	the	distribution.	
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Appendix	Figure	2.1	A	simplified	representation	of	a	VCF	data	file	containing	allele	
depth	(AD)	data	for	the	k	=	3	putative	replicates	of	I011206.	

	
In	this	example,	we	have	shallow	sequenced	individual	I011206	three	different	
times	using	some	HTS	method.	We	obtained	this	output:	a	matrix	whose	rows	
represent	polymorphic	sites	and	whose	columns	represent	the	replicate	sequence	
runs.	The	putative	replicates	are	indexed	with	the	variable	d.	Each	element	of	the	
matrix	consists	of	two	(comma-separated)	integers,	representing	the	observed	
counts	for	allele	A	and	B.	We	wish	to	determine	whether	the	DNA	samples	from	
these	three	sequence	runs	originate	from	one	individual.	
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Appendix	Figure	2.2	BIGRED’s	accuracy	as	a	function	of	the	mean	read	depth	of	
samples	and	the	MAF	of	analyzed	sites	for	k	=	2.	
	

	
	(A	and	B)	Each	plot	shows	estimates	of	the	median	posterior	probability	of	the	true	
source	vector	(y-axis)	as	a	function	of	mean	read	depth	of	samples	(x-axis)	and	MAF	
of	sites	(legend).	Each	data	point	presents	the	median	posterior	probability	of	S	=	
(1,1)	and	S	=	(1,2)	across	15	and	100	runs	of	the	algorithm,	respectively.	
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Appendix	Figure	2.3	BIGRED’s	accuracy	as	a	function	of	the	mean	read	depth	of	
samples	and	the	MAF	of	analyzed	sites	for	k	=	4.	
	

	
(A,	B,	C,	D,	and	E)	Each	plot	shows	estimates	of	the	median	posterior	probability	of	
the	true	source	vector	(y-axis)	as	a	function	of	mean	read	depth	of	samples	(x-axis)	
and	MAF	of	sites	(legend).	Each	data	point	presents	the	median	posterior	
probability	of	S	=	(1,1,1,1),	S	=	(1,1,1,2),	S	=	(1,1,2,2),	S	=	(1,2,3,3),	and	S	=	(1,2,3,4)	
across	15,	100,	100,	100,	and	100	runs	of	the	algorithm,	respectively.	
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Appendix	Figure	2.4	Additional	plots	for	the	simulation	experiments	outlined	in	
“Simulation	experiments	to	evaluate	the	impact	of	mean	read	depth	and	MAF	on	
accuracy”	for	S	=	(1,2,1)	and	S	=	(1,2,3),	showing	the	posterior	probability	assigned	
to	all	source	vectors.	
	
We	present	a	series	of	four	plots	for	the	experiments	where	we	simulated	S	=	(1,2,1)	
and	another	four	plots	for	the	experiments	where	we	simulated	S	=	(1,2,3).	Each	plot	
consists	of	five	subplots	(one	subplot	for	each	of	the	tested	mean	read	depths	or	
lambdas).	The	title	of	each	subplot	shows	the	true	(simulated)	source	vector	for	that	
experiment,	the	mean	depth	of	putative	replicates,	and	the	MAF	of	sampled	sites.	
Each	subplot	consists	of	five	boxplots	(one	boxplot	for	each	of	the	five	possible	
source	vectors).	Each	boxplot	consists	of	100	data	points.	We	excluded	plots	for	the	
(0.0,0.1]	MAF	interval	since	non	zero	probabilities	were	assigned	only	to	S=(1,1,1)	
at	every	lambda.	These	plots	reiterate	the	behavior	observed	in	Figure	6	(main	text)	
but	do	so	at	a	higher	resolution.	For	a	given	MAF	interval,	with	the	exception	of	
(0.0,0.1],	BIGRED	shifts	the	probability	away	from	S=(1,1,1)	towards	the	true	
(simulated)	source	vector	as	the	mean	read	depth	of	samples	increases.	
	
Plots	for	S	=	(1,2,1):	
	

	
Plots	where	S	=	(1,2,1)	was	the	true	(simulated)	source	vector	and	sites	were	
sampled	from	the	(0.1,0.2]	MAF	interval.	
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Plots	where	S	=	(1,2,1)	was	the	true	(simulated)	source	vector	and	sites	were	
sampled	from	the	(0.2,0.3]	MAF	interval.	
	
	

	
Plots	where	S	=	(1,2,1)	was	the	true	(simulated)	source	vector	and	sites	were	
sampled	from	the	(0.3,0.4]	MAF	interval.	
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Plots	where	S	=	(1,2,1)	was	the	true	(simulated)	source	vector	and	sites	were	
sampled	from	the	(0.4,0.5]	MAF	interval.	
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Plots	for	S	=	(1,2,3):	
	

	
Plots	where	S	=	(1,2,3)	was	the	true	(simulated)	source	vector	and	sites	were	
sampled	from	the	(0.1,0.2]	MAF	interval.	
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Plots	where	S	=	(1,2,3)	was	the	true	(simulated)	source	vector	and	sites	were	
sampled	from	the	(0.2,0.3]	MAF	interval.	
	
	

	
Plots	where	S	=	(1,2,3)	was	the	true	(simulated)	source	vector	and	sites	were	
sampled	from	the	(0.3,0.4]	MAF	interval.	
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Plots	where	S	=	(1,2,3)	was	the	true	(simulated)	source	vector	and	sites	were	
sampled	from	the	(0.4,0.5]	MAF	interval.	
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Appendix	Figure	2.5	Plot	showing	the	number	of	source	vectors	associated	with	k	
for	! ∈ {1,… ,8}.	
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Appendix	Figure	3.1	
	
The	first	set	of	18	plots	in	this	figure	show	SHAPEIT2-duoHMM	results	when	using	
the	20%	maximum-missing	filter.	The	second	set	of	18	plots	show	the	results	when	
using	the	30%	maximum-missing	filter.	The	x-axis	of	each	plot	shows	the	physical	
position	(bp)	of	each	chromosome.	Each	colored,	horizontal	line	in	the	plot	
represents	a	region	where	a	crossover	has	occurred	(with	probability	t	=	0.9).	Each	
parent	has	been	assigned	a	unique	color.	Crossover	intervals	detected	in	the	same	
parent-offspring	duo	appear	on	the	same	row	and	in	the	same	color.	The	
centromere	for	each	chromosome	is	shaded	blue.	The	title	of	each	plot	shows	the	
chromosome,	maximum-missing	threshold,	and	t	threshold.	
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Appendix	Figure	3.2	
	
To	compare	our	map	to	ICGMC’s,	we	plotted	the	genetic	position	(cM)	of	our	
markers	(black)	and	ICGMC’s	markers	(red)	as	a	function	of	physical	position	(Mb).	
We	scaled	our	map	by	a	factor	of	three.	This	figure	includes	a	plot	for	each	
chromosome.	
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Appendix	Figure	3.3	
	
The	18	plots	show	the	distribution	of	crossover	events	across	cassava’s	18	

chromosomes	for	all	meioses	and	female	and	males	meioses,	separately.	We	divided	
each	chromosome	into	1-Mb	windows	and	plotted	the	number	of	crossovers	falling	

within	each	interval	for	all	(black),	female	(red),	and	male	(blue)	meioses.	Asterisks	

show	intervals	with	significantly	different	crossover	counts	between	male	and	
female	meioses.	Dashes	represent	cases	where	we	could	not	perform	the	chi-square	

test	because	the	expected	frequency	count	for	one	or	more	classes	was	less	than	

five.	We	did	not	test	for	statistical	significance	in	the	last	window	of	any	
chromosome	since	the	last	window	is	shorter	than	1-Mb	(no	chromosome	is	

perfectly	divisible	by	1-Mb).	These	intervals	are	annotated	with	a	dash.	The	
centromere	of	chromosomes	is	shown	in	blue.	We	tested	each	interval	at	a	

significance	level	of	α/n,	where	α	=	0.05	and	n	=	506.		
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