

NEER ENGI

ENHANCED MODELLING AND
EFFICIENT REALISATION OF
CYBER-PHYSICAL SYSTEMS

Electrical and Computer Engineering
Technical Report ECE-TR-21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tidsskrift.dk (Det Kongelige Bibliotek)

https://core.ac.uk/display/233665505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DATA SHEET

Title: Enhanced Modelling and Efficient Realisation of Cyber-
Physical Systems
Subtitle: Electrical and Computer Engineering
Series title and no.: Technical report ECE-TR-21

Author: Peter Würtz Vinther Jørgensen
Department of Engineering – Electrical and Computer
Engineering, Aarhus University

Internet version: The report is available in electronic format
(pdf) at
the Department of Engineering website
http://www.eng.au.dk.

Publisher: Aarhus University©
URL: http://www.eng.au.dk

Year of publication: 2014 Pages: 28
Editing completed: October 2014

Abstract: This report describes the work carried out for the first
half of the PhD project titled Enhanced Modelling and Efficient
Realisation of Cyber-Physical Systems (CPSs). The work con-
tributions cover methods and tools to address the challenges
of CPS development using a model-based approach. First the
report introduces a technique to assist stakeholders in organis-
ing design information produced during modelling. Then a
modelling language extension that supports reasoning about
the energy consumption of the CPUs of a CPS is presented. Af-
terwards a technique that enables one to include real system
components into the system simulation is described and final-
ly the report presents a technology that enables construction
of code generators for multiple target languages. In addition
to covering the work contributions, this report also describes
future work plans that will lead to the completion of the PhD
project by April 2016.

Keywords: cyber-physical systems, code generation, hard-
ware-in-the-loop simulation, co-simulation, co-model, energy-
aware design

Supervisor: Peter Gorm Larsen

Please cite as: Peter W. V. Jørgensen, 2014. Enhanced Model-
ling and Efficient Realisation of Cyber-Physical Systems.
Department of Engineering, Aarhus University. Denmark.
28 pp. - Technical report ECE-TR-21

ISSN: 2245-2087

Reproduction permitted provided the source is explicitly
acknowledged

ENHANCED MODELLING AND
EFFICIENT REALISATION OF
CYBER-PHYSICAL SYSTEMS

Peter Würtz Vinther Jørgensen

Aarhus University, Department of Engineering

Abstract

This report describes the work carried out for the first half of the PhD project titled Enhanced
Modelling and Efficient Realisation of Cyber-Physical Systems (CPSs). The work contributions
cover methods and tools to address the challenges of CPS development using a model-based
approach. First the report introduces a technique to assist stakeholders in organising design
information produced during modelling. Then a modelling language extension that supports
reasoning about the energy consumption of the CPUs of a CPS is presented. Afterwards a
technique that enables one to include real system components into the system simulation is
described and finally the report presents a technology that enables construction of code
generators for multiple target languages. In addition to covering the work contributions, this
report also describes future work plans that will lead to the completion of the PhD project by
April 2016

Table of Contents i

List of Figures 1

Chapter 1 Introduction 1
1.1 Introduction to the field of research . 1
1.2 Purpose of the PhD project . 2
1.3 Document structure . 2

Chapter 2 Background 4
2.1 The Overture tool . 4
2.2 The Vienna Development Method . 4
2.3 The System Modelling Language . 5
2.4 Co-simulation and supporting technologies . 6

Chapter 3 Organising Design Information 7
3.1 Introduction . 7
3.2 Five views of a co-model . 7
3.3 The view model . 8
3.4 Final remarks . 10

Chapter 4 Analysing Energy Usage using Modelling 11
4.1 Modelling CPU power states . 11
4.2 A modelling structure for modelling the wake-up policies 12
4.3 Final remarks . 13

Chapter 5 Hardware-In-The-Loop Simulation 14
5.1 HIL setup design . 14
5.2 HIL setup prototype . 16
5.3 HIL execution results . 17
5.4 Final remarks . 17

Chapter 6 Code Generation 18
6.1 Generating the software implementation . 18
6.2 Intermediate representations . 19
6.3 Tree transformations . 19
6.4 Architecture of the code generation platform . 20
6.5 Final remarks . 21

Chapter 7 Current Status and Future Plans 22
7.1 Summary of current work . 22
7.2 Future plans . 22
7.3 Concluding remarks . 24

A Publications 25

B Courses and Dissemination 26

Bibliography 27
*

1
Introduction

This chapter introduces the reader to the field of research, describes the challenges that will be
addressed in this PhD project, and finally provides an overview of the different chapters.

1.1 Introduction to the field of research

In a Cyber-Physical System (CPS) computational units (CPUs) are collaborating on controlling
physical entities such as electrical and mechanical devices in order to achieve a common goal.
A well-known example of a CPS is a modern car where steering and braking is orchestrated by
several computational units that communicate across a network in order to ensure that the car can
be manoeuvred safely and efficiently under different driving conditions.

Many modern cars are equipped with a cruise controller that maintains a steady speed of the
car by regulating the throttle actuator, based on inputs from sensors that monitor the velocity and
acceleration of the car. For the cruise control to provide a pleasant ride, the control decisions need
to take the relationship between physical quantities such as mass, velocity and acceleration into
account. Therefore, the technical knowledge required to successfully develop such a system, spans
multiple engineering disciplines, which causes a high degree of design complexity, and requires
the collaboration among various types of stakeholders with different skills.

A common way to deal with the design complexity of a CPS is to use multidisciplinary models
to reason about the desired properties of the system. A model is an abstract representation of the
system that encapsulates its key characteristics in order to enable the development team to focus
on the most important aspects of the system. Simulation of the model is one way to assist the
development team in understanding the impact of design decision in the early development phases
in order to determine if the design meets the system requirements.

If the system model describes the system realisation with a sufficiently high degree of fidelity
then the outcome of the simulation can be used to predict the properties for the final version of
the system. Simulation of the system model also enables analysing properties that would other-
wise be too expensive or difficult to do using a system realisation. For example, using traditional
approaches to CPS development, such as physical prototyping, determining the most energy effi-
cient hardware architecture for a CPS, results in several different system realisations each with a
different hardware architecture. However, the nature of a model allows such analysis to be carried
out virtually, and therefore the impact of changing the physical parameters of a system can be
automated and analysed more thoroughly. Other examples of such analyses include investigating

1

Chapter 1. Introduction

how changing things such as the axle width or wheel size of a car effects its manoeuvrability,
which would require more cars to be build using physical prototyping.

1.2 Purpose of the PhD project

The purpose of this PhD project is twofold: First, it aims to enhance existing modelling tech-
nologies and develop new ones to accommodate the challenges of CPS development. Secondly,
it seeks to propose ways to efficiently transfer knowledge obtained during model analysis to the
subsequent phases of the development process. The contributions of this PhD will therefore target
different phases of the development cycle – from the early stages of CPS development where the
system is defined – to the realisation phase where it is constructed.

This leads to the hypothesis of this PhD project, which assumes it is possible to develop new meth-
ods and tools to address the challenges of CPS development that enable modelling to be enhanced
and realisation to be carried out more efficiently in model-based CPS development.

Use of models is one way to reduce the resources needed in order to develop a CPS. A model
enables exploration of a large design space and testing of a system to be done virtually in order to
reduce the number of physical prototypes that need to be constructed. This is desirable for systems
such as cars and aircrafts where construction of physical prototypes is expensive. However, mod-
elling activities produce additional design artefacts, and therefore this PhD explores how these
artefacts can be leveraged in an efficient way.

To demonstrate the hypothesis the PhD project will:

• Explore existing tools and methods in the context of CPS development,

• Identify limitations of existing tools and methods,

• Develop tools and methods to address the identified limitations,

• Apply the tools and methods to different CPS case studies.

1.3 Document structure

The first part of this document provides the background information needed to understand the
work for the first half of this PhD project (Chapters 1 and 2). Chapters 3 through 6 continue
by describing different work contributions that together support modelling and realisation of a
CPS. Finally, the last part of the document summarises the work that has been carried out so
far and discusses ideas for future plans that will contribute to achieving the goals of this PhD
project (Chapter 7). The description below briefly summarises the content for each chapter and
the appendices and briefly mentions the publications that the different chapters are based on.

Chapter 1 – Introduction: Presents the field of research and the goals to be achieved for this
PhD project.

2

Chapter 1. Introduction

Chapter 2 – Background: Provides the background information that is needed in order to un-
derstand the current as well as the planned work contributions for this PhD project. This
chapter contains extracts from two papers that document the modelling platform, Overture,
used in all the work contributions in the first half of this PhD. The paper An Architectural
Evolution of the Overture Tool [1], published and presented at the Overture workshop, 2013,
describes an architectural change made to Overture in order to enable this platform to be
extended more easily in other research projects. The paper Migrating from a Performant to
an Extensible Architecture in the Overture Tool [2], submitted to the ACM SIGAPP Sym-
posium on Applied Computing (SAC), 2015, documents the experiences of migrating to
the new (extensible) version of Overture and includes metrics to document the change in
both performance and extensibility. Finally, to provide the background information needed
to understand Chapters 3 through 6, extracts from the publications that these chapters are
based on are also included in Chapter 2.

Chapter 3 – Organising Design Information: Presents a way to organise design related infor-
mation resulting from the early modelling activities. This chapter contains extracts from
the paper Five Views of a Collaborative Model which was accepted as a short paper at the
Simultech conference, 2014. This paper was withdrawn and will be revised and submitted
to a different publication venue.

Chapter 4 – Analysing Energy Usage using Modelling: Presents a language extension that en-
ables modelling of different power states for computational units in a CPS in a modelling
language called VDM. Using this approach it is possible to use model simulation to investi-
gate different strategies to managing a fixed energy budget. This work contribution is based
on the paper Modelling Energy Consumption in Embedded Systems with VDM-RT [3], pub-
lished and presented at the ABZ conference, 2014. This language extension also relates to
the work carried out at the Overture Language Board (LB), where maintenance of VDM is
carried out. The work carried at the Overture LB is described in the paper The Overture
Approach to VDM Language Evolution, published and presented at the Overture workshop,
2013.

Chapter 5 – Hardware-In-The-Loop Simulation: Proposes a methodology to gradually realise
a CPS by including hardware in the system simulation. This chapter contains extracts from
the paper Hardware In the Loop for VDM-Real Time Modeling of Embedded Systems pa-
per [4], published and presented at the Modelsward conference, 2014.

Chapter 6 – Code Generation: Presents a code generation platform that enables the software
implementation to be generated automatically from a system model. The work presented
in this chapter is based two papers: Towards an Overture Code Generator [5] describes the
early work on a VDM to Java code generator, and the paper A Code Generation Platform
for VDM [6] describes a code generation platform for VDM, that enables construction of
code generators for different target languages.

Chapter 7 – Current Status and Future Plans: Summarises and discusses the results achieved
so far in this PhD project. Ideas for future plans are presented and concluding remarks are
given.

Appendix A: Lists the publications for this PhD along with other papers that are currently in
review or preparation.

Appendix B: Provides an overview of the courses completed in the first half of the PhD as well
as courses planned for remaining part.

3

2
Background

This chapter presents the background information needed in order to understand the work contri-
butions for the first half of this PhD project. More specifically, this chapter describes the modelling
technologies and languages that are used in the different contributions.

2.1 The Overture tool

The Overture project [7] supports the Vienna Development Method (VDM) [8], which is a set of
modelling techniques with a long history of developing computer-based systems in both research
and industrial projects. Since 2003 the Overture community has developed and maintained the
Eclipse/Java-based, open-source Overture tool for analysing models written in VDM. The mission
of the Overture project is to provide industrial strength tools for formal modelling and to foster
an environment that allows researchers and interested parties to experiment with the tool and the
language. Today Overture has evolved into a platform that is utilised in both the teaching of and
research into formal methods.

The basic architecture of the Overture tool is similar to that of any tool whose primary purpose
relates to modelling languages: a parser creates and instantiates an Abstract Syntax Tree (AST) of
a model, and every other component interacts with the AST in some way.

2.2 The Vienna Development Method

The Vienna Development Method (VDM) is one of the most well-established formal methods
for describing computer-based systems [9], and it has evolved into the three dialects: VDM-SL,
VDM++ and VDM-RT. VDM-SL is the flat specification language used for modelling of sequen-
tial systems, VDM++ introduces concurrency and object-orientation and VDM-RT further extends
VDM++ with support for modelling of real-time systems on distributed hardware architectures.

VDM-RT models the system architecture in a special system class using language constructs
for CPUs and buses. CPUs are characterized by speed and scheduling policy and allocated by ob-
jects of active classes. An object is deployed on a CPU by passing it to the deploy operation
of the CPU instance. Buses connect CPUs and enable communication at user-specified band-
widths using predefined communication protocols. Objects can invoke operations of other objects
deployed on different CPUs, which causes data to be transmitted on the connecting bus.

4

Chapter 2. Background

The VDM-RT interpreter maintains a global notion of time that can be referred to using the
time keyword. The global time progresses by a default number of nanoseconds as functions
and operations are invoked. This default increase in time can, however, be overruled using the
cycles and duration statements, which enable specification of execution delays relative to
processor speed or as absolute time measures, respectively.

Multiple threads can exist on a CPU, but only one thread can execute at a given point in time.
Threads are periodic and can be declared in the thread section of a class using the periodic
keyword. Periodic threads are specified as a four-tuple of the form (p, j, d, o) where p denotes the
period, j is the jitter, d is smallest time to elapse between consecutive executions of a periodic
operation and o is the offset.

VDM-RT supports modelling of synchronisation using mutex constraints and permission
predicates, where the latter must be true before execution is allowed. False predicates will there-
fore block the calling thread. Besides referring to instance variables, permission predicates may
use special history counters. These are self-contained variables, which count the number of times
each operation of an object has been requested, activated or completed [10].

2.3 The System Modelling Language

Multi-disciplinary models demand for a modelling language accommodating all of the involved
domains. Such a language is found in SysML [11], which is an extension to the Unified Modelling
Language (UML). Using SysML, it is possible to model constructs of different domains in the
same system description. In CPS development, this is used to describe the interaction among
software and physical system components. The following description provides an overview of the
most important SysML concepts.

Requirements: A use case diagram supports identification of the important actors and major
functions of the system. Modelling of requirements is supported by the requirements diagram.
The verified by relation makes it possible to associate requirements and test cases in order to
promote traceability and consistency across the different SysML diagrams. Similarly, it is possible
to indicate that a system component satisfies a requirement using the satisfy relation.

Structure: SysML introduces the concept of a block, which constitutes the basic unit of struc-
ture such as a software class or a hardware component. Blocks can be arranged in a Block Defini-
tion Diagram (BDD) in order to describe the hierarchical system structure. The internal structure
of a block is specified using the Internal Block Diagram (IBD), while interaction among the inter-
nal parts is described using ports.

Behaviour: SysML offers three types of diagrams for describing behaviour. State charts de-
scribe the states of a system and the transitioning among them. Sequence diagrams describe
message-based behaviour among blocks. Finally, activity diagrams describe the work-flow of
stepwise activities.

Constraints: Constraint blocks are used to capture equations such as physical laws. In the
parametric diagram these blocks can be used to describe the constraints on system properties
(performance, physical properties etc.).

5

Chapter 2. Background

2.4 Co-simulation and supporting technologies

Engineers who use models as a basis for developing CPSs normally make use of tools and for-
malisms optimised for a particular domain, in order to model the individual system parts. Often the
mechanical and electrical parts of a system are based on Continuous Time (CT) models of phys-
ical phenomena expressed using differential equations, while the computer-based system parts
are based on Discrete Event (DE) models of the system’s control logic, described using discrete
mathematics.

A co-modelling approach combines the DE and CT models to bridge the gap between the
involved engineering disciplines. By creating and simulating high-level models of the entire CPS,
systems engineers are able to reason about system-level properties at design time. This ensures
early feedback on system properties and eases communication across the involved engineering
disciplines, as the impact of design decisions are made visible to the entire team.

Several technologies for co-modelling and co-simulation are available. The subsections below
will briefly cover some of these in relation to the work described in Chapter 3, focusing mostly on
the Crescendo toolchain, which is used in this PhD project.

2.4.1 The Crescendo toolchain

The Crescendo toolchain expresses CT models as differential equations using bond graphs [12],
and DE models in VDM-RT. Bond graphs is a domain-independent non-causal way to model
ideal transfer of energy in a physical system. Energy exchange is characterised by flow and effort
variables. The meaning of these variables depends on the physical domain. In the electrical
domain, flow and effort refer to current and voltage, whereas the analogy in the mechanical domain
is force and velocity, respectively.

The simulation engines supporting bond graphs and VDM-RT are 20-sim [13] and Overture,
respectively. A co-simulation engine is responsible for managing the coordination between the DE
and CT simulators during a co-simulation. This allows exchange of data and time synchronization
between the two simulators as the DE and CT models are executed.

2.4.2 Other co-simulation technologies

The MADES Co-simulation Approach [14] allows designers to combine logic formula, describing
the controller, with non-casual CT models created in Modelica [15]. Stateflow extends the MAT-
LAB/Simulink [16] toolbox with control logic for modelling of reactive systems using state charts
and flow diagrams. Advanced Modelling Environment for performing Simulations of engineer-
ing systems [17] extends the MathWorks toolbox with a non-causal modelling approach. Finally,
Ptolemy II [18] is a modelling and simulation framework for multi-disciplinary systems that uses
actor-oriented design principles for describing CPSs.

6

3
Organising Design Information

Co-modelling supports reasoning about system-level properties through simulation of the co-
model, for example using one of the technologies described in Section 2.4. Stakeholders using
co-simulation technologies do however lack a systematic approach to present and organise de-
sign artefacts to different stakeholders. To address this deficiency, this chapter presents a view
model serving as a common viewpoint framework for these technologies to assists stakeholders in
comprehending the challenges of CPS development.

3.1 Introduction

Modelling helps focusing on the right questions early in the development cycle and thus reduce the
number of design artefacts that only add to the complexity of the system documentation. However,
co-models are themselves complex and give rise to production of additional design artefacts such
as system descriptions and documentation of new insights obtained. To make information easier
accessible to stakeholders a view model for co-models organises design artefacts into a set of
predefined views.

A view model defines its views based on the characteristics of the system under consideration.
For example, for a system where dependability is of paramount importance, a view can be used to
address this aspect of the system. Use of views for defining the important system aspects (hard-
ware architecture, software design etc.) enforces structure to the development work by assisting
stakeholders in addressing the critical development tasks already at the co-modelling level. Based
on the technical challenges of CPS development this chapter proposes such a view model that
supports CPS development using any co-simulation technology. The view model will be demon-
strated using a robot case study. However, due to page limitations only two of the five views will
be exemplified.

3.2 Five views of a co-model

View models have been widely used in, but are not limited to, the field of software engineering,
where they are used to manage complex software projects and develop software implementations.
During the early phases of co-modelling the focus is on understanding the system under consid-
eration at system-level. This should reflect how design artefacts produced during co-modelling

7

Chapter 3. Organising Design Information

are organised. The five view structure below arranges the design artefacts according to the main
technical challenges of CPS development.

Scenarios view: This view captures the co-model purpose, use cases, requirements, assumptions
(e.g. constant temperature) and definitions (e.g. units of measure) of the system. This view drives
the identification of elements in the remaining views, and the use cases support system validation.

Subsystems and Partitioning view: This view describes relevant subsystems and the associa-
tions among them. This view also covers the partitioning of the identified subsystem constructs,
i.e. deciding whether they belong to the DE or CT domain. When a subsystem construct has been
subject to partitioning, it is referred to as a domain construct. Dividing the system into subsystems
is a useful way to deal with complexity, delegate work to development teams, but it also serves as
input for the partitioning activity.

Domain Constructs and Interaction view: This view covers the descriptions of the DE and
CT constructs and their interaction. Interaction can be both internal and external, i.e. within a
domain construct and across domains, respectively. When developing a CPS with tightly coupled
DE and CT constructs it is necessary to understand the links between computer-based control and
the physical quantities (acceleration, force etc.) in order to meet the system objectives.

Distribution view: This view describes the system architecture of the controller, and the map-
ping of DE constructs onto processing elements. This view also covers distributed communication,
e.g. modelling of protocols.

Fault Tolerance view: This view identifies and describes faults addressed by the co-model, and
how fault tolerance mechanisms have been applied, to enhance the resilience of the system.

For documenting the five views we encourage the use of SysML, which provides support for
multi-domain modelling and consistency checks across views.

3.3 The view model

The Autonomous Robot System has been developed using the co-modelling based development
process and methodology suggested by Wolff in [19]. This methodology is captured in the form of
step-wise methodological guidelines and can be used with any of the co-simulation technologies
described in Section 2.4. The methodological guidelines support developers in using best co-
modelling practices, but without being explicit about what system aspects to consider. This is the
responsibility of the view model, which is an extension to the work of Wolff.

3.3.1 Case study

To demonstrate the use of the view model we apply it to the Autonomous Robot System case
study, where a co-model was developed using the Crescendo tool by following the methodolog-
ical guidelines proposed by Wolff. In the Autonomous Robot System case study a four wheeled
robot follows a known route of two-dimensional waypoints in the x-y plane. It performs this task
only aided by sensors for measuring the distance covered and the current orientation. In order to
complete the route, the robot must visit all the waypoints in the correct order. Route following is

8

Chapter 3. Organising Design Information

performed in known surroundings by having a controller running software responsible for making
the driving decisions. This controller will subsequently be referred to as the decision controller.
Using collaborative activities the Autonomous Robot System was developed by a software en-
gineer and a robotics engineer subsequently referred to as the DE and the CT (domain) experts,
respectively [20]. The DE model describes the software executing the driving decisions, while the
CT model expresses the physics of the robot (motor forces, wheel forces, robot orientation etc.).

3.3.2 Subsystems and Partitioning view

In Figure 3.1 the top-level block, the specification of the Autonomous Robot System, has been de-
composed into two subsystems. The first subsystem represents the robot and the second represents
the surroundings being formed by the surface the robot is driving on. Besides the body frame, the
robot is composed of wheels, motors and sensors. The motors are prefixed by their attachment
position, e.g. RF (right front), in order to distinguish between them. The same naming convention
is used for wheels and encoders — for reading convenience only a single motor/wheel/encoder
configuration is shown in Figure 3.1.

The decision controller executes the control logic that makes the driving decisions. Similarly,
the secondary controller will execute the device drivers sampling the encoders and the gyroscope.
Therefore, the two controller blocks in Figure 3.1 are put in the DE domain. The route and
configuration interface are tightly connected with the decision controller. The former will serve as
input for determining the driving decisions, and the latter will be used to load the route. Therefore
these blocks are also placed in the DE domain. The motors, encoders, gyroscope, wheels and
robot body frame are all put in the CT domain, since their physical dynamics must be described.

Documenting the subsystems and performing the partitioning as a collaborative activity helped
the domain experts in exchanging the knowledge necessary to establish interaction across the
domains that would lead to the desired system behaviour. For example, the CT expert would
explain to the DE expert the workings of the encoders and the gyroscope and how the output of
these sensors could be used for determining the distance travelled and the orientation of the robot.

«block»

Autonomous Robot System

«block»

Robot

«block»

Surface «block»

RF_Motor

«block»

RF_Encoder

«block»

Configuration Interface

«block»

Gyroscope

«block»

Decision Controller

«block»

Secondary Controller

«block»

Body

«block»

Route

«block»

RF_Wheel
1

1

1

1

1

1

1

1

1

1

«block»

Surroundings

bdd Name

1 1

Figure 3.1: Subsystems and Partitioning view of the Autonomous Robot System illustrated using
a SysML BDD

9

Chapter 3. Organising Design Information

3.3.3 Domain Constructs and Interaction view

The DE constructs identified during the partitioning activity can be described using UML dia-
grams. For example, the class diagram is used to describe the structure of the software making the
control decisions and the IBD is used to document the internal composition of domain constructs.

Figure 3.2 highlights a small part of the complete internal robot structure to demonstrate how
IBDs help obtaining insight into domain constructs. The motor-wheel-encoder configuration is
completely symmetric for every wheel. Therefore Figure 3.2 only shows the right front wheel
(along with the motor and the encoder).

The SysML descriptions alleviated moving to domain models written in VDM-RT and bond
graphs. Translating the DE descriptions (class diagrams, sequence diagrams etc.) to VDM-RT was
easily done since the two modelling languages share many equivalent concepts. Alternatively,
a code generator could have been used (Chapter 6). Furthermore, the CT descriptions (IBDs,
parametric diagrams, equations etc.) were used to describe the structure and the physical laws
of the system and served as a starting point to express the CT model using bond graphs in 20-
sim. The SysML descriptions further helped defining the cross-disciplinary interaction. For the
Autonomous Robot System the decision controller (a DE construct) is responsible for changing
the variables representing the speed and direction of a motor (a CT construct), i.e. direction
and pwm in Figure 3.2. The Crescendo technology terms these as shared variables, which together
define how the DE and CT model interact.

ibd Robot
«block»

:RF_Encoder

:RF_Motor

:Descision Controller

:Body:RF_Wheel

pulse: V

ticks : Tick

force : N

pos : Vector3D

rot : Rotation

pwm : Hzdirection : bool

Robot

Figure 3.2: Domain Constructs and Interaction view of the Autonomous Robot System illustrated
using a SysML IBD

3.4 Final remarks

Collaborative modelling is used to address some of the key challenges of CPS development, but
reasoning about complex systems using a co-model is in itself a difficult task. The view model
will assist stakeholders in comprehending this complexity by enforcing structure to the develop-
ment work, so important issues can be identified and addressed early in the development cycle,
where corrections are cheaper to make. A view model provides a tool-independent way to reason
about a CPS by establishing a common vocabulary so stakeholders with different backgrounds can
understand each other. Therefore, the five views of a co-model proposed in this chapter will serve
as a useful tool-independent viewpoint framework for addressing the technical and non-technical
challenges of CPS development.

10

4
Analysing Energy Usage using
Modelling

A CPS is often a battery powered device with a limited energy budget, which makes optimal usage
of energy a critical task faced by CPS developers. One approach to making a CPS energy-efficient
is by putting its CPUs into less energy consuming modes when their computational resources
are not needed. In order make VDM-RT a better modelling language for analysing such non-
functional properties of a CPS, this chapter presents a language extension to VDM-RT that enables
reasoning about a system’s energy consumption before the system is realised.

4.1 Modelling CPU power states

This work presents a formal modelling approach for analysing and evaluating the energy con-
sumption of a CPS. The approach is based on the VDM-RT dialect and specifically focuses on
including CPU sleep mode in the simulation. This mode is an operational state that most of the
modern CPUs used in today’s microcontrollers implement. In this mode the system enters a low
power consumption mode where a CPU is deactivated until its computational resources are needed
again.

Initially, we proposed the representation of sleeping states in VDM-RT by applying a design
pattern structure at the modelling level [21]. This approach, while effective, introduced an addi-
tional level of complexity at the modelling stage. The extensions made to VDM-RT, presented in
this chapter, instead incorporates the notion of a sleeping state into the CPU class. The prelimi-
nary application of this modelling approach to a simple case study has shown that it is possible to
produce estimates of approximately 95% accuracy without having to create a physical prototype
for each solution under consideration.

4.1.1 Language modifications

Extending the VDM-RT CPU class with a sleep operation makes it possible to represent embed-
ded software that sleeps the CPU responsible for executing the application logic. This is shown
in Listing 2. In this example the ApplicationLogic executes in APP_TIME time units and
then the CPU (microcontroller unit, mcu in Listing 2) is put to sleep. Once woken up, execution
resumes by invoking the PostWakeUpLogic operation.

11

Chapter 4. Analysing Energy Usage using Modelling

�
duration (APP_TIME) ApplicationLogic();
System‘mcu.sleep(); -- Blocks until activated externally
duration (POST_WAKE_UP) PostWakeUpLogic();
� �
Listing 2: High-level representation of the embedded software putting the CPU in a sleeping state.

The operation active can be invoked by the parts of the model that represent internal wake-up
sources such as a sleep timer or external sources such as interrupts (see Listing 2). This allows the
sleeping CPU to resume execution (see Listing 3).�
System‘mcu.active();
� �

Listing 3: Static call waking up (activating) the mcu.

4.1.2 Modelling different wake-up policies

The language extensions presented above, and more specifically the way the active operation
is used, can model different wake-up policies. In order to represent an external interrupt based
wake-up policy, a model needs to incorporate additional logic to represent external events that can
be fed to the system. These events will trigger the wake-up logic at a certain time.

A periodic thread deployed on a non-sleeping CPU can be used to represent a hardware block
that waits for the external interrupt. Once the event has been recognized by the model representing
the system, it can invoke the active operation and resume application processing.

The second wake-up policy is based on sleep timer expiration. From the modelling perspective
it can be treated in a manner analogous to the external event modelling approach presented above.
A periodic thread runs the sleep timer logic that periodically checks if the overflowOn time
units have elapsed.

If this condition is satisfied the CPU is activated and resumes execution of the application
logic. It is the responsibility of the application logic to set up the sleep timer again before going
to sleep the next time.

4.2 A modelling structure for modelling the wake-up policies

A generic modelling structure that can be used to model the wake-up policies described above is
shown in the class diagram in Figure 4.1. This modelling structure uses two VDM-RT CPUs that
are connected through a VDM-RT bus (esBUS):

WakeUpHWSource: represents a hardware block that features the necessary components to
wake up the CPU from a sleeping state.

MCU: represents a microcontroller unit containing the CPU that will be operating in active and
sleep mode depending on the control logic under study.

These CPUs run the following model components:

WakeUpSource: defines a generic template that must be realised by the components that wake
up the CPU. It specifies the use of the operation mcu.active().

12

Chapter 4. Analysing Energy Usage using Modelling

SleepTimer: is a concrete realisation of the WakeUpSource that models a wake up configura-
tion based on a resettable timer.

WakeUpInterrupt: is a concrete realisation of the WakeUpSource that models a wake up con-
figuration based on an interrupt generated on the occurrence of an external event. This is
modelled using the approach proposed above.

Application Logic: models the application logic running on the main CPU. This application is
able to sleep the CPU through the invocation of the mcu.sleep() operation. This logic
will timestamp the transitions between the active and sleep states and log the timestamps to
a file.

<<HWblock>>
WakeUpHWSource

<<CPU>
mcu

<<BUS>>
esBUS

UsesUses

<<static>>
WakeUpSource

<<static,active>>
ApplicationLogic

Runs Runs

<<static>>
SleepTimer

<<static>>
WakeUpInterrupt

1

1

1 1 1 1

1

1

Figure 4.1: Generic structure for models using the sleep extension.

The Log produced by the application logic can be analysed once the simulation has com-
pleted in order to study both power and energy consumption. Based on this log, and taking into
consideration the manufacturers specification for the CPU under study, one can plot the power
consumption of the CPU over time. In order to determine the energy consumption this curve
should be integrated. This analysis is considerably easier than a study based on prototypes and
measurements and provides a high level of accuracy (≈95%). Details for a case study using this
modelling structure can be found in [22].

4.3 Final remarks

Exploring different strategies for efficient energy usage in CPS development by controlling the
power modes of CPUs has most traditionally been done through the construction of different
physical prototypes. In this chapter we have enabled design space exploration of energy usage in
a CPS using the VDM-RT notation. This enables design decisions to be made based on accurate
energy consumption predictions without having to realise multiple system architectures. We have
implemented language extensions for VDM-RT in the Overture tool, which enable controlling
power modes of system CPUs at the modelling level. Combining our language extensions with
existing support for describing hardware architectures enables reasoning about energy usage in a
CPS using VDM-RT.

13

5
Hardware-In-The-Loop Simulation

Hardware-In-The-Loop (HIL) simulation is a technique for incorporating hardware in the simula-
tion of the system model. The purpose of this approach is two-fold: First it increases the fidelity of
the simulation outcome, and secondly it provides a way to gradually realise a CPS. To exploit the
advantages of HIL simulation, this chapter presents a method for introducing hardware into the
simulation of a VDM-RT model in order to enable a combined execution (co-execution) of model
and hardware/software elements.

5.1 HIL setup design

The main objective of the HIL technology is to allow a stepwise transformation of models of func-
tionality into components that implement that functionality. In order to benefit from the models
one can combine the components implemented with the models of those that still have not been
implemented. This is the key idea behind the HIL system presented in this chapter, which has not
been applied previously for VDM-RT. Figure 5.1 illustrates this concept with an example based
on the design of a CPS that enters three stages: Acquire Data, Process and Provide
Output. The design of such a system starts with the modelling of the complete system function-
ality. This is illustrated in the upper part of Figure 5.1 (Full Modelling). The figure shows that
all the components are modelled (represented on the VDM side) and no components have been
implemented on the target (the hardware (HW) side). After the system has been modelled the
component providing the Process functionality is implemented. It is the intention to substitute
the modelled Process component with its corresponding implementation and still use the rest of
the model for system simulation. This approach is shown in the lower part of Figure 5.1. At this
point it is possible to start the system simulation on the VDM-RT side in the Acquire Data
stage and then the HIL system will hand-over the execution of the Process stage to the imple-
mentation deployed on the target. Once Process has completed, execution will return from the
target CPS to the VDM-RT model and continue with the Provide Output stage.
By applying the approach proposed in this chapter the design engineer is able to benefit from:
the expressiveness of VDM-RT to represent real-time constraints and system properties, the sim-
ulation capabilities of Overture, and the insight gained through physical prototyping using a
combined-modelling prototyping approach.

14

Chapter 5. Hardware-In-The-Loop Simulation

V
D

M
H

W

Acquire Data Process Provide Output

V
D

M
H

WFu
ll

M
o

de
lli

n
g

M
o

de
lli

n
g

w
it

h
H

IL

Acquire Data

Process

Provide Output

Figure 5.1: Device modelling (upper part of the figure) and combined device modelling with HIL
(lower part of the figure).

5.1.1 Prototype hardware

The Device Under Test (DUT) selected for this work is a System on Chip (SoC). This kind of
platform allows the combined deployment of hardware and software components in the same
piece of silicon. The DUT allows testing of the HIL concept for VDM-RT in a more complete
manner, taking into account both hardware and software components. These components can act
together or in isolation while running on the same piece of hardware.

In order to monitor the output produced by the DUT on its digital buses we have used a logic
analyser (Saleae Logic 8). This device samples a number of logical lines over a period of time.
Any changes on the lines during this period of time will be logged. The logic analyser selected for
this work is connected to a PC and it is possible to control it from custom software, created using
a software development kit provided by the manufacturer1.

5.1.2 Software and modeling components

The workstation software and modelling components composing the HIL setup are shown in the
class diagram in Figure 5.2. Each of the components are treated individually in the description
below.

11

11

11

1

1

11

Overture

Java

.NET

*

1

1

11 1

DUT Controller Log

VDM-RT ModelVDM-RT Interpreter Hardware Proxy

Stimuli Controller

Java BridgeHIL Proxy

HIL Component

DAQ Driver

Figure 5.2: The software and modelling components of the HIL setup shown in a class diagram.

1Additional information on Saleae Logic 8 is available at: http://www.saleae.com/logic/

15

Chapter 5. Hardware-In-The-Loop Simulation

VDM-RT Interpreter: executes the VDM-RT Model representing the embedded software un-
der consideration.

Hardware Proxy: specifies the interface of the hardware being controlled from the VDM-RT
execution. All invocations are initiated in VDM-RT and communicated through the Java
Bridge before they reach the physical hardware.

Java Bridge: enables delegation of VDM-RT functionality execution to Java. In this way one
can invoke a VDM-RT operation or function and have the body specified and executed as a
Java method. The Java Bridge does automatic conversion and transferring of input and
output values between Java and VDM-RT.

HIL Proxy: is a thin software component that accepts inputs from the Java Bridge inside
Overture and relays the invocations originating from the VDM-RT execution to a HIL
Component responsible for communicating with the hardware used in the HIL setup. The
HIL Proxy is interoperability glue that enables communication between Overture and the
hardware.

HIL Component: is responsible for communicating directly with the hardware used in the HIL
setup through serial connections. Although we only connect to a single instance of the
HIL Component it would be possible to extend this to multiple instances as indicated in
Figure 5.2. Finally, the HIL Component uses the Log for writing the data acquired from
the Digital Acquisition (DAQ) to the file system.

Stimuli Controller: instructed by the HIL Component the Stimuli Controller pro-
vides the DUT with input signals prior to executing the functionality under test.

DUT Controller: instructs the external DUT to execute some function in software or hardware.

DAQ Driver: provides the software interface enabling the HIL Component to launch the DAQ
so the data needed can be acquired from the DUT execution.

5.2 HIL setup prototype

This section presents the initial setup for the HIL system by describing the prototype as well as
the co-execution of the model and the partial implementation.

5.2.1 Prototype description

The current prototype for this case implements a control algorithm for a mechanical device. This
algorithm is divided into the following stages: 1) Initialization, 2) Regulation Loop
and 3) Results Logging. We have modelled the algorithm in VDM-RT and continued by
producing a preliminary implementation of the Regulation Loop that can be deployed to
the DUT. The aim of this first approach is to combine in a single execution trace the models
of Initialization and Results Logging with the implementation of Regulation
Loop that is deployed on the DUT. Additionally, we are interested in measuring the execution time
of the regulation cycle on real hardware in order to verify that the real-time constraints are met.
This real-time information will also be incorporated into the VDM-RT model afterwards using the
duration statement. The following paragraphs describe the structure and the functionality of
the embedded hardware and software that the DUT is composed of.

16

Chapter 5. Hardware-In-The-Loop Simulation

Embedded hardware The embedded hardware supports communication with external logical
interfaces; pulse-width modulation control of an actuator; communication with the workstation
running the VDM-RT model (over a serial connection) and finally time measuring using pin tog-
gling.

Embedded software The embedded software, executing on the DUT, is composed of hardware
drivers, Functionality Under Test (FUT) and additional HIL support. The HIL support contains
the logic to start the execution of the FUT upon request from the DUT Controller running on
the workstation. This functionality can be divided into three steps:

1. Wait for command: The system waits for a parametrised command describing the func-
tionality to execute.

2. Serve HIL request: The system initiates the execution of the FUT. This can be surrounded
by pin toggling operations to measure the execution time of the function. Optionally ad-
ditional pin toggling can be performed inside the function to measure the time it takes to
reach different points during the execution.

3. Return to DUT controller: Once the system has completed the execution of the FUT it
returns to the DUT controller so it can stop signal sampling and notify the model execution
environment to resume model execution. Additionally it can return result values produced
by the execution of the FUT.

5.3 HIL execution results

The co-execution of the model and the implementation made it possible to validate the real-time
behaviour of the FUT component as well as the correct operation of its control logic. We have
been able to validate that the time slot allocated to the regulation cycle is not overrun and obtained
a precise time measurement that can be incorporated into the models. Additionally it has been
possible to exercise the implemented control logic together with the modelled components on a
number of scenarios. Finally, this HIL setup has facilitated the stepwise implementation from a
system level design approach.

Our approach is further supported by tools for automated generation of the system implemen-
tation. For software components it is possible to produce Java and C++ from VDM using code
generators [23, 6]. However, for hardware components there is currently no support for gener-
ating the implementation in a hardware description language. Even though automated hardware
generation is not available in VDM-RT this language can be used to study component-level time
constraints and to some extent hardware/software partitioning problems [24].

5.4 Final remarks

In this chapter we have presented the initial work we have carried out to enable HIL simulation us-
ing models written in VDM-RT. This proof-of-concept demonstrates the potential of our approach
but there is significant future work remaining [4] to make this a useful feature for industrial use.

17

6
Code Generation

To support the development of CPS control logic, this chapter presents a code generation plat-
form for VDM that enables code generation to different implementation languages. This work
has been used to implement the VDM++-to-Java code generator available in the Overture tool
as well as a proof-of-concept VDM++-to-C++code generator [6]. The code generation plat-
form currently only supports VDM++, but there are plans to extend it to work for VDM-RT also
(Subsection 7.2.3).

6.1 Generating the software implementation

Code generating a software model of a CPS can be an efficient way to transition to the realisation
phase. This approach also minimises the chances of introducing inconsistencies in the software
implementation that makes it deviate from the system specification due to manual translation of
the model into code.

With the existence of many popular target languages it is common for code generators to
provide support for multiple target languages in order to target a larger group of users. This can,
however, easily lead to duplication of efforts when implementing code generators — especially if
the target languages follow the same paradigms such that the rules used to code generate a source
language are the same.

Ideally it should be possible to reuse the transformations used to code generate constructs
of a source language. As an example, consider the VDM set comprehension {x|x in set
S & pred(x)}, which constructs a new set from the elements of S for which pred(x) is
true. In imperative languages such as Java and C++ this language construct is non-trivial to code
generate since Java and C++ do not have similar constructs included. The same functionality can
be obtained in those languages, but it requires use of multiple language constructs for iterating
over a set, evaluating a predicate on each set member, adding elements to a resulting set etc.

The potential for different backends (a code generator that extends the code generation plat-
form) to use the same transformations is particularly good when the target languages belong to
the same paradigm (e.g. they are object-oriented or functional in style). In that case they will have
many language constructs in common and thus face many of the same challenges with respect to
code generation. When the same transformation can be used by different backends to code gen-
erate a source language construct it is beneficial to apply the transformation to the code generator
input before it reaches the backend in order to obtain a transformed structure that is easier for a

18

Chapter 6. Code Generation

backend to code generate. The idea is therefore to structure a code generator such that it is pos-
sible to select the transformations that will lead to a structure that requires the least effort for a
backend to code generate. In this chapter we explore this approach to code generation in order to
reduce the efforts needed to implement code generation for multiple backends.

6.2 Intermediate representations

One approach adopted by compiler developers is to transform the Abstract Syntax Tree (AST)
specified in the source language into an Intermediate Representation (IR) that preserves the se-
mantics of the input and from which the backend generates code in the target language. The IR
helps managing the complexity of the compilation process by being independent of details spe-
cific to the source language and the target language. An IR obtained from the VDM AST serves a
similar purpose by mitigating the complexity of generating code from a VDM model. This would,
for example, enable the code generator to unify VDM functions and operations into the concept of
a method as seen in a programming language such as Java. Then the backend only needs to treat
a single (language) construct without having to distinguish between functions and operations.

In this work we address the challenges of code generating constructs where no obvious map-
ping exist. We do this by translating the VDM AST into an IR to which a series of transformations
are applied. By transforming language constructs that are difficult to code generate into new tree
structures, based on concepts that are easier to code generate, the implementation of a backend can
be simplified. If the backend provides support for code generating the replacement constructs used
by the transformations then it follows that the backend already supports code generation for the
complex construct. In that case the complexity of the code generation process is comprehended
entirely using tree transformations. The advantage of this approach is that the transformations can
be made such that they are independent of the target language. This enables other backends to
benefit from the same transformations when code generation is implemented for other languages.

6.3 Tree transformations

The difficulty of code generating a VDM model depends on the style of modelling and the target
language. VDM is a multi-paradigm modelling language, using constructs of both the object-
oriented and the functional paradigm, and therefore backends will experience situations where a
construct does not have a one-to-one mapping into the target language.

One approach to simplifying code generation of a VDM model is to have the modeller refine
the model such that it uses constructs that are easier to code generate. However, eliminating
constructs that are problematic to a code generator using model rewriting, limits the modeller to
use only a subset of the source language. This also clutters the model with details used to assist
the backend in generating code from the model, thus going against the point to have a model that
abstracts away details that do not contribute to obtaining the insight needed.

A more sophisticated approach is to have this kind of model refinement done at a later stage to
make it transparent to the modeller and avoid restricting modelling to only a subset of the source
language. This could be done by applying transformations to the IR such that constructs that are
problematic to code generate get replaced with other IR constructs in order to obtain a simplified
IR that is easier to code generate.

19

Chapter 6. Code Generation

The use of transformations is part of a larger platform architecture that is used to construct
backends. In Section 6.4 the architecture of this code generation platform is detailed to make it
clear how it facilitates the construction of code generators.

6.4 Architecture of the code generation platform

The code generation platform, shown in Figure 6.1, takes a VDM++ model as input and use it to
construct an IR that represents the generated code. After the IR has undergone a transformation
process it is input to a backend that translates it into source code in a target language. To further
detail the approach taken to construct code generators this section describes the architecture of the
code generation platform and how it interacts with the backend of a target language.

Source code

VDM
AST

IR’

Runtime

IR nodes IR Visitors

Code Generation Platform

Transformations

Backend

IR

IR
Constructor

Figure 6.1: An overview of the code generation platform architecture

6.4.1 The intermediate representation life cycle

The IR as first constructed from the VDM AST represents a slightly simplified and extended
version of the VDM model. For example, in this stage the IR has eliminated or replaced certain
operators using other operators: writing a logical implication on the form A ⇒ B where A
and B are propositions, is convenient in a mathematical language such as VDM. However, since
it is a derived and, not elementary operation of boolean logic, this operator is rarely seen in a
programming language. Therefore the expression A ⇒ B is represented as ¬A ∨ B in the IR,
which is semantically equivalent.

Afterwards, code generation enters the transformation process where constructs that are diffi-
cult to code generate (or even unsupported by the backend) are translated into new tree structures
that can be code generated. The IR before and after it has undergone the transformation process is
denoted IR and IR’ in Figure 6.1, respectively. Finally, the simplified IR is input to the backend
that translates it into a target language.

6.4.2 Design of the intermediate representation

The IR nodes are generated using the ASTCreator tool [25], which is a SableCC [26] inspired tool.
As shown in Figure 6.2 the ASTCreator takes a description of the AST as input and outputs nodes

20

Chapter 6. Code Generation

from which concrete ASTs can be constructed. The generated AST structure uses bidirectional
node relations which make it easier to search the tree both upwards (e.g. finding the enclosing
class of a node) and downwards (e.g. looking up type information of child nodes). The nodes also
have functionality for making changes to the tree structure, which is needed when nodes must be
replaced with new tree structures during the transformation process.

IR nodes IR Visitors

AST
Generator+

IR description IR extension

Figure 6.2: The ASTCreator produces the IR nodes and visitors based on the IR description

The ASTCreator also produces functionality to traverse the AST. These tree walkers or visitors
are implemented using the visitor pattern and play an important role in the current AST architec-
ture used in the Overture tool where they, for example, are used to implement the type checker and
the interpreter [1]. Similarly, the IR Constructor is a visitor that traverses the VDM AST
and constructs the IR from it.

6.4.3 The backend

The final step of the code generation process translates IR constructs into source code of the target
language. When transformations have simplified the IR then ideally these mappings should be
trivial. The process of mapping IR constructs into source code of the target language for the
Java backend is done using the template-based technology, Apache Velocity [27]. Optionally, the
generated code can make use of a runtime. As an example, the Java backend includes a runtime to
represent VDM types and implementation for some of the VDM operators such as the sequence
modification.

6.5 Final remarks

The code generation platform presented in this chapter supports construction of different backends
and reduces the efforts needed to code generate a source language to multiple target languages. It
achieves this by representing the generated code as an IR and subjects it to a series of semantic
preserving transformations in order to obtain a tree structure that is easier for a backend to code
generate. Since the IR is independent of any source and target language backends facing similar
challenges during the code generation process, can use the same transformations to simplify their
implementation.

Applying transformations to an IR has proven useful for implementing the Java and C++ back-
ends, but the the approach also supports code generation for other source languages. Therefore
we hope that the work presented in this chapter will be useful for others working with code gen-
eration.

21

7
Current Status and Future Plans

This chapter summarises the work contribution for the first half of this PhD, then describes the
current future plan for the remaining part of the project, and ends with concluding remarks.

7.1 Summary of current work

The work carried out in the first half of this PhD has resulted in several technologies being devel-
oped to address the challenges of CPS development and facilitate knowledge transfer between the
different phases of the development process: The view model provides a structured way to rea-
son about system-level properties of a CPS and for stakeholders to organise the produced design
artefacts in a meaningful way; The VDM-RT language extension enables analysis of the energy
consumption of a CPU before the system is realised; and finally the HIL technology and the code
generation platform provide ways to realise a system model.

7.2 Future plans

The subsections below describe ideas for potential future directions to take in this PhD project and
how this will contribute to demonstrating the hypothesis introduced in Section 1.2.

7.2.1 Code generating traces:

Whether it is code generated or not, a software implementation is most commonly validated using
testing. In VDM it is possible to specify a trace definition, which can be expanded into a large
collection of tests that when executed enables detection of deficiencies in the model (e.g. missing
pre-conditions) [28]. The body of a trace definition is similar to a regular expression and describes
the sequence of operation calls for each test that the trace definition expands into. If the code
generation platform is extended to support code generation of traces then the tests specified at the
modelling level can be used throughout system realisation to validate the software implementation
– also after changing the generated code. So by completing this future plan item, this PhD project
will provide a better coverage of the entire development cycle, by taking the aspect of testing into
account.

22

Chapter 7. Current Status and Future Plans

7.2.2 Formally verifying the output of the code generator:

It would be interesting to demonstrate the proof-of-concept of formally verifying the transforma-
tions used by the code generation platform, in order to ensure that the generated code preserves the
semantics of the input model. This would in principle make testing of the generated code unneces-
sary, but many of the transformations are non-trivial and would require a considerable amount of
work to verify formally. However, this could be done for some of the transformations in order to
show the way, leading by example, such that other people working with code generators can adopt
this approach. This future plan item therefore contributes to improving the quality of the output
of the code generator in order to avoid introducing problems in the software implementation and
potentially reduce the amount of testing needed.

7.2.3 Extending the coverage of the code generation platform:

Currently three student projects are being carried out (two Master thesis projects and one R&D
project) based on the code generation platform. The first Master thesis project carries out work
to provide support for the concurrency elements of VDM++. The second Master thesis project
tries to code generate the distribution aspects of VDM-RT by taking into account that an object
may invoke another object deployed on a different CPU. Finally, an R&D project uses the code
generation platform to develop a CPS using a Raspberry Pi and documents the challenges en-
countered. The outcomes of these projects will be extended further in the remaining part of this
PhD project. This future plan item therefore adds to the coverage of the code generation platform
by allowing the concurrency and distribution elements of VDM-RT to be generated. The R&D
project serves as a case study to validate the code generation platform and the outcomes for this
project are expected to be 1) a stepwise method for realising CPS models using code generation
and 2) suggestions for improvements to the code generation platform (possibilities to configure
code generation etc.).

7.2.4 INtegrated Tool chain for model-based design of CPSs (INTO-CPS)

By the beginning of 2015 a new H2020 project that focus on developing tools for comprehensive
modelling of CPSs will start off. The project, which is named INTO-CPS, addresses challenges
such as network distribution, combined use of different co-simulation technologies and system
realisation. INTO-CPS aims to develop a tool that is based on Functional Mockup Interface (FMI)-
compatible co-simulation, meaning that the tool can be co-simulated with other tools that meet
the FMI standard [29]. Therefore, INTO-CPS is highly related to the work carried out in this
PhD and covers several work tasks that involve things such as HIL simulation, software-in-the-
loop simulation and code generation. Although this PhD is not officially tied to the INTO-CPS
project it brings further collaboration possibilities in order to improve and extend many of the
contributions of this PhD.

7.2.5 Going abroad to Berkeley:

This PhD project has received a grant of 25.000 DKK to go to Berkeley in spring 2015 for a period
of two months and work together with Professor Edward A. Lee who is doing research within the
area of CPSs. Edward A. Lee is involved in projects such as Ptolemy [18] and Ptides [30], where
software tools for modelling, simulation and realisation (including code generation) of CPSs are
developed. The researchers working at the University of Berkeley are highly specialized within
the field of research of this PhD project. This makes visiting this research institution an ideal
opportunity in order to become more knowledgeable on code generation for CPSs and establish

23

Chapter 7. Current Status and Future Plans

new connections with researchers within the area of research of this PhD. The plan is to work
with the technologies developed at Berkeley and enhance them in regards to the work of this PhD
– possibly by extending their work on code generation or enabling models developed using their
tools to be simulated together with Crescendo models in a new FMI compatible version of the tool
developed in the INTO-CPS project (Subsection 7.2.4).

7.2.6 Optimising harvesting processes:

Aarhus University is currently a partner in a project supported by the High Technology Founda-
tion with a vision to optimise offline and online logistics planning of harvesting processes. In
this project the harvesting process is modelled in VDM and the simulation is visualised with a
graphical user interface running on top. One purpose of the model is to compare outcomes of
simulations based on different harvesting strategies in order to find the most efficient one. The
model also serves as a case study in the work with the code generation platform in order to speed
up the process of moving to the realisation phase as well as to make the simulation run faster
using the generated code. Use of strategies and code generation to optimise harvesting processes
are interesting subjects that will be further researched in the second half of this PhD project. At
some point this PhD project may try to code generate the distribution aspects of the model, i.e. the
control logic of the resources participating in the harvesting operation (harvesters, service units,
storages etc.) is executed on different hardware platform that communicate over a network.

7.3 Concluding remarks

The work carried out in the first half of this PhD project has enhanced modelling of CPSs by
contributing with a view model for co-models and a language extension for VDM-RT enabling
analysis of the energy consumption of the CPUs in a CPS (Chapters 3 and 4, respectively). Fur-
thermore, the HIL technology enables the system to be realised gradually and increases the fidelity
of the simulation by including real hardware in the system simulation (Chapter 5). This approach
improves prediction of the system properties for the final version of the system and has the poten-
tial to reduce the expensive analysis needed with a complete system realisation. Finally, the code
generation platform automates parts of the realisation process by generating the software imple-
mentation directly from the system model, which can be an efficient way to transfer the knowledge
obtained during modelling to the realisation phase (Chapter 6).

Some of the future plan items aim to expand the coverage of the code generation platform,
and case studies will be used to validate and improve the approach. The remaining part of this
PhD project further aims to improve code generation by providing ways to make guarantees about
the generated code or to estimate the code quality using code generated traces. It is believed that
addressing the proposed future plan items will further contribute to enhancing modelling of CPSs
and make realisation of these systems more efficient.

24

A
Publications

Published

• Peter Würtz Vinther Jørgensen, Morten Larsen, and Luis D. Couto. A Code Generation
Platform for VDM. In the proceedings of the 12th Overture workshop, August 2014.

• José Antonio Esparza Isasa, Peter Würtz Vinther Jørgensen, and Claus Ballegård Nielsen,
Modelling Energy Consumption in Embedded Systems with VDM-RT. In the proceedings
of the 4th International ABZ conference, July 2014.

• José Antonio Esparza Isasa, Peter Würtz Vinther Jørgensen, and Peter Gorm Larsen, Hard-
ware In the Loop for VDM-Real Time Modelling of Embedded Systems. In the proceedings
of MODELSWARD 2014, Second International Conference on Model-Driven Engineering
and Software Development, January 2014.

• Peter Würtz Vinther Jørgensen, Kenneth Lausdahl, and Peter Gorm Larsen. An Architec-
tural Evolution of the Overture Tool. In the proceedings of the 11th Overture workshop,
August 2013.

• Peter Würtz Vinther Jørgensen and Peter Gorm Larsen, Towards an Overture Code Genera-
tor. In the proceedings of the 11th Overture workshop, August 2013.

• Nick Battle, Anne Haxthausen, Sako Hiroshi, Peter Jørgensen, Nico Plat, Shin Sahara, and
Marcel Verhoef. The Overture Approach to VDM Language Evolution. In the proceedings
of the 11th Overture workshop, August 2013.

Submitted

• Luis Diogo Couto, Peter Würtz Vinther Jørgensen, Joey W. Coleman, and Kenneth Laus-
dahl. Migrating from a Performant to an Extensible Architecture in the Overture Tool.
Submitted to the 30th Symposium On Applied Computing: (SAC 2015), April 2015.

Awaiting publication venue

• Peter Würtz Vinther Jørgensen and Sune Wolff. Five Views of a Collaborative Model.
Withdrawn short paper submitted to Simultech 2014, August 2014.

25

B
Courses and Dissemination

Table B.1 shows courses completed, planned and currently in progress for this PhD. So far 20
ECTS points of the (approximately) 30 ECTS points have been earned. By completing the courses
currently in progress and the course planned, this PhD project will earn a total of 31 ECTS points.

Table B.1: Overview of courses for this PhD.

Course name Start date End date Completion status Credits

ICCES 2013 18/06/2013 05/07/2013 Completed 5 ECTS

Compilation (Q1/Q2) 26/08/2013 18/12/2013 Completed 10 ECTS

Programming Language
Paradigms (Q4)

03/04/2014 30/05/2014 Completed 5 ECTS

Semantics (Q1/Q2) 26/08/2014 18/12/2014 In progress 5 ECTS

Journal Club on Scientific
Writing in Engineering and
Natural Sciences (Q2)

15/09/2014 19/12/2014 In progress 3 ECTS

Science Teaching - Module
1: Introduction to Science
Teaching (Q2)

25/11/2014 16/12/2014 Planned 3 ECTS

Total: 31 ECTS

26

Bibliography

[1] P. W. Jørgensen, K. Lausdahl, and P. G. Larsen, “An Architectural Evolution of the Overture
Tool,” in The Overture 2013 workshop, August 2013.

[2] L. D. Couto, P. W. Jørgensen, K. G. Lausdahl, and J. Coleman, “Migrating from a Performant
to an Extensible Architecture in the Overture Tool,” in Submitted to the 30th Symposium On
Applied Computing: (SAC 2015), April 2015.

[3] J. A. E. Isasa, P. W. Jørgensen, and C. Ballegaard, “Modelling Energy Consumption in Em-
bedded Systems with VDM-RT,” in Proceedings of the 4th International ABZ conference.,
July 2014.

[4] J. A. E. Isasa, P. W. Jørgensen, and P. G. Larsen, “Hardware In the Loop for VDM-Real
Time Modelling of Embedded Systems,” in MODELSWARD 2014, Second International
Conference on Model-Driven Engineering and Software Development, January 2014.

[5] P. W. Jørgensen and P. G. Larsen, “Towards an Overture Code Generator,” in The Overture
2013 workshop, August 2013.

[6] P. W. Jørgensen, L. D. Couto, and M. Larsen, “A Code Generation Platform for VDM,” in
The Overture 2014 workshop, June 2014.

[7] P. G. Larsen, N. Battle, M. Ferreira, J. Fitzgerald, K. Lausdahl, and M. Verhoef, “The Over-
ture Initiative – Integrating Tools for VDM,” SIGSOFT Softw. Eng. Notes, January 2010.

[8] C. B. Jones, Systematic Software Development Using VDM. Englewood Cliffs, New Jersey:
Prentice-Hall International, second ed., 1990. ISBN 0-13-880733-7.

[9] P. G. Larsen, K. Lausdahl, and N. Battle, “The VDM-10 Language Manual,” Tech. Rep.
TR-2010-06, The Overture Open Source Initiative, April 2010.

[10] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef, Validated Designs for
Object–oriented Systems. Springer, New York, 2005.

[11] R. S. Sandford Friedenthal, Alan Moore, A Practical Guide to SysML. Friendenthal, Sanford:
Morgan Kaufman OMG Press, First ed., 2008. ISBN 978-0-12-374379-4.

[12] D. Karnopp and R. Rosenberg, Analysis and simulation of multiport systems: the bond graph
approach to physical system dynamic. MIT Press, Cambridge, MA, USA, 1968.

[13] J. F. Broenink, “Modelling, Simulation and Analysis with 20-Sim,” Journal A Special Issue
CACSD, vol. 38, no. 3, pp. 22–25, 1997.

[14] L. Baresi, G. Ferretti, A. Leva, and M. Rossi, “Flexible logic-based co-simulation of mod-
elica models,” in Industrial Informatics (INDIN), 2012 10th IEEE International Conference
on, pp. 635 –640, july 2012.

27

Bibliography

[15] P. Fritzson and V. Engelson, “Modelica - A Unified Object-Oriented Language for System
Modelling and Simulation,” in ECCOP ’98: Proceedings of the 12th European Conference
on Object-Oriented Programming, pp. 67–90, Springer-Verlag, 1998.

[16] MathWorks, “http://www.mathworks.com,” October 2011. Matlab official website.

[17] LMS Engineering Innovation, “AMESim: Advanced Modeling Environment for per-
forming Simulations of engineering systems,” 2012. http://www.lmsintl.com/
imagine-lab-amesim-rev-11.

[18] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Sim-
ulating and Prototyping Heterogeneous System,” in Int. Journal of Computer Simulation,
1994.

[19] S. Wolff, Methodological Guidelines for Modelling and Design of Embedded Systems. PhD
thesis, Aarhus University, Department of Engineering, 2013.

[20] P. W. Jørgensen, “Evaluation of Development Process for co-models,” Master’s thesis,
Aarhus University/Engineering College of Aarhus, December 2012.

[21] J. A. E. Isasa and P. G. Larsen, “Modelling Different CPU Power States in VDM-RT,” in
Proceedings of the 11th Overture Workshop 2013, Aarhus University, June 2013.

[22] J. A. E. Isasa, P. G. Larsen, and F. O. Hansen, “Energy-Aware Model-Driven Development
of a Wearable Health Care Device,” in Manuscript under preparation for the 4th Symposium
FHIES/SEHC., June 2014.

[23] CSK, “VDMTools homepage.” http://www.vdmtools.jp/en/, 2007.

[24] J. A. E. Isasa, P. G. Larsen, and K. Bjerge, “Supporting the Partitioning Process in Hard-
ware/Software Co-design with VDM-RT,” in Proceedings of the 10th Overture Workshop
2012, School of Computing Science, Newcastle University, 2012.

[25] “The ASTCreator website,” 2014. https://github.com/overturetool/
astcreator.

[26] “The SableCC website,” 2014. http://www.sablecc.org/.

[27] “The Apache Velocity website,” 2014. http://velocity.apache.org/.

[28] P. G. Larsen, K. Lausdahl, and N. Battle, “Combinatorial Testing for VDM,” in Proceed-
ings of the 2010 8th IEEE International Conference on Software Engineering and Formal
Methods, SEFM ’10, (Washington, DC, USA), IEEE Computer Society, September 2010.

[29] T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist, M. Friedrich,
A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and A. Viel, “The Functional Mockup
Interface 2.0: The Standard for Tool independent Exchange of Simulation Models,” in Pro-
ceedings of the 9th International Modelica Conference, September 2012.

[30] Y. Zhao, J. Liu, and E. A. Lee, “A Programming Model for Time-Synchronized Distributed
Real-Time Systems,” in 13th IEEE Real Time and Embedded Technology and Applications
Symposium, 2007. RTAS ’07, pp. 259 – 268, April 2007.

28

http://www.lmsintl.com/imagine-lab-amesim-rev-11
http://www.lmsintl.com/imagine-lab-amesim-rev-11
https://github.com/overturetool/astcreator
https://github.com/overturetool/astcreator
http://www.sablecc.org/
http://velocity.apache.org/

Department of Engineering
Aarhus University
Inge Lehmanns Gade 10
8000 Aarhus C
Denmark

Tel.: +45 8715 0000

Peter W. V. Jørgensen, Enhanced Modeling and Efficient
Realisation of Cyber-Physical Systems, 2014

	Table of Contents
	List of Figures
	Introduction
	Introduction to the field of research
	Purpose of the PhD project
	Document structure

	Background
	The Overture tool
	The Vienna Development Method
	The System Modelling Language
	Co-simulation and supporting technologies

	Organising Design Information
	Introduction
	Five views of a co-model
	The view model
	Final remarks

	Analysing Energy Usage using Modelling
	Modelling CPU power states
	A modelling structure for modelling the wake-up policies
	Final remarks

	Hardware-In-The-Loop Simulation
	HIL setup design
	HIL setup prototype
	HIL execution results
	Final remarks

	Code Generation
	Generating the software implementation
	Intermediate representations
	Tree transformations
	Architecture of the code generation platform
	Final remarks

	Current Status and Future Plans
	Summary of current work
	Future plans
	Concluding remarks

	Publications
	Courses and Dissemination
	Bibliography

