

NEER ENGI

SEMANTICS OF THE
VDM REAL-TIME DIALECT

Electrical and Computer Engineering
Technical Report ECE-TR-13

DATA SHEET

Title: Semantics of the VDM Real-Time Dialect

Subtitle: Electrical and Computer Engineering

Series title and no.: Technical report ECE-TR-13

Authors: Kenneth Lausdahl, Joey W. Coleman and Peter Gorm Larsen
Department of Engineering – Electrical and Computer Engineering,
Aarhus University

Internet version: The report is available in electronic format (pdf) at
the Department of Engineering website http://www.eng.au.dk.

Publisher: Aarhus University©
URL: http://www.eng.au.dk

Year of publication: 2013 Pages: 65
Editing completed: May 2013

Abstract: All formally defined languages need to be given an unam-
biguous semantics such that the meaning of all models expressed us-
ing the language is clear. In this technical report a semantic model is
provided for the Real-Time dialect of the Vienna Development Me-
thod (VDM). This builds upon both the formal semantics provided for
the ISO standard VDM Specification Language, and on other work on
the core of the VDM-RT notation. Although none of the VDM dialects
are executable in general, the primary focus of the work presented
here is on the executable subset. This focus is result of parallel work
on an interpreter implementation for VDM-RT that chooses one of the
pos-sible interpretations of a given model that is expressed in VDM-RT,
based on the semantics presented here.

Keywords: Vienna Development Method, VDM, real-time, VDM-RT.

Please cite as: Kenneth Lausdahl, Joey W. Coleman, and Peter Gorm
Larsen. 2013. Semantics of the VDM Real-Time Dialect. Department of
Engineering, Aarhus University, Denmark. 65 pp. - Technical Report
ECE-TR-13

Cover image: Created by Overture.

ISSN: 2245-2087

Reproduction permitted provided the source is explicitly acknowledged

SEMATICS OF THE

VDM REAL-TIME DIALECT

Kenneth Lausdahl, Joey W. Coleman and Peter Gorm Larsen

Aarhus University, Department of Engineering

Abstract

All formally defined languages need to be given an unambiguous semantics such that the
meaning of all models expressed using the language is clear. In this technical report a semantic
model is provided for the Real-Time dialect of the Vienna Development Method (VDM). This builds
upon both the formal semantics provided for the ISO standard VDM Specification Language, and
on other work on the core of the VDM-RT notation. Although none of the VDM dialects are
executable in general, the primary focus of the work presented here is on the executable subset.
This focus is result of parallel work on an interpreter implementation for VDM-RT that chooses one
of the possible interpretations of a given model that is expressed in VDM-RT, based on the
semantics presented here.

Contents

1 Introduction 4
1.1 Styles of Semantic Definitions . 4
1.2 The Vienna Development Method . 4
1.3 Structural Operational Semantics . 5
1.4 Structure of this Technical report . 5

2 Overview of VDM and VDM-RT Features 6
2.1 System Modelling in VDM . 6
2.2 Model Structure . 6
2.3 Modelling Data . 6
2.4 Modelling Functionality . 8
2.5 Modelling State and Operations . 10
2.6 Modelling Object-oriented and Concurrent Systems in VDM++ 10
2.7 Modelling using VDM Real-Time . 11

3 Related Semantic Models 13
3.1 The Semantics of VDM-SL . 13

3.1.1 SemSpec and IsAModelOf . 13
3.1.2 Definers and Loose Definers . 14
3.1.3 The Semantics of Looseness . 14
3.1.4 Internal versus External Looseness . 15
3.1.5 Semantics of Expressions . 16

3.2 The Semantics of VDM++ . 17
3.3 The Semantics of VDM-RT . 17

4 Semantics of VDM-RT 19
4.1 Overview of Structure & Entities . 19

4.1.1 Durations and Transaction Synchronization . 21
4.1.2 Duration Composability . 21

4.2 Top-level Execution Rule . 22
4.3 Initialization . 23
4.4 Operation Calls . 23
4.5 Periodic Threads . 28
4.6 Committing Pending Values . 29
4.7 Dealing with Durations and Context Switching . 30

5 Concluding Remarks 32

2

A Complete VDM-RT Semantics 38
A.1 VDM-RT Abstract Syntax . 38

A.1.1 Structure . 38
A.2 Context Conditions/Typechecking . 42
A.3 Rules . 44

A.3.1 Signatures . 44
A.3.2 Top level rules . 45

A.4 Utility Functions . 61

3

Chapter 1

Introduction

1.1 Styles of Semantic Definitions

Semantic models can be given in many different styles (e.g. axiomatic, denotational and operational).
When using an axiomatic definition style, the meaning of a model expressed in a formal language is
provided by describing its effect on assertions about the state of the model. The most well-known
axiomatic definition style is known as Hoare Logic [Hoa69]. When using a denotational definition
style, the meaning of a model expressed in a formal language is provided in a compositional way using
mathematical objects [Str67, Sto77]. Here there is a clear distinction between syntactic and semantic
domains [Sco82]. When using an operational definition style, the meaning of a model expressed in a
formal language is provided through the definition of computational steps that may be taken [Plo81].
Here there is a distinction between the notions of small-step semantic definitions and big-step semantic
definitions. Both of these are used in the semantic model given in this technical report.

1.2 The Vienna Development Method

VDM’s origins lie in the work on semantics of programming languages at IBM’s Vienna Labora-
tory [BJ78]. The basic modelling language is based on discrete mathematics with set theory, and its
denotational semantics have been standardised [LP95]. A proof theory has also been defined, based on
the typed Logic of Partial Functions (LPF) [BCJ84, JM93, BFL+94].

Basic VDM models are expressed in a specification language (VDM-SL) that supports the descrip-
tion of data and functionality. Data is defined by means of types built using constructors that define
structured data and collections such as sets, sequences and mappings from basic values such as Booleans
and numbers. These types are very abstract, allowing the user to add any relevant constraints as data type
invariants. Functionality is defined in terms of functions and operations over these data types. Functions
and operations can be defined implicitly using pre-conditions and post-conditions that characterize their
behaviour, or explicitly with specific algorithms. The syntax of VDM may be expressed either by using
a mathematical notation or by using an ASCII syntax that can be readily input on an ordinary keyboard1.

An extension of VDM-SL, called VDM++, supports the object-oriented structuring of models and
permits direct modelling of concurrency [FLM+05]. VDM++ was originally developed in the European
research project “Afrodite”. A further extension of VDM++ is VDM Real-Time (VDM-RT), which
enables modelling of real-time and distributed systems. VDM-RT was first developed in the European
research project “VDM In Constrained Environments” (VICE), but this initial version only allowed for

1In this technical report we will consistently use the ASCII syntax when we show example models that we give semantics
for, and the mathematical syntax whenever we provide auxiliary functions/expressions used in the definition of the semantic
model.

4

a single CPU [MBD+00]. This was extended to cope with distributed systems in Marcel Verhoef’s PhD
thesis [Ver09, VLH06].

Using VDM-RT it is possible to define a distributed architecture with multiple CPUs and the busses
that connect them. Multiple threads may be present on each CPU and the scheduling policy for these is
parametrized per CPU.

All three VDM dialects are supported by an open source tool called Overture [LBF+10]. An exe-
cutable subset of the VDM dialects –including non-deterministic elements– can be simulated using the
built-in interpreter [LLB11]. The simulation will exhibit the behaviour of one of the valid semantic
interpretations in the presence of looseness.2

1.3 Structural Operational Semantics

We use the Structural Operational Semantics (SOS) format [Plo81, Plo04] to present the semantic def-
initions in this technical report. An SOS description consists of two major elements: a set of type
definitions that describe the static structure of the system; and the definitions of the transition relations
that describe the behaviour of the system. The type definitions may also be accompanied by context
conditions — further constraints on the types that are analogous to the static checking done by a pro-
gramming language compiler.

The logical notation used in this technical report is the basic VDM-SL type system and expressions.
This notation is used to define the static structure of the VDM-RT language.

In an SOS definition, the entire system is modelled as a configuration containing all of the informa-
tion needed to capture the state of a system at any given point. A configuration is typically given as a
tuple, in this case of the listed components.

The behaviour of a system is defined through the use of transition relations, at least one of which
must involve the system’s configuration type. In a small-step SOS definition the overall system be-
haviour is typically defined using a transition relation from configurations to configurations.

The transition relations are defined through the use of inference rule schemata where each rule’s
conclusion defines a subset of the entire transition relation. The least relation that satisfies all of the
inference rules is taken to be the relation defined.

In the work presented here we focus on the executable subset of VDM-RT and thus the collection
of SOS rules defined will be incomplete in the sense that it is not supplying the SOS rules for the
semantics of VDM expressions. For VDM-RT expressions we take the semantic model provided for
VDM-SL [LP95] (described further below in Section 3.1). This also means that we do not go into the
rules relevant to deal with undefinedness, i.e. using LPF.

1.4 Structure of this Technical report

After this introduction, Chapter 2 provides an overview of the main concepts in VDM and the specific
features of VDM-RT. Then Chapter 3 provides an overview of the existing related work on semantics
of VDM dialects. Afterwards Chapter 4 illustrates how SOS is used to give the semantics of VDM-RT,
building on top of the previous semantic efforts. Finally, Chapter 5 provides concluding remarks about
the work presented here. Appendix A provides the full SOS semantics of VDM-RT.

2The notion of looseness is explained in Section 3.1.3.

5

Chapter 2

Overview of VDM and VDM-RT Features

2.1 System Modelling in VDM

The use of VDM involves the development and analysis of models to help understand systems and pre-
dict their properties. Good models exhibit abstraction and rigour. Abstraction is the suppression of detail
that is not relevant to the purpose for which a model is constructed [Kra07]. The decision about what
to include and what to omit from an abstract model requires good engineering judgement. A guiding
principle in VDM is that only elements relevant to the model’s purpose should be included; it follows
that the model’s purpose should be clearly understood and described. Rigour in the semantics makes it
possible to perform a mathematical analysis of the model’s properties in order to gain confidence that an
accurate implementation of the modelled system will have certain key characteristics.

In computing systems development, modelling and design notations with a strong mathematical
basis are termed formal. VDM models, although often expressed in an executable subset, are developed
primarily for analysis such as formal proofs rather than serving as final implementations.

2.2 Model Structure

In VDM, models consist of representations of the data on which a system operates and the functionality
that is to be performed. The data represented includes the externally visible input/output and internal
state data. The functionality includes the operations that may be invoked at the system interface as well
as auxiliary functions that exist mainly to assist in the definition of the operations.

The VDM++ language extends VDM-SL (without modules) with facilities for specification of object-
oriented systems, and structures models into class definitions. Each of the class definitions has similar
elements to a single VDM-SL specification and, relative to the usual object-oriented languages, state
variables take on the role of instance variables and operations play the part of methods. The remainder
of this section will restrict consideration to VDM-SL, with VDM++ considered at a later stage.

2.3 Modelling Data

Data models in VDM are built on basic abstract data types together with a collection of type constructors.
A full account of VDM-SL data types and type constructors is provided in current texts [FL98, FL09].

Basic types include Booleans, numbers (natural, integer, rational and real) and characters. Note that,
in accordance with VDM’s abstraction principle, these correspond the mathematical notions of numbers,
and are not bounded by constraints due to their representations in computing hardware1. If a user wishes

1Naturally, tools that support VDM have the same sort of representational constraints as are found in most programming
languages.

6

to specify these limits because they are relevant to the problem being modelled, it is possible to do so
explicitly by means of invariants. Invariants are logical expressions (predicates) that represent conditions
to be respected by all elements of the data type to which they are attached.

The VDM ISO Standard permits both an ASCII and mathematical syntax; where the ASCII syntax is
considered more accessible for readers unfamiliar with the notations of discrete mathematics. Keywords
are, by convention, shown in bold face. Consider, as a simple example, a system for monitoring the flight
paths of aircraft in a controlled airspace. A simple data type definition representing the Latitude of
an aircraft would be given as follows:�
Latitude = real
� �

If it is desired to restrict the Latitude to the range of numbers from -90 to 90 inclusive, an
additional condition is added to the data type in the form of an invariant. This extended type definition
is as follows:�
Latitude = real
inv lat == -90 <= lat and lat <= 90
� �

The invariant is an integral part of the data type. Thus, it is not possible to create a value of type
Latitude that does not respect the invariant. The modeller must ensure that all functions and opera-
tions that create such elements respect the invariant.

More sophisticated data types are built using constructors. A record type constructor permits the def-
inition of tuples with named fields. For example, assuming definitions of types representing Latitude,
Longitude and Altitude, it is possible to define a type of values representing aircraft position, as
follows:�
Position :: lat : Latitude

long : Longitude
alt : Altitude
� �

A value of type Position is a composite whose component values can be extracted by giving the
field names. Thus, the Longitude component of a position ‘p’ is given by ‘p.long’. VDM-SL also
contains type constructors for building union and Cartesian product types.

Models are typically built around structured collections of values, so VDM-SL provides type con-
structors that support several collection types: sets (finite unordered collections), sequences (finite or-
dered collections), which both uses 1-relative indexes, and mappings (finite functions). For example,
one may wish to define a type to model the path of an aircraft as a finite sequence of positions. The
corresponding definition is:�
FlightPath = seq of Position
� �

Thus, an element of type FlightPath is a finite sequence of position records. Given a value fp of
type FlightPath, the initial Altitude is expressed as fp(1).alt. If modelling a flight control
system that must manage several aircraft, it would be appropriate to define a type that relates aircraft
identifiers to their flight paths as a mapping:�
FlightDetails = map AircraftId to FlightPath
� �

7

A mapping in VDM is the abstract model of an associative array; individual associations are repre-
sented using an “arrow” notation, e.g. {3 |-> "text1", 7 |-> "text2"} represents an asso-
ciation between numbers and character strings. In the flight details example, the mapping represents a
finite collection of flight paths indexed by the aircraft identifier. Given a flight details mapping fd and
an aircraft identifier a, the following expression denotes the initial Altitude of a:�
fd(a)(1).alt
� �

Several special basic types also facilitate abstraction. The token type is used to denote values whose
representations are immaterial. Tokens can be compared for equality, but have no internal representation
so no other operators may be applied to them. Tokens are particularly useful for defining types that are
necessary to a model but for which no individual elements are required. For example, if the air traffic
model is concerned primarily with flight paths rather than call signs, the modeller may choose not to
give a detailed representation for the AircraftId type, preferring to use a token type:�
AircraftId = token
� �
2.4 Modelling Functionality

Functionality is described in terms of functions and operations that accept input values and deliver output
values belonging to the types defined in the model. As with data, VDM-SL contains features to support
abstraction of functionality.

Each basic type and type constructor has associated syntax allowing values to be expressed. For
example a sequence of four natural numbers might be expressed directly as follows:�
[3, 7, 7, 2]
� �

Comprehension notations allow more sophisticated constructions. For example, the following ex-
pression represents a sequence of all the squares of numbers up to 25:�
[n**2 | n in set {1,...,25}]
� �

The types are equipped with operators that allow complex expressions to be constructed. For ex-
ample, given a value s belonging to a sequence type, the expression len s denotes the length of the
sequence. Two sequences s1 and s2 may be concatenated by an infix operator: s1 ˆ s2.

As in programming languages, some operators are partial, i.e., undefined for certain values of their
arguments. For example, a sequence look-up such as the expression s(i) is undefined if the sequence
s contains fewer than i elements. Such misapplications of partial operators correspond to potential run-
time errors in a corresponding implementation. The behaviour of a real computing system when such
an error occurs is not usually predictable. An error message may be returned, or an infinite loop may be
entered, for example. Since such behaviour can rarely be known at modelling time, VDM treats them
all as mathematically undefined in the semantics. From a tool perspective it is possible to automatically
generate proof obligations ensuring that such internal consistencies will never appear [AL97, RL10].

Functions may be described explicitly or implicitly. An explicit function definition is an expression
that denotes the result to be returned in terms of input parameters. Returning to the air space management
example, the modeller may wish to specify a function that adds a new position on to the end of a flight

8

path. The function definition is given as follows:�
AddPos: FlightPath * Position -> FlightPath
AddPos(fp,p) == fp ˆ [p]
� �

Implicit function definitions provide an important abstraction capability in VDM. While an explicit
definition like the one shown above is concise, the presence of the concrete algorithm in the definition’s
body may bias a reader implementing the model towards a particular implementation, for example by
using a corresponding concatenation operator built in the implementation’s programming language. An
implicit definition describes a function purely in terms of the result to be delivered, with no direct
reference to any algorithm to be used in the computation. This definition is given in terms of a logical
(Boolean) expression that must be satisfied by the result. This expression is termed a post-condition. A
classical example is a specification of a function for computing the square root r of a natural number n:�
SQRT(n:nat)r:real
post r * r = n
� �

Here the required result is merely characterized, with no bias towards any particular implementation.
In particular, it will be noted that the post-condition does not constrain the result to be either positive
or negative; the modeller has indicated that either result will suffice provided that it is a square root of
the input n. Such implicit specifications are valuable when the provision of an algorithmic description
would obscure the meaning of the model. The disadvantage is that an implicit operation specification is
not directly executable.2 In the airspace management example, an implicit specification might be used
for a function to select a specific aircraft for landing, as in the following example. Here the in set
dom construction means that the result returned is present in the domain of the flight details mapping
structure:�
Select(fd:FlightDetails)a:AircraftId
post a in set dom fd
� �

There are cases where neither explicitly- nor implicitly-defined functions are sufficient. For example,
the function above would not be able to return a result if the flight details mapping fd were empty. The
function description is thus not satisfiable for all valid inputs. Therefore, the non-emptiness of the input
fd is a pre-condition on the successful application of the function. Such pre-conditions are recorded
explicitly in VDM. So, a satisfiable specification of the Select function would be as follows:�
Select(fd:FlightDetails)a:AircraftId
pre dom fd <> {}
post a in set dom fd
� �

Conditions, like invariants, provide a means of recording constraints that are often left unrecorded
in informal descriptions of computer-based systems. In the example above, the pre-condition is required
in order to ensure that the function is capable of returning a correct result in accordance with the post-
condition. An implicit specification can be considered a contract: an implementation of the operation
promises to return a result satisfying the post-condition provided the calling environment ensures that
the pre-condition is satisfied. If the pre-condition is not satisfied, no guarantees about behaviour are
made.

2Although the desirability of direct execution has been debated in the literature [HJ89, Fuc92].

9

2.5 Modelling State and Operations

Many systems have persistent state variables that are read and modified by operations, and which retain
data between operation invocations. In VDM, such systems are modelled by defining a distinguished
state variable of a defined type, and operations that, like functions, deliver outputs from inputs but which
may also have side effects on the state variables.

A state-based version of the airspace management system might have a single state variable of type
FlightDetails, modelling the current state of the airspace:�
state Airspace of

fd: FlightDetails
end
� �

An operation to add a new aircraft with a single position p in its flight path might be specified
implicitly as follows. Note the use of ˜fd to denote the state variable’s value before execution of the
operation. This decorated version is required since the post-condition describes a mathematical relation
between the pre-operation and post-operation state. The munion operator used in the post-condition
here forms the union of two mappings provided the two mappings do not disagree (any values that are
in both domains must map to the same range value).�
New(a:AircraftId,p:Position)
ext wr fd: FlightDetails
pre a not in set dom fd
post fd = ˜fd munion {a |-> [p]}
� �

Operations may be specified explicitly as well as implicitly. Where state variables may be modified,
the language for expressing such explicit operation definitions is close to that of a classical imperative
programming language, albeit one with very abstract data types. For example, the following explicit
definition of the NewOp operation contains a single assignment to describe the updating of the fd state
component.�
NewOp: AircraftId * Position ==> ()
NewOp(a,p) == fd := fd munion {a |-> [p]}
pre a not in set dom fd
� �

Full details of implicit and explicit specification styles for both functions and operations can be
found in the VDM-SL literature [FL98, FL09].

2.6 Modelling Object-oriented and Concurrent Systems in VDM++

VDM++ provides facilities for the creation of object-oriented descriptions of systems. The core ele-
ments of classical VDM-SL –types, values, expressions, functions, and operations– are present. The
extended language also provides for models based on class definitions in which each object’s local state
is represented as instance variables. Information hiding and multiple inheritance is also supported.

VDM-SL is limited to the description of sequential system models, although such models may be
implemented in a parallel computing framework. The challenge in modelling concurrent computation
is that separate threads (independent sequences of computations) may communicate through shared
variables and inconsistencies can arise when two or more independent threads access a shared instance
variable simultaneously. There has been considerable research on handling shared variable concurrency

10

in VDM, notably by extending the pre/post-condition framework with rely and guarantee conditions
that state, respectively, the properties that an operation requires to be invariant and the properties that it
guarantees to maintain during its execution [Jon96].

The rely/guarantee approach has been a significant contribution to design methodologies for concur-
rent systems generally. VDM++ takes a rather pragmatic line. Here inconsistencies may arise through
simultaneous access to shared objects by separate threads. These are avoided by providing synchro-
nization constraints in the form of permission predicates that describe the conditions under which an
operation may be carried out. A permission predicate may refer to an instance variable used as a flag
to prevent other threads from using an object that is being used in a critical way by another thread. It
may also access special variables representing the number of times each operation in an object has been
requested, activated or completed, or representing the number of currently active invocations of the cur-
rent operation. Consider a simple model in which a sensor produces data, writes it to a buffer object
and this data is consumed by a consumer object. The buffer object provides a data model of the buffer
and operations to Put and Get data. The consumer object should only invoke the Get operation on the
buffer when there is actually data to get. This restriction could be modelled by allowing a special value
nil to indicate emptiness of the buffer, in which case the permission predicate (denoted by the keyword
per) on the Get operation in the buffer object is of the form shown below:�
per Get => data <> nil
� �

If such a special nil flag is not available, one could count the number of completed Put and Get
operations and permit a Get operation under the condition specified as follows:�
per Get => #fin(Put) - #fin(Get) = 1;
mutex(Put,Get)
� �

Here #fin(op) represents the number of completed occurrences of the operation op. The mutex
condition enforces mutual exclusion of the Put and Get operations.

Permission predicates are different from operation pre-conditions. A permission predicate deter-
mines whether a request to perform an operation will be granted or blocked. If the permission is denied,
another thread may be executing. A pre-condition is a well-formedness constraint on an operation invo-
cation; if it evaluates to false when an operation call is requested, the modelling equivalent of a run-time
error occurs because the caller has not satisfied the pre-condition, and has thus broken the contract.

2.7 Modelling using VDM Real-Time

The VDM-RT extensions to VDM support the description and analysis of real-time and distributed
systems. They include primitives for modelling deployment over a distributed hardware architecture
and support for asynchronous communication. Within a special system class, the modeller can specify
computation resources (CPUs) connected in a communication topology by busses. Two predefined
classes, CPU and BUS allow scheduling and performance characteristics of CPUs and busses to be
readily expressed. The system class is a definition that groups an architectural model described using
CPUs and busses with the instances that must be deployed onto that architecture.

The semantics of VDM have been extended with a notion of time so that any thread running on a
computation resource and any message in transit on a communication resource can cause time to elapse.
Each construct in the modelling language has a default time associated with it. Models that contain only
one computation resource are compatible with models in plain VDM++.

Operations may be specified as asynchronous, allowing the caller to resume computation in its own

11

Figure 2.1: Period (p), jitter (j), delay (d) and offset (o)

thread immediately after the call is initiated. A new thread is created, automatically started and sched-
uled to execute the body of the asynchronous operation (without return values). Special (duration
and cycles) statements may be used in operation bodies to specify time delays that are either indepen-
dent of or dependent upon processor capacity. The time delay incurred by a message transfer over a bus
can be made dependent on the size of the message being transferred and on the bandwidth of the bus.

The semantic model given for duration statements is compositional and enables validation of the
runtime execution time. As a result, a top-down design approach can be used that delegates the imple-
mentation of sub-components to individual teams. The validation of runtime execution time checks the
runtime execution time the body of a duration against the specified runtime of the duration to ensure that
it not exceed the maximum allowed time. Furthermore, duration statements are also used as synchro-
nization barriers in the semantic model. A thread synchronizes its transactional state when it completes
a duration from its body. A more detailed description of durations is provided in Chapter 4.

In VDM-RT where time is explicit it is also possible to make threads periodic, so that their behaviour
is repeated over time. The syntax of this is:�
periodic (period, jitter, delay, offset)(op)
� �
where:

period is a non-negative, non-zero value that describes the length of the time interval between two
adjacent events in a strictly periodic event stream (where jitter = 0)

jitter is a non-negative value that describes the amount of time variance that is allowed around a single
event. We assume that the interval is balanced [-j, j]. Note that jitter is allowed to be bigger than
the period to characterize so-called event bursts.

delay is a non-negative value smaller than the period which is used to denote the minimum inter-arrival
distance between two adjacent events.

offset is a non-negative value which is used to denote the absolute time value at which the first period
of the event stream starts. Note that the first event occurs in the interval [offset,offset+jitter].

op is the operation that will be invoked in the object, in a new thread.

The relationship between the time-based fields in the Periodic construct is illustrated in Figure 2.1.

12

Chapter 3

Related Semantic Models

3.1 The Semantics of VDM-SL

The formal semantics of VDM-SL is included in the VDM-SL ISO standard [LHB+96]. It is written
in a denotational style based on basic set theory with least fixed point semantics for recursive defini-
tions [LP95]. The domain universe for VDM-SL has been inspired by [TW90]; it provides denotations
for all values expressible in VDM-SL. The meta-notation used for expressing the formal methods has
itself be precisely described but here we refer the reader to [LP95] for an explanation of these. In this
section we intend to give the reader a little insight into the style of the formal semantics of VDM-SL.

In traditional denotational semantics it is customary to provide a meaning function for each kind of
syntactic component. Such a meaning function is a mapping from a syntax category to its meaning. This
is done by means of a composition of the meaning of the components of the abstract syntax category.
This means that in the case of a specification language with looseness, this approach would explicitly
map the abstract syntax of the entire specification to the set of models which the specification denotes.
However, this explicit style traditionally uses an order in which the definitions from the object language
(in this case VDM-SL) must appear. In VDM-SL such an ordering is not defined and in general there
can be mutual dependencies between definitions in different syntactic categories. The presence of loose-
ness also makes definitions formulated with the explicit style more difficult to read [AL88]. Therefore
the dynamic semantics of VDM-SL has been formulated in an implicit relational style instead of the
traditional constructive style of denotational semantics.

3.1.1 SemSpec and IsAModelOf

The top-level function which gives meaning to a syntactic specification is defined as:

SemSpec : Document→ IP(ENV)

SemSpec(doc) 4=
{ env | env ∈ ENV · IsAModelOf (env, doc) }

“Candidate” models (also called environments) are taken from the set ENV which contains all maps
from identifiers to possible denotations for VDM-SL constructs (including all values VAL and possible
types, the socall domain universe). For any set A, IP(A) denotes the powerset of A, i.e. the set of all
subsets of A. IsAModelOf is a predicate which checks whether a given environment satisfies (in a formal
sense) a given specification. If it does, it is called a model of the specification. The semantic function
SemSpec for a given specification yields the set of all its models. The predicate IsAModelOf naturally
needs to check whether all of the identifiers that have been defined in the specification are present in
the environment. If this is the case, the environment is expanded with a number of constructs, with the

13

definitions from the specification implicitly defined. Each component of the specification is now verified
according to such an expanded environment.

Because the definitions can be mutually dependent upon constructs from different categories, this is
done for each category (functions, types, operations, etc.) by a meaning function for that category. Here
it is important that the denotation of the constructs from the category being verified is removed from the
environment. The remaining part of the environment provides the context in which the meaning of the
constructs in this category is to be found. In this way an order between the definitions becomes available
because of the implicit style of definition. The rationale behind the removal of the constructs from
the category being verified is that in case of mutual recursion between constructs in such a category
the semantics of these constructs should not be affected by the denotations of those constructs in the
candidate model.

3.1.2 Definers and Loose Definers

The meaning of the different kinds of definitions can be considered as an environment-to-environment
transformation, adding more information to the environment. We call such transformations definers and
loose definers (in case a construct can be potentially loosely specified). These can be explained by:

Def = ENV→ (ENV ∪ { err })
LDef = IP(Def)

where err is a special symbol indicating that in the given environment the syntactic definition cannot be
given any sensible meaning.

Semantics of Constructs

Type definitions in VDM-SL are given a least fixed point semantics using the domain universe [Sch86].
No looseness is permitted in invariant expressions so types denote unique domain values from DOM.

Value (i.e. constant) definitions and function definitions can be loose, and the interpretation of this
looseness will be discussed in the remaining part of this section. Mutually recursive definitions are given
a least-fixed-point semantics unless they involve implicitly defined functions. In this case they are given
an all-fixed-point semantics to keep all possible explicit definitions available. Functions can also be
polymorphic, but for simplicity, we do not take that into account in this report.

Operation definitions can also contain looseness but here it is treated as non-determinism. Thus, an
operation will denote a relation between input value (and state) and corresponding output value (and
state). Implicitly defined operations are given an all-fixed-point semantics like for implicitly defined
functions. The semantics of explicitly defined operations resembles a least-fixed-point semantics, but
we cannot claim it to be so because there is no proper ordering between the operation denotations.

3.1.3 The Semantics of Looseness

We have mentioned the concept of ‘looseness’ a number of times above without being precise about its
semantics. In this section explain how looseness can be interpreted.

Looseness can be interpreted in at least two different ways: as under-determinedness (allowing sev-
eral different deterministic implementations) or as non-determinism (allowing non-deterministic imple-
mentations). As illustrated in [SS87, SS92] there are different types of behaviour that a non-deterministic
semantics can exhibit, specifically demonic, angelic, and erratic. With the under-determined interpre-
tation of looseness, functions are referentially transparent, as discussed in [SS88, SS90]. In VDM-SL,

14

functions are given an under-determined semantics, while operations are given a non-deterministic se-
mantics1. The complexity of an arbitrary combination of these can be found in [Wie89].

The difference between using the classical Hilbert epsilon operator [Lei69], the under-determined
semantics and the non-deterministic semantics can be illustrated by a few examples. The expression:�
(lambda v:nat & let x in set {1,2} in x)(5) =

(lambda v:nat & let x in set {1,2} in x)(5)
� �
is True in the Hilbert framework (using epsilon for the let-be expression) because the two choices from
the same set must yield the same result. If we instead have two non-deterministic choices from the
set, the comparison yields a non-deterministic choice between True and False. Considering the under-
determined interpretation, we cannot use the same approach as Hilbert; choices in different parts of a
program might be implemented differently even if they are made from sets that are equal.2 However,
due to the nature of the under-determined semantics, this is not a set of constant evaluators, since the
choice of the resulting value (in this case either True or False) may of course depend on the argument
environment, even when it does not depend syntactically upon the environment at all.

The difference between non-deterministic and under-determined semantics can be illustrated by an-
other example. Consider the expression:�
let func = lambda v:nat & let x in set {1,2} in x
in (lambda f: nat -> nat & f(5) = f(5))(func)
� �
It yields True with the under-determined semantics because the two function applications yield the same
result no matter which of the possible deterministic implementations of the function is considered. In
a typical non-deterministic framework, non-deterministic implementations of the function would be
allowed so the result would be a non-deterministic choice between True and False.

Also note that the first of the above examples is the result of β-reducing the second example. The
two examples do, however, have different semantics, so β-reduction is not valid in general for VDM-SL
functions. It is valid, however, if the argument evaluates, semantically, to a singleton set. For example,
it would be valid when if it did not contain any uses of the let-be expression (or other constructs where
looseness is introduced).

3.1.4 Internal versus External Looseness

For some systems, the behaviour should not be too precisely determined by the specification. The notion
of looseness enables the designer to postpone certain decisions to a later stage of development (e.g. the
final implementation stage). In general, looseness can be seen as a means to specify at a much higher
level of abstraction than that of a final implementation, and in this way leave as much freedom as possible
to the implementor.

The kind of looseness presented in the examples above is known as external looseness [HJ89] be-
cause the external behaviour of these expressions is not fully determined. This kind of external looseness
is commonly used when the external behaviour must satisfy certain conditions that do not necessarily
restrict the result to a unique value. We use the term external looseness when it is visible at a given
abstraction level that different behaviour is permitted for a given specification.

1Using the terminology from the referenced papers, the kind of non-determinism used in operations in VDM-SL is strong,
unbounded, erratic and loose non-determinism with singular binding.

2The rationale behind this is that even in cases where two functions are syntactically identical it is desirable that such loose
functions can be implemented independently of each other.

15

Another kind of looseness is known as internal looseness. This may be used when the external
behaviour of a system is defined to be deterministic, but freedom in some of the components of a spec-
ification is desirable. Such freedom can be used by the implementor to develop more efficient imple-
mentations of a given system. An obvious example of this would be an allocation of additional storage
in a computer system. As a user of such storage we do not care about its physical location as long as we
can use it freely (and possibly release it again later). Design decisions about the storage management
inside a larger system could be left open by using looseness, but it would (hopefully) not be visible in the
external behaviour of our system. Note that the given abstraction level is essential for this distinction,
because the actual allocation function naturally is externally loose (at the function level), but if we look
at the system level (and consider the allocation function to be hidden inside) the looseness is only visible
internally.

3.1.5 Semantics of Expressions

An environment associates identifiers with values. Expression evaluation can be described as replacing
each identifier in the expression by its value from the environment, and computing the result. Thus, the
value of an expression is dependent on the environment in which it is being evaluated. So, one could
take the type of the evaluation function for expressions (as used in [Mon85]) as:

EvalExpr : Expr→ ENV→ VAL

However, because expressions can be loose, it is possible for an expression to yield more than one
value. A next attempt (used in [AL88] and [LAMB89]) could be:

EvalExpr : Expr→ ENV→ IP(VAL)

Unfortunately this leads to very serious problems with the least-fixed-point semantics for recursive
loose definitions. Therefore, the type of the evaluation function EvalExpr must ultimately be:

EvalExpr : Expr→ IP(ENV→ VAL)

where the looseness has been abstracted ‘one level up’. We can now talk about deterministic expression
evaluators for which least fixed points can be found. An expression will denote a set of such expression
evaluators, which we call a loose expression evaluator. Because this technique is used for all kinds of
expressions we define:

EEval = ENV→ VAL
LEEval = IP(EEval)

Sub-functions of EvalExpr are defined for all expression kinds. These functions are all written in
roughly the same style:

16

EvalAnExpr : AnExpr→ LEEval

EvalAnExpr(MkTag(‘AnExpr’, (expr1,. . . ,op,. . . ,exprn))) 4=
{λenv . let val1 = ev1(env),

. . . ,
valn = evn (env) in

AnOp(val1,. . . ,valn ,op)
| ev1 ∈ EvalExpr(expr1),. . . , evn ∈ EvalExpr(exprn) }

where the function AnOp is the mathematical definition of the actual operation that occurs in AnExpr.
MkTag is an abstract syntax level operator tagging syntactic constructs with the name of their ‘types’,
AnExpr in this case.

3.2 The Semantics of VDM++

The formal semantics of VDM++ was first created in the European ESPRIT-III project Afrodite (Project
number 6500) [DK92, De95, DGP94]. The intent was that the semantics of constructs from VDM-
SL should be unchanged. An axiomatic semantics was provided in [KM93]. The concurrency aspects
of VDM++ (introduced in Section 2.6 above) was given semantics in [Lan94] using Real-Time Logic
(RTL) [Mok91]. However, VDM++ has changed substantially since that time and the only relatively
complete semantics of VDM++, is a VDM-SL specification for the executable subset of VDM++: it
is part of the specification used for the VDMTools interpreter [FLS08]. Unfortunately this document
is not publicly available. The VDM interpreter inside Overture deterministically selects one of the
mathematical models [LL91, LLB11]. Note that a significant difference here to the VDM-SL semantics
mentioned above is that, because this is used for interpretation of specifications, instead of taking all the
semantic models for the specification into account, it restricts itself to just a single one of these. It is
theoretically possible to explore all such models from the executable subset but this is only of academic
value [Lar94].

3.3 The Semantics of VDM-RT

As explained in Section 2.7, VDM-RT introduces a few concepts that affect the operational semantics
of standard VDM++. These include:

1. A discrete clock that represents the progress of time in the entire VDM-RT model. This clock
is usually referred to as the “wall clock”. The wall clock may have an arbitrary resolution, also
called a “clock tick”, but is set to be 1 nanosecond in VDM-RT.

2. The ability to construct an explicit system architecture on which functionality can be deployed.
For this purpose, the system construct is introduced in the syntax of VDM-RT and CPU and
BUS classes are provided as first-class language citizens. The capacity, scheduling policy and task
switch (or protocol) overhead of both architectural elements can be specified. The capacity of a
CPU is defined by the number of clock ticks required to execute a single “CPU tick”. A CPU tick
represents the time required to perform the fastest instruction on the CPU.

3. A default time cost is associated with each basic VDM construct. This cost is expressed as a
positive integer, representing the number of CPU ticks taken to execute each instruction.

4. Time costs can be redefined using the duration and cycles statements. The duration
statement can be used to define absolute time costs, while the cycles statement can be used to
set the time penalty relative to the performance of the CPU on which the functionality is deployed.

17

Any state changes that are a result of computation are not made visible to other threads or resources
until the time required for the state change has passed. Then the state change is committed and becomes
visible to other threads, as the internal record of time is updated and time-related bookkeeping is dealt
with.

The VDM-RT semantic model given in this report is underspecified with respect to some of the stan-
dard VDM++ constructs. There are cases where the standard behaviour of VDM++ is not appropriate
for VDM-RT, and this is described in [LVLW10]. These cases include the following:

• Static access to variables in a distributed setting.

• Static operation calls in a distributed setting.

• Read of distributed variables without a bus.

The core issue is that the distributed nature of variables and calls would be ignored if the VDM++
semantics were directly adopted. Unfortunately, this is the case in the current implementation of the
VDM-RT interpreter. The present solution is to disallow static access to variables, and to force cross-
CPU reads of variables to use bus communication.

18

Chapter 4

Semantics of VDM-RT

4.1 Overview of Structure & Entities

To describe the VDM-RT semantic model we start with an overview of its static structure, giving the
entities used in the semantic description, then we describe the semantic model’s behaviour.

The entities used to describe the VDM-RT semantics form a hierarchy starting with the VDMRT
structure. At the top level, the VDMRT structure records the CPUs in the system (cpus), the busses
connecting the CPUs (busses), the current time that the model has reached (time), and the defined
classes in the model (classes).

VDMRT :: cpus : CPUs
busses : Busses

time : Time
classes : Classes

CPUs = Idc
m−→ CPU

Busses = Idb
m−→ Bus

Classes = Idcl
m−→ Class

The types Idx where x is one of b, c, cl , f , o, op, v represent disjoint sets of identifiers for, re-
spectively, busses, cpus, classes, functions, objects, operations, and variables. These identifier sets are
arbitrarily large and, for the purposes of the semantics, inexhaustible. The use of disjoint sets allows a
simplification in the semantics when a fresh identifier is needed.

CPUs in the VDM-RT semantics are a record of three fields: a map for the instantiated classes
(objects), a map for all threads that exist over the course of execution (threads), and a natural number
representing the speed of the CPU.

CPU :: objects : Ido
m−→ Object

threads : Idt
m−→ Thread

speed : N1

The topology of connections between CPUs is recorded in the busses map in the VDMRT record;
each bus connects a (non-strict) subset of CPUs from the VDMRT record’s cpus field. A single bus
records the set of CPUs it connects (cpus); a natural number that represents the speed of communication
over the bus, typically much lower than the speed of a CPU (speed); and a queue of call and return
messages, tagged with the target CPU.

Bus :: cpus : Idc-set
speed : N1

queue : (Idc × (CMessage | RMessage))∗

19

We record the notion of states, Σ, as mappings from variable identifiers to VDM values.

Σ = Idv
m−→ VDMValue

The Class structure contains all of the static detail of a class (as opposed to the Object structure,
below, that contains the dynamic details of instantiated classes). In this structure we record super classes
(parents), constant values (values), the types of instantiated variables (vars), the set of associated op-
erations and functions of the class (ops and funs , respectively), a set of class invariant functions (invs),
and the initial action (initial) that an instantiated class should perform when it is started.

The behaviour of class records in this semantic model is such that, though they reference their parent
classes initially, the post-initialization class record will be changed to becomes the “union” of it and all
of its parent classes. So in the initialization step of the semantic model all of the defined classes in a
subject model will be “flattened” into independent classes.

Class :: parents : Id∗c
values : Σ

vars : Idv
m−→ Type × Expr

ops : Idop
m−→ Op

funs : Idf
m−→ Fun

invs : Fun-set
initial : Duration∗ | Periodic

Instantiated classes are represented by the Object record. These structures contain only a reference
to the static class details (class), the current state of variables in the class (state) and, optionally, a value
giving a countdown until the next time a periodic thread needs to be created in the context of that object
(periodicCountdown). This countdown value is pre-calculated every time a periodic thread is launched,
based on the values in a Periodic record in the initial field of the class definition.

Object :: class : Idcl
state : Σ

periodicCountdown :
[
Time

]
The Thread structure records a thread’s current status (status), the values of variables in objects

that are held aside pending a commit (pending), the object that gives the current execution of the thread
(context), and the remaining statements to be executed by the thread (body). When the value of a
variable has been changed by a thread but not yet committed, the new value is kept aside in the thread’s
pending field until a certain amount of time has passed; this behaviour is described in Section 4.6.

Thread :: status : RUNNING | RUNNABLE | WAITING | PENDING | COMPLETED

pending : Pending
context : Ido

body : (Duration | PartialDuration)∗

The PartialDuration and Duration statements that comprise the body of the thread are used to
indicate the expected execution time of the contained block of statements. A Duration statement has
a duration field that represents the expected execution time bound, and a body field containing the se-
quence of statements to be executed. The expected time bound may be an expression that initially needs
to be calculated, but it will be a constant value when the body actually starts execution; alternatively, the
duration may be EXECTIME, indicating that even though this duration has no time bound, recording
the execution time is still necessary. A Duration structure becomes a PartialDuration structure if the
execution of the duration’s body cannot be completed during one step of the interpreter’s execution. As
an example, this will happen if the body invokes a synchronous operation in an object on a different
CPU.

Duration :: duration : EXECTIME | Exp
body : Stm

20

PartialDuration :: duration : EXECTIME | Time
elapsed : Time

body : Stm

The atomicity of the outermost PartialDurations and Durations in a thread is all-or-nothing, but
only so long as no operations are invoked on remote CPUs. If an operation is invoked on a remote CPU
then the data associated with the parameters will be sent outside of the scope of the Duration; this
allows intermediate data to ‘leak’ out of the duration and thus destroys the atomicity of the Duration
block. Atomicity in the sense of instantaneous execution is possible in the semantics by using a zero in
the time field of a Duration; however, in the concrete language a zero value in the time field becomes
a EXECTIME value in the semantics. This means that it is not actually possible to specify instantaneous
durations.

The Duration structure is included in the Stm type and, therefore, statements can contain nested
durations. The behaviour of nested durations, and durations in general, is described in Section 4.7.

4.1.1 Durations and Transaction Synchronization

The Duration record is used as a synchronization point in the semantics. When a Duration construct
has been completely evaluated the thread state is updated with all pending values that were calculated
during the execution of the duration. The commitPendingValuesAndUpdateTime function performs
this update, and is found in the first hypothesis of the Big Step rule. The behaviour of thread state update
is described in Section 4.6.

The overall time represented by each step of the whole semantic model is calculated for the next step
at the top level, based on the next expected commit of pending values and the next expected start of a
periodic thread.

4.1.2 Duration Composability

The semantic model of VDM-RT models time using semantic durations that are compositional. This
allows a top-down specification approach where the time of sub-components are added together, thus
enabling validation of runtime execution of durations. Validation checks that sub-durations do not ex-
ceed the given value of their containing duration.

The interpreter for VDM-RT described in [LLB11] implements a different semantic model that is
non-compositional, and does not support a top-down design approach with respect to the time specifica-
tions of durations. Further, the interpreter does not implement any runtime validation of durations and it
simply ignores the time values of nested durations. The result of this is that sub-components cannot eas-
ily be given to independent teams to implement without providing information outside the specification
itself.

Consider the case of a duration with a 5 second time bound, and this duration has two sub-durations,
composed sequentially, each with a 4 second time bound. In the semantic model described in [LLB11],
this is valid, and the overall duration still has a 5 second time bound as the bounds of the sub-durations
are ignored.

That semantic model leads to the problem that it is difficult to hand the specifications of the sub-
durations off to implementor without changing their specification; clearly, to satisfy the overall du-
ration’s 5 second limit, the sub-durations must always complete in a time which sums to less than 5
seconds. However, their specifications allow for a sum of 8 seconds. Use of this semantic model means
that, for the purposes of top-down design, the specifications are incomplete and require that additional
information be known to the user of the duration blocks.

The semantic model presented in this report adds the validation of duration time bounds into the
semantic model. This has the effect of making the specifications complete for the purposes of durations.

21

A sub-duration can be decomposed out of a larger one and implemented according to the given sub-
specification without the need of additional knowledge.

4.2 Top-level Execution Rule

Sufficient structure has been described so far to move on to the behavioural rules of VDM-RT; the full set
of structures and rules are found in Appendix A. The top-level rule, Big Step in Figure 4.1, gives the whole
semantics of a running VDM-RT model1. There are six hypotheses to this rule, and each represents a
phase in an execution step.

1. The first hypothesis is the internal update of the model state. It updates the model’s present time,
and then commits all of the pending values held in threads up to that point. Races between updates
–where two or more threads would update the same variable– are handled in a non-deterministic
manner, and no particular resolution mechanism is specified in this semantic model.

A thread only has its pending values committed when the head of the thread’s body is not a
PartialDuration: this indicates that any previous duration had completed and any values in pend-
ing are ready to be made visible. This hypothesis also serves to decrement the periodicCountdown
fields of those objects that use it.

2. The second hypothesis is in the form of a transition relation as the action of the busses is inherently
non-deterministic. This phase actually delivers messages on the busses to their target CPUs if
sufficient time has passed. Where the message is an operation call, a new thread will be created
on the target CPU to run the operation.

3. The third hypothesis potentially creates more new threads based on the timing of periodic threads.
If there are objects with periodicCountdown fields that have reached zero then the appropriate
new threads are created for those and the periodicCountdown field is recalculated based on the
Periodic record in that object’s class definition.

4. The fourth hypothesis performs any potential context switches, allowing a CPU to change from
one running thread to another. Note that this phase happens after the creation of new threads so
that those new threads have the potential to start execution within this step of the execution.

5. The fifth hypothesis is also a transition relation, as the execution of VDM-RT statements may be
non-deterministic. This transition attempts to execute the first duration of the body of every active,
running thread in the model. The number of threads attempted will be no greater than the number
of CPUs in the system, as each CPU may only execute in one thread per step. If it is not possible
to fully execute the duration at the head of a thread’s body, then a PartialDuration will replace
that duration on the head of the body. The partial duration will have the remainder of the original
duration’s body that remains to be executed, and execution will continue during the next step that
the thread is active. This hypothesis also exposes the minimum time until the next commit of
pending values.

6. The sixth hypothesis calculates the time at which the next action in the interpreter must happen.
This may be due to things such as threads with pending variables, the creation of a new periodic
thread, and so forth. This results in the minimum amount of the time until the next action that the
interpreter handle and this serves as τ for the next Big Step.

1Note that for readability purposes the central rules have numbered hypothesis lines to allow for easier reference in the
explanation.

22

Big Step

vdmrt1 = commitPendingValuesAndUpdateTime(vdmrt , τ) (1)

vdmrt1
busses−→ vdmrt2 (2)

vdmrt3 = createPeriodicThreads(vdmrt2) (3)

vdmrt4 = doContextSwitches(vdmrt3) (4)

vdmrt4
exec−→ (vdmrt5, τb) (5)

τ ′b = min(τb ,minPendingCommitTime(vdmrt5)) (6)

(vdmrt , τ)
vdmrt−→ (vdmrt5, τ

′
b)

Figure 4.1: Definition of the Big Step rule.

Init

cpus = createBareCPUs(demodel) (1)

busses = createBusses(cpus, demodel) (2)

classes = createClasses(demodel) (3)

cpus ′ = createInitialInstances(cpus, classes, demodel) (4)

(vdmmodel)
init−→ mk -VDMRT (cpus ′, busses, 0, classes)

Figure 4.2: Definition of the VDM-RT initialization rule.

An execution trace based on the Big Step rule shown above and the Init from Section 4.3 would look
like this:

(VDMRTModel)
init−→ (vdmrt)

(vdmrt , 0)
vdmrt−→ (vdmrt1, τ1)

vdmrt−→∗ (vdmrtn , τn)

4.3 Initialization

Before the main portion of the VDM-RT semantics applies, we must deal with the creation of a VDMRT
construct based on an input model and contract. The initialization inference rule, Init, has the type

init−→:P((VDMRTModel)× (VDMRT))

where the VDMRTModel is the input model (the sources of the model).
The first two hypotheses of the Init rule in Figure 4.2 deal with bare CPU creation (createBareCPUs)

and the bus creation (createBusses); the CPUs are given as an additional argument along with the
input model as the busses record the links between CPUs. The class mapping is created in the third
hypothesis (createClasses) which includes the copying of all definitions from any parent classes to the
actual classes and thus resolving any inherited definitions. The classes is used as a parameter in the
fourth hypothesis to populate the mapping of bare CPUs with the initial instances of objects defined
in the input model (createInitialInstances); this populated mapping is stored within a new CPU map.
Finally, in the conclusion these components are combined into a VDMRT construct (with its initial time
set to zero) that is ready for use in the main portion of the VDM-RT semantics.

4.4 Operation Calls

This semantics describes four types of operation calls: the combination of synchronous/asynchronous
and local/remote. Synchronous calls require that the caller wait for the called operation to complete

23

before it continues, whereas the caller of an asynchronous operation continues execution without waiting
for the call to complete. Local calls take place completely on a single CPU, whereas remote calls require
the use of the busses in the model to cause the operation to execute on a different CPU, and the caller
may wait for a return message indicating that the called operation has completed.

Same-CPU synchronous calls continue execution in the same thread by inserting the content of the
called operation at the head of that thread’s body; this is done to avoid the non-deterministic properties
of a thread context switch. All other calls create a new thread (on the appropriate CPU) to execute
the content of the called operation; the original thread (eventually) continues execution as it is. In the
semantic model calls are represented as a type union of SyncCall and AsyncCall :

Call = SyncCall | AsyncCall

Both SyncCall and AsyncCall have nearly the same structure: since asynchronous calls do not
return a value, those operations do not need a target for any such value. Shown here is the definition of
the SyncCall construct; the AsyncCall construct omits the target field:

SyncCall :: target :
[
Idv | (Idc × Idt)

]
name : Ido × Idop | Idc × Ido × Idop

args : Expr∗

where the target field records the destination for the return value from the call in the calling thread’s
pending map, if it is to be kept; the name field identifies the operation or function which should be
called and finally args are the argument expressions of the call.

It is notable both the target and name fields of the SyncCall construct are actually union types. For
the name field, the reference operation may not be on the same CPU as the calling thread; hence the
need for the union type. When the object which has the operation to be called is not on the current CPU
we must also record the CPU identifier referencing the remote CPU. The values for the target field are
similar: in the simple case the field may simply be a variable identifier; in the complex case the field
takes on the pair of a CPU and a thread identifier that references the thread that originally invoked the
operation, as this case corresponds to a remote synchronous operation call.

To handle return values the semantics makes use of two constructs, the first of which is for use in
the operation bodies, Return:

Return :: exp :
[
Exp

]
It has a single expression that is evaluated to a VDMValue in the context of the call body. The
VDMValue type represents all literals and is a subset of syntactic expressions. The Return construct
is used to evaluate the expression in the correct context where it is rewritten by replacing the original
return expression with a VDMValue that then later can be matched up with a Wait record.

The second record used to link the calling thread with the return of the call body is Wait :

Wait :: target : Idv | (Idc × Idt)

where the target field holds the identifier that will be assigned the eventual return value. Note that the
target field of the Wait construct takes on the same union type as the target field of the SyncCall
construct. This allows us to use a Wait construct in the calling thread regardless of whether the call was
local or remote. When a synchronous remote operation call reaches its target CPU, it is instantiated as
a SyncCall construct with the identifiers of the calling CPU and thread, and as this is now a local syn-
chronous call, the eventual Wait construct uses those identifiers as its target. This allows the semantics
to determine that a return message must be sent across the bus to the calling CPU, where a new Return
construct will be created and ultimately resolved with the local Wait construct.

The initial setup resulting from a SyncCall on single CPU is defined by the inference rule Stmt Call

Op Local Sync shown in Figure 4.4. The whole process of execution is illustrated abstractly in Figure 4.3,
where the body of a thread contains a SyncCall at the head. The first step of the execution is to match

24

Thread Body SyncCall(target,opTarget,args) stm1 stm2 ...

Thread Body Rewritten
with Call Body ObjectContext(oid,body,callCtxt) Wait(target) stm1 stm2 ...

Body of call Return(v) ...

Skipped

Thread Body Com-
pleted Call Body Return(v) Wait(target) stm1 stm2 ...

v ∈ VDMValue

stm1 stm2 ...

eval

eval

eval

eval eval

Figure 4.3: Illustration of the semantic evaluation of a synchronous local call.

the SyncCall and rewrite it as an ObjectContext followed by a Wait construct; the Wait can then later
be used to match the Return of the body. The ObjectContext construct has the form:

ObjectContext :: object : Ido
body : Stm

callCtx : CallContext

where the object field refers to the object in which the body must be executed, and callCtx contains
a CallContext construct that records information about the call. The CallContext construct has the
form:

CallContext :: pending : Pending
state : Σ
post :

[
Expr

]
The Stmt Call Op Local Sync rule shown in Figure 4.4 applies to SyncCall constructs. It evaluates the

call’s arguments in the calling context (line 2), and records the time taken to evaluate the arguments at
line 13, where the total time of the operation is summarized. The pre-condition is checked in the calling
context at line 6 using the actual values for the arguments: this is followed by the creation of a new
ObjectContext in lines 7–9; this is then concatenated with a Wait statement in line 10, where the Wait
statement specifies the target of the SyncCall used to store the operation’s return value. The callBlock
defined in line 10 is prefixed to the remainder of the current thread’s body in line 11, and in line 12 the
remainder of the thread’s body is executed.

The purpose of the CallContext structure is to record state information for a call such that post-
conditions can be evaluated at the completion of a call. The pending field holds the pending state of
the calling thread at the moment the operation is called; state is a map holding the evaluated arguments;
and the optional post-condition comes from the operation being called. Then the body of the call is
executed, and is stored in the ObjectContext . The inference rules Stmt ObjectContext Step (see the Appendix)
and Stmt ObjectContext Complete (Figure 4.7) execute all of the statements in the body of the object context
until a Return statement has been fully evaluated by the Stmt Return Eval rule shown in Figure 4.5. The
Stmt Return Eval rule checks that return value is an expression (line 1), and then evaluates this in the current
context (line 2). This is followed by a rewrite of the Return where the expression is replaced with the
actual value (line 3). The evaluation is continued in line 4 and finally the total time used is calculated in
line 5.

Any remaining statements present in the sequence after the Return construct will be removed by

25

Stmt Call Op Local Sync

opTarget = (oid , op) (1)

argsTimed = [(value, δe) | arg ∈ args ∧ (classes, cpus, pending , o ` [[e]] = (value, δe))] (2)

args = [value | (value, -) ∈ argsTimed] (3)

mk -Op(-, params, ret , body , pre, post) = classes(cpu.objects(oid).class).ops(op) (4)

σ = {p 7→ a | i ∈ inds args ∧ a = args(i) ∧ params(i) = (p, -)} (5)

checkCallPre(classes, cpus, pending , args, params, oid , pre) = true (6)

callContext = mk -CallContext(pending , σ, post) (7)

partialLetDef = mk -PartialLetDef (σ, [],mk -SimpleBlock(body)) (8)

objContext = mk -ObjectContext(oid , partialLetDef , callContext) (9)

callBlock = [objContext ,mk -Wait(target)] (10)

stms = callBlock y rest (11)

τ, classes, cpus, c, t , o `
(stms, pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δrest) (12)

δ′ = sum([δe | (-, δe) ∈ argsTimed]) + δrest + LocalSyncCallTime (13)

τ, classes, cpus, c, t , o `
([mk -SyncCall(target , opTarget , args)] y rest , pending , cpu, busses)

stmt−→
(rest ′′, pending ′′, cpu ′′, busses ′′, δ′)

Figure 4.4: Definition of the Stmt Call Op Local Sync rule.

Stmt Return Eval

exp 6∈ VDMValue (1)

classes, cpus, pending , o ` [[exp]] = (retValue, δe) (2)

rest ′ = [mk -Return(retValue)] y rest (3)

τ, classes, cpus, c, t , o `
(rest ′, pending , cpu, busses)

stmt−→ (rest ′′, pending ′, cpu ′, busses ′, δ) (4)

δ′ = δe + ReturnTime (5)

τ, classes, cpus, c, t , o `
([mk -Return(exp)] y rest , pending , cpu, busses)

stmt−→ (rest ′′, pending ′, cpu ′, busses ′, δ′)

Figure 4.5: Definition of the Stmt Return Eval rule.

Stmt Return Eat

rest 6= [] (1)

hd rest 6∈Wait (2)

rest ′ = [mk -Return(v)] y tl rest (3)

τ, classes, cpus, c, t , o `
(rest ′, pending , cpu, busses)

stmt−→ (rest ′′, pending ′, cpu ′, busses ′, δ) (4)

τ, classes, cpus, c, t , o `
([mk -Return(v)] y rest , pending , cpu, busses)

stmt−→ (rest ′′, pending ′, cpu ′, busses ′, δ)

Figure 4.6: Definition of the Stmt Return Eat rule.

26

Stmt ObjectContext Complete

τ, classes, cpus, c, t , oid `
([body], pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ) (1)

rest ′ = [] ∨ (hd rest ′ = [mk -Return(v)] ∧ v ∈ VDMValue) (2)

cctx = mk -CallContext(prepending , args, post) (3)

checkCallPost(classes, cpus, oid , prepending , pending ′, args, v , post) = true (4)

rest ′′ = rest ′y rest (5)

τ, classes, cpus, c, t , o `
(rest ′′, pending ′, cpu ′, busses ′)

stmt−→ (rest ′′′, pending ′′, cpu ′′, busses ′′, δ′) (6)

δ′′ = δ + δ′ (7)

τ, classes, cpus, c, t , o `
([mk -ObjectContext(oid , body , cctx)] y rest , pending , cpu, busses)

stmt−→
(rest ′′′, pending ′′, cpu ′′, busses ′′, δ′′)

Figure 4.7: Definition of the Stmt ObjectContext Complete rule.

Stmt Return Wait

target ∈ Idv
σ′ = pending(o) † {target 7→ v}
pending ′ = pending † {o 7→ σ′}
τ, classes, cpus, c, t , obj ` (rest , pending ′, cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ)

τ, classes, cpus, c, t , o `
([mk -Return(v),mk -Wait(target)] y rest , pending , cpu, busses)

stmt−→
(rest ′, pending ′′, cpu ′, busses ′, δ)

Figure 4.8: Definition of the Stmt Return Wait rule.

the Stmt Return Eat rule as shown in Figure 4.6. The rule checks that the head is a Return statement, and
that the first statement of the remaining statements (the rest meta-variable) is not a Wait statement. If
this is satisfied then the Return statement and the tail of the rest (line 3) is used to continue execution
(line 4). When the ObjectContext is fully evaluated –containing only a Return construct that has a
VDMValue– the post-condition is checked (line 4) and the entire ObjectContext is removed (line 5)
in the Stmt ObjectContext Complete rule shown in Figure 4.7, leaving in its place just the contained Return
construct.

The last step is to match that Return construct with the corresponding Wait construct that was
created when the operation was called, and then insert the value returned into the thread’s pending field;
this is defined in the inference rule Stmt Return Wait as shown in Figure 4.8. Where the return value is
mapped by the target in the executing object.

The evaluation of AsyncCall on the same CPU differs from the SyncCall in that it creates a new
thread to execute the called operation’s body and simply removes the AsyncCall from the head of the
active thread’s body.

Remote, cross-CPU calls –where the target operation is in an object on a different CPU– differ from
local-CPU calls in that they must use a bus to communicate the call request and return values. The
communications are queued on the bus as messages, where call requests are recorded as CMessage
constructs and return messages are RMessage constructs. The CMessage construct is defined as:

27

CMessage RMessage
Process head of bus
message queue

Bus message queue

Create thread

1: Process head

SyncCall

Thread body

Create RMessage
2: eval

3: Insert at tail

Figure 4.9: Illustration of the semantic evaluation of a CMessage from the bus queue.

CMessage :: obj : Ido
op : Idop

args : VDMValue∗

replyto :
[
Idc × Idt

]
sendTime : Time

where obj is the target object; op the target operation in that object; args is a sequence of arguments
evaluated in the sender’s context to VDMValues; replyTo identifies the CPU and thread of the caller
and sendTime is the time when the message was placed on the bus. The sendTime field is used to
calculate the time at which the message arrived at the remote CPU. The RMessage construct is defined
as:

RMessage :: value : VDMValue∗

replyto : Idc × Idt
sendTime : Time

where value is the sequence of VDMValues being returned. The fields replyTo and sendTime have
the same purpose as in the CMessage construct.

A remote SyncCall places a CMessage on the appropriate bus and changes the thread status to
WAITING (thus excluding the thread from normal scheduling), instead of evaluating the call body lo-
cally; this is described in the Stmt Call Op Remote Sync rule. The CMessage is matched by the inference
rule Bus Call, during the next step of the interpreter. This is illustrated abstractly in Figure 4.9 where
processing of the head of the bus queue checks first that the message has arrived (by the use of mes-
sage’s sendTime field) and then, for a CMessage construct, a new thread is created in the appropriate
object where the call will be executed. Eventually, the return value is enqueued back on the bus queue
in a RMessage construct, targeted at the calling CPU. When an RMessage is processed, a Return(v)
statement is pushed onto the head of the original calling thread’s body, immediately in front of the ex-
isting Wait construct. This allows the Stmt Return Wait rule to complete the call and handle the return value
in the same way as a local sync call would. Asynchronous remote calls are initiated in the same way
as synchronous calls, except that the thread status of the calling thread is not changed, and no value is
returned.

4.5 Periodic Threads

One of the phases in a step of the execution involves handling the periodic threads. This appeared in the
Big Step rule as the hypothesis

vdmrt3 = createPeriodicThreads(vdmrt2)

where vdmrt3 represents the state of the execution after new threads have been created.
The creation of periodic threads is given by the createPeriodicThreads function in Figure 4.10.

The function’s post-condition applies to every object for which its periodicCountdown field has reached

28

createPeriodicThreads: VDMRT → VDMRT
createPeriodicThreads(vdm)vdm ′ ==
post
∀(idc , cpu) ∈ vdm.cpus ·
∀(ido , obj) ∈ cpu.objects ·

let periodic = vdm.classes(obj .class).initial in
let cpu ′ = vdm ′.cpus(idc) in
let obj ′ = cpu ′.objects(ido) in

(obj .periodicCountdown = 0 ⇒
obj ′.periodicCountdown = precalculateNextPeriodicCountdown(periodic) ∧
let stm = mk -SyncCall(nil, (ido , periodic.op), []),

body = [mk -Duration(EXECTIME, [stm])] in
∃! idt ∈ Idt ·

(idt /∈ dom cpu.threads) ∧
(cpu ′.threads(idt) = mk -Thread(RUNNABLE, { }, ido , body))) ∧
(obj .periodicCountdown 6= 0 ⇒ obj = obj ′)

Figure 4.10: Definition of createPeriodicThreads

zero; i.e. all those objects that are periodic and are ready to start a new periodic thread. Those objects will
have a new thread created that is ready to invoke the operation defined in the object’s class’s periodic
construct, and they will also have their periodicCountdown field recalculated for the next time their
periodic thread should happen. Note that this calculation may be non-deterministic due to the fields in
the Periodic construct.

The Periodic construct is defined as

Periodic :: op : Idop
period : Expr
jitter : Expr
delay : Expr
offset : Expr

where the fields are defined as explained in Section 2.7.

4.6 Committing Pending Values

During an execution step, threads may change the values of instance variables in objects. However, such
changes are not committed to the object state immediately: instead they are stored in the pending field
of the Thread constructs, hiding the values from other threads until time has progressed sufficiently to
cover the time specified by the active PartialDuration of the Thread .

The resolution of pending values and durations are handled in the Big Step rule by the

vdmrt1 = commitPendingValuesAndUpdateTime(vdmrt , τ)

hypothesis, which considers the prior state of the executing model and the time that the model will be
updated to. The vdmrt1 object represents the state of the interpreter after the time is set to τ and all
pending values are committed for threads currently ready to commit, i.e. those with PENDING status and
with remaining elapsed time equal to the time delta between the old and updated times.

Furthermore, all pending threads that have their values committed are returned to RUNNABLE status
if they have remaining work to do, and the remaining pending threads have their elapsed time field

29

commitPendingValuesAndUpdateTime: VDMRT × Time → VDMRT
commitPendingValuesAndUpdateTime(vdm, τ)vdm ′ ==
pre τ ≥ vdm.τ
post vdm ′.τ = τ ∧
∀idc ∈ dom vdm.cpus ·
∀idt ∈ dom vdm.cpus(idc).threads ·

let (thr , thr ′) = (vdm.cpus(idc).threads(idt), vdm ′.cpus(idc).threads(idt)) in
(thr .body = [] ⇒ thr ′.status = COMPLETED) ∧
(thr .status = PENDING ⇒

let stept = τ − vdm.τ in
let (dt , d

′
t) = ((hd thr .body).elapsed , (hd thr ′.body).elapsed) in

(dt = stept ⇒
(thr ′.pending = { } ∧
thr ′.body = tl thr .body ∧
(thr ′.body 6= [] ⇒ thr ′.status = RUNNABLE) ∧
vdm ′.cpus(idc).objects = mergePending(vdm.cpus(idc).objects, thr .pending)))∧

(dt 6= stept ⇒ d ′t = dt − stept))

Figure 4.11: Definition of commitPendingValuesAndUpdateTime

decremented by the time delta between the old and updated times. Note that those threads whose new
elapsed time is zero are precisely those threads that have their values committed; those threads with a
new, non-zero elapsed time must still wait before they commit their pending values. All threads with
empty bodies are checked to ensure they have COMPLETED status and altered if necessary.

The behaviour of value commit and time update is contained in the semantic function shown in
Figure 4.11. Note that the post-condition of the function depends on the mergePending function, which
is a helper function that merges the pending values of a thread into the object states that those values are
associated with.

4.7 Dealing with Durations and Context Switching

The execution cycle of the VDM-RT semantics is centred around Duration statements that are used to
indicate execution times for blocks of statements. These Duration statements hide all changes made
to the containing object’s state until sufficient time has passed in the simulation for the time value of
the Duration to reach zero, at which point the changes become visible. Also, Duration statements and
PartialDuration constructs –the partially-executed form of a Duration statement– have the effect of
blocking other threads from executing on that CPU.

It is important to note that the time value in a Duration statement represents information from the
user about the temporal characteristics of the eventual implementation. During the execution of the
body of a Duration statement the durations of each contained instruction are tallied and (eventually)
compared to the user-specified time value. At present the semantics requires that the tally is less than
the given time value, otherwise the semantics reaches a state for which there are no possible transitions.
Future development of the semantics will transition to an error state in the case where the semantics
presently halts.

The only exception to this behaviour is if the time value is set to the EXECTIME constant (the user
would specify a 0 duration value for this), in which case there is no constraint on the execution duration.
The time value of a duration can be interpreted as a strict deadline on the execution of the contained
statements.

30

doContextSwitches: VDMRT → VDMRT
doContextSwitches(vdm)vdm ′ ==
pre
∃idc ∈ dom vdm.cpus · vdm.cpus(idc).threads 6= { }

post
∀idc ∈ dom vdm.cpus ·
∀idt ∈ dom vdm.cpus(idc).threads ·

let (thr , thr ′) = (vdm.cpus(idc).threads(idt), vdm ′.cpus(idc).threads(idt)) in
thr .status = RUNNING ⇒ thr ′.status = RUNNING ∧

(∃thr ∈ rng vdm.cpus(idc).threads · thr .status ∈ {RUNNING,RUNNABLE}) ⇒
(∃!thr ′ ∈ rng vdm ′.cpus(idc).threads · thr ′.status = RUNNING)

Figure 4.12: Definition of doContextSwitches

The checking of time values in a Duration is handled by the commitPendingValuesAndUpdateTime
function, used in the Big Step. In addition to updating the current time value in the execution, the function
also performs the necessary bookkeeping on the time values in (Partial)Duration constructs. First,
the function will decrement all positive-valued duration fields in completed (Partial)Durations by the
amount of time passed since the previous step. Then, the function will commit the values held in the
containing Thread ’s pending field for those (Partial)Durations that have complete and have a zero- or
EXECTIME-valued duration field. Once the containing Thread ’s held values have been committed, the
pending field is cleared, the completed (Partial)Duration is removed from the Thread ’s body field,
and the Thread ’s status field is set to RUNNABLE.

The change of thread status allows the interpreter to later switch to a different thread on that CPU;
unless there is no RUNNING thread on a CPU, the doContextSwitches function (see Figure 4.12) will
not change the state of that CPU. A context switch selects a thread on a CPU for execution from the set
of threads in the RUNNABLE state. This selection is specified in a non-deterministic manner.2

2Note that the Overture tool implementation, as described in [LLB11], does a deterministic selection. This is one of the
points on which the tool is a refinement of the semantics.

31

Chapter 5

Concluding Remarks

In this technical report we have provided a semantic model for VDM-RT using structural operational
semantics. We have clarified some aspects of the VDM-RT semantic model that were not covered in
sufficient detail in earlier work. The focus of the work presented here has been on the executable subset
of VDM-RT, as is supported by the Overture interpreter. However, the relatively narrow nature of our
focus means that there remains further work to be done for a complete independent semantics of the
whole VDM-RT language.

The semantics presented here of the VDM-RT notation can also be seen in a larger context where
VDM-RT is used in a collaborative simulation (co-simulation) setting. Here [CLL13] provides a seman-
tics of a generic co-simulation framework enabling semantically well-founded co-simulation of models
in different notations. In [LCL13] the VDM-RT semantics in this report is slightly adjusted to match the
co-simulation framework. Note that the adjustments necessary here are very small.

32

Acknowledgement

The authors gratefully acknowledge funding from the European Commission through the FP7 DESTECS
project (grant agreement number 248134) and the FP7 COMPASS project (grant agreement number
287829).

We thank our collaborators in the DESTECS project for feedback on elements of this work. We
would also like to give special thanks to Nick Battle and Stefan Hallerstede for feedback on earlier
drafts of this report.

33

Bibliography

[AL88] Michael Meincke Arentoft and Peter Gorm Larsen. The dynamic semantics of the bsi/vdm
specification language. Master’s thesis, Technical University of Denmark, DK-2800 Lyn-
gby, Denmark, August 1988.

[AL97] Bernhard K. Aichernig and Peter Gorm Larsen. A Proof Obligation Generator for VDM-
SL. In John S. Fitzgerald, Cliff B. Jones, and Peter Lucas, editors, FME’97: Industrial
Applications and Strengthened Foundations of Formal Methods (Proc. 4th Intl. Symposium
of Formal Methods Europe, Graz, Austria, September 1997), volume 1313 of Lecture Notes
in Computer Science, pages 338–357. Springer-Verlag, September 1997. ISBN 3-540-
63533-5.

[BCJ84] H. Barringer, J.H. Cheng, and C.B. Jones. A Logic Covering Undefinedness in Program
Proofs. Acta Informatica, 21:251–269, 1984.

[BFL+94] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian Ritchie. Proof
in VDM: A Practitioner’s Guide. FACIT. Springer-Verlag, 1994. ISBN 3-540-19813-X.

[BJ78] D. Bjørner and C.B. Jones, editors. The Vienna Development Method: The Meta-Language,
volume 61 of Lecture Notes in Computer Science. Springer-Verlag, 1978.

[CLL13] Joey W. Coleman, Kenneth Lausdahl, and Peter Gorm Larsen. Semantics for generic co-
simulation of heterogenous models. Submitted for publication to the Formal Aspects of
Computing journal, April 2013.

[De95] E.H. Dürr and N. Plat (editor). VDM++ Language Reference Manual. Afrodite (esprit-iii
project number 6500) document, Cap Volmac, August 1995.

[DGP94] Eugène Dürr, Stephen Goldsack, and Nico Plat. Rigorous Development of Concurrent and
Real-Time Object-oriented Systems, March 1994. Tutorial presented at TOOLS Europe
’94, Versailles, France.

[DK92] E. Dürr and J.v. Katwijk. VDM++, A Formal Specification Language for Object Oriented
Designs. In COMP EURO 92, pages 214–219. IEEE, May 1992.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Tech-
niques in Software Development. Cambridge University Press, The Edinburgh Building,
Cambridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[FL09] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Tech-
niques in Software Development. Cambridge University Press, The Edinburgh Building,
Cambridge CB2 2RU, UK, Second edition, 2009. ISBN 0-521-62348-0.

[FLM+05] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Verhoef. Vali-
dated Designs for Object–oriented Systems. Springer, New York, 2005.

34

[FLS08] John Fitzgerald, Peter Gorm Larsen, and Shin Sahara. VDMTools: Advances in Support
for Formal Modeling in VDM. ACM Sigplan Notices, 43(2):3–11, February 2008.

[Fuc92] Norbert E. Fuchs. Specifications are (preferably) executable. Software Engineering Jour-
nal, pages 323–334, September 1992.

[HJ89] I.J. Hayes and C.B. Jones. Specifications are not (Necessarily) Executable. Software Engi-
neering Journal, pages 330–338, November 1989.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of teh
ACM, 12(10):576–581, October 1969.

[JM93] Cliff B. Jones and Kees Middelburg. A typed logic of partial functions reconstructed clas-
sically. Technical Report 89, Department of Philosophy, Utrecht University, April 1993.

[Jon96] Cliff Jones. Accommodating interference in the formal design of concurrent object-based
programs. Formal Methods in System Design, 8(2):105–122, March 1996.

[KM93] Stuart Kent and Richard Moore. An Axiomatic Semantics for VDM++: OO Aspects, 1993.

[Kra07] Jeff Kramer. Is Abstraction the Key to Computing? Communications of the ACM, 50(4):37–
42, 2007.

[LAMB89] Peter Gorm Larsen, Michael Meincke Arentoft, Brian Monahan, and Stephen Bear. To-
wards a Formal Semantics of The BSI/VDM Specification Language. In Ritter, editor,
Information Processing 89, pages 95–100. IFIP, North-Holland, August 1989.

[Lan94] K. Lano. Expressing the Semantics of VDM++ in RTL, 1994.

[Lar94] Peter Gorm Larsen. Evaluation of Underdetermined Explicit Expressions. In M. Bertran
M. Naftalin, T. Denvir, editor, FME’94: Industrial Benefit of Formal Methods, pages 233–
250. Springer-Verlag, October 1994.

[LBF+10] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Lausdahl, and
Marcel Verhoef. The Overture Initiative – Integrating Tools for VDM. SIGSOFT Softw.
Eng. Notes, 35(1):1–6, January 2010.

[LCL13] Kenneth Lausdahl, Joey W. Coleman, and Peter Gorm Larsen. The Execution Semantics of
VDM Real-Time in a Co-Simulation Environment. Submitted for publication to the Science
of Computer Programming journal, June 2013.

[Lei69] A.C. Leisenring. Mathematical Logic and Hilbert’s ε-Symbol. Gordon and Breach Science
Publishers, New York, 1969.

[LHB+96] P. G. Larsen, B. S. Hansen, H. Brunn, N. Plat, H. Toetenel, D. J. Andrews, J. Dawes,
G. Parkin, et al. Information technology – Programming languages, their environments and
system software interfaces – Vienna Development Method – Specification Language – Part
1: Base language, December 1996.

[LL91] Peter Gorm Larsen and Poul Bøgh Lassen. An Executable Subset of Meta-IV with
Loose Specification. In VDM ’91: Formal Software Development Methods. VDM Europe,
Springer-Verlag, March 1991.

35

[LLB11] Kenneth Lausdahl, Peter Gorm Larsen, and Nick Battle. A Deterministic Interpreter Sim-
ulating A Distributed real time system using VDM. In Proceedings of the 13th interna-
tional conference on Formal methods and software engineering, ICFEM’11, pages 179–
194, Berlin, Heidelberg, October 2011. Springer-Verlag. ISBN 978-3-642-24558-9.

[LP95] Peter Gorm Larsen and Wiesław Pawłowski. The Formal Semantics of ISO VDM-SL.
Computer Standards and Interfaces, 17(5–6):585–602, September 1995.

[LVLW10] Kenneth Lausdahl, Marcel Verhoef, Peter Gorm Larsen, and Sune Wolff. Overview of
VDM-RT Constructs and Semantic Issues. In Ken Pierce, Nico Plat, and Sune Wolf, edi-
tors, Proceedings of the 8th Overture Workshop, number CS-TR-1224 in Technical Report
Series, pages 57–67, September 2010.

[MBD+00] Paul Mukherjee, Fabien Bousquet, Jérôme Delabre, Stephen Paynter, and Peter Gorm
Larsen. Exploring Timing Properties Using VDM++ on an Industrial Application. In
J.C. Bicarregui and J.S. Fitzgerald, editors, Proceedings of the Second VDM Workshop,
September 2000. Available at www.vdmportal.org.

[Mok91] A.K. Mok. Towards mechanization of real-time system design. In A.M. van Tilborg
and G.M. Koob, editors, Foundations of Real-Time Computing. Formal Specifications and
Methods. Kluwer Academic Publishers, 1991.

[Mon85] Brian Q. Monahan. A Semantic Definition of the STC VDM Reference Language. Doc.
no. 9, November 1985.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming, 60–61:17–139, July–December 2004.

[RL10] Augusto Ribeiro and Peter Gorm Larsen. Proof Obligation Generation and Discharging for
Recursive Definitions in VDM. In Jin Song and Huibiao, editors, The 12th International
Conference on Formal Engineering Methods (ICFEM 2010). Springer-Verlag, November
2010.

[Sch86] D.A. Schmidt. Denotational Semantics: a Methodology for Language Development. Allyn
& Bacon, 1986.

[Sco82] Dana S. Scott. Domains for Denotational Semantics. ICALP ’82, July 1982.

[SS87] Harald Søndergaard and Peter Sestoft. Non-Determinacy and Its Semantics. Technical
Report 86/12, DIKU, Datalogisk Institut, Københavns Universitet, Sigurdsgade 41, DK-
2200 København N, 1987.

[SS88] Harald Søndergaard and Peter Setoft. Referential Transparancy and Allied Notions. Tech-
nical Report 88/7, DIKU, Datalogisk Institut, Københavns Universitet, Sigurdsgade 41,
DK-2200 København N, 1988.

[SS90] Harald Søndergaard and Peter Sestoft. Referential transparency, definiteness and unfold-
ability. Acta Informatica, 27:505–517, 1990.

[SS92] Harald Søndergaard and Peter Sestoft. Non-determinism in Functional Languages. The
Computer Journal, 35(5):514–523, October 1992.

36

[Sto77] Joseph E. Stoy. Denotational Semantics : The Scott-Strachey Approach to Programming
Language Theory. The MIT Press, 1977.

[Str67] Christopher Strachey. Fundamental concepts in programming languages. In Lecture Notes
for the International School in Computer Programming, 1967.

[TW90] Andrzej Tarlecki and Morten Wieth. A Naive Domain Universe for VDM. In Dines Bjørner,
C.A.R. Hoare, and Hans Langmaack, editors, VDM ’90 VDM and Z – Formal Methods in
Software Development, pages 552–579. VDM Europe, Springer-Verlag, April 1990.

[Ver09] Marcel Verhoef. Modeling and Validating Distributed Embedded Real-Time Control Sys-
tems. PhD thesis, Radboud University Nijmegen, 2009.

[VLH06] Marcel Verhoef, Peter Gorm Larsen, and Jozef Hooman. Modeling and Validating Dis-
tributed Embedded Real-Time Systems with VDM++. In Jayadev Misra, Tobias Nipkow,
and Emil Sekerinski, editors, FM 2006: Formal Methods, Lecture Notes in Computer Sci-
ence 4085, pages 147–162. Springer-Verlag, 2006.

[Wie89] Morten Wieth. Loose Specification and its Semantics. In G.X. Ritter, editor, Information
Processing 89, pages 1115–1120. IFIP, North-Holland, August 1989.

37

Appendix A

Complete VDM-RT Semantics

A.1 VDM-RT Abstract Syntax

The VDM-RT abstract syntax only considers a subset of the full VDM++ language dialect. It includes
classes and concurrency but excludes inheritance and static access.

A.1.1 Structure

The VDM-RT expressions (Expr) and types (Type) are imported from the VDM-SL denotational se-
mantics [LHB+96].

Type = . . .
Expr = . . .

and where the type VDMRTModel represents a textual representation of a specification:

VDMRTModel = · · ·

Toplevel

Σ = Idv
m−→ VDMValue

Classes = Idcl
m−→ Class

Busses = Idb
m−→ Bus

CPUs = Idc
m−→ CPU

Pending = Ido
m−→ Σ

VDMRT :: cpus : CPUs
busses : Busses

time : Time
classes : Classes

where

38

inv -VDMRT (mk -VDMRT (cpus, busses, time, classes)) 4

∀cpu ∈ rng cpus ·
∀obj ∈ rng cpu.objects ·

(classes(obj .class).initial ∈ Period ⇒ obj .periodicCountdown 6= nil)
∧ obj .class ∈ dom classes

Definitions

Bus :: cpus : Idc-set
speed : N1

queue : (Idc × (CMessage | RMessage))∗

CMessage :: obj : Ido
op : Idop

args : VDMValue∗

replyto :
[
Idc × Idt

]
sendTime : Time

RMessage :: value : VDMValue∗

replyto : Idc × Idt
sendTime : Time

CPU :: objects : Ido
m−→ Object

threads : Idt
m−→ Thread

speed : N1

where

inv -CPU (mk -CPU (objects, threads, speed)) 4

∀t ∈ dom threads · let pending = threads(t).pending in
dom pending ⊆ dom objects ∧
∀obj ∈ dom pending ·

pending(obj) ⊆ dom objects(obj).σ

Thread :: status : RUNNING | RUNNABLE | WAITING | PENDING | COMPLETED

pending : Pending
context : Ido

body : (Duration | PartialDuration)∗

Class :: parents : Id∗c
values : Σ

vars : Idv
m−→ Type × Expr

ops : Idop
m−→ Op

funs : Idf
m−→ Fun

invs : Fun-set
initial : Duration∗ | Periodic

Op :: async : B
args : (Idv × Type)∗

ret : Type∗

body : Duration∗

pre :
[
Expr

]
post :

[
Expr

]
39

where

inv -Op(mk -Op(async, args, ret , body , pre, post)) 4

(async ⇒ ret = []) ∧
let arguments = elems [i | (i , t) ∈ args] in

len args = card arguments ∧
FV (pre) ⊆ arguments ∧
collapseOld(FV (post)) ⊆ argumentssure.args = args ∧measure.ret = N

Fun :: args : (Idv × Type)∗

ret : Type∗

body : Expr
pre : Expr

post : Expr

where

inv -Fun(mk -Fun(args, ret , body , pre, post)) 4

let arguments = elems [i | (i , t) ∈ args] in

∧ FV (body) ⊆ arguments
∧ FV (pre) ⊆ arguments
∧ FV (post) ⊆ arguments

Periodic :: op : Idop
period : Expr
jitter : Expr
delay : Expr
offset : Expr

where

inv -Periodic(mk -Periodic(op, period , jitter , delay , offset)) 4

{period , jitter , delay , offset} must all evaluate to Time

Object :: class : Idcl
state : Σ

periodicCountdown :
[
Time

]
Pattern and Bind

Pattern :: type : Type
names :

[
Id∗
]

cTypes : (Type | Pattern)∗

PatternBind = Pattern | Bind

Bind = SetBind | TypeBind

SetBind :: pattern : Pattern+

exp : Exp

TypeBind :: pattern : Pattern+

type : Type

40

Statements

Stm = SKIP

| Assignment | Atomic | Call | Cases | Cycles | Duration
| ForSet | ForSeq | ForIndex | If | LetBeStm | LetDef | New | Return
| SemanticStm | SimpleBlock | Start |While

Note that SemanticStm does not have syntax and is only included in the semantics to handle return
of a call and durations.

SemanticStm = PartialLetDef | ObjectContext |Wait | PartialDuration | PartialAtomic

Assignment :: target : Idv | (Ido × Idv)
exp : Exp

Atomic :: assignments : Assignment∗

PartialAtomic :: assignments : Assignment∗

oids : Ido-set

Call = SyncCall | AsyncCall

SyncCall :: target :
[
Idv | (Idc × Idt)

]
name : Ido × Idop | Idc × Ido × Idop

args : Expr∗

AsyncCall :: name : Ido × Idop | Idc × Ido × Idop
args : Expr∗

Wait :: target : Idv | (Idc × Idt)

Return :: exp :
[
Exp

]
ObjectContext :: object : Ido

body : Stm
callCtx : CallContext

CallContext :: pending : Pending
state : Σ
post :

[
Expr

]
Cases :: exp : Exp

cases : (Pattern × Stm)∗

others :
[
Stm

]
Cycles :: cycles : Exp

body : Stm

Duration :: duration : EXECTIME | Exp
body : Stm

PartialDuration :: duration : EXECTIME | Time
elapsed : Time

body : Stm

41

ForIndex :: var : Idv
from : Exp

to : Exp
by : Exp

body : Stm

ForSet :: pattern : Pattern
setExp : Exp

body : Stm

ForSeq :: pattern : Pattern
seqExp : Exp

body : Stm

If :: exp : Exp
then : Stm
else : Stm

LetBe :: bind : MultipleBind
suchThat : Exp

body : Stm

Definition = Idv
m−→ Expr

LetDef :: localDefs : Definition+

body : Stm

PartialLetDef :: context : Σ
localDefs : Definition∗

body : Stm

SimpleBlock :: body : Stm∗

Start :: obj : Ido

While :: exp : Exp
body : Stm

New :: class : Idc
target : Idv

A.2 Context Conditions/Typechecking

This section lists the top level context conditions for a subset of the types specified in Section A.1.1.

TypeMap = (Idcl × Idv)
m−→ Type

wf -VDMRT : VDMRT × TypeMap → B
wf -VDMRT (mk -VDMRT (cpus, busses, 0, classes), types) ==

∀bid ∈ dom busses · wf -Bus(busses(bid), classes, cpus, types)
∧ ∀cid ∈ dom cpus · wf -CPU (cpus(cid), classes, cpus, types)
∧ ∀clid ∈ dom classes · (wf -Class(clid , classes(clid), classes, cpus, types)

∧ ∀clidp ∈ classes(clid).parents · clidp ∈ dom classes)

42

Definitions

wf -Bus: BUS × CPUs → B
wf -Bus(mk -BUS (cpus, speed , queue), cpus) == ∀idc ∈ cpus · idc ∈ dom cpus

wf -CPU : CPU × Classes × CPUs × TypeMap → B
wf -CPU (mk -CPU (objects, threads, speed), classes, cpus, types) ==

objects = { } ∧ threads = { }

wf -Class: Idcl × Class × Classes × CPUs × TypeMap → B
wf -Class(clid ,mk -Class(parents, values, vars, ops, funs, invs, initial), classes, cpus, types) ==

cid ∈ Idc
∧ oid ∈ Ido
∧ ¬∃any ∈ Idv · (cid , oid , any) ∈ dom types
∧ types ′ = types † {(cid , oid , idv) 7→ t | idv ∈ dom values ∧ t = typeOf (values(idv))}
∧ types ′′ = types ′ † {(cid , oid , idv) 7→ t | idv ∈ dom vars ∧ (t , -) = vars(idv)}
∧ ∀idv ∈ dom vars · (type, exp) = vars(idv) ∧

contextTypeOf (exp, classes, types ′) = vars(idv).#1
∧ ∀idop ∈ dom ops · wf -Op(clid , idop , cid , oid , classes, cpus, types ′′)
∧ ∀idf ∈ dom funs · wf -Fun(clid , funs(idf), cid , oid , classes, cpus, types ′′)
∧ ∀fun ∈ invs · wf -Fun(clid , fun, cid , oid , classes, cpus, types ′′) ∧ fun.ret = [BOOL]

∧
(

initial ∈ Duration∗ ⇒ wf -StatementSeq(initial , cid , clidclasses, cpus, types ′′)
∨ initial ∈ Periodic ⇒ wf -Periodic(initial , cid , clid , classes, cpus, types ′′)

)
wf -Op: Idcl × Idop × Idc × Ido × Classes × CPUs × TypeMap → B
wf -Op(clid , idop , cid , oid , classes, cpus, types) ==

mk -Op(async, args, ret , body , pre, post) = classes(clid).ops(idop) ∧
types ′ = types † {(clid , idv) 7→ type | (idv , type) ∈ args} ∧
async = true ⇒ len ret = 0 ∧
wf -Statement(body , cid , clid , classes, cpus, types ′) ∧
∀exp ∈ {pre, post} · exp 6= nil ⇒ contextTypeOf (exp, classes, types ′) = BOOL

wf -Fun: Idcl × Fun × Idc × Ido × Classes × CPUs × TypeMap → B
wf -Fun(clid ,mk -Fun(args, ret , body , pre, post), cid , oid , classes, cpus, types) ==

types ′ = types † {(clid , idv) 7→ type | (idv , type) ∈ args} ∧
contextTypeOf (body , classes, types ′) = ret ∧
∀exp ∈ {pre, post} · exp 6= nil ⇒ contextTypeOf (exp, classes, types ′) = BOOL

wf -Periodic: Periodic × Idc × Idcl × Classes × CPUs × TypeMap → B
wf -Periodic(mk -Periodic(op, period , jitter , delay , offset), cid , clid , classes, cpus, types) ==

op ∈ rng classes(clid).ops ∧
(∀exp ∈ {period , jitter , delay .offset}·contextTypeOf (exp, classes, types) = TIME∧exp ≥ 0)∧
period > 0 ∧ delay < period

43

Statements

wf -StatementSeq : Stm∗ × Idc × Idcl × Classes × CPUs × TypeMap → B
wf -StatementSeq(stms, cid , clid , classes, cpus, types) ==

if stms = []
then true
else wf -Statement(hd stms, cid , clid , classes, cpus, types)∧

wf -StatementSeq(tl stms, cid , clid , classes, cpus, types)

wf -Statement : Stm × Idc × Idcl × Classes × CPUs × TypeMap → B

The context conditions for statements have been omitted, but follow the general pattern of ensuring
that all variable references are valid, all operation calls are to objects of the correct type, and so on.

A.3 Rules

This section describes all inference rules used in this work including the inference rule signatures.

{SkipTime, IfTime,WhileTime,CasesTime,NewTime,ForIndexTime,
ForSeqTime,ForSetTime,LetDefTime,LetBeTime,LocalAssignmentTime,
RemoteAssignmentTime,AtomicTime,StartTime,LocalSyncCallTime,
LocalAsyncCallTime,RemoteSyncCallTime,RemoteAsyncCallTime,
ReturnTime} ⊆ Time

A.3.1 Signatures

vdmrt−→ : (VDMRT × Time)× (VDMRT × Time)

init−→: (VDMRTModel)× (VDMRT)

exec−→: (VDMRT)× (VDMRT × Time)

busses−→ : (VDMRT)× (VDMRT)

Time × Classes `
cpus−→: (Cpus × Busses)× (Cpus × Busses × Time)

Time × Classes `
bus−→: (BUS × Cpus)× (BUS × Cpus)

Time × Classes × Cpus × Idc `
cpu−→: (CPU × Busses)× (CPU × Busses × Time)

Time × Classes × Cpus × Idc × Idt × Ido `
dur−→: (Duration∗ × Pending × CPU × Busses)×

(Duration∗ × Pending × CPU × Busses × Time)

Time × Classes × Cpus × Idc × Idt × Ido `
stmt−→: (Stm∗×Pending×CPU ×Busses)×(Stm∗×Pending×CPU ×Busses×Time)

44

bind−→: (Bind × Pending × CPU)× (Pattern × Σ)

Classes,Cpus,Pending , Ido ` [[Exp]]→ (VDMValue × Time)

A.3.2 Top level rules

The Init rule initializes the vdmrt record from a source model by creating the CPUs, busses and classes.
Init

cpus = createCpus(demodel)
busses = createBusses(cpus, demodel)
classes = createClasses(demodel)
cpus ′ = createInitialInstances(cpus, classes, demodel)
vdmrt = mk -VDMRT (cpus ′, busses, 0, classes)

(model)
init−→ (vdmrt)

The Big Step rule is the top level rule of the semantics. It is a big step rule that first deals with the creation
of a new execution context by committing ready pending variables and updating time, and then handles
the activity of the busses, creation of periodic threads and context switches. The exec−→ transition relation
is used to execute the model in the updated context. Lastly, this rule calculates the minimum time until
next pending commit.
Big Step

vdmrt1 = commitPendingValuesAndUpdateTime(vdmrt , τ)

vdmrt1
busses−→ vdmrt2

vdmrt3 = createPeriodicThreads(vdmrt2)
vdmrt4 = doContextSwitches(vdmrt3)

vdmrt4
exec−→ (vdmrt5, τb)

τ ′b = min(τb ,minPendingCommitTime(vdmrt5))

(vdmrt , τ)
vdmrt−→ (vdmrt5, τ ′b)

The Exec rule uses the
cpus−→ rule to execute the CPUs and calculate a new time bound.

Exec

τ, classes ` (cpus, busses)
cpus−→ (cpus ′, busses ′, τb)

mk -VDMRT (cpus, busses, τ, cls)
exec−→ (mk -VDMRT (cpus ′, busses ′, τ, cls), τb)

Bus rules

The two rules, Busses and Busses Base, deal with bus activity. The Busses rule selects a bus from the set of
all busses and uses the Rdebus transition relation to execute a single bus’ activity and continues with
the remaining busses using down with the Rdebusses transition relation recursively. The recursive base
case is handled by the Busses Base rule.
Busses

busses(b) = bus

τ, classes ` (bus, cpus)
bus−→ (bus ′, cpus ′)

busses ′ = {bus} −C busses

mk -VDMRT (cpus ′, busses ′, τ, cls)
busses−→ mk -VDMRT (cpus ′′, busses ′′, τ, cls)

busses ′′′ = busses † {b → bus ′}
mk -VDMRT (cpus, busses, τ, cls)

busses−→ mk -VDMRT (cpus ′′, busses ′′′, τ, cls)

45

Busses Base

mk -VDMRT (cpus, { }, τ, cls)
busses−→ mk -VDMRT (cpus, { }, τ, cls)

There are three rules that deal with individual bus activity: Bus Base, Bus Call and Bus Return. The rules
assume that the queue on the bus is sorted by the time that the messages were added to the bus queue.
The Bus Base rule serves as the base case when the message at the top of the bus queue has an arrival time
later than the current time.
Bus Base

bus.queue = [(c,msg)] y queue ′

τ < arrivalTime(bus.speed ,msg)

τ, classes ` (bus, cpus)
bus−→ (bus, cpus)

The Bus Call rule reduces the bus queue if the queue has a CMessage at the queue head and the arrival
time of that message is earlier than or equal to the current time τ . The message is removed from the
queue and a new thread is created on the receiving CPU. The body of the newly created thread is created
with a SyncCall matching the requested call from the message. Finally, the rule makes a recursive call
to bus−→ to further process the bus queue.
Bus Call

bus.queue = [(c,msg)] y queue ′

τ ≥ arrivalTime(bus.speed ,msg)
mk -CMessage(ido , op, args, replyto, sendTime) = msg
ido ∈ dom cpus(c).objects
cpu ′ = createThread(cpu, ido , [mk -Duration(0, [mk -SyncCall(replyto, (ido , op), args)]])
cpus ′ = cpus † {c 7→ cpu ′}
bus ′ = mk -Bus(bus.cpus, bus.speed , queue ′)

τ, classes ` (bus ′, cpus ′)
bus−→ (bus ′′, cpus ′′)

τ, classes ` (bus, cpus)
bus−→ (bus ′′, cpus ′′)

The Bus Return rule is similar to Bus Call but handles return messages (RMessage). The return message
is transformed into a Return statement in the target thread which must have the status WAITING. The
Return is inserted into the body of the duration at the head of the thread body. When the new return is
inserted the thread status is changed into RUNNABLE allowing its execution to resume.
Bus Return

bus.queue = [(c,msg)] y queue ′

τ ≥ arrivalTime(bus.speed ,msg)
mk -RMessage(values, replyto, sendTime) = msg
replyto = (c, t)
cpus(c) = mk -CPU (objects, threads, speed)
threads(t) = mk -Thread(WAITING, pending , context , body)

body = [mk -Duration(τd , stms)] y remainder
smts ′ = insertReturn(stms,mk -Return(values))

body ′ = [mk -Duration(τd , stms ′)] y remainder
thread ′ = mk -Thread(RUNNABLE, pending , context , body ′)
threads ′ = threads † {t → thread ′}
cpus ′ = cpus † {c → mk -CPU (objects, threads ′, speed)}
bus ′ = mk -Bus(bus.cpus, bus.speed , queue ′)

τ, classes ` (bus ′, cpus ′)
bus−→ (bus ′′, cpus ′′)

τ, classes ` (bus, cpus)
bus−→ (bus ′′, cpus ′′)

46

CPU rules

Rules for all CPUs The following two inference rules describe how all CPUs are executed. The rule
CPUs Step selects a single CPU and uses the Rdecpu transition relation to execute a single CPU before
it uses the

cpus−→ transition relation to recursively execute the rest of the CPUs, where the CPUs Base rule
serves as the base case.

CPUs Base

τ, classes ` ({ }, busses)
cpus−→ ({ }, busses,∞)

CPUs Step

cpus(c) = cpu

τ, classes, cpus, c ` (cpu, busses)
cpu−→ (cpu ′, busses ′, elapsed)

τ, classes ` ({c} −C cpus, busses ′)
cpus−→ (cpus ′′, busses ′′, τb)

cpus ′′′ = cpus ′′ † {c 7→ cpu ′}
τ ′b = min(elapsed , τb)

τ, classes ` (cpus, busses)
cpus−→ (cpus ′′′, busses ′′, τ ′b)

Rules for single CPUs The following two inference rules, CPU Pending and CPU Running, describe how
a single CPU schedules execution. Both rules select a thread, execute its body with the dur−→ transition
relation and updates the thread status , pending and body . The new thread status is handled differently
in the two rules. The CPU Pending rule sets the thread status to PENDING if the new thread body is empty
after applying the dur−→ transition relation to the thread body. Whereas the CPU Running sets the status to
RUNNING indicating that it can continue to execute if the new thread body is not empty. Note that a
thread with status PENDING is handled in the commitPendingValuesAndUpdateTime function of the
top level rule Big Step.
CPU Pending

cpu = mk -CPU (objs, thrs, spd)
thrs(t) = mk -Thread(RUNNING, o, pending , body)

τ, classes, cpus, c, t , o ` (body , pending , cpu, busses)
dur−→ (body ′, pending ′, cpu ′, busses ′, δ)

(hd body ′).body = []
thrs ′ = thrs † {t 7→ mk -Thread(PENDING, o, pending ′, body ′)}
cpu ′′ = mk -CPU (objs, thrs ′, spd)

τ, classes, cpus, c ` (cpu, busses)
cpu−→ (cpu ′′, busses ′, δ)

CPU Running

cpu = mk -CPU (objs, thrs, spd)
thrs(t) = mk -Thread(RUNNING, o, pending , body)

τ, classes, cpus, c, t , o ` (body , pending , cpu, busses)
dur−→ (body ′, pending ′, cpu ′, busses ′, δ)

(hd body ′).body 6= []
thrs ′ = thrs † {t 7→ mk -Thread(RUNNING, o, pending ′, body ′)}
cpu ′′ = mk -CPU (objs, thrs ′, spd)

τ, classes, cpus, c ` (cpu, busses)
cpu−→ (cpu ′′, busses ′, δ)

Durations

The duration rules are split up into three steps starting with the rule Duration Eval which evaluates the
time of the duration and replaces the expression in the duration with the calculated value. The second

47

rule, Duration Step to PartialDuration, converts a duration into a partial duration, executing at least part of the
duration’s body in the process. Finally, the Duration Step PartialDuration takes a partial duration and executes
it; the rest in the result of the stmt−→ transition relation is then encapsulated into a new partial duration that
replaces the original partial duration. While executing, it uses the partial duration to record the total time
taken to execute and the remaining statements that still require execution. The CPU Pending rule removes
those partial durations that have empty body fields, and it also changes the thread status to PENDING

enabling the top level rule Big Step to commit the changes made in the duration.
Duration Eval

exp 6∈ (Time ∪ {EXECTIME})
classes, cpus, pending , o ` [[exp]] = (value, -)

body = [mk -Duration(exp, stmts)] y rest

body ′ = [mk -Duration(value, stmts)] y rest

τ, classes, cpus, c, t , o ` (body ′, pending , cpu, busses)
stmt−→ (body ′, pending ′, cpu ′, busses ′, δ)

τ, classes, cpus, c, t , o ` (body , pending , cpu, busses)
dur−→ (body ′, pending ′, cpu ′, busses ′, δ)

Duration Step to PartialDuration

n 6= EXECTIME ⇒ δ ≤ n

body = [mk -Duration(n, stmts)] y tail

τ, classes, cpus, c, t , o ` (stmts, pending , cpu, busses)
stmt−→ (rest , pending ′, cpu ′, busses ′, δ)

body ′ = [mk -PartialDuration(n, δ, rest)] y tail

τ, classes, cpus, c, t , o ` (body , pending , cpu, busses)
dur−→ (body ′, pending ′, cpu ′, busses ′, δ)

Duration Step PartialDuration

n 6= EXECTIME ⇒ δ ≤ (n − δelapsed)

body = [mk -PartialDuration(n, δelapsed , stmts)] y tail

τ, classes, cpus, c, t , o ` (stmts, pending , cpu, busses)
stmt−→ (rest , pending ′, cpu ′, busses ′, δ)

body ′ = [mk -PartialDuration(n, δelapsed + δ, rest)] y tail

τ, classes, cpus, c, t , o ` (body , pending , cpu, busses)
dur−→ (body ′, pending ′, cpu ′, busses ′, δ)

General Statements

The inference rules for statements use a small step semantics to step statements through recursive appli-
cation of the stmt−→ rule until the time bound is reached. When the time bound is reached the rules return
as a big step. The Stmt Base is the base case of the recursive application and stops the statement execution
and returns with an empty set of statements. The stmt−→ rule strips a statement from the sequence of state-
ments which is either evaluated and removed or rewritten due to a partial evaluation. The rule always
returns the combined time it took to execute the statements and inner expressions.
Stmt Base

τ, classes, cpus, c, t , o ` ([], pending , cpu, busses)
stmt−→ ([], pending , cpu, busses, 0)

The Stmt Skip rule removes the skip statement from the head of a sequence of statements and increments
time accordingly.
Stmt Skip

τ, classes, cpus, c, t , o ` (rest , pending , cpu, busses)
stmt−→ (rest ′, pending , cpu, busses, δ)

δ′ = SkipTime + δ

τ, classes, cpus, c, t , o `
([SKIP] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending , cpu, busses, δ′)

48

The Stmt SimpleBlock executes the statements of the block and removes it from the sequence of statements.
Stmt SimpleBlock

τ, classes, cpus, c, t , o `
(stms y rest , pending ′, cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

τ, classes, cpus, c, t , o `
([mk -SimpleBlock(stms)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

The Stmt If True and Stmt If False both removes the if-statement from the sequence of statements and replaces
it with either with the then or else depending on the evaluated value of the test expression in the if-
statement.
Stmt If True

classes, cpus, pending , o ` [[e]] = (true, δe)

τ, classes, cpus, c, t , o ` ([th] y rest , pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

δ′ = δe + δ + IfTime

τ, classes, cpus, c, t , o `
([mk -If (e, th, el)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ′)

Stmt If False

classes, cpus, pending , o ` [[e]] = (false, δe)

τ, classes, cpus, c, t , o ` ([el] y rest , pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

δ′ = δe + δ + IfTime

τ, classes, cpus, c, t , o `
([mk -If (e, th, el)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ′)

The Stmt While True rule prefixes the sequence of statements with the while statement’s body if the test
expression is true, whereas the Stmt While False simply removes the while statement when the test expression
is false.
Stmt While True

classes, cpus, pending , o ` [[e]] = (true, δe)

stms = [body ,mk -While(e, body)] y rest

τ, classes, cpus, c, t , o ` (stms, pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

δ′ = δe + δ + WhileTime

τ, classes, cpus, c, t , o `
([mk -While(e, body)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ′)

Stmt While False

classes, cpus, pending , o ` [[e]] = (false, δe)

τ, classes, cpus, c, t , o ` (rest , pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

δ′ = δe + δ + WhileTime

τ, classes, cpus, c, t , o `
([mk -While(e, body)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′)

The Stmt Cases rule starts by evaluating the expression of the cases statement, and then it constructs a
list (alts) of cases where the pattern matched combined with the others statement if it is given and a
skip statement in case no cases matched or no others statement were given. Then a PartialLetDef is

49

created with the state and statement from the head of the list alts which then is appended to the rest and
executed.
Stmt Cases

classes, cpus, pending , o ` [[e]] = (value, δe)
alts = [(σ, stm) | i ∈ inds cases • (p, stm) = cases(i) ∧ σ = match(p, value) ∧ σ 6= { }]

y [({ }, others) | others 6= nil] y [({ }, SKIP)]
(σ, stm) = hd alts
let = mk -PartialLetDef (σ, [], stm)

τ, classes, cpus, c, t , o ` ([let] y rest , pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

δ′ = δe + δ + CasesTime

τ, classes, cpus, c, t , o `
([mk -Cases(e, cases, others)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ′)

The Stmt New rule creates a new object of the cl class and both adds the object to the CPU but also updates
pending with target pointing to the new object. The class instantiated must not be an active thread,
therefore, the initial field must not be periodic or contain a set of durations. When the new object is
created a fresh oid is selected and all initial values and variables are evaluated to the new object state σ
used in the new object. The object is then added to the CPU and the target is pointed at the new object
in the pending map using in further evaluation. It is important to note that this rule is not type correct
since the pending map does not allow for Ido but only Idv , further work is needed to update the pending
lookup in the cases where an object id is encountered since this requires the state of the object to be
made accessible.
Stmt New

classes(cl).initial /∈ Periodic ∪ {nil}
oid ∈ Ido
oid 6∈

⋃
{dom acpu.objects | acpu ∈ (rng cpus ∪ {cpu})}

initVals = classes(cl).values
initVars = classes(cl).vars
inits = {id 7→ (v , δe) | id ∈ dom initVars ∧ classes, cpus, initVals ` [[e]] = (v , δe)}
σ = initVals † {id 7→ v | id ∈ dom inits ∧ (v , -) = inits(id)}
δe = sumMapRange(id 7→ δ | id ∈ dom inits ∧ inits(id) = (-, δ))
obj = mk -Object(cl , σ,nil)
cpu ′ = mk -CPU (cpu.objects † {oid 7→ obj}, cpu.threads, cpu.speed)
pending ′ = pending † {o 7→ (pending(o) † {target 7→ oid})}
τ, classes, cpus, c, t , o ` (rest , pending ′, cpu ′, busses)

stmt−→ (rest ′, pending ′′, cpu ′′, busses ′, δ)
δ′ = δ + δe + NewTime

τ, classes, cpus, c, t , o `
([mk -New(cl , target)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′′, busses ′, δ′)

Duration

The duration statements always start with the Stmt Duration Eval which evaluates the time expression and
replaces it with the actual value. Then either the duration is executed by Stmt Duration Complete, and fully
completes with an empty rest or a return statement fully evaluated which results in the duration being
removed or the if a rest exists then the duration is replaced with a partial duration and execution is
contained.

50

Stmt Duration Eval

exp /∈ Time ∪ {EXECTIME}
classes, cpus, pending , o ` [[exp]] = (value, -)

rest ′ = [mk -Duration(value, stm)] y rest

τ, classes, cpus, c, t , o ` (rest ′, pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ′)

τ, classes, cpus, c, t , o `
([mk -Duration(exp, stm)] y rest , pending , cpu, busses)

stmt−→ (rest ′′, pending ′, cpu ′, busses ′, δ′)

Stmt Duration Complete

dur = mk -Duration(value, stm)
value ∈ Time ∪ {EXECTIME}
τ, classes, cpus, c, t , o ` ([stm], pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)
rest ′ = [] ∨ (rest ′ = [mk -Return(v)] ∧ v ∈ VDMValue)

rest ′′ = rest ′y rest
value 6= EXECTIME ⇒ δ ≤ value

τ, classes, cpus, c, t , o ` (rest ′′, pending ′, cpu ′, busses ′)
stmt−→ (rest ′′′, pending ′′, cpu ′′, busses ′′, δ′)

value 6= EXECTIME ⇒ δ′′ = value + δ′

value = EXECTIME ⇒ δ′′ = δ + δ′

τ, classes, cpus, c, t , o `
([dur] y rest , pending , cpu, busses)

stmt−→ (rest ′′′, pending ′′, cpu ′′, busses ′′, δ′′)

The three rules Stmt Duration to PartialDuration wrap the rest from a duration step that did not complete, and the
Stmt Duration Step PartialDuration executes the statements of the partial duration in the case where the head of
the statements is different from a return statement.
Stmt Duration to PartialDuration

value ∈ Time ∪ {EXECTIME}
τ, classes, cpus, c, t , o ` ([stm], pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)
hd rest /∈ Return
value 6= EXECTIME ⇒ δ ≤ value
rest ′′ = [mk -PartialDuration(value, δ,mk -SimpleBlock(rest ′)]

τ, classes, cpus, c, t , o `
([mk -Duration(value, stm)] y rest , pending , cpu, busses)

stmt−→ (rest ′′, pending ′, cpu ′, busses ′, δ)

Stmt Duration Step PartialDuration

τ, classes, cpus, c, t , o ` ([stm], pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

hd rest /∈ Return
value 6= EXECTIME ⇒ δ ≤ (value − δelapsed)
rest ′′ = [mk -PartialDuration(value, δelapsed + δ,mk -SimpleBlock(rest ′)]

τ, classes, cpus, c, t , o `
([mk -PartialDuration(value, δelapsed , stm)] y rest , pending , cpu, busses)

stmt−→
(rest ′′, pending ′, cpu ′, busses ′, δ)

Finally, the Stmt Duration Complete PartialDuration combined the rest of the evaluation of statements from the
partial duration with the rest of the current thread body and continues execution. The two rests can be
combined because either the rest is an empty sequence or it contains a fully evaluated return statement.

51

Stmt Duration Complete PartialDuration

partialduration = mk -PartialDuration(value, δelapsed , stm)

τ, classes, cpus, c, t , o ` ([stm], pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

rest ′ = [] ∨ (rest ′ = [mk -Return(v)] ∧ v ∈ VDMValue)

rest ′′ = rest ′y rest
value 6= EXECTIME ⇒ δ ≤ (value − δelapsed)

τ, classes, cpus, c, t , o ` (rest ′′, pending ′, cpu ′, busses ′)
stmt−→ (rest ′′′, pending ′′, cpu ′′, busses ′′, δ′)

value 6= EXECTIME ⇒ δ′′ = value + δ′

value = EXECTIME ⇒ δ′′ = δ + δ′

τ, classes, cpus, c, t , o `
([partialduration] y rest , pending , cpu, busses)

stmt−→
(rest ′′′, pending ′′, cpu ′′, busses ′′, δ′′)

For

The for statements are divided into three groups: Stmt ForIndex, Stmt ForSeq and Stmt ForSet. They are all
unfolded to a sequence of partial let defs representing the loops of the for statement. The Stmt ForIndex

starts out by evaluating the from , to and by , and then calculates the number of partial let defs needed to
unfold the loop. The Stmt ForSeq starts by evaluating the seqExp to a set value, and then unfolding the loop
where the state in each partial let def has the pattern p bound to an element of the sequence represented
by seqExp. The Stmt ForSet converts the set represented by setExp to a sequence, and then follows the
same procedure as Stmt ForSeq.
Stmt ForIndex

forindex = mk -ForIndex (idv , efrom , eto , eby , stm)
classes, cpus, pending , o ` [[efrom]] = (vfrom , δfrom)
classes, cpus, pending , o ` [[eto]] = (vto , δto)
classes, cpus, pending , o ` [[eby]] = (vby , δby)
stms = [mk -PartialLetDef ({idv 7→ v}, [], stm)

| n ∈ N ∧ v = vfrom + n · vby ∧ ((vfrom < v < vto) ∨ (vto < v < vfrom))]

τ, classes, cpus, c, t , o ` (stms y rest , pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

δ′ = δfrom + δto + δby + δ + ForIndexTime

τ, classes, cpus, c, t , o `
([forindex] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ′)

Stmt ForSeq

classes, cpus, pending , o ` [[seqExp]] = (seq , δe)
stms = [mk -PartialLetDef (σ, [], stm) | i ∈ inds seq ∧ σ = match(p, seq(i))]

τ, classes, cpus, c, t , o ` (stms y rest , pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

δ′ = δe + δ + ForSeqTime

τ, classes, cpus, c, t , o `
([mk -ForSeq(p, seqExp, stm)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ′)

52

Stmt ForSet

classes, cpus, pending , o ` [[setExp]] = (set , δe)
stms = [mk -PartialLetDef (σ, [], stm) | i ∈ inds set2seq(set) ∧ σ = match(p, seq(i))]

τ, classes, cpus, c, t , o ` (stms y rest , pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

δ′ = δe + δ + ForSetTime

τ, classes, cpus, c, t , o `
([mk -ForSet(p, setExp, stm)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ′)

Other VDM-RT specific

The Stmt Cycle rule converts the cycle statement into a duration where the time is calculated based on the
current CPU speed.
Stmt Cycle

classes, cpus, pending , o ` [[e]] = (value, -)
value ≥ 0
time = convertCyclesToTime(value, cpu.speed)
dur = mk -Duration(time, stm)

τ, classes, cpus, c, t , o ` ([dur] y rest , pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

τ, classes, cpus, c, t , o `
([mk -Cycles(e, stm)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

Lets

The let-statements are divided into two groups: Stmt LetDef and Stmt LetBe. Both are converted into partial
let defs. The Stmt LetDef rule directly rewrites the let def statement into a partial let def whereas the Stmt

LetBe rules first bind the patterns and then tests if the expression evaluates to true.
Stmt LetDef

stms = [mk -PartialLetDef ({ }, defs, body)] y rest

τ, classes, cpus, c, t , o ` (stms, pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

δ′ = δ + LetDefTime

τ, classes, cpus, c, t , o `
([mk -LetDef (defs, body)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ′)

Stmt LetBe

τ, classes, cpus, c, t , o ` (bind , pending , cpu)
bind−→ (ps, σ′)

pending ′ = pending † {o 7→ (pending(o) † σ′)}
classes, cpus, pending ′, o ` [[e]] = (true, δe)

stms = [mk -PartialLetDef (σ′, [], body)] y rest

τ, classes, cpus, c, t , o ` (stms, pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

δ′ = δe + δ + LetBeTime

τ, classes, cpus, c, t , o `
([mk -LetBe(bind , e, body)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ′)

The Stmt PartialLetDef Step rule steps through the definitions and evaluates each definition until the sequence
of definitions becomes empty.

53

Stmt PartialLetDef Step

partialletdef = mk -PartialLetDef (σ, defs, body)
(idv , e) = hd defs
pending ′ = pending † σ
classes, cpus, pending ′, o ` [[e]] = (v , δe)
σ′ = σ † {idv 7→ v}
stms = [mk -PartialLetDef (σ′, tl defs, body)] y rest

τ, classes, cpus, c, t , o ` (stms, pending , cpu, busses)
stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ)

δ′ = δe + δ

τ, classes, cpus, c, t , o `
([partialletdef] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ′)

The Stmt PartialLetDef Eval Complete does a full evaluation of the partial let def in a way that either the sequence
of statements becomes empty or is a single, fully evaluated return statement. In either case, the sequence
of statements resulting from the partial let def is concatenated with the sequence of statements from the
thread body and evaluation is continued.
Stmt PartialLetDef Eval Complete

partialletdef = mk -PartialLetDef (σ, [], body)
pending ′ = pending † σ
τ, classes, cpus, c, t , o ` ([body], pending ′, cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δbody)
rest ′ = [] ∨ (rest ′ = [mk -Return(v)] ∧ v ∈ VDMValue)

rest ′′ = rest ′y rest
pending ′′′ = (domσ −C pending ′′) † (domσ C pending)

τ, classes, cpus, c, t , o ` (rest ′′, pending ′′′, cpu ′, busses ′)
stmt−→ (rest ′′′, pending ′′′′, cpu ′′, busses ′′, δ)

δ′ = δbody + δ

τ, classes, cpus, c, t , o `
([partialletdef] y rest , pending , cpu, busses)

stmt−→ (rest ′′′, pending ′′′′, cpu ′′, busses ′′, δ′)

The Stmt PartialLetDef Eval Waiting rule evaluates a part of the statements in the partial let def. It wraps the rest
in a new partial let def and adds the new partial let def at the head of the thread body.
Stmt PartialLetDef Eval Waiting

partialletdef = mk -PartialLetDef (σ, [], body)
pending ′ = pending † σ
τ, classes, cpus, c, t , o ` ([body], pending ′, cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ)
rest ′ 6= [] ∧ rest ′ 6= [mk -Return(-)]
pending ′′′ = (domσ −C pending ′′) † (domσ C pending)
σ′ = domσ C pending ′′

rest ′′ = [mk -PartialLetDef (σ′, [],mk -SimpleBlock(rest ′))] y rest

τ, classes, cpus, c, t , o `
([partialletdef] y rest , pending , cpu, busses)

stmt−→ (rest ′′, pending ′′′, cpu ′, busses ′, δ)

Assignments

There are two kinds of assignment/atomic statements, either the target has a Idv indicating a local as-
signment or it has a Ido × Idv indicating that it is a remote assignment. The assignment evaluates the
expression and stores the result in pending for the object specified followed by an invariant check.

54

Stmt Assign Local

target ∈ Idv
classes, cpus, pending , o ` [[e]] = (value, δe)
σ′ = pending(o) † {target 7→ value}
pending ′ = pending † {o 7→ σ′}
obj = cpu.objects(o)
checkInvs(classes(obj .class).invs, obj .state † σ′)
τ, classes, cpus, c, t , o ` (rest , pending ′, cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ)
δ′ = δe + δ + LocalAssignmentTime

τ, classes, cpus, c, t , o `
([mk -Assignment(target , e)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ′)

Stmt Assign Remote

target = (oid , v)
classes, cpus, pending , o ` [[e]] = (value, δe)
σ′ = pending(oid) † {v 7→ value}
pending ′ = pending † {oid 7→ σ′}
obj = cpu.objects(oid)
checkInvs(classes(obj .class).invs, obj .state † σ′)
τ, classes, cpus, c, t , o ` (rest , pending ′, cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ)
δ′ = δe + δ + RemoteAssignmentTime

τ, classes, cpus, c, t , o `
([mk -Assignment(target , e)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ′)

The atomic statements are defined into three steps. First of all, the Stmt Atomic Start rule converts the
atomic statement into a partial atomic statement. Secondly, either the Stmt Atomic Local or Stmt Atomic Remote

performs the actual assignment. And finally, the Stmt Atomic Base is the recursive base case for the atomic
assignments that when all assignments are done checks that the invariants still hold.
Stmt Atomic Start

stmts = [mk -PartialAtomic(assigns, { })] y rest

τ, classes, cpus, c, t , o ` (stmts, pending , cpu, busses)
stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ′)

τ, classes, cpus, c, t , o `
([mk -Atomic(assigns)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ′)

Stmt PartialAtomic Base

states = {oid 7→ (cpu.objects(oid).state † pending(oid)) | (oid , σ) ∈ cpu.objects}
invs = {oid 7→ (classes(cpu.objects(oid).class).invs) | oid ∈ dom cpu.objects}
∀oid ∈ dom cpu.objects · checkInvs(invs(oid), states(oid))
δ = AtomicTime

τ, classes, cpus, c, t , o `
([mk -PartialAtomic([], oids)] y rest , pending , cpu, busses)

stmt−→ ([], pending , cpu, busses, δ)

55

Stmt PartialAtomic Local

hd assigns = mk -Assignment(target , exp)
target ∈ Idv
classes, cpus, pending , o ` [[exp]] = (value, δe)
σ′ = pending(o) † {target 7→ value}
pending ′ = pending † {o 7→ σ′}
oids ′ = oids ′ ∪ {o}
rest ′ = [mk -PartialAtomic(tl assigns, oids ′)] y rest

τ, classes, cpus, c, t , o ` (rest ′, pending ′, cpu, busses)
stmt−→ (rest ′′, pending ′′, cpu ′, busses ′, δ)

δ′ = δe + δ + LocalAssignmentTime

τ, classes, cpus, c, t , o `
([mk -PartialAtomic(assigns, oids)] y rest , pending , cpu, busses)

stmt−→
(rest ′′, pending ′′, cpu ′, busses ′, δ′)

Stmt PartialAtomic Remote

hd assigns = mk -Assignment(target , exp)
target = (ido , idv)
classes, cpus, pending , o ` [[exp]] = (value, δe)
σ′ = pending(ido) † {idv 7→ value}
pending ′ = pending † {ido 7→ σ′}
oids ′ = oids ′ ∪ {ido}
rest ′ = [mk -PartialAtomic(tl assigns, oids ′)] y rest

τ, classes, cpus, c, t , o ` (rest ′, pending ′, cpu, busses)
stmt−→ (rest ′′, pending ′′, cpu ′, busses ′, δ)

δ′ = δe + δ + LocalAssignmentTime

τ, classes, cpus, c, t , o `
([mk -PartialAtomic(assigns, oids)] y rest , pending , cpu, busses)

stmt−→
(rest ′′, pending ′′, cpu ′, busses ′, δ′)

Threads

The Stmt Start rule starts a new thread for an object and updates the CPU with the new thread. The rule
requires that no other thread exists for the obj in the start statement. The new thread will be created with
the set to the initial field of the its class.
Stmt Start

∀thread ∈ rng cpu.threads · thread .context 6= obj
body = classes(cpu.objects(obj).class).initial
body ∈ (Duration | PartialDuration)∗

cpu ′ = createThread(cpu, obj , body)

τ, classes, cpus, c, t , o ` (rest , pending , cpu ′, busses)
stmt−→ (rest ′, pending ′, cpu ′′, busses ′, δ)

δ′ = δ + StartTime

τ, classes, cpus, c, t , o `
([mk -Start(obj)] y rest , pending , cpu, busses)

stmt−→ (rest ′, pending ′, cpu ′′, busses ′, δ′)

Object Context Switch

The two object context rules are used to control under what object the execution takes place. The
ObjectContext record contains the oid that should be used to execute the body and the cctx contains
the call context that should be used to check any post-conditions.

56

The Stmt ObjectContext Step rule executes a part of the body of the object context and creates a new object
context with the remainder of the body.
Stmt ObjectContext Step

τ, classes, cpus, c, t , oid ` ([body], pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

rest ′ 6= [] ∧ hd rest ′ /∈ Return

rest ′′ = [mk -ObjectContext(oid ,mk -SimpleBlock(rest ′), cctx)] y rest

τ, classes, cpus, c, t , o `
([mk -ObjectContext(oid , body , cctx)] y rest , pending , cpu, busses)

stmt−→
(rest ′′, pending ′, cpu ′, busses ′, δ)

The Stmt ObjectContext Complete rule completes the execution of the body until it is empty or contains a fully
evaluated return statement. Then it uses the call context to check the post condition of the call.
Stmt ObjectContext Complete

τ, classes, cpus, c, t , oid ` ([body], pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

rest ′ = [] ∨ (hd rest ′ = [mk -Return(v)] ∧ v ∈ VDMValue)
cctx = mk -CallContext(prepending , args, post)
checkCallPost(classes, cpus, oid , prepending , pending ′, args, v , post) = true
rest ′′ = rest ′y rest

τ, classes, cpus, c, t , o ` (rest ′′, pending ′, cpu ′, busses ′)
stmt−→ (rest ′′′, pending ′′, cpu ′′, busses ′′, δ′)

δ′′ = δ + δ′

τ, classes, cpus, c, t , o `
([mk -ObjectContext(oid , body , cctx)] y rest , pending , cpu, busses)

stmt−→
(rest ′′′, pending ′′, cpu ′′, busses ′′, δ′′)

Bindings

Type-Bind len p = 1
x ∈ t
σ′ = match(p(1), x)

τ, classes, cpus, c, t , o `
(mk -TypeBind(p, t), pending , cpu)

bind−→ (p, σ′)

Multi-Type-Bind

σ′ = merge {match(p, x) | p ∈ ps • x ∈ t}
τ, classes, cpus, c, t , o `
(mk -TypeBind(ps, t), pending , cpu)

bind−→ (ps, σ′)

Set-Bind

len p = 1
classes, cpus, pending , o ` [[e]] = valueSet
x ∈ valueSet
σ′ = match(p(1), x)

τ, classes, cpus, c, t , o `
(mk -SetBind(p, set), pending , cpu)

bind−→ (p, σ′)

57

Multi-Set-Bind

classes, cpus, pending , o ` [[e]] = valueSet
σ′ = merge {match(p, x) | p ∈ ps ∧ x ∈ valueSet}
τ, classes, cpus, c, t , o `
(mk -SetBind(p, set), pending , cpu)

bind−→ (ps, σ′)

Calls

There are four types of call rules dealing with a combination of synchronous/asynchronous and local/re-
mote but common to all is that they all evaluate the arguments for the call and lookup the operation
that should be executed. The Stmt Call Op Local Sync rule then performs the execution of the operation body
through a CallContext and ObjectContext . The Stmt Call Op Local Async rule instead creates a new thread
with a synchronous call to the operation.
Stmt Call Op Local Sync

opTarget = (oid , op)
argsTimed = [(value, δe) | arg ∈ args ∧ (classes, cpus, pending , o ` [[e]] = (value, δe))]
args = [value | (value, -) ∈ argsTimed]
mk -Op(-, params, ret , body , pre, post) = classes(cpu.objects(oid).class).ops(op)
σ = {p 7→ a | i ∈ inds args ∧ a = args(i) ∧ params(i) = (p, -)}
checkCallPre(classes, cpus, pending , args, params, oid , pre) = true
callContext = mk -CallContext(pending , σ, post)
partialLetDef = mk -PartialLetDef (σ, [],mk -SimpleBlock(body))
objContext = mk -ObjectContext(oid , partialLetDef , callContext)
callBlock = [objContext ,mk -Wait(target)]

stms = callBlock y rest

τ, classes, cpus, c, t , o ` (stms, pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δrest)

δ′ = sum([δe | (-, δe) ∈ argsTimed]) + δrest + LocalSyncCallTime

τ, classes, cpus, c, t , o `
([mk -SyncCall(target , opTarget , args)] y rest , pending , cpu, busses)

stmt−→
(rest ′′, pending ′′, cpu ′′, busses ′′, δ′)

Stmt Call Op Local Async

opTarget = (oid , op)
argsTimed = [(value, δe) | arg ∈ args ∧ (classes, cpus, pending , o ` [[e]] = (value, δe))]
args = [value | (value, -) ∈ argsTimed]
mk -Op(true, params, ret , body , pre, post) = classes(cpu.objects(oid).class).ops(op)
cpu ′ = createThread(cpu, oid ,mk -Duration(EXECTIME, [mk -SyncCall(nil, opTarget , args)]))

τ, classes, cpus, c, t , o ` (rest , pending , cpu ′, busses)
stmt−→ (rest ′, pending ′, cpu ′′, busses ′, δ)

δ′ = sum([δe | (-, δe) ∈ argsTimed]) + δ + LocalAsyncCallTime

τ, classes, cpus, c, t , o `
([mk -AsyncCall(opTarget , args)] y rest , pending , cpu, busses)

stmt−→
(rest ′, pending ′, cpu ′′, busses ′, δ′)

The two remote call rules use the bus to communicate the call to the receiver instead of directly creating
a synchronous call with the intended object identifier. The Stmt Call Op Remote Async is the simplest rule since
it just adds a new CMessage to the bus connecting the current CPU with the receiving CPU.

58

Stmt Call Op Remote Async

opTarget = (ccpu, oid , op)
argsTimed = [(value, δe) | arg ∈ args ∧ (classes, cpus, pending , o ` [[e]] = (value, δe))]
args = [value | (value, -) ∈ argsTimed]
mk -Op(true, params, ret , body , pre, post) = classes(cpu.objects(oid).class).ops(op)
busses(bus) = mk -Bus({ccpu, c} ∪ connected , speed , queue)
cmsg = mk -CMessage(oid , op, args,nil, τ)

busses ′ = busses † {bus → mk -Bus({ccpu, c} ∪ connected , speed , queue y [(ccpu, cmsg)])}
τ, classes, cpus, c, t , o ` (rest , pending , cpu, busses ′)

stmt−→ (rest ′, pending ′, cpu ′, busses ′′, δ)
δ′ = sum([δe | (-, δe) ∈ argsTimed]) + δ + RemoteAsyncCallTime

τ, classes, cpus, c, t , o `
([mk -AsyncCall(opTarget , args)] y rest , pending , cpu, busses)

stmt−→
(rest ′, pending ′, cpu ′, busses ′′, δ′)

The Stmt Call Op Remote Sync also adds a CMessage to the bus, but instead of continuing with the execution
it changes the current thread status to WAITING and stops the recursive execution.
Stmt Call Op Remote Sync

opTarget = (ccpu, oid , op)
argsTimed = [(value, δe) | arg ∈ args ∧ (classes, cpus, pending , o ` [[e]] = (value, δe))]
args = [value | (value, -) ∈ argsTimed]
mk -Op(-, params, ret , body , pre, post) = classes(cpu.objects(oid).class).ops(op)

rest ′ = [mk -Wait(target)] y rest
busses(bus) = mk -Bus({ccpu, c} ∪ connected , speed , queue)
cmsg = mk -CMessage(oid , op, args, (c, t), τ)

busses ′ = busses † {bus → mk -Bus({ccpu, c} ∪ connected , speed , queue y [(ccpu, cmsg)])}
cpu ′ = changeThreadStatus(cpu, t ,WAITING)
δ′ = sum([δe | (-, δe) ∈ argsTimed]) + RemoteSyncCallTime

τ, classes, cpus, c, t , o `
([mk -SyncCall(target , opTarget , args)] y rest , pending , cpu, busses)

stmt−→
(rest ′, pending , cpu ′, busses ′, δ′)

Return

There are three rules that handle return statement evaluation. The Stmt Return Eval just evaluates the return
expression in the current context and replaces the expression with its value.
Stmt Return Eval

exp 6∈ VDMValue
classes, cpus, pending , o ` [[exp]] = (retValue, δe)

rest ′ = [mk -Return(retValue)] y rest

τ, classes, cpus, c, t , o ` (rest ′, pending , cpu, busses)
stmt−→ (rest ′′, pending ′, cpu ′, busses ′, δ)

δ′ = δe + ReturnTime

τ, classes, cpus, c, t , o `
([mk -Return(exp)] y rest , pending , cpu, busses)

stmt−→ (rest ′′, pending ′, cpu ′, busses ′, δ′)

The Stmt Return Eat rule activates if the head of the statement is a return statement. The rule then removes
the subsequent statement if it is not a wait statement.

59

Stmt Return Eat

rest 6= []
hd rest 6∈Wait

rest ′ = [mk -Return(v)] y tl rest

τ, classes, cpus, c, t , o ` (rest ′, pending , cpu, busses)
stmt−→ (rest ′′, pending ′, cpu ′, busses ′, δ)

τ, classes, cpus, c, t , o `
([mk -Return(v)] y rest , pending , cpu, busses)

stmt−→ (rest ′′, pending ′, cpu ′, busses ′, δ)

The Stmt Return Base is the base case for the recursive calls and stops the recursion when the statement being
executed only contains a fully evaluated return statement.
Stmt Return Base

v ∈ VDMValue
stms = [mk -Return(v)]

τ, classes, cpus, c, t , o ` (stms, pending , cpu, busses)
stmt−→ (stms, pending ′, cpu ′, busses ′, δ)

Completely evaluation of Return,Wait The following rules deal with the final evaluation of the
return from a function. The Stmt Wait Nil rule handles the cases where an async call was made and thus no
thread is waiting for a reply; in this case the return and wait statements are removed from the rest.
Stmt Wait Nil

τ, classes, cpus, c, t , obj ` (rest , pending , cpu, busses)
stmt−→ (rest ′, pending ′, cpu ′, busses ′, δ)

τ, classes, cpus, c, t , o `
([mk -Return(-),mk -Wait(nil)] y rest , pending , cpu, busses)

stmt−→
(rest ′, pending ′, cpu ′, busses ′, δ)

The Stmt Return Wait rule handles local calls and updates the pending map with the return value and removed
the return and wait from the rest.
Stmt Return Wait

target ∈ Idv
σ′ = pending(o) † {target 7→ v}
pending ′ = pending † {o 7→ σ′}
τ, classes, cpus, c, t , obj ` (rest , pending ′, cpu, busses)

stmt−→ (rest ′, pending ′′, cpu ′, busses ′, δ)

τ, classes, cpus, c, t , o `
([mk -Return(v),mk -Wait(target)] y rest , pending , cpu, busses)

stmt−→
(rest ′, pending ′′, cpu ′, busses ′, δ)

The Stmt Wait Message Return handles remove sync calls where a thread on another CPU is waiting for a
reply. The return value is added to a RMessage where the destination is defined by the target of the
wait statement. The new message is then added to the bus and both the return and wait statement is
removed from the sequence of statements.

60

Stmt Wait Message Return

target = (rc , rt)
rmsg = mk -RMessage(v , target , τ)
busses(bus) = mk -Bus({rc , c} ∪ connected , speed , queue)

busses ′ = busses † {bus → mk -Bus({rc , c} ∪ connected , speed , queue y [(rc , rmsg)])}
τ, classes, cpus, c, t , obj ` (rest , pending , cpu, busses ′)

stmt−→ (rest ′, pending ′, cpu ′, busses ′′, δ)

τ, classes, cpus, c, t , o `
([mk -Return(v),mk -Wait(target)] y rest , pending , cpu, busses)

stmt−→
(rest ′, pending ′, cpu ′, busses ′′, δ′)

A.4 Utility Functions

match: Pattern ×VDMValue → Σ
match(p, v)σ′ ==
Returns a new map with all variables that could be bound to the pattern

Figure A.1: Pattern matching function

FV : Pattern → Id -set
FV (p)ids ′ ==
Returns a set of all free variables in the pattern

Figure A.2: Returns a set of free variables from a Pattern

collapseOld : Id -set→ Id -set
collapseOld(p)ids ′ ==
Replaces all old ids in the set with the original id

Figure A.3: Returns a set of ids consisting of all ids from the input set, old ids are resolved to the original
id

Old : Ido-set→ Ido-set
Old(p)ids ′ ==
returns the old id for a given object

Figure A.4: Returns a set of old ids for the set of Ido given

checkInvs: Fun-set× Σ→ B
checkInvs(invs, σ)b′ ==
∀f ∈ invs · σ ` [[f .body]] = true

Figure A.5: Checks the set of boolean functions against the current state

convertCyclesToTime: VDMValue × CPU → Σ
convertCyclesToTime(v , c)time ′ == v

c.speed

Returns a time based on the number of cycles and the speed of the cpu

Figure A.6: Cycles conversion function

61

checkCallPre: Classes ×Cpus ×Pending ×VDMValue∗× (Idv ×Type)∗× Ido ×Exp → B
checkCallPre(classes, cpus, pending , args, params, obj , pre)result ′ ==
typeCheck(params, args)
∧ classes, cpus, pending , obj ` [[pre]] = true

Figure A.7: Check pre-conditions for operation calls

checkCallPost : Classes×Cpus× Ido ×Pending ×Pending ×Σ×VDMValue∗×Exp → B
checkCallPost(classes, cpus, oid , prepending , pending , args, post)result ′ ==

let oldPending = {old(v) 7→ prepending(v) | v ∈ dom prepending},
state = pending † pending in

classes, cpus, state, obj ` [[post]] = true

Figure A.8: Check post-conditions for operation calls

typeCheck : (Idv × Type)∗ ×VDMValue∗ → B
typeCheck(params, args)result ′ ==
len params = len args ∧
false 6∈ [typeOf (v) = type | i ∈ inds params ∧ (-, type) = params(i) ∧ v = args(i)]

Figure A.9: Type check operation call arguments

typeOf : VDMValue → Type
typeOf (v)type ′ ==
Returns the type of a VDMValue

Figure A.10: Gives the type of a VDMValue

changeThreadStatus: CPU×Idt×(RUNNING | RUNNABLE | WAITING | PENDING | COMPLETED)
→ CPU
changeThreadStatus(cpu, t ,newStatus)cpu ′ ==
let mk -CPU (objects, threads, speed) = cpu,

mk -Thread(-, pending , context , body) = threads(t),
threads ′ = threads † {t → mk -Thread(newStatus, pending , context , body)}
in

mk -CPU (objects, threads ′, speed)

Figure A.11: Change the status of a thread

createThread : CPU × Ido ×Duration∗ → CPU
createThread(cpu, oid , body)cpu ′ ==
let t ∈ Thread

t 6∈ dom cpu.threads
thread = mk -Thread(RUNNABLE, { }, oid , body ,nil)
threads = cpu.threads † {t → thread}
in

mk -CPU (cpu.objects, threads, cpu.speed)

Figure A.12: Creates a new thread

62

insertReturn: Stm∗ × Return → [Stm]
insertReturn(stms, return)stms ′ ==
cases hd stms of

mk -Wait(target)→ [return,mk -Wait(target)] y tl rest
mk -ObjectContext(ido , body)→ let b = insertReturn(body , return)

r = [mk -ObjectContext(ido , b)] in
r y tl rest

mk -PartialLetDef (σ, [], stm)→ let sb = mk -SimpleBlock(insertReturn([stm], return)) in
[mk -PartialLetDef (σ, [], sb)] y tl rest

end

Figure A.13: Inserts a return next to a inner Wait statement

sumMapRange: VDMValue
m−→ Number → Number

sumMapRange(map) ==
if map = { }
then 0
else let key ∈ dom map in map(key) + sumMapRange({key} −C map)

Figure A.14: Sums the range of a map structure

sum: Number∗ → Number
sum(seq) ==

if seq = []
then 0
else hd seq + sum(tl seq)

Figure A.15: Sums a sequence of numbers

set2seq : VDMValue-set→ VDMValue∗

set2seq(set) ==
if set = { }
then []

else let item ∈ set in [item] y set2seq(set − {item})

Figure A.16: Sums the range of a map structure

63

Index of Rules and Definitions

Σ, 20, 38

Assignment, 41
AsyncCall, 41
Atomic, 41

Big Step, 21–23, 28, 29, 31, 45, 47, 48
Bind , 40
BOOL, 43
Bus, 19, 39
Bus Base, 46
Bus Call, 28, 46
Bus Return, 46
Busses , 19, 38
Busses, 45
Busses Base, 45, 46

Call , 24, 41
CallContext, 25, 41
Cases, 41
changeThreadStatus, 62
checkCallPost, 62
checkCallPre, 62
checkInvs, 61
Class, 20, 39
Classes , 19, 38
CMessage, 28, 39
collapseOld, 61
commitPendingValuesAndUpdateTime, 30
COMPLETED, 20, 30, 39, 62
convertCyclesToTime, 61
CPU, 19, 39
CPU Pending, 47, 48
CPU Running, 47
CPUs , 19, 38
CPUs Base, 47
CPUs Step, 47
createPeriodicThreads, 29
createThread, 62
Cycles, 41

Definition , 42

doContextSwitches, 31
Duration, 20, 41
Duration Eval, 47, 48
Duration Step PartialDuration, 48
Duration Step to PartialDuration, 48

Exec, 45
EXECTIME, 20, 21, 29–31, 41, 48, 51, 52, 58

ForIndex, 42
ForSeq, 42
ForSet, 42
Fun, 40
FV, 61

If, 42
Init, 23, 45
insertReturn, 63

LetBe, 42
LetDef, 42

match, 61
Multi-Set-Bind, 58
Multi-Type-Bind, 57

New, 42

Object, 20, 40
ObjectContext, 25, 41
Old, 61
Op, 39

PartialAtomic, 41
PartialDuration, 21, 41
PartialLetDef, 42
Pattern, 40
PatternBind , 40
Pending , 38
PENDING, 20, 29, 30, 39, 47, 48, 62
Periodic, 29, 40

Return, 24, 41
RMessage, 28, 39

64

RUNNABLE, 20, 29–31, 39, 46, 62
RUNNING, 20, 31, 39, 47, 62

Set-Bind, 57
set2seq, 63
SetBind, 40
SimpleBlock, 42
SKIP, 41, 48, 50
Start, 42
Stmt Assign Local, 55
Stmt Assign Remote, 55
Stmt Atomic Base, 55
Stmt Atomic Local, 55
Stmt Atomic Remote, 55
Stmt Atomic Start, 55
Stmt Base, 48
Stmt Call Op Local Async, 58
Stmt Call Op Local Sync, 24–26, 58
Stmt Call Op Remote Async, 58, 59
Stmt Call Op Remote Sync, 28, 59
Stmt Cases, 49, 50
Stmt Cycle, 53
Stmt Duration Complete, 50, 51
Stmt Duration Complete PartialDuration, 51, 52
Stmt Duration Eval, 50, 51
Stmt Duration Step PartialDuration, 51
Stmt Duration to PartialDuration, 51
Stmt ForIndex, 52
Stmt ForSeq, 52
Stmt ForSet, 52, 53
Stmt If False, 49
Stmt If True, 49
Stmt LetBe, 53
Stmt LetDef, 53
Stmt New, 50
Stmt ObjectContext Complete, 25, 27, 57
Stmt ObjectContext Step, 25, 57
Stmt PartialAtomic Base, 55
Stmt PartialAtomic Local, 56
Stmt PartialAtomic Remote, 56
Stmt PartialLetDef Eval Complete, 54
Stmt PartialLetDef Eval Waiting, 54
Stmt PartialLetDef Step, 53, 54
Stmt Return Base, 60
Stmt Return Eat, 26, 27, 59, 60
Stmt Return Eval, 25, 26, 59
Stmt Return Wait, 27, 28, 60
Stmt SimpleBlock, 49
Stmt Skip, 48

Stmt Start, 56
Stmt Wait Message Return, 60, 61
Stmt Wait Nil, 60
Stmt While False, 49
Stmt While True, 49
sum, 63
sumMapRange, 63
SyncCall, 24, 41

Thread, 20, 39
TIME, 43
Type-Bind, 57
TypeBind, 40
typeCheck, 62
TypeMap, 42
typeOf, 62

VDMRT, 19, 38
VDMRTModel , 38

Wait, 24, 41
WAITING, 20, 28, 39, 46, 59, 62
While, 42

65

Department of Engineering
Aarhus University
Edison, Finlandsgade 22
8200 Aarhus N
Denmark

Tel.: +45 4189 3000

Kenneth Lausdahl, Joey W. Coleman and Peter Gorm Larsen ,
Semantics of the VDM Real-Time Dialect, 2013

	rt-semantics-main.pdf
	Introduction
	Styles of Semantic Definitions
	The Vienna Development Method
	Structural Operational Semantics
	Structure of this Technical report

	Overview of VDM and VDM-RT Features
	System Modelling in VDM
	Model Structure
	Modelling Data
	Modelling Functionality
	Modelling State and Operations
	Modelling Object-oriented and Concurrent Systems in VDM++
	Modelling using VDM Real-Time

	Related Semantic Models
	The Semantics of VDM-SL
	SemSpec and IsAModelOf
	Definers and Loose Definers
	The Semantics of Looseness
	Internal versus External Looseness
	Semantics of Expressions

	The Semantics of VDM++
	The Semantics of VDM-RT

	Semantics of VDM-RT
	Overview of Structure & Entities
	Durations and Transaction Synchronization
	Duration Composability

	Top-level Execution Rule
	Initialization
	Operation Calls
	Periodic Threads
	Committing Pending Values
	Dealing with Durations and Context Switching

	Concluding Remarks
	Complete VDM-RT Semantics
	VDM-RT Abstract Syntax
	Structure

	Context Conditions/Typechecking
	Rules
	Signatures
	Top level rules

	Utility Functions

