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      OPTIMISATION AND INHIBITION 

      OF ANAEROBIC DIGESTION OF 

                 LIVESTOK MANURE 
 
                                                                                      Sutaryo  
                                                  Aarhus University, Department of Engineering 

Abstract 
 
This thesis deals with the optimisation and inhibition of the anaerobic digestion (AD) of animal 
manure. The optimisation process during this PhD study focused on mixed enzyme (ME) addition, 
thermal pre-treatment and co-digestion of raw manure with solid fractions of acidified manure, 
while for inhibition processes, ammonia and sulphide inhibition were studied. 

ME addition increased methane yield of both dairy cow manure (DCM) and solid fractions of DCM 
(by 4.44% and 4.15% respectively, compared to the control) when ME was added to manure and 
incubated prior to AD. However, no positive effect was found when ME was added to manure and 
fed immediately to either mesophilic (35°C) or thermophilic (50°C) digesters. 

Low-temperature pre-treatment (65°C to 80°C for 20 h) followed by batch assays increased the 
methane yield of pig manure in the range from 9.5% to 26.4% at 11 d incubation. These treatments 
also increased the methane yield of solid-fractions pig manure in the range from 6.1% to 25.3% at 
11 d of the digestion test. However, at 90 d the increase in methane yield of pig manure was only 
significant at the 65°C treatment, thus low-temperature thermal pre-treatment increased the rate 
of gas production, but did not increase the ultimate yield (B0). 

High-temperature pre-treatment (100°C to 225°C for 15 min.) increased the methane yield of DCM 
by 13% and 21% for treatments at 175°C and 200°C, respectively, at 27 d of batch assays. For pig 
manure, methane yield was increased by 29% following 200°C treatment and 27 d of a batch 
digestion test. No positive effect was found of high-temperature pre-treatment on the methane 
yield of chicken manure. At the end of the experiment (90 d), high-temperature thermal pre-
treatment was significantly increasing the B0 of pig manure and DCM.  

Acidification of animal manure using sulphuric acid is a well-known technology to reduce 
ammonia emission of animal manure. AD of acidified manure showed sulphide inhibition and 
consequently methane production was 45% lower when compared with the control, but no 
inhibition was found when treating solid fractions of acidified manure. In addition, it was found that 
a digester treating non-acidified DCM could operate in a stable state when 30% of the input was 
substituted with the solid fraction of acidified DCM and that methane production increased by 50% 
in terms of digester volume. Post-digestion test results showed that methane production of digested 
slurry increased as the concentration of solid-fraction acidified DCM increased. Therefore in order 
to gain optimal biogas potential of substrates and reduce the methane emission of digested slurry, 
post-digestion is needed when digesters process large concentrations of solid fractions of acidified 
manure.  

Of microorganism inhibitors, ammonia is expected to be the most common cause of suboptimal 
AD process performance when co-digesting animal manure with a proteinaceous substrate. In an 
experimental digester with a total ammoniacal nitrogen (TAN) value of 2.9 g L-1 corresponding to 
0.7 g L-1of free ammonia (FA), the methane yield was reduced by 24% compared to a reference 
digester which had a TAN of 2.2 g L-1 (FA 0.48 g L-1). Biogas production, TAN and FA values, total 
VFA concentration, isovaleric and isobutyric acid concentrations were useful indicators of 
ammonia inhibition. 
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Abstract in Danish 

 

Denne Ph. D. -afhandling omhandler optimering og hæmning af den anaerobe 

nedbrydning  (AD) af husdyrgødning. Optimeringen omhandler enzymtilsætning, 

forbehandling ved hjælp af varme og samudrådning af gylle med den faste del af forsuret  

gylle. Hæmningsdelen er fokuseret omkring ammonium- og sulfidhæmning.  

Enzymtilsætning øgede metanudbyttet af  kvæggylle  og  den faste del af kvæggylle 

(FKG) med henholdsvis 4,44% og 4,15% sammenlignet med kontrol når enzymblandingen 

blev tilsat gyllen og inkuberet før denne blev tilsat til anaerobe reaktorer. Derimod var der 

ingen effekt af enzymblandingen, når denne blev tilsat gyllen direkte og umiddelbart 

herefter overført til anaerobe reaktorer, hverken under mesofile (35 °C) eller termofile (50 

°C) forhold. 

Forbehandling af svinegylle ved opvarmning fra 65 °C til 80 °C i 20 timer efterfulgt af 

inkubering gav et merudbytte i metanpå mellem 9,5% og 26,4% efter 11 dages inkubation. 

Denne forbehandling øgede også metanudbyttet af den faste del af svinegyllen fra 6,1% til 

25,3% efter 11 dages inkubation. Dog var metanudbyttet efter 90 dage kun signifikant 

højere ved 65 °C behandlingen. Termisk forbehandling ved disse temperaturer øger altså 

hastigheden af gasproduktionen, men ikke det totale gasudbytte (B0). 

Forbehandling af svinegylle ved høje temperaturer (100 °C til 225 °C i 15 min) gav et 

merudbytte i kvæggylle på 13% og 21% ved forbehandling ved henholdsvis 175 °C og 

200 °C efter 27 dages inkubering. For svinegylle blev metanudbyttet øget med 29% ved 

200°C forbehandlingen efter 27 dages inkubering.  For kyllingegødning var der ingen 

effekt på metanudbyttet ved termisk forbehandling ved høje temperaturer. Efter 90 dage 

var det total gasudbytte (B0) signifikant højere for svinegylle og kvæggylle efter termisk 

forbehandling ved høj temperatur. 

Forsuring af gylle ved hjælp af svovlsyre er en velkendt teknologi til at formindske 

ammoniakudledning. Biogasproduktion af forsuret gylle hæmmes af sulfid, og metan 

produktionen falder med 45% sammenlignet med kontrollen. Dog ses ingen hæmning af 

metanproduktionen, når den faste del af forsuret gylle nedbrydes anaerobt. Desuden blev 

det vist at en reaktor der tilsættes ikke forsuret kvæggylle kunne køre stabilt når 30% af 

indholdet blev erstattet med forsurede gylle fibre. Med denne blanding blev 

metanproduktionen øget med 50% set i forhold til reaktorvolumen. Efternedbrydningstest 

viste at metanproduktionen fra nedbrudt materiale steg med en stigende andel af 

forsurede gyllefibreFKG. For at opnå optimal biogasproduktion fra substratet og reducere 
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metanudledningen af nedbrudt materiale er efternedbrydning nødvendig i de tilfælde 

hvor reaktorer behandler en større koncentration af forsuret gødning. 

Ammonium er den af de mikrobielt hæmmende stoffer, der anses for at være den mest 

almindelige grund til hæmning af processen når gylle samudrådnes med proteinrigt 

materiale. I en reaktor med et total indhold nitrogen på vandlig form (TAN) på 2,9 g L-1 

svarende til 0,7 g L-1 frit ammoniak (FA) blev metan udbyttet reduceret med 24% i forhold 

til en reference reaktor indeholdende 2,2 g L-1 TAN (FA 0,48 g L-1). Biogas produktion, TAN 

og FA værdier, Total VFA, koncentrationer af syreformen af isovalerat og isobutyrat er alle 

værdifulde indikatorer for ammoniak hæmning. 

 

Nøgleord: Biogas, forbehandling, samudrådning, fastdel, ammoniak 
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1. Anaerobic digestion of livestock manure 

 

1.1 Introduction 

The capability of anaerobic microorganism consortia to convert low-value organic 

material into useful renewable energy in the form of biogas has gained attention in the last 

few decades. The anaerobic digestion (AD) process naturally occurs in anaerobic 

conditions such as marine and fresh water sediments, sewage sludge, and in the gut of 

mammals (Angelidaki et al., 2003). Initially AD was implemented to treat sludge from 

wastewater treatment plants. Lately, this practice was extended to treat animal manure, 

agricultural and industrial by-products (González-Fernández et al., 2008).  Application of 

this technology offers some advantages such as reducing volatile suspended solids and 

odours, destroying pathogenic microorganisms, and producing renewable energy. In 

waste management, AD is more favourable compared to aerobic treatment due to better 

control of emission and recovery of energy in the form of biogas (Fricke et al., 2005, Cakir 

and Stenstrom, 2005). Decomposition of organic material through the AD process is 

ecologically advantageous in two ways: 1) by localising the decomposition process in a 

closed reactor, where the potential emission of methane, as the main product of biogas, to 

the atmosphere can be prevented, and the gas can subsequently be used in variety of 

purposes, for example in combined and heat power production (CHP) or in the 

transportation sector, 2) energy obtained from this process can displace the utilisation of 

fossil fuel (Ward, 2008). Moreover, the carbon dioxide released in the AD process is not 

considered a greenhouse gas emission, since the carbon has recently been used by plants 

in the photosynthetic process and to be released again to the atmosphere is part of the 

carbon cycle (Ward, 2008). Taking these advantages into account and the rising price of 

fossil fuel, particularly since the energy crisis in the 1970s, biogas has become the focus of 

much attention both in research environments and in the industrial sector (Angelidaki et al., 

2003). For instance in 2008, Denmark had 20 full-scale centralised biogas plants of 550-

8500 m3 volume and more than 80 farm-scale biogas plants (Nielsen and Angelidaki, 

2008).   

Low-value and low-cost substrates that are affordable and can be used sustainably in 

biogas plant are agriculture by-products such as animal manure, straw and crop residues. 

Unfortunately, these organic materials are of low biodegradability, therefore AD treatment 

of these substrates, particularly animal manure which is the most abundant source of 

organic matter for AD in Europe has been uneconomical (Møller et al., 2007). The common 
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method to solve this problem is pre-treating the recalcitrant substrate prior to AD. Other 

methods involve co-digestion of manure with other organic materials that have a higher 

methane potential per volume substrate (Asam et al., 2011) or engineering biogas plants 

to enable them to cope with such substrates (Bruni, 2010).  

Another issue in AD is inhibition during the fermentation process. The common inhibitors 

in AD are ammonia, sulphide, light metal ions, heavy metal and organic compounds (Chen 

et al., 2008).  Ammonia inhibition can occur when AD-processing proteinaceous substrates 

(Braun et al., 2003) and solid fractions of pig manure (Møller et al., 2007), whereas sulphide 

inhibition takes place when AD-treating sulphate-containing wastewater from sources 

such as the paper and board industry, molasses-based fermentation industries and edible 

oil refineries (Colleran et al., 1995) and when treating acidified animal manure (Sutaryo et 

al., 2012). Therefore, the objectives of this PhD study were to: 

 evaluate methods to improve methane production from livestock manure  

focusing on mixed enzyme addition in AD and thermal pre-treatment of manure 

prior to AD. 

 evaluate co-digestion of animal manure with solid-fraction acidified manure 

from solid-liquid manure separation, 

 determine methane production of animal manure fractions derived from 

different solid-liquid manure separation techniques,  

 explore the effect of ammonia inhibition at different levels of inhibition on 

methane production of dairy cow manure (DCM), 

 determine the effect of sulphide inhibition on AD processing acidified livestock 

manure. 

 

1.2 Livestock manure management through anaerobic digestion  

Livestock manure is an abundant biomass substrate for AD (Kaparaju and Rintala, 

2008; Nasir et al., 2012). In Denmark, the estimated energy potential of methane from 

available biomass resources through the AD process is 30 petajoules (PJ) annually and 

manure contributes 80% to this potential (Angelidaki and Ellegaard, 2003). It is expected 

that livestock manure production worldwide will continue to increase in the future. This 

phenomenon is inevitable since increases in welfare and living standards of society are 

often followed by a dietary shift from carbohydrate sources to protein sources. The 

consequence of this is a high demand for livestock products, particularly in the developed 

world. For instance, Denmark with a population size of 5.580.516 in 2012 (Statistics 
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Denmark, 2012) produced an estimated 25.3 million pigs in 2009 (Annual report of Danish 

pig production, 2008) and cattle population 1.615 million in 2012 (Statistics Denmark, 

2012). The agricultural sector is therefore a significant contributor to the anthropogenic 

non-carbon dioxide greenhouse gas emissions, particularly methane and nitrous oxide 

(Monteny et al., 2006) and ammonia and water pollution through leaching mechanisms 

(Burton and Turner, 2003). Therefore, manure management is urgently needed to reduce 

these effects. Animal manure management in the AD system has some advantages such 

as reducing emissions of carbon dioxide by the substitution of fossil fuel with biogas and 

reducing methane emission from manure in manure storage tanks (Møller et al., 2007), 

reducing odour emission (Hansen et al., 2006), and improving the fertilizer quality of 

digested slurry (Angelidaki et al., 2003). Manure management through AD treatment, 

particularly in Denmark, is also in line with the target of the Danish government for the 

utilisation by 2020 of 50% of the manure produced in Denmark as a substrate in AD to 

produce renewable energy in the form of biogas (Aftale om Grøn Vækst, 2009). The AD 

process is also part of the European Commission’s Directive on Renewable Energy that sets 

a target of 20% of energy production from renewable energy sources by 2020 (European 

Commission, 2009).  

Livestock manure is a substrate well suited for AD because: 1) it has a high water 

content enabling it to dilute concentrated by-products, thus resolving problems with 

pumping, 2) the high buffer capacity of manure is very useful to prevent sudden changes 

in pH value, and 3) it has a wide range of nutrients that are very important for 

microorganism growth (Angelidaki and Ellegard, 2003). However, livestock manure also 

has some limitations as a substrate in AD. The high water content of manure, previously 

characterised as a positive factor , also means it is a very dilute substrate with too little 

easily degradable carbon to produce much methane per unit volume (Hamelin et al., 

2011), and thus more energy is required to maintain the temperature of the biogas reactor 

and the cost of transporting the manure to a centralised biogas plant is higher (Asam et al., 

2011) and animal manure, particularly pig manure, has too low a C/N ratio which can 

lead to ammonia inhibition during the AD process (Hansen et al., 1998).  

 

1.3 Anaerobic digestion process 

Anaerobic digestion is a complex and multistep process, which generally consists of 

four main phases: hydrolysis, acidogenesis, acetogenesis and methanogenesis involving 

different microorganism consortia at each step (Fig. 1) (Gujer and Zehnder, 1983). 
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Furthermore, hydrolysis is an extracellular step, while the rest processes are intracellular 

(biological process) (Batstone et al., 2002). These steps should be in proper balance to 

ensure enough products in each step can be used as substrate in the following phase 

without overproduction (Ward, 2008). For instance, if the rate of hydrolysis phase is higher 

than the methanogenic rate, this can cause accumulation of volatile fatty acids (VFA). An 

elevated concentration of these intermediate fermentation products can inhibit the 

methanogenic microorganisms (Pind et al., 2003) leading to AD process failure. 

Hydrolysis in AD is the solubilisation and degradation of biopolymer particulate organic 

compounds and colloidal wastes into soluble monomeric or oligomeric organic 

compounds (Gerardi, 2003). This process is catalysed by extracellular enzymes including 

amylase, cellulase, protease and lipase that are excreted by bacteria (Taherzadeh and 

Karimi, 2008). Even though a wide range of exocellular enzymes are involved during this 

process, hydrolysis can be a rate-limiting step, particularly when AD-treating semi-solid 

waste (Ferrer et al., 2008). Once simple organic compound have been produced during 

the hydrolysis step, these products can be utilised as a substrate in the next step of AD.  

The simple soluble substrate produced in the hydrolysis phase will be absorbed and 

degraded by different facultative and obligate anaerobic bacteria in the acidogenic step, 

producing short-chain VFAs, alcohols, hydrogen and carbon dioxide (Chandra et al., 

2012). A high concentration of hydrogen produced by acidogenic microorganism during 

this phase can cause inhibition of the production of acetate by acetogens, as will be 

discussed latter. 

Alcohols, for instance ethanol, and VFAs with more than two carbon atoms are 

degraded by acetate-forming bacteria with acetate, hydrogen and carbon dioxide as the 

main products (Parawira, 2012; Gerardi, 2003). Furthermore, hydrogen and carbon dioxide 

are constantly reduced to acetate by homoacetogenic microorganisms (Chandra et al., 

2012). A mutually symbiotic relationship occurs between acetogens and methanogens. 

Acetogens produce acetate that can be used as substrate by methanogens, yet 

acetogens also produce hydrogen. Acetogens can survive at very low concentration of 

hydrogen (Gerardi, 2003). In an environment with high hydrogen partial pressure, 

acetogens lose their activity to produce acetate. However, methanogens are continuously 

removing hydrogen during the production of methane, therefore elevated hydrogen 

partial pressure does not usually occur (Chandra et al., 2012). 

Methanogenesis takes places in obligate anaerobic conditions and is considered an 

exergonic reaction (Chandra et al., 2012). During this phase, carbon dioxide-reducing and 
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hydrogen-oxidizing methanogens convert hydrogen and carbon dioxide producing 

methane, while acetoclastic methanogens utilize acetate to produce methane (Parawira, 

2012). Approximately 70% of methane in AD is derived from this pathway (Parawira, 2012). 

Methanogenesis is the critical step in AD and methanogenic archaea are the actors here. 

This phase is critical because methanogens are sensitive to the different environmental 

conditions, and this phase can therefore have a large impact on AD (De Vrieze et al., 

2012).  

 
 

Fig. 1. Simplification of anaerobic digestion process (adapted from Gujer and Zehnder, 

1983). 
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1.4 Lignocellulosic material 

Lignocellulose (Fig. 2) is the main organic material in plant cell walls that consists of 

30% to 50% cellulose, 15% to 35% hemicellulose and 10% to 30% lignin (Sousa et al., 2009). 

 

Cellulose 

Cellulose is a polymer of glucose molecules that link to form a D-

anhydroglucopyranose unit with β-1,4 glycosidic ether bridges, while the repeating unit of 

cellulose is the disaccharide cellobiose (Bobleter, 1994). The intramolecular hydrogen 

bonds in cellulose make it more rigid and intermolecular hydrogen bonds with 

neighbouring cellulose molecules cause it to be water-insoluble and with a stable 

configuration (Bobleter, 1994). Microfibrils is the group of cellulose chains (20-300) and 

bunched together to form cellulose fibres (Agbor et al., 2011). The cellulose consists of a 

crystalline (organized) structure and an amorphous, less well-organized part (Hendriks and 

Zeeman, 2009). Cellulase favours the amorphous part rather than the crystalline portion for 

hydrolysis, therefore cellulose with a larger crystalline part will be more resistant to 

enzymatic attack (Taherzadeh and Karimi, 2008).   

 

Hemicellulose 

The monomers making up hemicellulose, which differ from cellulose, are 

heterogeneous polymers of pentoses (xylose, arabinose), hexoses (mannose, glucose, 

galactose), and sugar acids (Saha, 2003). In agricultural by-products such as straw and 

grass, hemicellulose mainly consists of xylan, while in softwood it mainly consists of 

glucomannan (Agbor et al., 2011). Hemicellulose is highly branched and amorphous, 

therefore hemicellulose is easier to hydrolyse than cellulose (Lee et al., 2007). It is also a 

physical protector of cellulose, hence removal of hemicellulose by pre-treatment can 

increase the contact area of cellulose to enzymes and subsequently improve the hydrolysis 

rate (Taherzadeh and Karimi, 2008).   

 

Lignin 

Lignin is an amorphous heteropolymer constructed of three phenyl propane units (p-

coumaryl, coniferyl and sinapyl alcohol) interlinked by different types of linkages (Hendriks 

and Zeeman, 2009).  Lignin is known as the ‘cement’ which binds cellulose and 

hemicellulose together; thus delignification processes of lignocellulosic organic substances 

can increase the enzymatic hydrolysis (Taherzadeh and Karimi, 2008) 
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A. Lignocellulosic substance 

 
B. Cellulose microfibril 

 
C. Sugar molecules 

Fig. 2. Representation of a lignocellulosic material (adapted from Ritter, 2008).  

 

2. Optimisation of methane production from livestock manure in the AD process  

 

The methane production in terms of volatile solids (VS) of manure is approximately 290 

L kg-1 VS for pig manure and 210 L kg-1 VS for cattle manure (Burton and Turner, 2003). 

Since the VS concentration of manure is very low, approximately 5-7% for pig manure and 

7-9% for DCM (Angelidaki and Ellegaard, 2003), methane production from these substrates 

per substrate volume is low. This causes the low economic performance of AD-treatment 

of animal manure (Møller et al., 2007). The major problems with the utilisation of manure in 

the AD process are a high water content (Hamelin et al., 2011) and low biodegradability of 

Hemicellulose

Lignin

Cellulose

Glucose 
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animal manure due to a high biofibre content that mainly consists of lignocellulosic 

material (Nielsen et al., 2004). The biodegradability of manure is about 32%, 69% and 52% 

for DCM, pig manure in the fattening growth stage and sow manure, respectively (Møller et 

al., 2004). The presence of biofibres, a slowly degradable part of organic substance in 

livestock manure, impeded the rate of hydrolysis of the AD processing of animal manure 

(González-Fernández et al., 2008). 

There are several factors that contribute to the limitation of enzymatic hydrolysis of the 

recalcitrant biomass such as crystallinity and degree of polymerisation of cellulose, 

available surface area/porosity, presence of lignin, protection of cellulose by 

hemicellulose and fibre strength (Mosier et al., 2005). Therefore, an effective pre-treatment 

method should increase the surface area, which improves the accessibility of the substrate 

to enzymes, minimises the loss of substrate and formation of inhibitors and should lower 

costs (Bruni, 2010). Some pre-treatment methods have been evaluated and developed 

including physical methods, chemical and physicochemical methods, biological methods 

and combinations of some pre-treatment method (Taherzadeh and Karimi, 2008; Hendriks 

and Zeeman, 2009; Agbor et al., 2011). Two pre-treatment methods − biological and 

thermal pre-treatment of animal manure prior to use as a substrate in AD − were evaluated 

in this PhD study. 

 

2.1 Biological pre-treatment 

Polymeric organic compounds in the organic matter substrate for AD such as proteins, 

carbohydrates and lipids cannot be taken up by the cells (Mshandete et al., 2005). 

Therefore, these organic compounds should be broken down to simpler organic structures 

to facilitate transport through the cell membrane. This process is normally facilitated by 

enzymes that are excreted by microorganisms in the digester. In the case of lignocellulosic 

material, the biodegradation process is facilitated by cellulases and hemicellulases 

(Parawira, 2012). During the PhD study, an enzyme mixture (ME) was added to DCM and 

used as substrate in AD using continuously fed digesters. 

The three ME addition experiments comprised: 

1) ME addition to thermophilic digesters (50°C): ME addition to DCM with immediate 

feeding to the digester and ME addition to DCM in an enzymatic pre-treatment step. 

2) ME addition to DCM with immediate feeding to mesophilic (35°C) digesters. 

3) ME addition to solid-fraction DCM followed by incubation at 35°C for 20 h prior to 

mix with liquid-fraction DCM and feeding to thermophilic digesters. Inactivated ME − 
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by autoclaving it at 121°C for 30 minutes (Yunqin et al., 2010) − was added to 

control digesters. 

 

Summary of results and discussion 

 There was no significant effect on methane production from DCM following ME 

addition to DCM with immediate feeding either in thermophilic or mesophilic 

digesters. This was attributed to: microorganisms in the digester degrading the ME 

since the substrate was fed into the digester immediately after mix with ME (Brule et 

al., 2007), and extracellular enzymes produced by microorganisms already present 

in the digester were sufficient to facilitate the hydrolysis of the organic compounds 

in DCM  (Romano et al., 2009). Thus this was not a limiting factor for the hydrolysis 

rate in AD (Paper 1).   

 Addition of ME to DCM followed by incubation at 50°C for three days gave a 

significant (p<0.05) increase in the methane yield (approximately 4.5%) compared 

with the control digester. This digester operated at the same hydraulic retention 

time (HRT) as the control digester. Methane production was also detected during 

the incubation period, and the total sum of methane yield of pre-treatment and 

digestion was found to be 8.33% higher than in the control. However, since the 

system had an overall longer HRT than the control, a further experiment to confirm a 

positive effect of ME addition using the similar process condition is needed (Paper 

1). 

 Addition of ME to solid fractions of DCM followed by incubation at 35°C for 20 h also 

gave positive effect (p≤0.05) on methane yield of a mixed substrate (30% liquid-

fraction DCM  and 70% enzyme-treated solid-fraction DCM) compared to the 

control digester. However, the high cost of enzyme application compared to the 

extra methane yield of DCM gained due to ME application (approximately 4.2% in 

this experiment) may still be the limiting factor for enzyme application in full-scale 

biogas plant, even though some research and genetic engineering to produce low-

cost enzymes are addressing this issue (Parawira, 2012).   

 Paper 1 did not evaluate the individual organic matter as a target of ME addition, 

but the 20% increase in total VFA concentration of enzyme-treated solid-fraction 

DCM can be an indicator of the role of ME in the hydrolysis process of cellulase 

activity in the cellulose component of solid-fraction DCM. 
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 The results of Paper 1 indicate that in order to increase methane yield of DCM 

through the AD process, ME should be added in the enzymatic pre-treatment step 

prior to its use as a substrate in AD. 

 

2.2 Thermal pre-treatment 

Of the pre-treatment processes, thermal pre-treatment appears to have a positive 

effect on the energy balance (Hendriks and Zeeman, 2009). In this pre-treatment, 

substrate is heated and the composition of the hemicellulose backbone and the branching 

groups determines the effectiveness of the treatment (Hendriks and Zeeman, 2009). During 

the PhD study, the thermal pre-treatment was conducted either at low temperature or high 

temperature. Low-temperature thermal pre-treatment was performed using a water bath 

in which the sample was placed in a 0.5-L sealed glass bottle, followed by cooling down 

the sample in a room-temperature water bath (Paper 2). High-temperature pre-treatments 

were conducted in a bench-scale high temperature and pressure reactor (Parr instrument 

company, USA, model Parr 4524). The main parts of this thermal pre-treatment instrument 

consist of a 2 L sealed stainless steel reactor, mechanical stirrer and an external electric 

coil heater. During the thermal pre-treatment process the reactor was completely sealed. 

After thermal pre-treatment, the reactor was cooled to about 35°C using a water bath 

(Raju et al., 2012).  

 

Low-temperature pre-treatment 

Paper 2 investigated the effect of low-temperature thermal pre-treatment on the 

methane yield of raw pig manure and solid-fraction pig manure in batch digestion. 

Application of the low-temperature thermal pre-treatment method in AD is an interesting 

pre-treatment method since the energy requirement during pre-treatment can be fulfilled 

by using surplus heat from the CHP plant that is often associated with AD. Therefore this 

energy source is cheap and an often wasted heat fraction from CHP put to good use 

(Menardo et al., 2011).      

A batch assay experiment to determine the effect of low-temperature thermal pre-

treatment on methane yield of pig manure fractions was conducted with the method 

developed by Møller et al. (2004). Four different thermal treatments (65°C to 80°C with 5°C 

intervals) were applied for 20 h to both raw and solid-fraction pig manure.  
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Summary of results and discussion 

 Low-temperature thermal pre-treatment gave a slight increase in pH of pre-treated 

samples compared to untreated samples (Paper 2). Total VFA in pre-treated 

samples also increased significantly compared to control, dominated by acetic acid 

and butyric acid. Acetic acid and butyric acid in pre-treated pig manure (65°C) 

increased by 65% and 63%, respectively, compared to the control, while for the 

solid-fraction pig manure (80°C) the increase was 63% and 126% compared to the 

control. An increased pH value in the pre-treated sample may be caused by the 

solubilisation of macromolecules (Carrère et al., 2009) or formation of primary 

substances such as ammonia nitrogen (Bonmati et al., 2001), while an increase in 

total VFA in the pre-treated samples may be caused by autohydrolysis or 

fermentative microorganism activity since low-temperature thermal pre-treatment 

was conducted for 20 h (Paper 2).  

 There was a significant improvement in the methane production from pig manure 

within the range 9.5% to 26.4% at 11 d incubation, but at the end of experiment (90 

d) a significant improvement in methane production of pig manure was only seen 

at the 65°C pre-treatment. This result suggests that low-temperature thermal pre-

treatment can increase the reaction rate but has relatively little effect on overall 

yield at infinite HRT, as represented by B0 (Paper 2). 

 A large improvement in methane production in the early stages of the batch 

digestion test would suggest an increased rate of reaction, which is of interest to a 

commercial continuous stirred-tank reactor (CSTR) biogas plant (Paper 2). 

Moreover, in Denmark a CSTR processing pig slurry without co-digestion with energy 

crops typically has an HRT of 12 d (Ward et al., 2010).        

 Application of low-temperature thermal pre-treatment gave significant 

improvement in methane production from solid-fraction pig manure which was 

linear with increasing pre-treatment temperatures tested in this study. 

 

High-temperature pre-treatment 

Paper 3 evaluated the application of high-temperature thermal pre-treatment ranging 

from 100°C to 225°C  at 25°C  intervals for 15 min. on biochemical methane potential 

(BMP) of cattle manure, dewatered pig manure and chicken manure.  
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Summary of results and discussion 

 High-temperature thermal pre-treatment of DCM at 175°C and 200°C for 15 min. 

gave a significant increase in methane production throughout the 90 d incubation 

period. At 27 d, the improvements of methane production were 13% and 21% at 

175°C and 200°C, respectively.  

 For pig manure, the methane production was increased at all temperatures over the 

125°C to 200°C range with the largest improvement of 29% at 200°C at 27 d 

compared to untreated samples.  

 The significant methane production of pre-treated samples compared to untreated 

samples in cattle manure and in dewatered pig manure indicates a change in the 

structure of the lignocellulosic material in the substrate, giving easier access to 

microbial enzymes (Bruni et al., 2010). 

 There was no positive effect of high-temperature thermal pre-treatment on 

methane production from chicken manure. Even at 225°C thermal pre-treatment 

the methane production decreased by 18% compared to the control. This lack of a 

positive effect may be because of the high biodegradability of chicken manure, 

since there was no bedding material in the sample, thus providing limited potential 

for improving the methane production in the pre-treated sample (Paper 3). 

The result of energy calculation showed that thermal pre-treatment in both low- and 

high-temperature thermal pre-treatment is a worthwhile method of increasing methane 

production of livestock manure only when there is thermal energy available that can be 

utilised in the thermal pre-treatment process (Paper 2, Paper 3). 

 

2.3 Co-digestion 

Another method to improve methane production of livestock manure on a fresh weight 

substrate basis is by increasing the VS concentration of manure by substitution some of the 

manure with other substrates that have a higher VS concentration and methane potential. 

This strategy is known as co-digestion. The definition of anaerobic co-digestion is 

treatment that combines different types of waste as substrate in AD with the main aim of 

improving methane production (Cuetos et al., 2011). This strategy can increase methane 

production on a fresh substrate weight basis by balancing the nutrient content of the 

substrate and reducing the negative effects of inhibitor compounds of substrate in the AD 

process (Cuetos et al., 2011).  
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The economic balance of AD showed that to be economically effective the substrate in 

AD should produce a methane yield of more than 20 m3 CH4 t-1 biomass (Angelidaki and 

Ellegaard, 2003). For manure the methane yield ranges from 10 to 20 m3 CH4 t-1, while 

from industrial organic by-products it varies from 30 to 500 m3 CH4 t-1. Besides increasing 

methane production of the substrate, the addition of by-products can also stabilise the AD 

process if added in a controlled manner (Angelidaki and Ellegard, 2003). Therefore, co-

digestion of manure and organic industrial by-products seems an attractive method of 

making biogas plants economically viable. However, in Denmark  the availability of high 

strength organic by-products is limited compared to the amount of manure (Hamelin et al., 

2011) and the high prices of this biomass have made it difficult for AD co-digestion of 

these substrates to be economically attractive (Ward et al., 2010). Therefore, Hamelin et al. 

(2011) proposed strategies to alleviate this constraint: 1) an external carbon source in the 

form of energy crops as a co-substrate , 2) to design animal housing systems that separate 

urine and faeces and produce manure with a higher VS content, 3) to apply solid-liquid 

separation and use solid manure fractions as co-substrate and 4) to use a bigger digester 

with longer substrate retention time to compensate for low methane yield of animal 

manure. In addition, in order to increase volumetric methane yield of manure Møller et al. 

(2004) suggested the utilisation of straw as bedding material since straw has higher 

methane yield per unit fresh weight and a higher VS content than manure and solid-

fraction animal manure.  

 

Co-digestion experiment during PhD study 

Manure separation into solid and liquid fractions was originally developed in order to 

alleviate the problem specific to livestock production of a surplus of nutrients from manure 

in relation to crop requirement. The surplus nutrients in animal manure can be transported 

in the form of a solid nutrient-rich fraction to farms that need to import nutrients (Møller et 

al., 2000). However, since this organic matter has a high methane potential per unit fresh 

weight (Hjorth et al., 2010), it can alternatively be used as co-substrate with raw livestock 

manure in the AD process. Furthermore, using solid-fraction animal manure instead of 

energy crops for co-digestion in AD can avoid competition for arable land between 

energy crops and food production (Searchinger et al., 2008).   

Paper 4 investigated the co-digestion of raw non-acidified DCM and solid-fraction 

acidified DCM. Three different levels of substitution − 10%, 20% and 30% (ww-1) − of raw 

DCM with solid-fraction acidified DCM were tested using four identical intermittent stirred 
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tank reactors. The reference digester treated DCM. The experiment was conducted at a 

thermophilic (50°C) temperature. Treatment was started after the 21-d start-up period and 

continued for 56 d, corresponding to four times HRT. This experiment was followed by an 

evaluation of residual methane potential of the digested material by batch assay. The 

solid-fraction acidified DCM was obtained from a Danish farm using acidification 

technology developed by InFarm A/S, Aalborg, Denmark. Solid liquid manure separation 

was performed using the screw-press solid-liquid separation method with 0.5 mm screen 

size.  

 

Summary of results and discussion 

 Methane production per gram of substrate VS declined significantly as the 

concentration of solid-fraction acidified DCM rose (Fig. 3A). This phenomenon is 

expected since solid-fraction acidified DCM is the recalcitrant part of animal 

manure that has a lower biodegradability (Paper 4). This result is in line with the 

reduction in VS concentration as the concentration of solid-fraction acidified DCM 

increased. 

 However, methane production in terms of digester volume for the substitution of 

DCM with 30% solid-fraction acidified DCM was about 50% higher than that for the 

reference digester (Fig. 3B). In addition, the residual methane potential of digested 

slurry from this digester was almost three times higher than that in digested slurry 

from the control. Thus, post-digestion of digested slurry with a high concentration of 

solid-fraction acidified DCM is needed in order to prevent methane emission from 

digested material and to achieve the full methane potential of the substrate (Paper 

4). 

 Total ammoniacal nitrogen (TAN) and sulphide concentrations were under the 

inhibition threshold as reported by Hashimoto (1986) and Parkin et al., (1990). 

 All digesters ran satisfactorily as indicated by a stable methane production and low 

VFA concentration after approximately two times the HRT transition period; 

therefore solid-fraction acidified DCM is suitable as a co-substrate, at least up to 

30% substitution (Paper 4). 

 The mean H2S content in biogas from the digester processing 30% solid-fraction 

acidified DCM was almost ten times higher (4100 ppm) than in the control. 

Therefore in the practical application of co-digestion of this substrate more attention 

should be paid to the maintenance of scrubber devices for removing H2S from 
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biogas (Paper 4). As reported by Rasi et al. (2011), the H2S concentration in the 

biogas for traditional boilers and internal combustion should low and not exceed 

1000 ppm.  

 

 

 

 

Fig. 3. Mean methane production of digester processing different concentrations of solid-

fraction acidified DCM: A. L CH4 Kg-1 VS, B. L CH4 L-1 digester. 

 

2.3.1 Methane production from animal manure fractions derived from acidified manure 

In Denmark sulphuric acid is commonly used to acidify animal manure in order to 

reduce ammonia emissions. The number of farm using this method is expected to increase 

in the future; therefore information about methane production from acidified manure 

fractions is needed.   

 

Evaluation of methane yield of manure fractions derived from acidified manure 

Paper 5 determined the methane production of acidified livestock manure fractions 

produced with different solid-liquid manure separation techniques. The screw press (Fig. 4) 
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is the most efficient method for producing solid fractions of manure with a high TS content 

(Hjorth et al., 2010), also in digested slurry (Menardo et al., 2011). Solid-fraction animal 

manure with a high TS content not only has a high methane potential per unit fresh weight 

but can also save on the volume and therefore the transport cost of this substrate. 

However, the pressure adjustment in terms of screen size and pressure in the press 

chamber (plate tension) may influence the VS transfer of raw manure to the solid fraction, 

which can influence the ultimate methane yield (Bo) (Paper 5). Therefore this paper 

evaluated the influence of screen size and pressure in the press chamber of screw press 

manure separation. In addition, this paper also evaluated the methane production of 

acidified pig manure fractions subjected to drum/rotating screen separation and the 

methane production of acidified manure fractions and non-acidified DCM fractions 

subjected to belt press separation, as affected by the acidification process.   

The experiment was conducted as a batch digestion experiment with method 

described by Møller et al. (2004). Batch assay was maintained at mesophilic conditions 

(35°C) for 90 d. Substrates in this study were: 1) acidified sow manure fractions subjected 

to screw press separation with four different screen sizes and two different plate tensions, 

2) acidified pig manure fractions subjected to drum/rotating screen manure separation 

and 3) acidified and non-acidified DCM fractions subjected to the belt press slurry 

separation method.   

 

  

Fig. 4. Solid-liquid DCM separation process using screw press equipment.  

 

Summary of results and discussion 

 The ultimate methane yield of solid-fraction acidified sow manure was significantly 

(p<0.05) increased with a bigger screen size in screw press manure separation, but 
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plate tensions to the cylinder mesh opening showed an opposite effect. A smaller 

screen size and a lower plate tension to the cylinder mesh opening may apply more 

pressure to the raw manure, and therefore smaller and easier degradable material 

passes into the liquid fraction (Paper 5). Moreover, the higher pressure to the raw 

acidified manure resulted in solid fractions with a higher VS content, but of a 

seemingly low biodegradability (Paper 5) (Table 1). 

 

Table 1. Methane production manure fractions with different manure separation methods. 

Manure Fractions Treatment Separation 
method 

Screen 
size  

Plate 
tension  

B0 

    (mm) (mm) (L kg VS-1) 

Sow Raw Acidified - - - 177.8 ± 17.7 

Sow Liquid Acidified Screw press 0.75 48* 105.6 ± 21.3 

Sow Solid Acidified Screw press 0.25 48 265.5 ±   0.9 

Sow Solid Acidified Screw press 0.35 48 280.9 ±   4.4 

Sow Solid Acidified Screw press 0.50 48 281.3 ±   0.6 

Sow Solid Acidified Screw press 0.75 48 288.2 ±   2.7 

Sow Solid Acidified Screw press 0.35 25** 269.1 ±   8.6 

Sow Solid Acidified Screw press 0.50 25 273.1 ±   3.5 

Pig Raw Acidified - - - 397.8 ± 10.3 

Pig Liquid Acidified Drum screen 1 - 392.2 ±   2.4 

Pig Solid Acidified Drum screen 1 - 319.3 ± 12.3 

Dairy cow Raw  Acidified - - - 256.6 ± 19.7 

Dairy cow Liquid Acidified Belt press 0.30 - 223.3 ± 15.3 

Dairy cow Solid Acidified Belt press 0.30 - 278.4 ± 13.1 

Dairy cow Raw Non acidified - - - 372.7 ± 15.9 

Dairy cow Liquid Non acidified Belt press 0.30 - 384.6 ± 26.7 

Dairy cow Solid Non acidified Belt press 0.30 - 289.2 ±   1.2 

*   : low pressure 

** : high pressure 

 The ultimate methane yield (Bo) from the solid-fraction acidified pig manure from 

drum screen separation was higher than from solid-fraction acidified sow manure 

using screw press separation (Table 1). This may be due to the dissimilar 

compositions of these substrates, plus the solid-fraction acidified pig manure that 
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was drum-screen separated had a higher concentration of smaller and more easily 

degradable compounds compared to the solid fractions acidified sow manure 

(Paper 5). 

 There was no negative effect of the acidification process on the Bo of solid-fraction 

DCM. The Bo of solid-fraction acidified DCM using the belt press was 3.3 times 

higher than that in raw non-acidified DCM in terms of fresh weight substrate; 

therefore solid-fraction acidified DCM  is suitable as a co-substrate to increase 

methane production in terms of digester volume (Paper 4, Paper 5). 

 

3. Inhibition of microorganism activity in the AD process 

 

Methane production of livestock manure in terms of fresh weight substrate is low due to 

the high water content and low biodegradability of manure. Co-digestion of manure with 

organic matter that has a high methane potential is an alternative way of improving 

methane yield in the AD of manure. However, this organic material should be added in a 

controlled manner (Angelidaki and Ellegard, 2003), otherwise methane production in AD 

will be suboptimal due to inhibition of microorganism activity. Nielsen and Angelidaki 

(2008) reported that in Danish centralised biogas plants treating animal manure and 

industrial organic by-products, a high concentration of ammonia and long-chain fatty 

acids is in most cases expected to cause microbial inhibition. Such inhibition is usually 

indicated by a decrease in the steady-state rate of methane production and an 

accumulation of organic acids in the AD process (Kroeker et al., 1979). Some inhibitors and 

their inhibition thresholds are presented in Table 2. 

  Table 2. Inhibitors and inhibition thresholds in the AD process. 

No. Inhibitors Inhibition threshold 

1 Ammonia - TAN : 2.5 g L-1 both mesophilic and thermophilic of AD 
processing cattle manure that not previously acclimated to 
high ammonia concentration; 4 g L-1 to previously acclimated 
with high ammonia concentration (Hashimoto, 1986). 

- Increasing FA : 0.55 to 0.65 g L-1 in thermophilic of AD cause 
decreasing methane yield by 25% of digester processing 
cattle manure (Angelidaki and Ahring, 1993). 

2 LCFAs Oleic acid and lauric acid, IC50 = 4.3 mM (Chen et al., 2008). 

3 Sulphide - 100 – 800 mg L-1 as dissolved sulphide or approximately 50 – 
430 mg L-1 as undissociated H2S (Parkin et al., 1990). 

- C/SO4
2- = 1.6 corresponding to 1400 mg SO4

2- L-1 (Siles et al., 
2010). 
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Inhibition of microorganism activity in the AD process can be attributed to:  

1) inadequate knowledge of the organic substrate composition 

2) insufficient knowledge of the substrate degradation characteristics 

3) inadequate supervision process, particularly with regard to VFA concentration 

4) insufficient substrate storage causing improper mixing and less precision in dosing 

the different substrates (Nielsen and Angelidaki, 2008).  

 

During the PhD study, the study on the inhibition of the AD process focused on 

ammonia inhibition and sulphide inhibition to evaluate the AD-processing of acidified 

manure, a relatively new method to reduce ammonia emission of livestock manure that 

uses sulphuric acid in the acidification process.       

 

3.1  Ammonia inhibition 

Ammonia is a biological degradation product of the nitrogenous content of the organic 

matter, mostly in the form of proteins and urea (Kayhanian, 1994). Ammonia is essential for 

microorganism growth, but if present in high concentrations in the substrate, it can cause 

inhibition in the AD process (Nielsen and Ahring, 2007).  The TAN inhibition threshold can 

be seen in Table 2. The TAN value is a combination of free ammonia nitrogen (NH3) and 

ionized ammonium nitrogen (NH4
+) (Kayhanian, 1994. Free ammonia is known as the 

active component that causes ammonia inhibition since it is freely membrane-permeable 

(Siles et al., 2010). Angelidaki and Ahring (1994) found a poor performance of the AD 

processing of cattle manure under thermophilic conditions when free ammonia exceeded 

approximately 0.7 g L-1. Whittmann et al. (1995) proposed change in intracellular pH, 

increase of maintenance energy requirement and inhibition of specific enzyme reaction as 

mechanisms of ammonia inhibition.  

The ammonia inhibition experiment using urea as a source of ammonia was 

conducted with five different TAN concentrations. The different TAN and free ammonia 

(FA) concentrations in the digester were obtained by adding urea to the DCM to obtain 

target level of TAN and FA, and to subsequently maintain this concentration through 

experiment by daily urea additions.  The experiment was performed using five identical 

continuously fed digesters maintained at 50°C for four times HRT followed by a recovery 

period in which no urea was added to the DCM for 26 d (Paper 6).  
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Summary of results and discussion 

 The result showed a strong negative correlation between methane yield of DCM 

and TAN and FA concentrations (Y = -21.798X + 145.06, R2 = 0.98 and Y = -46.68X + 

117.62 R2 = 0.96), respectively (Paper 6).  

 Methane yield during statistical period (the last three weeks experiment or after 

more than 2.5 digester volume turnover), showed that the methane yield in the 

digester with TAN 2.93 g L-1 corresponding to FA 0.71 g L-1 was 23.6% lower than 

the methane yield in the control digester with a TAN of 2.15 g L-1, corresponding to 

FA 0.48 g L-1 (Paper 6).  

 Total VFA concentration the day after urea addition was fairly constant in all 

digesters, but then increased sharply and stabilised at an elevated level (Paper 6). 

Accumulation of acetic acid in the digester processing DCM with urea addition 

suggests that there was inhibition of methanogen activity while the accumulation of 

VFA indicated there was product inhibition of acetogenic microorganisms (Paper 6). 

Pind et al. (2003) reported that this phenomenon can occur when acetate is at 

elevated concentrations, a condition akin to the result of this experiment.      

 Isobutyric acid and isovaleric acid accumulated during the experiment. Therefore 

they are useful indicators in ammonia inhibition. Nakakubo et al. (2008) suggested 

that isobutyric acid, butyric acid and isovaleric acid could be used as process 

indicators during ammonia inhibition. After a period of ammonia inhibition, butyric 

and valeric acid were shown to gradually decrease, suggesting that there was 

conversion of these organic acids to other acids. The former was converted to 

isobutyric acid and the latter to propionic acid. A conversion pathway of individual 

VFAs is presented in Fig. 5 (Tholozan et al., 1988; Wang et al., 1999; Pind et al., 2003 

and Nielsen and Ahring, 2007).     

 During the recovery period (no urea addition), methane yield in the digester that got 

the lowest ammonia inhibition was similar to that in the control digester starting from 

the 23th day after urea cessation (Paper 6).   
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Fig. 5. Conversion and degradation pathway of individual VFAs (Tholozan et al., 1988; 

Wang et al., 1999; Pind et al., 2003 and Nielsen and Ahring, 2007).  

 

 There are three important parameters that determine FA concentration – these are 

TAN concentration, pH value and temperature (Hansen et al., 1998). Therefore in 

the anaerobic digestion of substrates with a high TAN concentration a longer HRT or 

a lower temperature should be chosen to achieve the optimal methane yield 

(Paper 6). In order to prevent ammonia inhibition, Kayhainan (1994) suggested that 

the C/N ratio of the substrate should be kept between 22-35 and the pH of the 

operating digester be controlled. Chen et al. (2008) proposed a method to 

counteract ammonia inhibition which involved increasing the biomass retention 

time in the CSTR system by switching off the stirrer half an hour before and after 

substrate addition, immobilizing microorganisms by inert material (clay, activated 

carbon, zeolite) (Angelidaki et al., 1990), while Kabdasli et al. (2000) successfully 

demonstrated the removal of ammonia from the substrate using a chemical 

precipitation method with magnesium ammonium phosphate and ammonia-

stripping by aeration using a diffuser, and volatilisation using stirring.   

 

3.2  Sulphide inhibition 

The method currently practised for acidifying animal manure using sulphuric acid to 

reduce ammonia emission has been developed in Denmark. This method can successfully 

decrease ammonia emission from pig houses by 70% (Kai et al., 2008). However, a high 
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sulphur concentration in acidified manure may cause inhibition of microorganisms in the 

AD process. The presence of sulphate in acidified manure can stimulate the growth of 

sulphate-reducing bacteria (SRB) which leads to competition of SRB with methanogens for 

substrate (Siles et al., 2010). In the AD process, sulphate is reduced to sulphide by SRB 

(Gerardi, 2003). H2S as the main part of dissolved sulphide in the liquid phase can easily 

penetrate the cell membrane and denature native protein within the cytoplasm, producing 

sulphide and disulphide cross-links between polypeptide chains (Siles et al., 2010). The 

sulphide inhibition threshold can be seen in Table 2.  

During the PhD study two experiments that had an impact on sulphide inhibition were 

performed. Paper 4 and paper 5 evaluated methane production of acidified manure in 

batch digestion.  

 

Summary of results and discussion 

 Batch digestion treating both raw and liquid-fraction acidified manure showed 

sulphide inhibition, but it seems there was no sulphide inhibition of AD when 

processing solid-fraction acidified manure.  Methane production of solid-fraction 

acidified manure is much higher than that in raw non-acidified manure, therefore 

solid-fraction acidified manure is a suitable biomass for co-digestion to increase 

methane yield in terms of digester volume (Paper 4 and Paper 5).  

 Sulphur inputs from the substrate to the digester in the raw, liquid and solid-fraction 

acidified sow manure were 240 mg, 480 mg and 50 mg, respectively (Paper 5). 

Therefore, if the sulphur concentration in the inoculum can be ignored, the sulphur 

concentrations in the digester treating raw, liquid and solid-fraction acidified sow 

manure were 1059, 1596, 306 mg L-1, respectively. Siles et al. (2010) evaluated 

sulphate inhibition using a stirred tank reactor processing a glucose solution 

supplemented with Na2SO4 and found that the ratio C/SO4
2- inhibition threshold 

was 1.6 corresponding to 1400 mg SO4
2- L-1 (Table 2). Moset et al. (2012) found that 

there was 18% methane reduction in AD-processing of a mixed substrate of 20% 

acidified pig manure and 80% non-acidified pig manure (ww-1).  Moreover, the 

sulphate concentration in this substrate was 730 mg L-1. 

 The ultimate methane yield of acidified DCM was significantly lower (p<0.05) than 

that from non-acidified DCM. From calculation data from paper 5 and summarised 

in Table 1, the ultimate methane yield of acidified DCM was 45% lower than that of 
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non-acidified DCM. Therefore this result supports the hypothesis that acidified 

livestock manure can cause sulphide inhibition in the AD process (Paper 5). 

 Chen et al. (2008) proposed methods to prevent and reduce sulphide inhibition 

including dilution of substrate and reducing the sulphide concentration in the 

substrate by sulphide removal (stripping, coagulation, oxidation, precipitation and 

partial oxidation).   

 

4. Concluding remarks 

 

Livestock manure management through the AD process is a favourable method for 

recovering energy and preventing methane emission from animal manure in the manure 

storage tank. Methane production of manure can be improved by pre-treatment prior to 

AD. However, the pre-treatment method tested during the PhD study was not the ideal 

method of increasing methane yield of animal manure. For instance, the high cost of 

mixed enzyme addition is still a limitation factor in full-scale biogas plants and thermal pre-

treatment is a worthwhile method of increasing methane yield of manure only when 

surplus energy for the pre-treatment process is available. Another method to increase 

methane production of animal manure is by co-digestion of manure with another substrate 

of a higher methane potential and VS concentration than manure. For example, the co-

digestion of DCM with solid-fraction acidified DCM appears a promising method. During 

the PhD study, it was also demonstrated that there was no negative effect of the 

acidification process on the methane yield of solid-fraction DCM, but there was sulphide 

inhibition of the anaerobic digestion of acidified manure. In order to prevent 

microorganism inhibition during the co-digestion process, substrate with high biogas 

potential should be carefully added to avoid suboptimal digestion conditions caused by 

the inhibition of microorganism activity. In the case of ammonia inhibition, total VFA 

concentration, isobutyric acid, isovaleric acid, TAN value and biogas production can be 

used as process indicators. 
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