
27

Hermes – Journal of Language and Communication Studies no 40-2008

Wolfgang Koch*

Iconicity in instructional texts

Abstract
Diagrammatic iconicity is usually investigated at the surface syntactic level of texts. In
this paper, I try to show that a meaningful concept of iconicity cannot be found on this
level in non-trivial instructional texts. Instead, we have to dive deeper into semantic and
conceptual structure. I present a model of Conceptual Structure that can cope with the
demands that understanding an instructional text puts on the reader, and after analyzing
a concrete text (a cooking recipe), I show that the concept of control structure is of
essential importance for the description of the mapping between a conceptual model
and a text. Control structures can be expressed explicitly through linguistic means or be
inherent to the semantics of lexical predicates. In both cases, the presence of a dynamic
conceptual model is necessary in order to establish iconicity relations between the text
and the underlying mental representation.

1. Introduction
In a general semiotic sense, iconicity refers to an analogy or similari-
ty between a sign and the concept in our cognitive model of the world
which this sign represents. With respect to linguistic signs, iconicity
can be found on all representational levels of language, from sound
(onomatopoeia) to discourse or text structure. This last type, i.e. the
mapping of relations between objects and actions onto sequences (or
more complicated structures) of signs, is called diagrammatic iconicity.
(Peirce 1931-58, May 1999)

In this paper, I will concentrate on diagrammatic iconicity as it can
be found in the structure of instructional texts. First, I point to the fact
that (good) instructional texts should show a high degree of iconicity.
Second, I focus on the exact nature of mapping taking place between
real world actions and textual instructions. Language is a very fl exi-

* Wolfgang Koch
 Aarhus School of Business, University of Aarhus
 Department of Language and Business Communication
 Fuglesangs Allé 4
 DK-8210 Aarhus V
 wk@asb.dk

28

ble system, so we cannot expect to fi nd all (clusters of) actions map-
ped into full sentences, but actions are encoded in different lexical or
syntactic units. Finally, I discuss by which mechanisms our linguistic
and non-linguistic knowledge systems can cooperate in order to pro-
cess this linguistically broken information (in the sense of a lens brea-
king light) and to reconstruct the natural fl ow of actions from the text
and its structure.

2. What is ”iconicity”?
In its simplest form, a defi nition of iconicity could look like the one to
be found in Wikipedia1:
 Iconicity is the conceived similarity between a form of language and

its meaning.

It has to be noticed here that in this defi nition there are a number of
terms that have an intuitive appeal: ‘conceive’, ‘similarity’, ‘form’,
‘mean ing’, but that have to be defi ned more precisely. A somewhat
more elaborated defi nition of diagrammatic iconicity, formulated by
Karin Wenz, University of Kassel, can be found on http://www.uni-kas-
sel.de/fb8/privat/wenz/space/diagram.html:
 Diagrams, according to Peirce, are icons which represent the relati-

on of the parts of one thing by analogous relations in the sign vehicle.
There are structural correspondences between the sign vehicle and its
referential object. Since only relations and structures are considered,
diagrammatic icons evince a certain degree of arbitrariness. Becau-
se of the digital and linear character of language, diagrammatic icons
are more frequent in texts than imaginal icons. Diagrammatic iconici-
ty appears in texts when linear relations within the text stand for tem-
poral, spatial, causal, or social relations in the described world. These
extra linguistic relations, which structure our experience as complex
principles of order, are mirrored in the text as icons.

Iconicity has been found and analyzed on practically any level of langu-
age. It starts with phonetics (onomatopoetica), goes on with morpholo-
gy and syntax and ends up in logical, temporal and argumentative text
and discourse structures and strategies. Even the physical length of an
utterance can be given an iconic interpretation, like in the following
pair (Anderson 2001):

1 en.wikipedia.org/wiki/Iconicity

29

(1a) We didn’t have sex!

(1b) I did not have sexual relations with that woman <pause, gaze averted>
Ms. Lewinsky.

It is probably no coincidence that (1b), and not (1a), was actually
uttered!

3. Ordo rerum = ordo sermonis?
This paper is dedicated to one specifi c form of iconicity that often is cal-
led diagrammatic iconicity. Many scholars assume that there is an ‘ordo
naturalis’ in texts that describe real world phenomena or processes.
 In natural order, […] text and discourse (sermo) have the same arran-

gement as things in the universe of discourse (ordo rerum) (Enkvist,
1981:98)

It will come as no surprise to the reader that good instructional texts
should show a high degree of iconicity. Obviously, it would be rather
diffi cult to cook a meal, to fi t an IKEA kitchen or to install and use new
software if instructions for these activities were given randomly. Never-
theless, as we will see later on, this is not as trivial as it may sound.

One of the most cited examples in this connection is Gaius Julius
Caesar’s famous utterance:
(2) Veni, vidi, vici.

Here the actual order of events in the world, that he arrived, looked
around, and was victorious, is mirrored in the text. That is, the real
events are verbalized in exactly the same order in the text. As we will
see later, these simple sequences are just one among various possibili-
ties of “natural” ordering.

There have been attempts to give natural order a cognitive expla-
nation. For instance, as does Talmy (1990), one could suggest that it
seems quite reasonable to think that language evolved after vision, and
that therefore it may have partly incorporated its organization. Lakoff
and Johnson (1980) have shown that our conceptual system is ultimate-
ly grounded in basic spatial and ontological experience through meta-
phors. (See Larsen Pehrzon 1993 for an elaboration of these aspects.)

In other words, we would expect to have certain patterns of lexica-
lization on the plane of the signifi ed that correspond (in a systematic

30

way) to patterns of lexicalization on the plane of the signifi er (fi gure
1).

This looks rather simple, and in fact, as we will se later on, it looks
too simple.

The reader will also notice that these ideas of iconicity as a kind of
direct mapping from signifi ed to signifi er on fi rst sight seem to be stan-
ding in opposition to one of the most prevalent paradigms of modern
linguistics: the idea of autonomous modules in cognition and language.
I hope to be able to show that there is no such confl ict.

Figure 1

Patterns of
conceptualization

Patterns of
lexicalization

L ink s to be established

The plane of the signified The plane of the signifier

But let us return to the concept of naturality. As Slobin (2005) asks:
 What sort of resemblance is ”natural”? (What would an ”unnatural

resemblance” be?) What part of the linguistic message is to be consi-
dered the relevant ”form of the sign” for a particular resemblance or
analogy? And, […], what are the referents for the terms ”object” and
”concept” – two very different notions; and what cognitive activities
or states are to be construed as ”our perception of the world”? In fact,
we are dealing with mental constructs on both ends of the equation:
construals of linguistic forms and construals of nonlinguistic expe-
riences.

I hope to be able to shed at least some light on these questions.
In an attempt to use Wollheim’s (1980) model of diagrammatic ico-

nicity in the domain of art, May (1999) distinguishes between three le-
vels and two relations, ‘seeing as’ and ‘seeing in’.
 From the logical point of view the seeing as can be considered as an

abstract relation of representation (see X as Y) and from the cognitive
point of view as an instance of categorial perception, where some per-
ceived phenomena (X) is identifi ed by assigning a type (Y) to it, i.e.
subsuming it under a concept (Wollheim 1980). Where the seeing as

31

phenomenologically is an experience of an identifi ed particular, the
seeing in is an experience of a state of affairs seen in the particular.
The seeing in involves a “twofold attention” […] where the viewer
identifi es a set of fi gurative objects and simultaneously sees a whole
state of affairs in their depiction. (May 1999:1)

In fi gure 2, we see that the spatial aspects are basic (as geometric ope-
rations). When the objects in the domain are mapped onto a mental mo-
del (as thought objects), we can perform logical operations on them.
Finally, the thought objects are integrated into conceptual structures on
which cognitive operations can run.

While these distinctions are helpful, since they move the focus away
from the text surface to underlying levels and structures, the concept of
Conceptual Structure has still to be clarifi ed, which I will try to do in
the next chapter.

Figure 2 (adopted from May 1999:13)

4. The need for conceptual structures
One of my main arguments will be that a satisfying description of ico-
nicity – as well as many other language related phenomena – is not
possible without an idea of how mental models – the ‘construal of non-
linguistic experiences”, as Slobin puts it – look like, since the task of

32

grammar is to map linguistic structures on conceptual structures – and
vice versa.

Figure 3

W O R L D

Sensation

Perception

Mental Modeling
and Reasoning

Grammar

Linguistic Signs

Concepts

Percepts

Raw Sensory Data

C onstant over time

C ontext

For this reason, I start out with a brief presentation of Conceptual Struc-
ture (CS).

The model of CS used in this paper originates from Koch (1978) and
was developed further in Andric et alies (1989) and Koch/Rosengren
(1995). It has been partly infl uenced by the concept of CS and Semantic
Form proposed by Bierwisch (1983) and others. There is also a certain
affi nity to the work of Pustejovsky (1995), which I, however, cannot
explore further in this paper. Models that distinguish between (lingui-
stic) semantic structures and (non-linguistic) conceptual structures are
often called “two-level-semantics”, which, at least as far as the model
presented here is concerned, is a misnomer. There is only one level of
semantics.

The other important circumstance to keep in mind is that this CS-the-
ory is a “high level” theory in the sense this term is used in computer

33

science. What I am trying to model is the fl ow of information between
different modules as a concrete task, like decoding a text, is being sol-
ved. My emphasis does thus not lie on the “implementation” of the sy-
stem, that is the actual physical means involved in the process, be it the
human brain or some computational model. The underlying hypothesis
is that it is the same kind of symbolic information (“What?”) that has to
be processed by the brain and a computer program, even if the physical
and logical representation (“How?”) of this information is very diffe-
rent. Figure 4 is meant to illustrate this fact.

Figure 4

WHAT? HOW?

HUMAN

COMPUTER

ALIEN

Implementation

This of course, does not imply that psycholinguistic facts are irrelevant
to the architecture of the system, but the implications – and also the pro-
blems – of the chosen approach cannot be discussed in this paper.

The CS proposed is in a certain sense minimalistic in that it presup-
poses only four kinds of ontological classes.

• Entities
• Attributes of entities (also called parameters), defi ned by sensory in-

put
• Local relations between entities
• Time

34

Developed originally with verb semantics and argument structure in
mind, this model has worked well in implementing a conceptual parser
(see fi gure 6 and the explanation in the text below). Entities can roughly
be compared to physical objects, nota bene not “real world objects” but
the representation of these objects in a mental model2. Entities are de-
fi ned by their attributes that, at least in the case of concrete entities, are
given by the sensory input of the host. Even the relations between two
or three entities (encoded in language as adjectives or verbs) are treated
as attributes of these objects.

When it comes to encoding CS into linguistic structures, there are
three (interdependent) aspects to consider:

Figure 5

CS corresponds roughly to SF*

Confi gurational aspect Argument structure
Sortal parametric aspect Inherent features of entities or

processes
Algorithmic aspects Event types, aktionsart/aspect, control

structures

* SF = Semantic Form, Bierwisch’s designation of the semantic level

In this paper, I will only discuss the confi gurational and the sortal aspect
when they are relevant for control structures. With regard to iconicity, it
is above all the concept of control structures that should bother us.

The need for a conceptual model emanates from the simple fact that
semantic structures are always underspecifi ed. Let us for example look
at an adjective like good (see also Pustejovsky 1995). What is a good
knife? Probably, the fi rst thing we think of is a sharp knife. However, it
is easy to see that a good knife on one hand can have very complex cha-
racteristics: there are factors like stability, balance, stainlessness, pro-
tection for the user and so on. On the other hand, a good knife can mean
different qualities to boy scouts, chefs, circus artists or hobbyists car-
ving fl utes. All this boils down to that the semantics of good (i.e., the
context free meaning) has to be something very vague or general, like

2 I use the label ”mental” model also in the case of computer models. The mentioning
of aliens is just a precaution!

35

ranging high on some scale of quality. As soon as we combine good
with a noun (good knife, good girl) we know a little bit more – that is,
the Fregean concept of semantic composition adds to our understan-
ding, or rather narrows the infi nite possibilities down a bit. Neverthe-
less, in order to really understand good in a given context, we have to
add world and situational knowledge, i.e. pragmatic knowledge.

Linguists in the tradition of structuralism have often had a tendency
to overlook these complications, or – worse – declared them not to lie
within the realms of linguistics. The ”semantics” of good would typi-
cally look like
(3) /good/: λx [GOOD(x)]

Hm, very elusive.
One of the fi rst to acknowledge the importance of CS was Manfred

Bierwisch (1983). The fact that fast has to be mapped on different ve-
locities for snails and jets leads to a somewhat more explicit semantic
description (in Bierwisch’s terminology SF):
(4) /fast/: λx [VELOCITY(x) = VELOCITY(n) + d]

where n is a prototypical (’normal’) element of the ontological class
that x belongs to, and d is some addition to the ’normal’ velocity for that
‘normal’ element. In Bierwisch’ model, VELOCITY is a so-called ‘con-
ceptual constant’ and is not further analyzed. This is still only partially
helpful, but defi nitely a step in the right direction.

However, if it is the task of grammar to map linguistic structure onto
mental structures then this ignoring of underspecifi ed meaning is not
acceptable.

We face the same problem in truth-value based Tarskian semantics
and in Model Theory. The (intensional) meaning of good in Model The-
ory is the set of all objects that are ’good’ in all possible worlds. This
defi nition works fi ne for compositional semantics, as long as you do not
feel that it is a problem that you still do not know what good means. To
push it to extremes, formal semanticists are more concerned with com-
bining meanings than with defi ning meaning.

Another motivation for the need for Conceptual Structure is anaphor-
ic resolution. When potatoes are washed, peeled and cut into quarters,
the next instance of the potatoes is clearly not suffi ciently described

36

as, for instance, ”a starchy plant tuber which is cooked and eaten as a
vegetable3” – and therefore, this defi nition does not enable us to iden-
tify the object in the world model (or in the real world) that the pota-
toes is meant to designate. As we will see shortly, we need not only a
conceptual system but also a dynamic runtime model that keeps track
of what happens to the potatoes in the course of, for instance, a cook-
ing recipe.

The third need for a Conceptual System, the dynamics of algorithms
and control structures, I will explain in the next chapter.

However, let us fi rst have a look at how the problems mentioned
above can be handled by a conceptual parser with explicit world knowl-
edge and a dynamic runtime system. Fig. 6 shows the architecture of
AUTOKOCH, the aforementioned conceptual parser developed be-
tween 1988 and 1992 at Lund University.

The main objective of the research project “Weltwissen, Sprachsys-
tem und Textstruktur in einem intergrierten Modell der automatisch-
en Sprachverarbeitung4” was to investigate the cooperation of different
knowledge modules in order to ’understand’ a German cooking recipe.
Understanding was defi ned operationally: the system ‘understands’ a
cooking recipe if it can cook an eatable meal based upon it or, to put it in
a somewhat weaker form: to have all the necessary information at hand,
be it linguistic or non-linguistic, in order to enable you in principle to
do the cooking. In order to achieve this, a basic programming language
for a virtual kitchen robot was developed, and the task of the conceptual
parser was to translate a natural language cooking recipe into a program
for this virtual robot. In this process, lexical, morphological, syntactic,
semantic and conceptual knowledge – both static and dynamic – had to
been drawn upon and their interaction was investigated.

The corpus contained 300 German cooking recipes that also were the
base for the lexicon and the grammar. In a prescanning phase, the text
was normalized, i.e. abbreviations were expanded to standard tokens,
and interpunctuation was transferred to tokens like fullstop or com-

3 Compact Oxford English Dictionary, http://www.askoxford.com
4 “World knowledge, language system and text structure in an integrated model of
automated language processing”. (1988 – 1992).

37

ma. The syntax was a simple context free phrase structure grammar5.
Syntactic and semantic structures were built in a parallel, compositional
mode. These two outputs of the linguistic processing were given to the
conceptual system for specifi cation of the undefi ned slots in the – un-
derspecifi ed – semantic structure.

It is really then – after the syntactic and semantic structure has been
determined – that the real work of understanding begins. All the slots
have to be fi lled6.

CS consists of four databases and a runtime model. The databases
(right hand in fi gure 6), are

• Object Hierarchies
• Operation Hierarchies
• Object Related Operational Knowledge (OROK)
• Robot Programming Language

The fi rst two modules are connected to the linguistic lexicon, since lexi-
cal elements ‘point’ to objects or operations in CS. In CS, these objects
are described with all their relevant features (certainly not exhaustive,
since we only had to handle concrete things and actions, tailor suited
to the domain in question). Both objects and operations are organized
as hierarchies of inheritance relations. In this way, the common feature
of a casserole and a saucepan can be described in one single place, the
class concept <container>. The same goes for operations. Again, the
linguistic knowledge
 /peel/: remove the outer covering or skin from (a fruit, vegetable, etc.)7

alone is not very helpful in a real language understanding application
The OROK module is essential for conceptual parsing and thus un-

derstanding. Here, the world knowledge is placed. I give you just one
trivial example: you peel a raw potato in a different way than a cooked
potato. The runtime model passes the characteristics of an actual potato

5 The system was implemented in LPA’s MacProlog, which had a built-in Defi nite
Clause Grammar (DCG).
6 World and situational knowledge can in turn help us to resolve linguistic ambigui-
ties. We will see an example of this in fi gure 7 below.
7 Compact Oxford English Dictionary, http://www.askoxford.com

38

to OROK, which then decides on an appropriate algorithm and appro-
priate instruments for peeling the actual potato.

Figure 6

TEXT

Linguistic
Parser

Syntax Lexicon

Syntactic
Structure

Semantic
Form

Conceptual
Parser

"Executable
Code"

Operand
Stack

Operatio
ns

Queue

Runtime
Model

Conceptual
System

Object Hierarchies

Operation
Hierarchies

Object Related
Operational
Knowledge

Robot
Programming

Language

Normalized
Text

39

The Robot Programming Language is, as mentioned before, the tar-
get of the conceptual parser. The output of the whole process is a pro-
gram that enables the virtual robot to execute the cooking recipes, with
all procedures, parameters and control structures defi ned and in place.

5. Basic control structures
The concept of control structures is well known from numerical analy-
sis and computer science and is one of the most important concepts one
has to grasp when trying to program a computer (Cormen et alies 1990).
However, which control structures one has to work with depends partly
on the programming language used. Furthermore, these “basic” control
structures are not basic, in that they can be expressed in terms of one
another8. Nevertheless, there is a fair consensus among computer scien-
tists today about the most usable control structures, and as we will see
shortly, these fi t perfectly to the processes going on in an instructional
text, like for instance a cooking recipe.

5.1. Sequence of instructions:
<instruction 1>, <instruction 2>,…, <instruction n>
There is an inherent temporal ordering in a sequence of instructions in
that <instruction i> has to be performed before < instruction i+1>.

5.2. Conditional instructions:
if <condition c> then <go to instruction X> else <go to instruction Y>
Conditional instructions thus consist of two parts, a test of a given con-
dition (whether some number n is greater than zero, whether some ele-
ment e is in a set S, whether the milk is hot or not, and so on) and the
(number of the) instruction that the program has to execute next in case
the condition is true/fulfi lled. Which instruction that has to be executed
when the condition is not fulfi lled is given in the else part, or if there is
no else part, simply the next instruction will be executed (which is equi-
valent to saying “else simply go on”).

8 Basic in the sense of primitive axioms are only „sequence“, „conditional test“
and „jump“ (to another instruction), where “sequence” in turn is just a special case of
“jump” – thus leaving purists with only two axioms.

40

5.3. Iterations with either a terminating or an initial
condition.

− do <instruction X> until <condition c is true>
− do <instruction X> while <condition c is true>
− while <condition c is true> do <instruction X>
− do <instruction X> n times

As I mentioned above, these last four control structures are all imple-
mented as <condition> + <jump> on a lower level (assembly and ma-
chine language), but this translation is usually hard to read for a human
and more easily done by the compiler.

5.4. Parallel processes
Computers have traditionally worked sequentially in that they only
can execute one instruction at a time. Parallelism, that is two or more
(blocks of) instructions executed simultaneously, had to be simulated
in one way or another. Today, a computer can have many processors,
so true parallel processing is not a problem anymore (apart from being
more diffi cult to program!). For our problem at hand, it is irrelevant
whether the parallelism is simulated or real.

Simple as all of this may sound, it is not that simple neither in com-
puter programs nor in instructional texts, since control structures can be
combined and integrated into each other ad libitum et infi nitum.

6. The case of Shepherd’s pie
Before we can investigate the implications of these considerations for
our understanding of diagrammatic iconicity, I will demonstrate how
algorithms are realized in an everyday instructional text, namely a coo-
king recipe.

The following conventions are used in the recipe.

• Operations (Preheat, add,…) are written in bold style.
• Control operators (to, for, until,…) are underscored (this includes

full stops . , commas , , and the conjunction and as sequence mar-
kers).

• Control conditions (5-8 minutes, softened…) are set in italic.

41

Furthermore, I have numbered the sentences (not the instructions!) from
(a) to (p) for easy reference.
 Shepherd’s pie9

 500 g Minced Lamb
800 g Potatoes
1 large Carrot
1 large Onion
60 ml Milk
30 g Butter
50 g Cheddar (Mature)
200 ml Beef Stock
1 tablespoon Tomato Puree
1 tablespoon Vegetable Oil
1 tablespoon Flour (plain)
1/2 teaspoon Rosemary (dried)
1/2 teaspoon Thyme (dried)
Salt
Black Pepper

a) Preheat the oven to 200°C.
b) Dice the onion and carrot.
c) Heat the oil in a large saucepan and add the onion and carrot.
d) Fry for 5-8 minutes stirring occasionally until the onion is lightly

browned.
e) Meanwhile, skin, quarter and boil the potatoes in water until

softened.
f) Add the minced lamb to the onion and carrot and fry for a further

10 minutes, stirring and breaking up the mince with a wooden
spoon.

g) Stir in the fl our.
h) Add the beef stock, rosemary, thyme, and tomato puree.
i) Season with black pepper.
j) Simmer for 15 minutes until most of the liquid has evaporated.
k) Mash the potatoes with the butter and milk until smooth.
l) Grate the cheddar and mix into the potato with a pinch of salt.
m) Check the lamb for seasoning, adding salt if necessary.
n) Spoon the lamb into a baking dish, and cover with the mashed

potato.
o) Use a fork to draw ridges across the top if desired.
p) Bake the shepherd’s pie for 35- 40 minutes until the potato is

lightly browned.

9 The recipe was found on the website www.letscook.co.uk.

42

I could have translated this recipe to pseudo robot programming code,
as would be the output of the conceptual parser described in chapter 4
above, but for the sake of perspicuity, I will use fl ow charts instead. Fur-
thermore, I will not analyze the whole recipe, but only give examples of
the control structures described earlier in this chapter.

6.1. Sequences

Figure 7 (sentence e)
…skin, quarter and boil the potatoes in water…

SKIN(potatoes

QUARTER(potatoes)

BOIL(potatoes)

in water

Next instruction

This is simply a sequence of three instructions: skin the potatoes, quar-
ter the potatoes and boil the potatoes in water. We will have to do this
straightforwardly in this order. However, there are several problems
here, which I will only mention. The fi rst problem is that the predicate
boil in itself contains a control structure (i.e. keep the potatoes in wa-
ter with a temperature of approximately 100 C until they are soft, or for
about 25 minutes, depending on their size). The other problem is that
the prepositional phrase in water is syntactically ambiguous. Do we
only boil the potatoes in water, or do we even skin and quarter them in
water? This is why I have used dotted lines, because after the syntac-
tic and semantic analysis, we still do not know the scope of in water.

43

The third problem is the ontological state of the potatoes. When the se-
quence starts, they are whole, hard and unpeeled. After skinning, they
are whole, hard, and peeled. After quartering, they are divided into four
parts, hard and peeled. Finally, they are divided in quarters, soft and
peeled. This is an identifi cational problem for the conceptual system,
since the properties, i.e. the criteria by which CS can identify entities,
are changing during the process. As described above in chapter 4, this
problem cannot be solved by linguistic means alone either, but there has
to be world knowledge and a conceptual runtime system involved.

6.2. Conditional instructions

Figure 8 (sentence n)
draw ridges across the top, if desired

IF(desired)

DRAW(Ridges)

Next instruction

YesNo

Figure 8 is a classical example of a conditional instruction. The condi-
tion is: “Is it desired to have ridges drawn across the top”? If the ans-
wer is yes, we have to draw the ridges (this is a control structure of its
own, which I have omitted here for the sake of simplicity), if not, we
do nothing and continue with the next instruction. One interesting fact
to notice here is that the sequential order in the text is not “natural” sin-
ce the condition mentioned last in the text has to be considered/execut-
ed fi rst.

44

6.3. Iterations (loops)
As I mentioned before, a predicate can contain a control structure. Heat
the oil means: Keep warming the oil until the temperature is the one you
want. Clearly, the “right” temperature is another one for oil to fry some-
thing in than for water to boil something in. Again, we have to use con-
ceptual knowledge in order to decide on an appropriate value.

Figure 9 (sentence c)
Heat the oil

HEAT(oil)

oil.temp =
"right"?

Next instruction

Yes

No

Figure 10 is another example of an iteration, but this time it is not a
simple parameter like temperature that has to be observed, but the more
complex property of being “broken up” with a desired (and normally
also quite uniform) granularity. The linguistic marker for the control
structure is the particle up, since break a thing would imply only one act
of breaking. In fact, our conceptual system would consider this a con-
fusing instruction, since the properties of mince are not easily compati-
ble with break. The instruction gives us no hint whatsoever on how one
should break up mince with a spoon. Again, we have to draw on con-

45

ceptual knowledge10. I have inserted PUSH in the diagram, because that
would be what the OROK module would come up with.

Fig. 10 (sentence f)

...break[ing] up the mince with a wooden spoon

PUSH(spoon, mince)

Next instruction

Granularity(mince)
= default?

Yes

No

6.4. Parallel processes
When describing parallel processes we use the term ‘thread’. A thread
is a process that runs independently and (at least partially) parallel to
another thread.

We know already the thread on the right hand of fi gure 11: skin,
quarter and boil the potatoes (cf. fi gure 7). This thread has to run simul-
taneously with the thread on the left hand, which in turn comprises two
sub threads: the frying thread and the stirring thread. Therefore, in fact,
at times there are three activities going on simultaneously.

This last example is the most complex one, since it contains not only
parallel instructions but several other control structures as well.

10 In case you are asking yourself at this point where the system gets this knowledge
from: You have to store it explicitly in the OROK database, a task that without doubt is
the most time consuming part of building a conceptual parser.

46

Figure 11 (sentence d + e)

Fry [...] stirring occasionally until the onion is lightly browned. Meanwhile,
skin, quarter and boil the potatoes in water until softened.

Fry(Ø)

COLOR(onion)
=

ligthly brown

n o STIR(Ø)

NEXT OPERATION

SKIN(potatoe)
QUARTER(potatoe)

BOIL (potatoe)

QUAL (potato))
= soft

n o

y e s

yes

7. On the relation between algorithms and linguistic form
If we simply consider diagrammatic iconicity to be a question of mir-
roring sequences then we have seen that this will not be suffi cient. This
is simply the case because language – including texts – is linear, whe-
reas algorithms in general are not. We have explicit and implicit loops,
we have parallelism, and we have even ‘garden path’ phenomena, that
is points in the text where we fi nd evidence for the need of “jumping
back”. As is the case with the meanwhile example (sentence e), we can-
not even be sure that we are on the safe side after parsing a whole sen-
tence. The natural conclusion is that we need a two-pass-processing of
the text. For a human reader and experienced cook it will suffi ce to read
the recipe once fi rst in order to establish a mental picture of the recipe
including the timeline.

For an AI-system, it will suffi ce incrementally to build a model that
can be modifi ed until the last instruction is read. In the AUTOKOCH
system (fi gure 6) this was achieved by generating a program for the vir-
tual robot, and executing this program fi rst after it was fi nished.

47

A number of explicit control structures are present in the recipe, but
we also fi nd implicit control structures in the semantics of lexical pre-
dicates.

7.1. Explicit control structures:
<op1 and op2>

do fi rst op1, then op2. However, there is one example
of and in the text that induces parallel threads: Stirring
and breaking up the mince.

<to x degrees>
A fi nal condition to an until-loop.

<for x time units>
The duration of a while-loop.

<until some quality is achieved>
A fi nal condition to an until-loop too, but here the con-
dition is qualitative rather than quantitative.

<meanwhile>
A “jump back” instruction to the previous sentence and
a trigger of a new thread.

<in>
As in Stir in the fl our. A while-loop that exits when all
the fl our is mixed with the other stuff.

7.2. Implicit control structures:
Dice: Cut or part until divided into dices (of which size?).

Heat: Continue supply of energy until a certain high tem pe r a-
ture (how many degrees?) is reached.

Quarter: As dice, but now the result has to be four parts of ap-
proximately the same size.

Boil: As heat, but now we know that the fi nal temperature of
the medium (as default a water-based fl uid) has to be
100° C. The length of the boiling process is explicitly

48

given in the recipe or has to be inferred from OROK
(world knowledge).

Break up: Already discussed in the text 6.3.

Season: Add spices and stir until the resulting taste is “good
enough”.

Mash: Here the fi nal state of the object is the degree of
“mashed ness”, a type of consistency.

Grate: A special process that generally uses a specifi c instru-
ment. This means that the granularity is given by the
instrument. The action has still to be repeated (= a
loop) until the whole object is processed.

Mix: Blend two or more ingredients until a suffi ciently homo-
genous blending is resulting.

Cover: Place some object X on some other object Y until X
forms a “roof” for Y. The algorithm is highly dependent
on the quality of X.

8. Conclusions
We have seen that there is no prima facie diagrammatic iconicity in the
recipe because the ‘world’ the recipe tries to mirror is only partly orga-
nized linearly. Since the temporal structure of speech is strictly linear,
however, we have to use other means than simple sequences in order to
make sure that the instructions are executed in the desired order.

In the case of a rather complicated enterprise like following a coo-
king recipe, we fi nd that some (in our example in fact most) algorithms
are inherent to verb semantics. Examples of this are the verbs season
and mash which mirror a loop and a fi nal condition, where you have to
add spices and check the taste until you are satisfi ed, or where you have
to put some pressure or impact on the object(s), continuously checking
the resulting consistency and adapting your further processing to it until
you “get it right”. That these inherent conceptual properties are relevant
for linguistic analysis, too, can be seen by the simple fact that a modi-
fi er like cautiously has to be interpreted with reference to the amount of
spices in the case of season but the force implied in the case of mash.
You do not understand phrases like “mash cautiously” or “season cau-

49

tiously” unless these processes are represented correctly in your (con-
ceptual) knowledge system.

Thus, we can say that a relatively complex structure of actions has
been clustered into the predicates, whereas other actions are verbalized
as explicit control structures (with linguistic means like until, meanwhi-
le, for, and, if, or even a simple comma). Our fi rst conclusion is accor-
dingly that diagrammatic iconicity has to be looked for on a higher level
than single actions. Language maps clusters of actions.

When there is a clash between the sequence of clusters in the ‘world’
and the sequence of clusters in the text, we can repair this mismatch by
the fore-mentioned explicit linguistic means.

Our second and fi nal conclusion is, therefore, that diagrammatic ico-
nicity has to be looked for on the semantic and/or conceptual level rat-
her than in the surface structure and/or some simple concept of “se-
quencing”.

Linguistic knowledge alone does not help us.

10. References
Anderson, Richard D., Jr. 2001: “I did not have sexual relations with that woman <pau-

se, gaze averted> Ms. Lewinsky” – The Iconicity of Democratic Speech in English.
http://www.polisci.ucla.edu/faculty/anderson/Lewinsky.htm

Andric, Barbro/Hansson, Kerstin/Koch, Wolfgang 1989: Prozeßsteuerung und Verbse-
mantik in einem computersimulierten Küchenmodell: Teilen, Mischen und Erwär-
men . In Sprache und Pragmatik. 1989; årg. 14, p. 1-106

Bierwisch, Manfred 1983: Semantische und konzeptuelle Relationen lexikalischer Ein-
heiten. In Rucicka/Motsch (Eds.), p. 61-99

Bierwisch, Manfred/Schreuder, Robert 1992: From concepts to lexical items. In Cog-
nition 42, 23-60

Cormen, Thomas H./Charels E. Lesierson/Ronald R. Rivest 1990: Introduction to Algo-
rithms. The MIT Press: Cambridge Massachusetts & London, England

Enkvist, Nils 1981: Experiential iconicism in text strategy. In Text 1 (1). 77-111.
Koch, Wolfgang/Rosengren, Inger 1996: Locative Alternations‘ in English and Ger-

man: different lexicalisations of the same conceptual structure. In Sprache und
Pragmatik. 1996; årg. 45.

Koch, Wolfgang/Rosengren, Inger 1995: Secondary predications: their grammatical
and conceptual structure. In Sprache und Grammatik. 1995; årg. 35, s. 1-100

50

Koch, Wolfgang 1978: Kasus - Kognition - Kausalität. Zur semantischen Analyse der
instrumentalen ”mit”-Phrase. Lund: Lunder germanistische Forschungen 47, 1978.
182 p.

Lakoff, George/Johnson, Mark 1980: Metaphors we live by. Chicago: University of
Chicago Press.

Larsen Pehrzon, Mariann 1993: Between text and grammar: the principle of iconicity.
In Estudios Ingleses De La Universidad Complutense 1/1993, p. 111-126.

May, Michael 1999: Diagrammatic reasoning and levels of schematization In T.R. Jo-
hansson/M. Skov /B. Brogaard (Eds.): Iconicity. A Fundamental Problem in Semio-
tics. NSU Press, Århus 1999. Citations are taken from http://imv.au.dk/~pba/Pre-
prints/DiagReasoning.pdf

Peirce, Charles Sanders 1931-58: Collected Papers I-VIII. Hartshorne, C, Weiss, P, &
Burks, A, (eds.). Cambridge, Mass. Harvard University Press 1931-58

Pustejovski J. 1995: The Generative Lexicon. Cambridge (USA): MIT Pres
Rucicka, Rudolf/Motsch, Wolfgang (eds.) 1983: Untersuchungen zur Semantik. Berlin

(=Studia grammatica XXII).
Slobin, Dan I. 2005: Linguistic representations of motion events: What is signifi er and

what is signifi ed? In C. Maeder/O. Fischer/W. Herlofsky (Eds.) (2005): Iconicity
Inside Out: Iconicity in Language and Literature 4. Amsterdam/Philadelphia: John
Benjamins.

Talmy, L. 1990: How Language Structures its Concepts: the Role of Grammar. Unpub.
MS. International Center for Semantic and Cognitive Studies. Republic of San Ma-
rino.

Wollheim, Richard 1980: Art and its Objects. Cambridge: Cambridge University Press
(2. ed.)

