
BRICS
Basic Research in Computer Science

An Investigation of
Abadi and Cardelli’s
Untyped Calculus of Objects

Jacob Johannsen

BRICS Report Series RS-08-6

ISSN 0909-0878 June 2008

B
R

IC
S

R
S

-08-6
J.Johannsen:

A
n

Investigation
ofA

badiand
C

ardelli’s
U

ntyped
C

alculus
ofO

bjects

Copyright c© 2008, Jacob Johannsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/08/6/

An Investigation of
Abadi and Cardelli’s Untyped Calculus of Objects

Master’s Thesis1

Jacob Johannsen, 19990920
Department of Computer Science

University of Aarhus2

27th June 2008

1Advisor: Olivier Danvy
2IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: cnn@daimi.au.dk, jajocnn@gmail.com

i

Abstract

We study the relationship between the natural (big-step) semantics and the re-
duction (small-step) semantics of Abadi and Cardelli’s untyped calculus of ob-
jects. By applying Danvy et al.’s functional correspondence to the natural seman-
tics, we derive an abstract machine for this calculus, and by applying Danvy et
al.’s syntactic correspondence to the reduction semantics, we also derive an ab-
stract machines for this calculus. These two abstract machines are identical. The
fact that the machines are identical, and the fact that they have been derived us-
ing meaning-preserving program transformations, entail that the derivation con-
stitutes a proof of equivalence between natural semantics and the reduction se-
mantics. The derivational nature of our proof contrasts with Abadi and Cardelli’s
soundness proof, which was carried out by pen and paper. We also note that the
abstract machine is new.

To move closer to actual language implementations, we reformulate the calculus
to use explicit substitutions. The reformulated calculus is new. By applying the
functional and syntactic correspondences to natural and reduction semantics of
this new calculus, we again obtain two abstract machines. These two machines
are also identical, and as such, they establish the equivalence of the natural se-
mantics and the reduction semantics of the new calculus.

Finally, we prove that the two abstract machines are strongly bisimilar. Therefore,
the two calculi are computationally equivalent.

ii

iii

Dansk referat

Vi studerer sammenhængen mellem den naturlige semantik (big-step seman-
tikken) og reduktions-semantikken (small-step semantikken) for Abadi og Cardel-
lis typeløse objekt-kalkule. Ved anvendelse af Danvy o.a.’s funktionelle korre-
spondance på den naturlige semantik udleder vi en abstrakt maskine for denne
kalkule, og ved anvendelse af Danvy o.a.’s syntaktiske korrespondance på reduk-
tions-semantikken udleder vi ligeledes en abstrakt maskine. De to abstrakte
maskiner er identiske. Det faktum, at maskinerne er identiske, samt det fak-
tum, at de er blevet udledt ved brug af semantikbevarende programtransforma-
tioner, betyder, at udledningen udgør et bevis for, at den naturlige semantik og
reduktions-semantikken er ækvivalente. Bevisets udledte natur står i kontrast til
Abadi og Cardellis bevis for sundhed, som er blevet udført ved brug af pen og
papir. Vi lægger også mærke til, at den abstrakte maskine er ny.

For at nærme os konkrete sprog-implementationer reformulerer vi kalkulen til at
anvende eksplicitte substitutioner. Den reformulerede kalkule er ny. Ved anven-
delse af den funktionelle og den syntaktiske korrespondance på den naturlige
semantik og reduktions-semantikken denne nye kalkule, udleder vi igen to ab-
strakte maskiner. Disse to maskiner er ligeledes identiske, og etablerer dermed
ækvivalensen mellem den naturlige semantik og reduktions-semantikken for den
nye kalkule.

Til slut beviser vi, at de to abstrakte maskiner er stærkt bisimilære. Dermed er de
to kalkuler beregningsmæssigt ækvivalente.

iv

v

Acknowledgements

This dissertation, along with the subsequent defence, concludes my studies at the
University of Aarhus. My work behind all of it would not have been possible,
had it not been for the help and support of a number of people.

First and foremost, I am forever grateful to my thesis advisor, Olivier Danvy. His
enthusiasm, his pedagogical insights and his scientific rigour and wisdom have
been an inspiration throughout the work of this thesis, but most important of all,
he has been a good friend. A day is never truly bad when he is around.

Extra special thanks with cream on the top (cherry optional) are also due to my
good friend and former fellow student Erik Søe Sørensen, for continued inspira-
tion and support during my entire studies, as well as for meticulous proofreading
of this dissertation.

Thanks are also due to my personal friends Tatiana Barfod, Maria Kristensen,
Aske Christensen, Thomas Jensen, and to my parents, Kirsten and Bjarne, my
brother Claus and the rest of my family for their constant support and patience.

Finally, I would like to extend my grateful thanks to the technical, administra-
tive, systems and library staff at DAIMI, in particular Ole Østerby, Michael Glad,
Hanne Friis Jensen, Karen Kjær Møller, Ann Eg Mølhave, Ellen Kjemtrup Lind-
strøm and Oksana Orlenko.

Jacob Johannsen (CNN)
Århus, June 2, 2008

vi

vii

Contents

1 Introduction 1

I Calculi 5

2 The ς-calculus 7
2.1 Formal Definitions . 7

2.1.1 Syntax . 7
2.1.2 Semantics . 8

2.2 Summary and Conclusions . 9

3 The ςρ-calculus 11
3.1 Formal definitions . 11

3.1.1 Syntax . 11
3.1.2 Semantics . 12

3.2 Summary and Conclusions . 15

4 Conclusion – Calculi 17

II Tools 19

5 Functional Correspondence 21
5.1 The CPS Transformation . 22
5.2 Defunctionalisation . 24
5.3 The Functional Correspondence . 26
5.4 Summary and Conclusion . 27

6 Syntactic Correspondence 29
6.1 Refocusing . 30
6.2 Fixed-point Promotion . 32
6.3 The Syntactic Correspondence . 33
6.4 Summary and Conclusion . 34

7 Conclusion – Tools 35

viii

III Derivation and Equivalence 37

8 An Abstract Machine for the ς-calculus 39
8.1 Data Type Definitions and Utility Functions . 39
8.2 Functional Correspondence . 42
8.3 Syntactic Correspondence . 46
8.4 Summary and Conclusions . 52

9 An Abstract Machine for the ςρ-calculus 53
9.1 Data Type Definitions and Utility Functions . 53
9.2 Functional Correspondence . 56
9.3 Syntactic Correspondence . 61
9.4 Summary and Conclusions . 72

10 Formal Connection 73
10.1 From Closures to Terms . 73
10.2 Bisimilarity . 74
10.3 Computational Equivalence . 77
10.4 Summary and Conclusions . 77

11 Conclusion – Derivation and Equivalence 79

IV Conclusion 81

12 Conclusion and Perspectives 83
12.1 Summary . 83
12.2 Perspectives . 84

13 Bibliographic References 85

ix

List of Figures

5.1 The Ackermann function . 23
5.2 The Ackermann function in CPS . 23
5.3 A higher-order implementation of an environment 24
5.4 The defunctionalised version of Figure 5.3 . 25

8.1 Data type for terms of the ς-calculus . 40
8.2 Function for looking up methods in objects . 40
8.3 Function for updating methods in objects . 40
8.4 Function for performing substitutions . 41
8.5 Data type for values of the ς-calculus . 41
8.6 Signature for evaluators of the ς-calculus . 41
8.7 DS interpreter for the ς-calculus . 42
8.8 CPS interpreter for the ς-calculus . 43
8.9 CPS interpreter for the ς-calculus, with direct error propagation 44
8.10 Defunctionalised CPS interpreter for the ς-calculus 45
8.11 Data types of the reduction-based evaluator for the ς-calculus 47
8.12 Reduction-based evaluator for the ς-calculus 48
8.13 Refocused evaluator for the ς-calculus . 49
8.14 Refocused and fused evaluator for the ς-calculus 50
8.15 Evaluator for the ς-calculus, with inlined contraction function 51

9.1 Data type for closures of the ςρ-calculus . 54
9.2 Data type for values of the ςρ-calculus . 54
9.3 Signature for evaluators of the ςρ-calculus . 54
9.4 Function for looking up methods in objects . 55
9.5 Function for updating methods in objects . 55
9.6 Functions implementing environments in the ςρ-calculus 56
9.7 Function mapping object literals and environments to receiver_closures . . 56
9.8 DS interpreter for the ςρ-calculus . 57
9.9 CPS interpreter for the ςρ-calculus . 58
9.10 CPS interpreter for the ςρ-calculus, with direct error propagation 59
9.11 Defunctionalised CPS interpreter for the ςρ-calculus 60
9.12 Data types of the reduction-based evaluator for the ςρ-calculus 62
9.13 Reduction-based evaluator for the ςρ-calculus (continued in Figure 9.14) . . . 63
9.14 Reduction-based evaluator for the ςρ-calculus (continued from Figure 9.13) . 64
9.15 Refocused evaluator for the ςρ-calculus (continued in Figure 9.16) 65
9.16 Refocused evaluator for the ςρ-calculus (continued from Figure 9.15) 66

x

9.17 Refocused and fused evaluator for the ςρ-calculus (continued in Figure 9.18) . 67
9.18 Refocused and fused evaluator for the ςρ-calculus (continued from Figure 9.17) 68
9.19 Evaluator for the ςρ-calculus, with inlined contraction function 69
9.20 Simplified evaluator for the ςρ-calculus . 70
9.21 Evaluator for the ςρ-calculus after closure elimination 71

10.1 The abstract machine for the ς-calculus, from page 46 75
10.2 The abstract machine for the ςρ-calculus, from page 61 75

xi

Chapter 1

Introduction

This dissertation shows how natural semantics, abstract machines and reduction semantics
for Abadi and Cardelli’s untyped calculus of objects can be inter-derived using Danvy et
al.’s functional and syntactic correspondences.

For many years, natural semantics, abstract machines and reduction semantics have been
considered independent semantic formalisms. As a consequence, proving equivalence be-
tween semantic descriptions using different formalisms have been a tedious process, a fact
which has made equivalence proofs unrealistic for anything but small-scale languages.

The functional correspondence allows for the inter-derivation of natural semantics and
abstract machines, and the syntactic correspondence allows for the inter-derivation of re-
duction semantics and abstract machines. Together, these correspondences mediate between
the three formalisms and provide not only a means to prove equivalence between the for-
malisms, but also a means to derive a semantic description in one formalism from a descrip-
tion in another formalism [4, 12, 13].

The functional and syntactic correspondences have previously been applied to several
variations of the λ-calculus [13], including the λ-calculus with explicit substitutions [7] and
the λ-calculus with effects [5, 8], and has given rise to a number of doctoral theses [3, 6, 9,
14, 23–25], so the methods are well established in the area of functional languages. How-
ever, as this dissertation shows, the correspondences can also be applied to object-oriented
languages, which shows the robustness of the methodology.

Our choice of object-oriented language is the untyped ς-calculus as proposed by Abadi
and Cardelli [1, Chapter 6]. The purpose of this calculus is to provide a basic computational
model for the object-oriented paradigm, similar to the role that the λ-calculus fills for the
functional paradigm.

First contribution: We apply the functional and syntactic correspondences to the ς-calculus,
thereby deriving two abstract machines; one from the natural semantics using the functional
correspondence, and one from the reduction semantics using the syntactic correspondence.
The abstract machines are identical, which confirms the equivalence of the natural semantics
and the reduction semantics given by Abadi and Cardelli. The derivational proof of equiva-
lence (as opposed to a pen-and-paper proof), along with the derived abstract machine itself,
constitute the first contribution of this thesis.

1

Second contribution: To move closer to realistic language implementations, we then pre-
sent a new version of the ς-calculus, defined using explicit substitutions (the ςρ-calculus). We
apply the functional and syntactic correspondences to the ςρ-calculus, thereby deriving two
abstract machines for this new calculus. These two abstract machines are also identical,
which proves the equivalence of the natural semantics and the reduction semantics of the
ςρ-calculus. The derivational proof of equivalence, along with the derived abstract machine,
constitute the second contribution of this thesis.

Third contribution: The abstract machine for the ς-calculus and the abstract machine for
the ςρ-calculus are strongly bisimilar, a fact for which we present a formal proof. Our bisim-
ilarity result formally connects the ς-calculus and the ςρ-calculus, and shows that the cal-
culi are computationally equivalent. Since the calculi are computationally equivalent, the
ςρ-calculus provides a definition for an object-oriented computational model using explicit
substitutions. The ςρ-calculus constitutes the third contribution of this thesis.

The structure of this dissertation: Part I presents two calculi of objects: Chapter 2 presents
the ς-calculus (as described by Abadi and Cardelli), and Chapter 3 presents the ςρ-calculus.
Chapter 4 concludes.

Part II presents the tools used to derive the abstract machines: Chapter 5 explains the
functional correspondence, and Chapter 6 explains the syntactic correspondence. Chapter 7
concludes.

Part III contains the derivations and equivalence proofs between the semantic descrip-
tions of the calculi. We derive the abstract machine for the ς-calculus in Chapter 8, and
the abstract machine for the ςρ-calculus in Chapter 9. In Chapter 10, we present the formal
connection between the two calculi, by proving bisimilarity between the derived abstract
machines. Chapter 11 concludes.

Part IV concludes, and presents areas for further work.

Prerequisites We assume that the reader is familiar with the concepts of natural semantics
(big-step semantics, interpreters as evaluation functions), reduction semantics (small-step
semantics/one-step reductions, BNFs of terms and of reduction contexts, a notion of redex,
evaluation by iterated reduction), abstract machines (state-transition functions, and initial,
intermediate, and final states), and of bisimulation.

We also assume a basic familiarity with the SML programming language.

Terminology: In line with Plotkin [27], we use the term ‘programming language’ (or just
‘language’) to mean ‘a calculus equipped with a reduction strategy (for small-step semantics)
or an evaluation order (for big-step semantics)’.

We sometimes refer to the notion of ‘a functional interpreter’ or ‘a functional evalua-
tor’, i.e., ‘an interpreter (or evaluator, respectively) written in a functional programming
language’.

As pointed out by Biernacka and Danvy, the word ‘substitution’ is overloaded [7]. In an
attempt at clarity, we use the word ‘substitution’ to mean ‘the action of substituting a value
or term for a variable’, and the term ‘delayed substitutions’ to refer to explicit substitutions,
to stress that the substitutions have not been performed yet (and possibly never will be).

2

Typically, the word ‘environment’ is used to describe delayed substitutions only in con-
nection with concrete implementations of languages, and the term ‘explicit substitutions’ is
reserved for descriptions of syntax and semantics. Nevertheless, we use ’environment’ to
mean ‘a collection of delayed substitutions’, regardless of the context in which these delayed
substitutions occur.

We use the word ‘bisimilarity’ (e.g., ‘by bisimilarity between A and B’) to state that there
exists a bisimulation relating two entities (e.g., A and B). The word ‘bisimulation’ only refers
to the actual relation defining the bisimilarity.

Context: An article based on this thesis is to appear in the LNCS proceedings of WoLLIC
in July 2008 under the title “Inter-deriving Semantic Artifacts for Object-Oriented Program-
ming”, and is co-authored with Olivier Danvy [16].

3

4

Part I

Calculi

5

6

Chapter 2

The ς-calculus

This chapter introduces the untyped ς-calculus, as proposed by Abadi and Cardelli [1, Chap-
ter 6].

We begin by presenting the syntax description of the calculus, as well as the description
of values. The presentation includes an informal explanation of the intended meaning of
each syntactic construct.

We then present the natural semantics and reduction semantics of the calculus, as de-
fined by Abadi and Cardelli [1, Chapter 6]. We also include an informal description of the
evaluation of a ς-term.

Finally, we briefly touch upon the subject of equivalence between natural semantics and
reduction semantics.

2.1 Formal Definitions

This section presents the formal definitions of the ς-calculus. The formal definitions con-
sist of a syntax definition for terms and values, a definition of a reduction semantics and a
definition of a natural semantics for the calculus.

2.1.1 Syntax

In the ς-calculus, objects are the only values. An object is a collection of named methods.
Names are labels, and all labels within an object must be distinct. Each method takes exactly
one parameter, which represents self. The methods of an object can be updated. Here are the
BNFs of terms and values in the ς-calculus:

(Term) t ::= x | [l = ς(x)t, . . . , l = ς(x)t] | t.l | t.l ⇐ ς(x)t
(Value) v ::= [l = ς(x)t, . . . , l = ς(x)t]

This grammar for terms defines the same language as in Abadi and Cardelli’s book. It only
differs in our choice of more uniform naming for non-terminals. The ellipses are only here
for clarity: objects may contain any finite number of methods, including zero and one.

Fields do not exist directly in the calculus. They are modelled by methods that do not
access self. Creation of a new object occurs only in case of object literals. In other words,
classes and traits do not exist (but they can be modelled [1, pages 73-74]).

7

In addition to the formal syntax, we use parentheses to group subterms, to avoid am-
biguity. Also, we often index a value with the number of methods it contains, so that
vn = [li = ς(xi)ti

i∈{1...n}].

2.1.2 Semantics

Invoking a method on an object v binds the method parameter to v and evaluates the method
body. If the evaluation of the method body does not diverge, a value is returned.

Updating a method named l in an object replaces the object with a copy in which l has
been updated to refer to the new method. New labels cannot be added to an existing object,
nor can labels be dropped from an object. Object references do not exist, so updates have
only local effect.

The evaluation of a term is stuck if it reaches an invocation or an update of a label that
does not exist in the target object. Furthermore, the evaluation is stuck if it reaches any
variable (which never happens when evaluating closed terms).

Natural semantics

The methods of an object can be invoked or updated, which gives rise to the following nat-
ural semantics [1, page 64]:

(INVς)
` t vn ` tj{vn/xj} v

` t.lj v

if 1 ≤ j ≤ n, where
vn = [li = ς(xi)tii∈{1...n}]

(UPDς)
` t vn

` t.lj ⇐ ς(x)t′ [lj = ς(x)t′, li = ς(xi)ti
i∈{1...n}\{j}]

if 1 ≤ j ≤ n, where
vn = [li = ς(xi)ti

i∈{1...n}]

Notice that when a variable is bound, the first rule represents the binding by using actual
substitution (defined in the usual way, so that variable capture is avoided [1, page 61]). In
other words, this semantic description implicitly assumes the existence of what Curien de-
scribed as “a magic, metalevel, one-step operation” [10, Introduction] performing the sub-
stitution of the current object for the self parameter in the body of the method. In an actual
implementation, this operation would of course not be one-step, since it requires a traver-
sal of the entire method body term. We have more to say about the topic of substitution in
Chapter 3.

Reduction semantics

Invocation and updating gives rise to the following contraction rules [1, Definition 6.2-1 (1)]:

vn.lj � tj{vn/xj}
if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti

i∈{1...n}]

vn.lj ⇐ ς(x)t � [lj = ς(x)t, li = ς(xi)ti
i∈{1...n}\{j}]

if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti
i∈{1...n}]

8

Once again, we note that actual substitution is used when variables are bound. The contrac-
tion rules give us the following BNF of potential redexes:

pr ::= v.l | v.l ⇐ ς(x)t

A potential redex is an actual one when its side conditions are satisfied, and contraction can
take place. Otherwise, the potential redex is stuck.

Abadi and Cardelli do not define a grammar for reduction contexts. However, the fol-
lowing grammar plausibly reflects the ‘evaluation strategy of the sort commonly used in
programming languages’ [1, Section 6.2.4, page 63]:

(Context) C ::= [] | C[[].l] | C[[].l ⇐ ς(x)t]

Lemma 1 (Unique decomposition). Any term in the ς-calculus which is not a value can be
uniquely decomposed into a reduction context and a potential redex.

Equivalence

The natural semantics is sound and complete with respect to the reduction semantics [1,
Theorems 6.2-3 and 6.2-4, pages 64-65]. In other words, if evaluation with one semantics
results in a value v, then evaluation with the other semantics will also result in v, and if
evaluation diverges with one semantics, it also diverges with the other. Consequently, the
two semantic descriptions are computationally equivalent.

We will give a proof of equivalence by derivation in Chapter 8, where we will also derive
an (equivalent) abstract machine for the ς-calculus.

2.2 Summary and Conclusions

This chapter has presented the ς-calculus as defined by Abadi and Cardelli.
Along with an informal description, the chapter has presented the formal syntax, a nat-

ural semantics and a reduction semantics of the calculus. As shown by Abadi and Cardelli,
the natural semantics and the reduction semantics are computationally equivalent.

Bindings in the calculus are defined using actual substitutions. In the following chapter,
we will see how an equivalent calculus can be defined using explicit substitutions.

9

10

Chapter 3

The ςρ-calculus

This chapter explains the syntax, the natural semantics and the reduction semantics of the
ςρ-calculus, which is a calculus computationally equivalent to the ς-calculus, but which uses
explicit substitutions instead of actual ones.

We define the calculus in terms of explicit substitutions, because actual substitutions are
too impractical for concrete implementations. For the λ-calculus, this observation led to
the study of explicit substitutions (which we also refer to as ‘delayed substitutions’) and their
relationship to environment machines by Curien et al. [2,10], and more recently by Biernacka
and Danvy [7,8]. Since one of the purposes of this dissertation is to derive abstract machines
implementing the ς-calculus, it is relevant to study how the ς-calculus behaves when defined
in terms of explicit substitutions.

The definition of the ςρ-calculus is based on the definition of the ς-calculus in Chapter 2.
Delaying the substitution of bound variables means that the ςρ-calculus must be equipped
with a means to represent the delayed substitutions. Furthermore, the semantics must reflect
that evaluation now happens with respect to an environment.

Since values contain terms in their methods, and since free variables are no longer sub-
stituted at binding time, we also need to change the definition of values. Object values must
now contain environments for each of their methods.

From a description of terms, environments and values, it is straightforward to define a
natural semantics for the ςρ-calculus. However, defining a reduction semantics is impossible
unless we extend the calculus to operate on a general notion of closures rather than on terms
(a similar observation was made by Biernacka and Danvy in connection with Curien’s λρ-
calculus [7]).

3.1 Formal definitions

This section presents the formal definitions of the ςρ-calculus. The formal definitions consist
of a syntactic definition for terms, values, substitutions and closures, a definition of a natural
semantics and a definition of a reduction semantics.

3.1.1 Syntax

The terms of the ςρ-calculus are the same as those of the ς-calculus.

11

Environments are (possibly empty) lists of associations between identifiers and values.
Choosing a list structure is purely a choice of syntax, as list syntax is easily written and
understood. Lists may very well be an inefficient choice of representation in concrete im-
plementations, but applying the functional and syntactic correspondences does not change
the structure of the environments, so any representation with equivalent extend and lookup
operators is valid.

A method body may contain other free variables than the method parameter, and hence
it is necessary to associate each method with an environment. Methods equipped with an
environment will be referred to as method closures.

The use of delayed substitutions induces a change in the category of values. Object val-
ues now contain method closures rather than methods (and so values are distinct from object
literals). We refer to objects containing method closures rather than regular methods as ob-
ject closures. Since method updates of a value may occur in a different scope than the one in
which the object was created, the environments must be associated to individual methods
rather than to objects.

These observations lead us to the following BNF of terms, values and environments:

(Term) t ::= x | [l = ς(x)t, . . . , l = ς(x)t] | t.l | t.l ⇐ ς(x)t
(Environment) e ::= • | (x, v) · e

(Value) v ::= [l = (ς(x)t)[e], . . . , l = (ς(x)t)[e]]

As in the ς-calculus, we allow ourselves to group subterms using parentheses, and we occa-
sionally index a value with the number of its methods, so that vn = [li = (ς(xi)ti)[ei]

i∈{1...n}].
We could have chosen to use de Bruijn indices instead of variables. This choice would

have corresponded more closely to array-like implementations of environments. However,
it would have made the semantic descriptions more complex, without making a significant
difference for the purpose of this dissertation.

3.1.2 Semantics

All evaluations must now occur with respect to an environment. The initial environment for
the evaluation of a closed term is empty. The semantic descriptions must now include rules
for evaluating variables. To this end, we need an auxiliary function lookup to look up iden-
tifiers in the current environment (the extension of an environment is handled syntactically,
using the (x, v) · e notation).

Invoking a method closure no longer requires a substitution. Instead, the environment
of the method closure is extended with a binding, and hence, substitution is ‘delayed’. The
method body is evaluated under the extended environment. Extending an environment with
a new binding of a previously bound identifier shadows the previous binding. Method up-
dates capture the current environment to form a method closure before updating the target
object closure.

Just as for the ς-calculus, the evaluation of a term is stuck if it reaches an invocation or
an update of a label that does not exist in the target object. Furthermore, evaluation is stuck
if it reaches a variable that is not bound in the current environment (which never happens
when evaluating closed terms).

12

Natural semantics

Since all evaluation must now take place with respect to an environment, the new evaluation
judgement looks like this:

e ` t v

The evaluation rules from Chapter 2 are straightforwardly adapted:

(INVςρ)
e ` t vn (xj, vn) · ej ` tj v

e ` t.lj v

if 1 ≤ j ≤ n,
where vn = [li = (ς(xi)ti)[ei]

i∈{1...n}]

(UPDςρ)
e ` t vn

e ` t.lj ⇐ ς(x)t′ v

if 1 ≤ j ≤ n, where
v = [lj = (ς(x)t′)[e], li = (ς(xi)ti)[ei]

i∈{1...n}\{j}]
and vn = [li = (ς(xi)ti)[ei]

i∈{1...n}]

We also need a rule to look up variables in the current environment

(VAR-Lςρ)
e ` x v

if lookup (x, e) = v

In addition, we need a rule to construct an object closure out of an object literal. The follow-
ing rule captures the current environment and creates such an object closure:

(CLOςρ)
e ` [li = ς(xi)ti

i∈{1...n}] [li = (ς(xi)ti)[e]
i∈{1...n}]

Reduction semantics

To properly define the reduction semantics for the ςρ-calculus, we need to define a notion of
closures.

Originally, a closure was defined to be a term with an associated environment [22]. How-
ever, just as for the λρ-calculus [7], this notion is not general enough to allow a reduction
semantics to be defined for the ς-calculus. Therefore, closures need to be allowed to contain
subclosures rather than just subterms.

Keeping in mind the syntax for terms and environments, these observations lead us to
the following BNF of closures:

(Closure) c ::= t[e] | [l = (ς(x)t)[e], . . . , l = (ς(x)t)[e]] | c.l | c.l ⇐ (ς(x)t)[e]

The initial closure of a closed term t is t[•].
Notice that there is no environment associated with invocations on closures (except for

any environments associated with subclosures). The reason is that the current environment
is no longer needed after an invocation, since the invoked method closure contains its own

13

environment. Notice also that the definition of values corresponds to the definition of object
closures.

Contraction must now take place on closures rather than on terms. Adapting the con-
traction rules from Chapter 2 gives us the following new rules:

vn.lj � tj [(xj , vn) · ej]
if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]

i∈{1...n}]

vn.lj ⇐ (ς(x)t)[e] � [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]
i∈{1...n}\{j}]

if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]
i∈{1...n}]

We also need a contraction rule for looking up variables in the current environment:

x[e] � v
if lookup (x, e) = v

In addition, we need rules to propagate environments into subterms:

[li = ς(xi)ti
i∈{1...n}][e] � [li = (ς(xi)ti)[e]

i∈{1...n}]

(t.l)[e] � t[e].l

(t.l ⇐ ς(x)t′)[e] � t[e].l ⇐ (ς(x)t′)[e]

The contraction give us the following BNF of potential redexes:

pr ::= v.l | v.l ⇐ (ς(x)t)[e] |
x[e] | [l = ς(x)t, . . . , l = ς(x)t][e] | (t.l)[e] | (t.l ⇐ ς(x)t′)[e]

As in the ς-calculus, a potential redex is an actual one when its side conditions are satisfied,
and contraction can take place. Otherwise, the potential redex is stuck.

The definition of reduction contexts changes slightly, to account for the delayed substi-
tutions. Update contexts must now capture the current environment, so that the updated
method may be evaluated under it at a later time. As mentioned, the current environment is
not needed for method invocations, so no environment needs to be captured in invocation
contexts.

(Context) C ::= [] | C[[].l] | C[[].l ⇐ (ς(x)t)[e]]

Lemma 2 (Unique decomposition). Any term in the ςρ-calculus which is not a value can be
uniquely decomposed into a reduction context and a potential redex.

Equivalence

The soundness and completeness proofs for the ς-calculus apply mutatis mutandis to the ςρ-
calculus [15]. Consequently, the two semantic descriptions are computationally equivalent.
We give a proof of equivalence by derivation in Chapter 9, where we also derive an abstract
machine for the ςρ-calculus.

14

3.2 Summary and Conclusions

This chapter has presented the ςρ-calculus, which is a version of the ς-calculus defined in
terms of explicit substitutions rather than actual substitutions.

Along with an informal description, the chapter has presented the formal syntax, a nat-
ural semantics and a reduction semantics of the calculus. The natural semantics and the
reduction semantics are computationally equivalent.

15

16

Chapter 4

Conclusion – Calculi

We have presented two calculi of objects, the ς-calculus and the ςρ-calculus. The ς-calculus
was defined by Abadi and Cardelli [1, Chapter 6], whereas the ςρ-calculus is new. For each
calculus, we have presented the syntax, a natural semantics and a reduction semantics.

The two calculi differ only in their handling of variable bindings. Whenever a variable
is bound, the ς-calculus uses actual substitutions in the usual, capture-avoiding manner,
whereas the ςρ-calculus uses explicit (or delayed) substitutions.

In Chapters 8 and 9, we derive abstract machines for the ς-calculus and the ςρ-calculus,
respectively. Each of the chapters contains two derivations of the same abstract machine,
one from the natural semantics and one from the reduction semantics.

The fact that for each calculus, the machines can be derived from both semantic descrip-
tions, proves that the natural semantics and the reduction semantics of each of the calculi are
computationally equivalent. Hence, we establish the equivalence by derivation, rather than
by using pen and paper.

In Chapter 10, we show that the abstract machine for the ς-calculus and the abstract ma-
chine for the ςρ-calculus are strongly bisimilar. By doing so, we establish the computational
equivalence between the two calculi.

17

18

Part II

Tools

19

20

Chapter 5

Functional Correspondence

This chapter introduces the functional correspondence, which connects functional inter-
preters and abstract machines by means of program transformations.

We begin by describing the CPS transformation, which maps programs in direct style (DS)
to programs in continuation-passing style (CPS). The CPS transformation was discovered
and rediscovered several times, so it is hard to point out one particular original purpose for
it. In his account of the history of continuations [29], Reynolds mentions the elimination
of labels and gotos as the first purpose for which the CPS transformation was applied, and
Reynolds himself later used the transformation to avoid inter-dependence between the or-
der of application for interpreted (defined) languages and the order of application for the
language in which the interpreter is written (the defining language) [28].

We mainly exploit two inter-related properties of interpreters in CPS. First, all functions
in CPS programs are tail-recursive, meaning that the value of a function application is either
a simple value (requiring no further computation), or is given by the value of exactly one
other function application (requiring only trivial intermediate computation). Second, the
CPS transformation makes the call stack explicit in the interpreter, meaning that the inter-
preter gains access to (a higher-order representation of) the current evaluation context.

We then proceed to describe the process of defunctionalisation, which maps higher-order
programs to first-order ones. Defunctionalisation was originally intended as a means for
transforming higher-order interpreters into first-order ones, thereby providing a method
for representing anonymous function abstractions in an interpreter written in a language
that does not support higher-order functions. Furthermore, even if the defining language
supports higher-order functions, representing anonymous functions of the defined language
as first-order values eliminates inter-dependence between the scoping rules of the defined
language and the scoping rules of the defining language [28].

We use defunctionalisation to transform the higher-order continuations into first-order
ones, thereby getting a first-order representation of evaluation contexts. A first-order rep-
resentation of the context will enable the interpreter to inspect the context (rather than just
to apply it to a value), allowing for the definition of a state-transition system in which the
context is part of the states.

The CPS transformation and the process of defunctionalisation are the building blocks
of the functional correspondence, which links functional interpreters for a language to state-
transition systems for the same language. Since functional interpreters implement language
descriptions by natural semantics, and since a state-transition system for the evaluation of a

21

language defines an abstract machine, the functional correspondence provides a proof mech-
anism for equivalence of natural semantics and abstract machine. Furthermore, since the
proof mechanism is based on mechanical program transformations, we may inter-derive
these two types of semantic artifacts.

5.1 The CPS Transformation

Informally, a continuation is an explicit representation of ’the rest of the computation’ at a
given program point. Continuations are typically represented as anonymous functions, but
may also be represented as first-order values, as we shall see later.

A program in continuation-passing style (CPS) passes continuations as extra arguments
to all functions, possibly (pre-)composing the received continuation with extra instructions.
When a function reaches a result, the continuation that the function received is applied to
the intermediate result so that ‘the rest of the computation’ is performed.

The CPS transformation maps programs in direct style (that is, programs in which con-
tinuations are not represented explicitly), into programs in CPS. Informally, one may think
of the transformation as changing a sequence of function applications into one application,
which is passed an extra argument. The extra argument is the continuation, which takes
the result of the application as its argument, and performs the remaining applications of the
sequence (again CPS transformed).

We will perform the CPS transformation on programs written in SML. Therefore, we will
only consider a version of the CPS transformation for a language similar to core SML, i.e.,
a call-by-value, left-to-right variant of the λ-calculus extended with conditionals and simple
values v such as integers and booleans. The call-by-value CPS transformation is defined as
follows:

C(v) = λc.c v

C(x) = λc.c x

C(λx.t) = λc.c (λx.C(t))
C(t t′) = λc.C(t) (λv.C(t′) (λv′.v v′ c))

C(if t then t′ else t′′) = λc.C(t) (λv.if v then C(t′) c else C(t′′) c)

The initial continuation is the identity function λv.v. Hence, a program p is transformed into
C(p) (λv.v).

When the original program uses simple terms (i.e., terms that do not require computa-
tion, such as variables and λ-abstractions) in applications, the CPS transformation generates
so-called ‘administrative redexes’ of the form (λc.c s) (λv.t), where s is a simple term. For
instance, s t is transformed into λc.(λc.c C(s))(λv.C(t) (λv′.v v′ c)), which contains an admin-
istrative redex because C(s) is itself a simple term. Since it is possible to identify such simple
terms during the transformation, we allow ourselves to shortcut the transformation by im-
mediately performing two β-reductions, so that s t is transformed into λc.C(t) (λv ′.C(s) v′ c).
We perform similar shortcuts when the argument of an application is a simple term, or when
the condition of a conditional term is a simple term.

As an example of the CPS transformation, consider an SML implementation of the Ack-
ermann function as seen in Figure 5.1. For the sake of simplicity, we regard applications of
the functions +, - and = as simple terms, so we do not transform them.

22

1 fun A(m, n) =
2 if m = 0
3 then n + 1
4 else if n = 0
5 then A(m − 1, 1)
6 else A(m − 1, A(m, n − 1))

Figure 5.1: The Ackermann function

Line 3 contains the only branch in which a simple value is returned. Lines 5 and 6 both
contain tail calls. In Line 6, there is also a recursive call which is not in tail position. The
non-tail call is performed first, and the result is used as a parameter to the tail call.

CPS transforming this function yields the function in Figure 5.2.

1 fun A(m, n, c) =
2 if m = 0
3 then c (n + 1)
4 else if n = 0
5 then A(m − 1, 1, c)
6 else A(m, n − 1, fn v’ => A(m − 1, v’, c))

Figure 5.2: The Ackermann function in CPS

In Line 3, the received continuation c is applied to the result of the original function.
Applying the continuation ensures that ’the rest of the computation’ is in fact performed
when a result is reached.

The tail calls of Lines 5 and 6 of the original program are both passed the received con-
tinuation. Since the calls were originally tail calls, no further computation occurs in that
branch, and so ‘the rest of the computation’ is unchanged for those recursive calls.

Line 6 contains the same two calls as before, but they have ’switched places’ syntactically.
However, they will be performed in the same order as before, since the original tail call is
passed as a continuation to the original non-tail call. This continuation expects to be applied
to the result of the original non-tail call, and uses that result as the second parameter to the
original tail call, thereby performing ‘the rest of the computation’ of that branch.

For CPS transformed programs, a continuation representing the rest of the computa-
tion is passed to any function call. In other words, if the body of a function in the original
program contains instructions or applications to be performed after the first function appli-
cation, these instructions and applications are passed as part of the continuation to the first
function application in the transformed program. Since these new continuations are also
CPS transformed, and since they are only ever applied in tail position, it follows that all calls
in CPS transformed programs must be tail calls.

This fact can be verified in the example above where the non-tail call of Line 6 of the
original program occurs in tail position in the transformed program. The tail call of Line 5
still occurs in tail position, as does the tail call of Line 6 in the original program, since all
continuations are applied in tail position (Line 3).

23

In a tail-recursive program, there is no need for a call stack. We may therefore think of the
continuations of a CPS program as an explicit, higher-order representation of the call stack.
For interpreters, the call stack at a given point in the evaluation defines the evaluation con-
text of that evaluation point, and hence, an interpreter in CPS has an explicit representation
of the current evaluation context through its current continuation.

In the following section, we will see how to represent higher-order functions as first-
order values. A first-order representation of functions allows us to use a first-order repre-
sentation of continuations, and we will exploit this fact in Section 5.3 to derive an abstract
machine.

Background: The CPS transformation was proved to be semantic-preserving by Plotkin [27].
As can be seen from the definition, the CPS transformation is mechanical, in the sense

that it is possible to write a program which outputs a CPS transformed version of its in-
put program. The same is true for the left inverse of the CPS transformation called the DS
transformation [11].

5.2 Defunctionalisation

Defunctionalisation is a program transformation which replaces all syntactic occurrences of
anonymous function abstractions with constructors of an algebraic sum type. Each con-
structor corresponds to a specific abstraction and holds a number of values corresponding
to the free variables of the abstraction (i.e., each constructor represents an algebraic product
type).

This transformation changes the abstractions from higher-order to first-order. Therefore,
it is no longer possible to apply the abstractions to values directly, so the transformation
furthermore introduces a new function (traditionally called apply). The apply function dis-
patches on the newly introduced data type and performs for each constructor the same com-
putation as the constructor’s higher-order counterpart in the original program. The new
function is called whenever a higher-order function was called in the original program.

As an example, we consider an SML implementation of environments using higher-
order functions. The implementation can be seen in Figure 5.3 (the example is adapted from
Reynolds [28]).

1 structure Env
2 = struct
3 exception UNBOUNDof string
4 val empty = fn x => raise UNBOUND x
5 fun lookup (x, env)
6 = env x
7 fun extend (x, v, env)
8 = fn x’ => if x = x’
9 then v

10 else env x’
11 end

Figure 5.3: A higher-order implementation of an environment

24

The program contains two anonymous abstractions, one in Line 4 containing no free
variables, and another in Lines 8-10 containing the free variables x, v and env.

To defunctionalise the program, we introduce a new SML data type containing two con-
structors, one for each of the abstractions. The abstraction in Line 4 will be replaced by
the constructor EMPTY and the abstraction in Lines 8-10 will be replaced by the constructor
NON_EMPTY, which itself contains the three values x, v and env. We also need to introduce
an apply function, which dispatches on the introduced data type and performs the duties of
each of the anonymous abstractions in the original program. The result of the defunctional-
isation can be seen in Figure 5.4.

1 structure Env’
2 = struct
3 datatype ’a env = EMPTY
4 | NON_EMPTYof string ∗ ’a ∗ ’a env
5 exception UNBOUNDof string
6
7 fun apply (EMPTY, x’)
8 = raise UNBOUND x’
9 | apply (NON_EMPTY (x, v, env), x’)

10 = if x = x’
11 then v
12 else apply (env, x’)
13
14 val empty = EMPTY
15 fun lookup (x, env)
16 = apply (env, x)
17 fun extend (x, v, env)
18 = NON_EMPTY (x, v, env)
19 end

Figure 5.4: The defunctionalised version of Figure 5.3

Notice how the introduced data type is isomorphic to the type (string * ’a) list with
EMPTY and NON_EMPTY taking the places of nil and ::, respectively. In other words, the
result of defunctionalising an environment implemented using anonymous abstractions is
in essence an environment implemented using association lists.

One might think of each individual data constructor as representing the environment
associated with a flat closure. The program pointer of the closure is implicitly obtained by
applying the apply function to the constructed value and a value of the defined language.

Background: Defunctionalisation was originally introduced by Reynolds as a means of
converting higher-order interpreters into first-order ones, thereby allowing the definition of
higher-order languages to be written in first-order languages, as well as making the scoping
rules of the defined language independent of the scoping rules of the defining language [28].
To achieve these goals, Reynolds suggested the defunctionalisation of continuations, a topic
which was further explored by Danvy and Nielsen [20].

Just as the CPS transformation, defunctionalisation is mechanical, in the sense that it is
possible to write a program which outputs a defunctionalised version of its input program.

25

The same is true for the left inverse of defunctionalisation, refunctionalisation [17].

5.3 The Functional Correspondence

The CPS transformation and the process of defunctionalisation form the building blocks of
the functional correspondence. The functional correspondence provides a link between func-
tional interpreters and state-transition systems for the same language [4, 13].

Given a functional interpreter in DS, the functional correspondence consists in CPS trans-
forming the interpreter and defunctionalising the continuations introduced by the CPS trans-
formation.1 The CPS transformation makes the evaluation context available to the inter-
preter as the current continuation at any point in the evaluation of a program, and hence,
defunctionalising the introduced continuations provides the interpreter with a first-order
representation of the evaluation context. Furthermore, since the interpreter is now tail-
recursive, any application of the interpreter will result in exactly one recursive application
(unless a final value is reached), so the interpreter performs exactly like a state-transition
system, i.e., an abstract machine.

Since a natural semantics for a language can (usually) be implemented straightforwardly
as a functional interpreter, and since a state-transition system defines an abstract machine,
the functional correspondence provides a mechanism for proving equivalence between nat-
ural semantics and abstract machines for the same language.

Natural semantics
functional

correspondence
// Abstract machine

Both the CPS transformation and the process of defunctionalisation are mechanical. Hence,
it is also possible to derive an abstract machine from a natural semantics. Furthermore, since
both transformations are reversible (in the sense that any program in the image of the CPS
transformation or defunctionalisation can be transformed back to an equivalent program in
the pre-image of the transformation), it is possible to derive a natural semantics from an
abstract machine [12, 20, 21], as initially done with the SECD machine [13].2

The process of deriving an abstract machine from an interpreter is due to Reynolds [28].
Further work by Ager et al. subsequently identified this process as being applicable to func-
tional interpreters and abstract machines in general, and prompted the coining of the phrase
‘functional correspondence’ [4]. The functional correspondence has been applied to various
versions of the λ-calculus, e.g., the λ-calculus with monadic effects [5].

When the language in question is defined in terms of explicit substitutions, the functional
interpreter contains an environment. The resulting abstract machine will therefore also be
equipped with an environment. As we shall see in Chapter 9, this is also the case for the
ςρ-calculus.

1Strictly speaking, if the interpreter is higher-order (e.g., uses a higher-order representation of environments,
as in Figure 5.3), one needs to closure convert the interpreter before CPS transforming it. Closure conversion is the
process of defunctionalising all anonymous abstractions, such that the DS interpreter becomes first-order. [20,22].
Since we will not need to perform closure conversion for our interpreters, we will not go deeper into this process.

2Note, though, that some of the abstract machines that have been defined over the years are not in defunc-
tionalised form, and that several of the ones that are have their apply function inlined (e.g., the Krivine machine),
which makes it difficult to identify the machine as being in defunctionalised form [17].

26

5.4 Summary and Conclusion

This chapter has introduced the functional correspondence and its two building blocks, the
CPS transformation and the process of defunctionalisation.

The CPS transformation and the process of defunctionalisation form the building blocks
of the functional correspondence, which links functional interpreters to state-transition sys-
tems. Since a functional interpreter can be seen as a direct implementation of a natural
semantics, and since a state-transition system can be seen as a direct implementation of an
abstract machine, the functional correspondence provides a proof mechanism for equiva-
lence between natural semantics and abstract machines. Furthermore, the two semantic
descriptions can be inter-derived.

27

28

Chapter 6

Syntactic Correspondence

This chapter introduces the syntactic correspondence, which connects reduction-based eval-
uators and abstract machines by means of program transformations.

Reduction-based evaluation, or evaluation by iterated reduction, is the iterated applica-
tion of functions that find the next reduction point (the next redex), contracts the redex into a
contractum and finally rebuilds the term with the contractum replacing the redex.

We begin by describing the process of refocusing, which is a technique for optimising
reduction-based evaluators. The technique was introduced by Danvy and Nielsen in 2001
[21]. Danvy and Nielsen observed that after a redex has been contracted, the term that is
rebuilt is immediately decomposed again in order to find the next redex. They therefore
proposed an optimisation technique for composing the rebuilding and decomposition func-
tions such that the resulting function would go from redex to redex rather than rebuilding
the entire term between each reduction. The resulting function was named the refocusing
function.

We then proceed to describe the process of fixed-point promotion, which was proposed
by Ohori and Sasano [26] as a technique for optimisation by fusion (i.e., the elimination of
intermediate data structures). The technique is based on inlining, and in contrast to other
fusion techniques, fixed-point promotion can be used to eliminate data structures produced
and consumed by general recursive functions.

We use fixed-point promotion to fuse the iteration function with the function produced
by the refocusing process. Although the fused evaluator still contains the intermediate data
structures, we obtain an evaluator in the form of a transition system for the language.

Refocusing and fixed-point promotion form the building blocks of the syntactic correspon-
dence, which links reduction-based evaluators for a language to state-transition systems for
the same language. Since reduction-based evaluators implement language descriptions by
reduction semantics, and since a state-transition system for the evaluation of a language de-
fines an abstract machine, the syntactic correspondence provides a proof mechanism for
equivalence of reduction semantics and abstract machine. Furthermore, since the proof
mechanism is based on mechanical program transformations, we can derive one of these
semantic artifacts from the other.

29

6.1 Refocusing

The process of refocusing was introduced by Danvy and Nielsen [21] as an optimisation of
reduction-based evaluators. Furthermore, they observed that refocusing such an evaluator
yields a small-step abstract machine (a one-step transition function and an iteration function
computing the iteration of the transition function).

A reduction-based evaluator consists of four functions:

1. A decomposition function decompose, which traverses the source term in search for
the next potential redex. The function returns the found redex and its context.

2. A contraction function contract, which takes a potential redex, reduces it to a contrac-
tum if possible and returns the contractum.

3. A plugging function plug, which takes a contractum and a context, and builds an in-
termediate term which is the copy of the decomposed term, except that the contractum
takes the place of the redex.

4. An iterator, which applies the decomposition, contraction and plugging functions until
a result is reached (if any).

The evaluation of a term consists of a sequence of reduction steps, which can be depicted
as follows:

◦
decompose

""DD
DD

DD
DD

D
reduction step

// ◦
decompose

""DD
DD

DD
DD

D
reduction step

// ◦
decompose

""DD
DD

DD
DD

D

◦
contract

// ◦

plug
<<zzzzzzzzz ◦

contract
// ◦

plug
<<zzzzzzzzz ◦

contract
//

From the diagram, we can see that each application of decompose except the first one is
preceded by an application of plug. Since the first application of decompose can be preceded
by a trivial application of plug (plugging the entire term into the empty context), composing
the two functions eliminates the need for either one.

Danvy and Nielsen observed that for a language satisfying the unique decomposition
property (i.e., that any term can be decomposed uniquely into a context and a redex), the
composition of decompose and plug could be made to go directly from redex point to redex
point, thereby eliminating the overhead of constructing and decomposing the intermediate
term. They call the resulting function the refocusing function.

As a result, the evaluation of a term consists of repeated applications of the refocusing
and contraction functions, which can be depicted as follows:

◦
decompose

""D
DD

DD
DD

DD
◦

decompose

""DD
DD

DD
DD

D ◦
decompose

""D
DD

DD
DD

DD

//____ ◦
contract

// ◦

plug
<<zzzzzzzzz

refocus
//________ ◦

contract
// ◦

plug
<<zzzzzzzzz

refocus
//________ ◦

contract
// ◦

The refocusing function is defined using two mutually recursive functions:

30

• refocus , which traverses subterms in search of the next redex. The function is defined
by case over the term.

• refocusaux , which plugs values into contexts until a redex is reached or another subterm
needs to be traversed by refocus (or until a final value is reached). The function is
defined by case over the context.

Assume that c(t1, . . . , tn) is a syntactic construct where no subterms have been evaluated yet.
If we assume left-to-right evaluation order on the subterms, refocus is defined as follows:

1. If c(t1, . . . , tn) is a value, then we must plug the value back into the context, using
refocusaux . Intuitively, we need to “backtrack” to find another branch of the syntax
tree in which a redex can be found:

refocus(c(t1, . . . , tn), C) = refocusaux (C, c(t1, . . . , tn))

2. Otherwise, if c(t1, . . . , tn) is a potential redex, then we have found the next potential
redex, and so we return:

refocus(c(t1, . . . , tn), C) = (c(t1, . . . , tn), C)

3. Otherwise, we must search for the next redex in the left-most subterm of c(t1, . . . , tn),
using a recursive call to refocus :

refocus(c(t1, . . . , tn), C) = refocus(t1, C[[], t2, . . . , tn])

Assume now that C[c(v1, . . . , vm−1, [], tm+1, . . . , tn)] is a context which expects a value at the
mth position. Then refocusaux is defined as follows:

1. If c(v1, . . . , vm, tm+1, . . . , tn) is a value, then we continue to plug values into the sur-
rounding context, using a recursive call to refocus aux :

refocusaux (C[c(v1, . . . , vm−1, [], tm+1, . . . , tn)], vm)
= refocusaux (C, c(v1, . . . , vm, tm+1, . . . , tn))

2. Otherwise, if c(v1, . . . , vm, tm+1, . . . , tn) is a redex, then we have found the next redex,
so we return it:

refocusaux (C[c(v1, . . . , vm−1, [], tm+1, . . . , tn)], vm)
= (c(v1, . . . , vm, tm+1, . . . , tn), C)

3. Otherwise, we must search for the next redex in the next unevaluated subterm of
c(v1, . . . , vm, tm+1, . . . , tn). We perform the search by calling refocus :

refocusaux (C[c(v1, . . . , vm−1, [], tm+1, . . . , tn)], vm)
= refocus(tm+1, C[c(v1, . . . , vm, [], tm+2, . . . , tn)])

31

Note that for some constructs, not all subterms need to be evaluated before a redex or a value
is found. A simple example of such a construct is a conditional branch, where evaluating the
condition results in a redex, even if the consequent and the alternative have not been eval-
uated. Note also that our assumption of left-to-right evaluation order is not a restriction in
practice. Any strict evaluation order on subterms will do, and since we require the language
to be uniquely decomposable, such an evaluation order will always exist.

For some examples of the technique, we refer to Danvy’s invited talk at WRS 2004 [12],
which refocus an evaluator for arithmetic expressions and an evaluator for terms of the free
monoid.

Background: Danvy and Nielsen proved refocusing to be semantic-preserving [21].
As can be seen, the construction of the refocus function is mechanical. However, as op-

posed to the transformations in the previous chapter, the operation is not known to be me-
chanically reversible.

Refocusing has no known applications apart from the optimisation of reduction-based
evaluators.

6.2 Fixed-point Promotion

In compilers for functional languages, a common type of optimisation is the fusing of func-
tions, that is, the composition of functions in order to eliminate intermediate data structures
(also known as deforestation, since trees seem to be the most common data structure in func-
tional programming). Fixed-point promotion is one such fusing technique, which deals with
the fusing of recursive functions [26].

Suppose a program contains the application of a recursive function f = fix f.λx.Ef

to the result of another recursive function g = fix g.λx.Eg . The fixed-point promotion is
used to construct a function fix f_g.λx.Ef_g, which is equivalent to f ◦ g. The intermediate
data structure produced by g is thereby eliminated, and furthermore, the fixed-point of g is
‘promoted’ through f , hence the name of the technique. Intuitively, one may think of the
process as an inlining of f in g.

The transformation is performed on f ◦ g as follows:

1. Inline the body of g. The result will be f ◦ λx.Eg , which can be rewritten as λx.f Eg.

2. Distribute the function symbol f to all tail positions of Eg . This distribution will trans-
form λx.f Eg into a term λx.E′

g.

3. Inline the body of f , and simplify the resulting terms. The result will be a term λx.Ef,g.

4. Replace all occurrences of f ◦ g in λx.Ef,g with a new name f_g. The result will be a
term λx.Ef_g. Then bind the name f_g to the function fix f_g.λx.Ef_g.

Going back to the refocused interpreter, we see that the iteration function calls itself on
the result of the recursive refocusing function. We can therefore use the fixed-point promo-
tion to fuse the two functions. The result is a recursive function which computes the iteration
of the original contraction and refocusing functions without the use of an explicit iteration
function [18].

32

For examples of the technique, we refer to Danvy et al.’s article on the one-pass CPS
transformation [19, Appendix A], where fixed-point promotion is used on a program com-
puting the run-length of a list, and to Danvy and Millikin’s article on deriving big-step ab-
stract machines from small-step ones, where fixed-point promotion is used on a recogniser
for Dyck words [18].

Background: Ohori and Sasano in 2007 suggested fixed-point promotion as a deforestation
technique, i.e., a technique for statically eliminating intermediate data structures in func-
tional programs [26]. At that time, however, inlining into recursive functions had already
been used extensively to simplify refocused evaluators [7, 12, 21]. Ohori and Sasano’s con-
tribution in our setting is to prove that the process is mechanical as well as correct, and that
refocused evaluators can therefore be mechanically and correctly transformed into abstract
machines. Ohori and Sasano also coined the term ‘fixed-point promotion’.

As can be seen, fixed-point promotion is mechanical. However, just as for refocusing and
contrary to the transformations in the previous chapter, fixed-point promotion is not known
to be mechanically reversible.

6.3 The Syntactic Correspondence

The syntactic correspondence provides a link between reduction-based evaluators and state-
transition systems for the same language.

Given a reduction-based evaluator for a language with unique decomposition, the syn-
tactic correspondence consists in refocusing the decomposition and plugging functions, and
fixed-point promoting the iteration and refocusing functions. Typically, the contraction func-
tion is also inlined, but since that function is not recursive, standard inlining suffices.

By the semantic preserving properties of refocusing and fixed-point promotion (and in-
lining), the resulting function implements the same language as the original reduction-based
evaluator. Furthermore, both the iteration and refocusing functions are tail-recursive, and
consequently, the result of fixed-point promoting them will also be tail-recursive. Also, the
parameters of the function are the same as those of the reduction-based evaluator (terms and
contexts), and so the resulting function performs exactly like a state-transition system, i.e.,
the implementation of an abstract machine.

Since a reduction semantics for a language can be implemented straightforwardly as a
reduction-based evaluator, and since a state-transition system defines an abstract machine,
the syntactic correspondence provides a mechanism for proving equivalence between reduc-
tion semantics and abstract machine for the same language.

Reduction semantics
syntactic

correspondence
// Abstract machine

Refocusing and fixed-point promotion are both mechanical. Hence, it is also possible to
derive an abstract machine from a reduction semantics. However, it is not known whether it
is possible to mechanically derive a reduction semantics from an abstract machine semantics.

Background: The process of deriving an abstract machine from a reduction-based evalua-
tor is due to Danvy and Nielsen [21], who also coined the phrase ‘syntactic correspondence’.

33

The syntactic correspondence has been applied to various versions of the λ-calculus, includ-
ing the λ-calculus with explicit substitutions [7], and with computational effects [8].

Biernacka and Danvy showed that when the language in question is defined in terms of
explicit substitutions, the resulting abstract machine will be equipped with an environment
[7]. As we shall see in Chapter 9, this is also the case for the ςρ-calculus.

6.4 Summary and Conclusion

This chapter the syntactic correspondence, and its two building blocks, the processes of re-
focusing and fixed-point promotion.

Refocusing and fixed-point promotion form the building blocks of the syntactic corre-
spondence, which links reduction-based evaluators for languages with unique decomposi-
tion to state-transition systems. Since a reduction-based evaluator can be seen as a direct
implementation of a reduction semantics, and since a state-transition system can be seen
as a direct implementation of an abstract machine, the syntactic correspondence provides a
proof mechanism for equivalence between reduction semantics and abstract machine. Fur-
thermore, it is possible to derive an abstract machine from a reduction semantics, although it
is not known whether the reverse derivation is possible. It is not known to be possible in gen-
eral to derive a reduction semantics from an abstract machine, due to the lack of mechanical
reversibility of the syntactic correspondence.

34

Chapter 7

Conclusion – Tools

We have presented two correspondences for semantic descriptions, the functional and syn-
tactic correspondences. The functional correspondence connects natural semantics and ab-
stract machines, whereas the syntactic correspondence connects reduction semantics and
abstract machines. Both correspondences consist in semantic-preserving program transfor-
mations.

The functional correspondence arises from the CPS transformation and subsequent de-
functionalisation of a functional interpreter. The result of this transformation is a direct
implementation of a state-transition system, i.e., an abstract machine. Since functional in-
terpreters are direct implementations of natural semantics, and since both the CPS transfor-
mation and the process of defunctionalisation are mechanical program transformations, the
functional correspondence allows for the inter-derivation of natural semantics and abstract
machines.

The syntactic correspondence arises from the refocusing and subsequent fixed-point pro-
motion of a reduction-based evaluator. The result of this transformation is a direct imple-
mentation of a state-transition system, i.e., an abstract machine. Since reduction-based eval-
uators are direct implementations of reduction semantics, and since the both the process of
refocusing and the process of fixed-point promotion are mechanical program transforma-
tions, the syntactic correspondence allows for the inter-derivation of reduction semantics
and abstract machines.

Using the two correspondences together provides a connection between natural seman-
tics and reduction semantics, via abstract machines. The connection is illustrated in the
following diagram:

Reduction semantics
syntactic

correspondence
// Abstract machine Natural semantics

functional
correspondence
oo

In Chapters 8 and 9 we use the functional correspondence to derive abstract machines
from the natural semantics of the ς-calculus and the ςρ-calculus, respectively. We also use
the syntactic correspondence to derive the same abstract machines from the reduction se-
mantics of the two calculi, thereby proving the equivalence of the natural semantics and the
reduction semantics for each of the calculi.

35

36

Part III

Derivation and Equivalence

37

38

Chapter 8

An Abstract Machine for the ς-calculus

Part II described two different ways of deriving abstract machines for a language; one start-
ing from a reduction semantics of the language and one starting from the natural semantics
of the language. In this chapter, we apply these two techniques to the ς-calculus.

Since our evaluators will be implemented in SML, we begin by defining terms and values
of the ς-calculus as SML data types. The data types correspond to the grammars for terms
and values given in Chapter 2. Furthermore, we give various utility functions, which all
evaluators will use, and which are not touched by the transformations. These functions can
therefore safely be abstracted away in a module.

We first derive an abstract machine from the natural semantics of the ς-calculus described
in Chapter 2. We implement the natural semantics by building a direct-style interpreter, and
use the functional correspondence to derive an abstract machine.

We then derive an abstract machine from the reduction semantics, as described in Chap-
ter 2. We implement the reduction semantics by building a reduction-based evaluator, and
use the syntactic correspondence to derive an abstract machine.

The two abstract machines turn out to be identical. The natural semantics and the reduc-
tion semantics of the ς-calculus therefore describe the same language.

8.1 Data Type Definitions and Utility Functions

Figure 8.1 shows the SML data type definition for ς-terms. Labels and variables are imple-
mented as strings. Methods are pairs of variables and terms, and objects are lists of labelled
methods. The term data type is a direct implementation of the grammar for terms given in
Section 2.1.1.

Figures 8.2, 8.3 and 8.4 show three utility functions; lookup_label, which finds methods
in objects (Figure 8.2), update, which updates methods in objects (Figure 8.3), and substitute
which performs substitutions (Figure 8.4). Since the implementation of these functions is in-
duced by the data type of terms rather than by a particular style of evaluation, they can be
used by all ς-evaluators. We therefore abstract them away from the evaluators proper, and
provide an SML structure Util containing these functions for all evaluators in this chapter.

39

1 type label = string
2 type id = string
3
4 datatype term = VAR of id
5 | OBJECT of (label ∗ id ∗ term) list
6 | INVOKE of term ∗ label
7 | UPDATE of term ∗ label ∗ (id ∗ term)

Figure 8.1: Data type for terms of the ς-calculus

1 (∗ lookup_label : (label ∗ id ∗ term) list ∗ label −> (id ∗ term) option ∗)
2 (∗ find the method labelled label in the object ob ∗)
3 fun lookup_label (ob, label)
4 = let fun walk nil
5 = NONE (∗ label was not found ∗)
6 | walk ((l, x, t) :: ms)
7 = if l = label then SOME (x, t) else walk ms
8 in walk ob
9 end

Figure 8.2: Function for looking up methods in objects

1 (∗ update : (label ∗ id ∗ term) list ∗ label ∗ (id ∗ term)
2 −> (label ∗ id ∗ term) list option ∗)
3 (∗ update the method named by label in ob ∗)
4 fun update (ob, label, (x, t))
5 = let fun walk nil
6 = NONE (∗ label was not found ∗)
7 | walk ((m as (l, x’, t’)) :: ms)
8 = if l = label
9 then SOME ((l, x, t)::ms)

10 else case walk ms of NONE => NONE
11 | SOME ms => SOME (m :: ms)
12 in walk ob
13 end

Figure 8.3: Function for updating methods in objects

40

1 (∗ substitute : term ∗ id ∗ term −> term ∗)
2 (∗ substitute all free occurrences of id in v with a copy of t ∗)
3 fun substitute (v, x, t)
4 = let fun walk (VAR y)
5 = if x = y then v else VAR y
6 | walk (OBJECT ob)
7 = let fun visit nil
8 = nil
9 | visit ((m as (l, z, t)) :: ms)

10 = if x = z
11 then m :: (visit ms) (∗ method parameter shadows
12 substituted parameter ∗)
13 else (l, z, (walk t)) :: (visit ms)
14 in OBJECT (visit ob)
15 end
16 | walk (INVOKE (t, l))
17 = INVOKE ((walk t), l)
18 | walk (UPDATE (t, l, (y, t’)))
19 = UPDATE (walk t, l, (y, walk t’))
20 in walk t
21 end

Figure 8.4: Function for performing substitutions

1 datatype wrong = STUCK_VAR of id
2 | STUCK_LABEL of label
3
4 datatype result = VALUE of (label ∗ id ∗ term) list
5 | WRONGof wrong

Figure 8.5: Data type for values of the ς-calculus

1 signature Sigma_Evaluator =
2 sig
3 val main : term −> result
4 end

Figure 8.6: Signature for evaluators of the ς-calculus

Figure 8.5 shows the SML data type definition for ς-values. As can be seen, we use a
special value constructor WRONG for the result of a stuck evaluation. The result data type is
a straightforward implementation of the grammar for values given in Section 2.1.1.

A ς-evaluator must map ς-terms to ς-values, Given the data types described above, the
type signature for ς-evaluators is therefore the signature in Figure 8.6.

With these definitions in place, we are now ready to start the derivations.

41

8.2 Functional Correspondence

For the functional correspondence, the starting point of the derivation is a functional inter-
preter for the ς-calculus, written in direct style. A direct implementation of the natural se-
mantics presented in Section 2.1.2 gives rise to the interpreter given in Figure 8.7. The inter-
preter also corresponds to the pseudo-code interpreter given by Abadi and Cardelli [1, Page
65].

1 structure Sigma_DS_Interpreter : Sigma_Evaluator =
2 struct
3 local open Util in
4
5 fun eval (VAR x)
6 = WRONG (STUCK_VAR x)
7 | eval (OBJECT v)
8 = VALUE v
9 | eval (INVOKE (t, l))

10 = (case eval t
11 of VALUE receiver
12 => (case lookup_label (receiver, l)
13 of SOME (var, body)
14 => eval (substitute (OBJECT receiver, var, body))
15 | NONE
16 => WRONG (STUCK_LABEL l))
17 | error
18 => error)
19 | eval (UPDATE (t, l, (x, t’)))
20 = (case eval t
21 of VALUE receiver
22 => (case update (receiver, l, (x, t’))
23 of SOME v
24 => VALUE v
25 | NONE
26 => WRONG (STUCK_LABEL l))
27 | error
28 => error)
29
30 fun main t = eval t
31
32 end
33 end

Figure 8.7: DS interpreter for the ς-calculus

42

1 structure Sigma_CPS_Interpreter : Sigma_Evaluator =
2 struct
3 local open Util in
4
5 fun eval_cps (VAR x, c)
6 = c (WRONG (STUCK_VAR x))
7 | eval_cps (OBJECT v, c)
8 = c (VALUE v)
9 | eval_cps (INVOKE (t, l), c)

10 = eval_cps (t,
11 fn VALUE receiver
12 => (case lookup_label (receiver, l)
13 of SOME (var, body)
14 => eval_cps (substitute (OBJECT receiver, var, body), c)
15 | NONE
16 => c (WRONG (STUCK_LABEL l)))
17 | error
18 => c error)
19 | eval_cps (UPDATE (t, l, (x, t’)), c)
20 = eval_cps (t,
21 fn VALUE receiver
22 => (case update (receiver, l, (x, t’))
23 of SOME v
24 => c (VALUE v)
25 | NONE
26 => c (WRONG (STUCK_LABEL l)))
27 | error
28 => c error)
29
30 fun main t = eval_cps (t, fn v => v)
31
32 end
33 end

Figure 8.8: CPS interpreter for the ς-calculus

CPS transforming the interpreter in Figure 8.7 yields the interpreter in Figure 8.8.
When an error occurs, all continuations will simply propagate the error result onwards.

Hence, we can choose to not to apply the continuation when an error occurs.1 Then, the
continuations are only applied to non-error values VALUE v, so we may move the data type
constructor VALUE to the initial continuation. The result is shown in Figure 8.9.

1When doing so, we in fact use CPS to emulate the effect of raising an exception. Had we used SML exceptions
to signal errors in the DS interpreter, the CPS interpreter would also have used SML exceptions, and we could
then have eliminated them in the same way as we eliminate error propagation here.

43

1 structure Sigma_CPS_Interpreter’ : Sigma_Evaluator =
2 struct
3 local open Util in
4
5 fun eval_cps (VAR x, c)
6 = WRONG (STUCK_VAR x)
7 | eval_cps (OBJECT v, c)
8 = c v
9 | eval_cps (INVOKE (t, l), c)

10 = eval_cps (t,
11 fn receiver
12 => (case lookup_label (receiver, l)
13 of SOME (var, body)
14 => eval_cps (substitute (OBJECT receiver, var, body), c)
15 | NONE
16 => WRONG (STUCK_LABEL l)))
17 | eval_cps (UPDATE (t, l, (x, t’)), c)
18 = eval_cps (t,
19 fn receiver
20 => (case update (receiver, l, (x, t’))
21 of SOME v
22 => c v
23 | NONE
24 => WRONG (STUCK_LABEL l)))
25
26 fun main t = eval_cps (t, fn v => VALUE v)
27
28 end
29 end

Figure 8.9: CPS interpreter for the ς-calculus, with direct error propagation

44

We now defunctionalise the continuations introduced by the CPS transformation. The
defunctionalisation introduces the new data type abs with constructors ID, INV and UPD
representing the initial continuation, continuations introduced when evaluating invocation
terms, and continuations introduced when evaluating update terms, respectively. Defunc-
tionalisation also introduces the apply function apply_abs, which dispatches over values of
type abs. The result of the defunctionalisation can be seen in Figure 8.10.

1 structure Sigma_Defunctionalised_Interpreter : Sigma_Evaluator =
2 struct
3 local open Util in
4
5 datatype abs = ID
6 | INV of label ∗ abs
7 | UPD of label ∗ (id ∗ term) ∗ abs
8
9 fun apply_abs (ID, v)

10 = VALUE v
11 | apply_abs (INV (l, c), v)
12 = (case lookup_label (v, l)
13 of SOME (var, body)
14 => eval_defunct (substitute (OBJECT v, var, body), c)
15 | NONE
16 => WRONG (STUCK_LABEL l))
17 | apply_abs (UPD (l, (x, t’), c), v)
18 = (case update (v, l, (x, t’))
19 of SOME v
20 => apply_abs (c, v)
21 | NONE
22 => WRONG (STUCK_LABEL l))
23
24 and eval_defunct (VAR x, c)
25 = WRONG (STUCK_VAR x)
26 | eval_defunct (OBJECT v, c)
27 = apply_abs (c, v)
28 | eval_defunct (INVOKE (t, l), c)
29 = eval_defunct (t, INV (l, c))
30 | eval_defunct (UPDATE (t, l, (x, t’)), c)
31 = eval_defunct (t, UPD (l, (x, t’), c))
32
33 fun main t = eval_defunct (t, ID)
34
35 end
36 end

Figure 8.10: Defunctionalised CPS interpreter for the ς-calculus

45

As can be seen, the defunctionalised interpreter is a direct implementation of the follow-
ing abstract machine:

〈v, C〉 ⇒S 〈C, v〉
〈t.l, C〉 ⇒S 〈t, C[[].l]〉

〈t.l ⇐ ς(x)t′, C〉 ⇒S 〈t, C[[].l ⇐ ς(x)t′]〉

〈[], v 〉 ⇒S v

〈C[[].lj], vn〉 ⇒S 〈tj{vn/xj}, C〉
if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti

i∈{1...n}]

〈C[[].lj ⇐ ς(x)t], vn〉 ⇒S 〈C, [lj = ς(x)t, li = ς(xi)tii∈{1...n}\{j}]〉
if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti

i∈{1...n}]

For a closed term t, the machine starts in the state 〈t, []〉, and continues until it is either
stuck or reaches a result. The machine is stuck if it reaches either of the states 〈C[[].l], v〉 or
〈C[[].l ⇐ ς(x)t′], v〉 and v does not contain a method labelled l. It is also stuck if it reaches a
state 〈x, C〉 (which never happens when evaluating closed terms).

Since we have derived the abstract machine from the natural semantics using semantic-
preserving program transformations, the natural semantics and the abstract machine specify
the same language. In the following section, we derive the same abstract machine from the
reduction semantics of the ς-calculus.

8.3 Syntactic Correspondence

For the syntactic correspondence, the starting point of the derivation is a reduction-based
evaluator for the ς-calculus.

The evaluator contains four new data types, shown in Figure 8.11. The first two, called
potential_redex and reduction_context, correspond to the grammars for potential re-
dexes and reduction contexts, respectively. The grammars were given in Section 2.1.2. The
last two, called contractum and value_or_decomposition, are data types for the results of
contraction and decomposition, respectively. The iteration function uses values of the type
contractum to determine whether evaluation can continue or is stuck, and uses values of
the type value_or_decomposition to determine whether a final value is reached or whether
further reduction must take place. The uses of the last two data types will be eliminated
during the derivation.

46

1 datatype potential_redex =
2 INVOKE_REDEXof ((label ∗ id ∗ term) list) ∗ label
3 | UPDATE_REDEXof ((label ∗ id ∗ term) list) ∗ label ∗ (id ∗ term)
4
5 datatype reduction_context =
6 ID_CONTEXT
7 | INVOKE_CONTEXT of label ∗ reduction_context
8 | UPDATE_CONTEXTof label ∗ (id ∗ term) ∗ reduction_context
9

10 datatype contractum = ACTUAL_CONTRACTUM of term
11 | STUCK_CONTRACTUMof wrong
12
13 datatype value_or_decomposition = VAL of result
14 | DEC of reduction_context ∗ potential_redex

Figure 8.11: Data types of the reduction-based evaluator for the ς-calculus

Based on these data types, a direct implementation of the reduction semantics gives rise
to the evaluator displayed in Figure 8.12. Two extra rules have been introduced. The first
rule returns an error value when evaluation is stuck because an unsubstituted variable has
been reached, which will never happen for the evaluation of closed terms. The rule has
been added to make the SML compiler accept the evaluator without issuing a warning. The
second rule simply says that v → v, and handles the case where a final value is reached

Refocusing the evaluator in Figure 8.12 yields the evaluator displayed in Figure 8.13.
The functions decompose and plug have now been eliminated, and the refocus function has
taken their place. Given a term and a context, refocus now finds the next potential redex
directly, rather than reconstructing the entire term and subsequently decomposing it.

Fusing the iteration and refocusing functions using fixed-point promotion now yields the
evaluator displayed in Figure 8.14. The functions iterate, refocus, refocus’ and refocus’
_aux are no longer called, so their definitions have been removed. Similarly, there is no
longer any need for the data type value_or_decomposition, since iterate_refocus now
either returns the found value directly, or calls the contraction function on the found redex.

47

1 structure Sigma_Reductionbased : Sigma_Evaluator =
2 struct
3 local open Util in
4
5 fun contract (INVOKE_REDEX (v, l))
6 = (case lookup_label (v, l)
7 of SOME (var, body)
8 => ACTUAL_CONTRACTUM (substitute (OBJECT v, var, body))
9 | NONE

10 => STUCK_CONTRACTUM (STUCK_LABEL l))
11 | contract (UPDATE_REDEX (v, l, (id, t’)))
12 = (case update (v, l, (id, t’))
13 of SOME v’
14 => ACTUAL_CONTRACTUM (OBJECT v’)
15 | NONE
16 => STUCK_CONTRACTUM (STUCK_LABEL l))
17
18 fun plug (ID_CONTEXT, t)
19 = t
20 | plug (INVOKE_CONTEXT (l, rc), t)
21 = plug (rc, INVOKE (t, l))
22 | plug (UPDATE_CONTEXT (l, (id, t’), rc), t)
23 = plug (rc, UPDATE (t, l, (id, t’)))
24
25 fun decompose’ (VAR x, rc) (∗ Extra rule. ∗)
26 = VAL (WRONG (STUCK_VAR x))
27 | decompose’ (OBJECT v, rc) (∗ Extra rule. ∗)
28 = VAL (VALUE v) (∗ Can only happen when rc = ID_CONTEXT ∗)
29 | decompose’ (INVOKE (OBJECT v, l), rc)
30 = DEC (rc, INVOKE_REDEX (v, l))
31 | decompose’ (INVOKE (t, l), rc)
32 = decompose’ (t, INVOKE_CONTEXT (l, rc))
33 | decompose’ (UPDATE (OBJECT v, l, (id, t’)), rc)
34 = DEC (rc, UPDATE_REDEX (v, l, (id, t’)))
35 | decompose’ (UPDATE (t, l, (id, t’)), rc)
36 = decompose’ (t, UPDATE_CONTEXT (l, (id, t’), rc))
37
38 fun decompose t
39 = decompose’ (t, ID_CONTEXT)
40
41 fun iterate (VAL v)
42 = v
43 | iterate (DEC (rc, pr))
44 = (case contract pr
45 of ACTUAL_CONTRACTUM t
46 => iterate (decompose (plug (rc, t)))
47 | STUCK_CONTRACTUM w
48 => WRONG w)
49
50 fun main t = iterate (decompose (plug (ID_CONTEXT, t)))
51
52 end
53 end

Figure 8.12: Reduction-based evaluator for the ς-calculus

48

1 structure Sigma_Refocused : Sigma_Evaluator =
2 struct
3 local open Util in
4
5 fun contract (INVOKE_REDEX (v, l))
6 = (case lookup_label (v, l)
7 of SOME (var, body)
8 => ACTUAL_CONTRACTUM (substitute (OBJECT v, var, body))
9 | NONE

10 => STUCK_CONTRACTUM (STUCK_LABEL l))
11 | contract (UPDATE_REDEX (v, l, (id, t’)))
12 = (case update (v, l, (id, t’))
13 of SOME v’
14 => ACTUAL_CONTRACTUM (OBJECT v’)
15 | NONE
16 => STUCK_CONTRACTUM (STUCK_LABEL l))
17
18 fun refocus’ (VAR x, rc)
19 = VAL (WRONG (STUCK_VAR x))
20 | refocus’ (OBJECT v, rc)
21 = refocus’_aux (v, rc)
22 | refocus’ (INVOKE (t, l), rc)
23 = refocus’ (t, INVOKE_CONTEXT (l, rc))
24 | refocus’ (UPDATE (t, l, (id, t’)), rc)
25 = refocus’ (t, UPDATE_CONTEXT (l, (id, t’), rc))
26 and refocus’_aux (v, ID_CONTEXT)
27 = VAL (VALUE v)
28 | refocus’_aux (v, INVOKE_CONTEXT (l, rc))
29 = DEC (rc, INVOKE_REDEX (v, l))
30 | refocus’_aux (v, UPDATE_CONTEXT (l, (id, t’), rc))
31 = DEC (rc, UPDATE_REDEX (v, l, (id, t’)))
32
33 fun refocus (rc, t) = refocus’ (t, rc)
34
35 fun iterate (VAL v)
36 = v
37 | iterate (DEC (rc, pr))
38 = (case contract pr
39 of ACTUAL_CONTRACTUM t
40 => iterate (refocus (rc, t))
41 | STUCK_CONTRACTUM w
42 => WRONG w)
43
44 fun main t = iterate (refocus (ID_CONTEXT, t))
45
46 end
47 end

Figure 8.13: Refocused evaluator for the ς-calculus

49

1 structure Sigma_Refocused_Fused : Sigma_Evaluator =
2 struct
3 local open Util in
4
5 fun contract (INVOKE_REDEX (v, l))
6 = (case lookup_label (v, l)
7 of SOME (var, body)
8 => ACTUAL_CONTRACTUM (substitute (OBJECT v, var, body))
9 | NONE

10 => STUCK_CONTRACTUM (STUCK_LABEL l))
11 | contract (UPDATE_REDEX (v, l, (id, t’)))
12 = (case update (v, l, (id, t’))
13 of SOME v’
14 => ACTUAL_CONTRACTUM (OBJECT v’)
15 | NONE
16 => STUCK_CONTRACTUM (STUCK_LABEL l))
17
18 fun iterate_refocus (VAR x, rc)
19 = WRONG (STUCK_VAR x)
20 | iterate_refocus (OBJECT v, rc)
21 = iterate_refocus_aux (v, rc)
22 | iterate_refocus (INVOKE (t, l), rc)
23 = iterate_refocus (t, INVOKE_CONTEXT (l, rc))
24 | iterate_refocus (UPDATE (t, l, (id, t’)), rc)
25 = iterate_refocus (t, UPDATE_CONTEXT (l, (id, t’), rc))
26 and iterate_refocus_aux (v, ID_CONTEXT)
27 = VALUE v
28 | iterate_refocus_aux (v, INVOKE_CONTEXT (l, rc))
29 = (case contract (INVOKE_REDEX (v, l))
30 of ACTUAL_CONTRACTUM t
31 => iterate_refocus (t, rc)
32 | STUCK_CONTRACTUM w
33 => WRONG w)
34 | iterate_refocus_aux (v, UPDATE_CONTEXT (l, (id, t’), rc))
35 = (case contract (UPDATE_REDEX (v, l, (id, t’)))
36 of ACTUAL_CONTRACTUM t
37 => iterate_refocus (t, rc)
38 | STUCK_CONTRACTUM w
39 => WRONG w)
40
41 fun main t = iterate_refocus (t, ID_CONTEXT)
42
43 end
44 end

Figure 8.14: Refocused and fused evaluator for the ς-calculus

50

Since the contraction function is now always called on known redex types, we can inline
the body of contract and simplify the terms. In doing so, we eliminate the need for the
contractum data type. The result can be seen in Figure 8.15.

1 structure Sigma_Refocused_Fused_Inlined : Sigma_Evaluator =
2 struct
3 local open Util in
4
5 fun iterate_refocus (VAR x, rc)
6 = WRONG (STUCK_VAR x)
7 | iterate_refocus (OBJECT v, rc)
8 = iterate_refocus_aux (v, rc)
9 | iterate_refocus (INVOKE (t, l), rc)

10 = iterate_refocus (t, INVOKE_CONTEXT (l, rc))
11 | iterate_refocus (UPDATE (t, l, (id, t’)), rc)
12 = iterate_refocus (t, UPDATE_CONTEXT (l, (id, t’), rc))
13 and iterate_refocus_aux (v, ID_CONTEXT)
14 = VALUE v
15 | iterate_refocus_aux (v, INVOKE_CONTEXT (l, rc))
16 = (case lookup_label (v, l)
17 of SOME (var, body)
18 => iterate_refocus (substitute (OBJECT v, var, body), rc)
19 | NONE
20 => WRONG (STUCK_LABEL l))
21 | iterate_refocus_aux (v, UPDATE_CONTEXT (l, (id, t’), rc))
22 = (case update (v, l, (id, t’))
23 of SOME v’
24 => iterate_refocus_aux (v’, rc)
25 | NONE
26 => WRONG (STUCK_LABEL l))
27
28 fun main t = iterate_refocus (t, ID_CONTEXT)
29
30 end
31 end

Figure 8.15: Evaluator for the ς-calculus, with inlined contraction function

The evaluator directly implements a state-transition system, i.e., an abstract machine.
Furthermore, the abstract machine is the same as the one derived by the functional corre-
spondence, up to reordering of state components. This fact can be verified by observing
that the types abs and reduction_context are isomorphic, and that iterate_refocus and
iterate_refocus_aux are equivalent to eval_defunct and apply_abs, respectively.

Since the abstract machines are identical, the natural semantics and the reduction seman-
tics of the ς-calculus (and, of course, the abstract machine) define the same language. This
equivalence is illustrated in the following diagram:

Natural semantics
for the ς-calculus

functional
correspondence

// Abstract machine
for the ς-calculus

Reduction semantics
for the ς-calculus

syntactic
correspondence

oo

51

8.4 Summary and Conclusions

We have derived two abstract machines for the ς-calculus; one from the natural semantics
using the functional correspondence, and one from the reduction semantics using the syn-
tactic correspondence. The two machines are identical, and new.

Since the functional and syntactic correspondences are both semantic preserving, the
interpreter, the evaluator and the abstract machine implement the same language. The fact
that the two derived abstract machines are identical confirms the equivalence between the
natural semantics and the reduction semantics of the ς-calculus as proved by Abadi and
Cardelli. In contrast to their proof, however, we have obtained our proof by mechanical
derivation rather than by using pen and paper.

52

Chapter 9

An Abstract Machine for the
ςρ-calculus

In the previous chapter, we applied the functional and syntactic correspondences to the ς-
calculus, and thereby derived an abstract machine for that calculus. In this chapter, we apply
the same two techniques to the ςρ-calculus.

Since the ςρ-calculus is defined in terms of closures, we begin by defining closures as an
SML data type. We also present a new data type for values, since the definition of values
is different for the ςρ-calculus than for the ς-calculus. The data types correspond to the
grammars for terms and values given in Chapter 3. Furthermore, we give various utility
functions, which all evaluators will use, and which are not touched by the transformations.
These functions can therefore safely be abstracted away.

We first derive an abstract machine from the natural semantics of the ςρ-calculus de-
scribed in Chapter 3. We implement the natural semantics by building a direct-style inter-
preter, and use the functional correspondence to derive an abstract machine.

We then derive an abstract machine from the reduction semantics, also described in
Chapter 3. We implement the reduction semantics by building a reduction-based evalua-
tor, and use the syntactic correspondence to derive an abstract machine.

The two abstract machines turn out to be identical, proving that the natural semantics
and the reduction semantics of the ςρ-calculus describe the same language.

9.1 Data Type Definitions and Utility Functions

The terms of the ςρ-calculus are the same as those for the ς-calculus.
Figure 9.1 shows the SML data type definition for closures and environments of the ςρ-

calculus. As can be seen, all closures are now equipped with environments. The only excep-
tion is invocation closures, which do not need them. The closure data type is a direct imple-
mentation of the grammar for closures given in Section 3.1.2, except that we have grouped
all closures defined as a (term, environment) pair into one closure type, GROUND_CLO. Envi-
ronments are implemented as association lists, as suggested by the syntax.

As mentioned, the definition of values changes for the ςρ-calculus, and hence, the result
data type changes as well. Results are now either lists of method closures, a type which we
have named receiver_closure, or they are values of the wrong data type, which is identical
to the type from the ς-calculus. The new data type for values can be seen in Figure 9.2.

53

1 datatype closure = GROUND_CLO of term ∗ environment
2 | OBJECT_CLO of receiver_closure
3 | INVOKE_CLO of closure ∗ label
4 | UPDATE_CLO of closure ∗ label ∗ ((id ∗ term) ∗ environment)
5 and environment = ENV of (id ∗ receiver_closure) list
6 withtype receiver_closure = (label ∗ ((id ∗ term) ∗ environment)) list

Figure 9.1: Data type for closures of the ςρ-calculus

1 datatype result = VALUE of receiver_closure
2 | WRONGof wrong

Figure 9.2: Data type for values of the ςρ-calculus

1 signature Sigmarho_Evaluator =
2 sig
3 val main : term −> result
4 end

Figure 9.3: Signature for evaluators of the ςρ-calculus

The signature for ςρ-evaluators changes, but only because the definition of result changes.
The definition can be seen in Figure 9.3.

54

1 (∗ lookup_label :
2 receiver_closure ∗ label −> ((id ∗ term) ∗ environment) option ∗)
3 fun lookup_label (rec_clo, l)
4 = let fun walk nil
5 = NONE (∗ label was not found ∗)
6 | walk ((l’, mc) :: ms)
7 = if l’ = l
8 then SOME mc
9 else walk ms

10 in walk rec_clo
11 end

Figure 9.4: Function for looking up methods in objects

1 (∗ update :
2 receiver_closure ∗ label ∗ ((id ∗ term) ∗ environment)
3 −> receiver_closure option ∗)
4 (∗ update the method named by label in rec_clo ∗)
5 fun update (rec_clo, l, ((x, t), e))
6 = let fun walk nil
7 = NONE (∗ label was not found ∗)
8 | walk ((m as (l’, ((x’, t’), e’))) :: ms)
9 = if l’ = l

10 then SOME ((l, ((x, t), e))::ms)
11 else case walk ms of SOME ms’
12 => SOME (m :: ms’)
13 | NONE
14 => NONE
15 in walk rec_clo
16 end

Figure 9.5: Function for updating methods in objects

The lookup_label and update utility functions from the previous chapter change slightly,
to account for the new definition of values. The substitute function is no longer needed,
since the calculus is now defined in terms of explicit substitutions. The new function defini-
tions can be seen in Figures 9.4 and 9.5.

55

1 (∗ The initial (empty) environment ∗)
2 (∗ empty_environment : environment ∗)
3 val empty_environment = ENV nil
4
5 (∗ assoc : id ∗ environment −> receiver_closure option ∗)
6 (∗ Environment lookup function. ∗)
7 fun assoc (x, ENV es)
8 = let fun walk nil
9 = NONE

10 | walk ((x’, v) :: xvs’)
11 = if x = x’
12 then SOME v
13 else walk xvs’
14 in walk es
15 end
16
17 (∗ extend_environment : environment ∗ id ∗ receiver_closure −> environment ∗)
18 (∗ Extends an environment with a new (id, receiver_closure) pair ∗)
19 fun extend_environment (ENV es, x, v)
20 = ENV ((x, v) :: es)

Figure 9.6: Functions implementing environments in the ςρ-calculus

1 (∗ close_object : receiver ∗ environment −> receiver_closure ∗)
2 fun close_object (r, e)
3 = let (∗ close : label ∗ id ∗ term −> label ∗ ((id ∗ term) ∗ environment) ∗)
4 (∗ converts members of object literals to closures ∗)
5 fun close (l, x, t) = (l, ((x, t), e))
6 in map close r
7 end

Figure 9.7: Function mapping object literals and environments to receiver_closures

We also need a lookup and an extend function for environments, and a constant value
for the empty environment. These function and value definitions can be seen in Figure 9.6.

Finally, we need a function for creating a receiver_closure from an object literal and an
environment. This function can be seen in Figure 9.7.

With these definitions in place, we are now ready to start the derivations.

9.2 Functional Correspondence

For the functional correspondence, the starting point of the derivation is a functional in-
terpreter for the ςρ-calculus, written in direct style. Since the ςρ-calculus is defined using
explicit substitutions, the interpreter will be equipped with an environment. A direct im-
plementation of the natural semantics presented in Section 3.1.2 gives rise to the interpreter
given in Figure 9.8.

56

1 structure Sigmarho_Interpreter : Sigmarho_Evaluator =
2 struct
3 local open Util in
4
5 fun eval (VAR x, e)
6 = (case assoc (x, e)
7 of SOME rec_clo
8 => VALUE rec_clo
9 | NONE

10 => WRONG (STUCK_VAR x))
11 | eval (OBJECT v, e)
12 = VALUE (close_object (v, e))
13 | eval (INVOKE (t, l), e)
14 = (case eval (t, e)
15 of VALUE receiver
16 => (case lookup_label (receiver, l)
17 of SOME ((var, body), e’)
18 => eval (body, extend_environment (e’, var, receiver))
19 | NONE
20 => WRONG (STUCK_LABEL l))
21 | error
22 => error)
23 | eval (UPDATE (t, l, (x, t’)), e)
24 = (case eval (t, e)
25 of VALUE receiver
26 => (case update (receiver, l, ((x, t’), e))
27 of SOME rec_clo
28 => VALUE rec_clo
29 | NONE
30 => WRONG (STUCK_LABEL l))
31 | error
32 => error)
33
34 fun main t = eval (t, empty_environment)
35
36 end
37 end

Figure 9.8: DS interpreter for the ςρ-calculus

57

1 structure Sigmarho_CPS_Interpreter : Sigmarho_Evaluator =
2 struct
3 local open Util in
4
5 fun eval_cps (VAR x, e, c)
6 = (case assoc (x, e)
7 of SOME rec_clo
8 => c (VALUE rec_clo)
9 | NONE

10 => c (WRONG (STUCK_VAR x)))
11 | eval_cps (OBJECT v, e, c)
12 = c (VALUE (close_object (v, e)))
13 | eval_cps (INVOKE (t, l), e, c)
14 = eval_cps (t, e,
15 fn VALUE receiver
16 => (case lookup_label (receiver, l)
17 of SOME ((var, body), e’)
18 => eval_cps (body, extend_environment (e’, var, receiver

), c)
19 | NONE
20 => c (WRONG (STUCK_LABEL l)))
21 | error
22 => c error)
23 | eval_cps (UPDATE (t, l, (x, t’)), e, c)
24 = eval_cps (t, e,
25 fn VALUE receiver
26 => (case update (receiver, l, ((x, t’), e))
27 of SOME rec_clo
28 => c (VALUE rec_clo)
29 | NONE
30 => c (WRONG (STUCK_LABEL l)))
31 | error
32 => c error)
33
34 fun main t = eval_cps (t, empty_environment, fn v => v)
35
36 end
37 end

Figure 9.9: CPS interpreter for the ςρ-calculus

CPS transforming the interpreter in Figure 9.8 yields the interpreter in Figure 9.9.
When an error occurs, all continuations will simply propagate the error result onwards.

Hence, we can choose to not to apply the continuation when an error occurs, exactly like we
did for the ς-calculus. Then, the continuations are only applied to non-error values VALUE
v, so we may move the data type constructor VALUE to the initial continuation. The result is
shown in Figure 9.10.

58

1 structure Sigmarho_CPS_Interpreter’ : Sigmarho_Evaluator =
2 struct
3 local open Util in
4
5 fun eval_cps (VAR x, e, c)
6 = (case assoc (x, e)
7 of SOME rec_clo
8 => c rec_clo
9 | NONE

10 => WRONG (STUCK_VAR x))
11 | eval_cps (OBJECT v, e, c)
12 = c (close_object (v, e))
13 | eval_cps (INVOKE (t, l), e, c)
14 = eval_cps (t, e,
15 fn receiver
16 => (case lookup_label (receiver, l)
17 of SOME ((var, body), e’)
18 => eval_cps (body,
19 extend_environment (e’, var, receiver), c)
20 | NONE
21 => WRONG (STUCK_LABEL l)))
22 | eval_cps (UPDATE (t, l, (x, t’)), e, c)
23 = eval_cps (t, e,
24 fn receiver
25 => (case update (receiver, l, ((x, t’), e))
26 of SOME rec_clo
27 => c rec_clo
28 | NONE
29 => WRONG (STUCK_LABEL l)))
30
31 fun main t = eval_cps (t, empty_environment, fn v => VALUE v)
32
33 end
34 end

Figure 9.10: CPS interpreter for the ςρ-calculus, with direct error propagation

59

1 structure Sigmarho_Defunctionalised_Interpreter : Sigmarho_Evaluator =
2 struct
3 local open Util in
4
5 datatype abs = ID
6 | INV of label ∗ abs
7 | UPD of label ∗ (id ∗ term) ∗ environment ∗ abs
8
9 fun apply_abs (ID, v)

10 = VALUE v
11 | apply_abs (INV (l, c), v)
12 = (case lookup_label (v, l)
13 of SOME ((var, body), e)
14 => eval_defunct (body, extend_environment (e, var, v), c)
15 | NONE
16 => WRONG (STUCK_LABEL l))
17 | apply_abs (UPD (l, (x, t), e, c), v)
18 = (case update (v, l, ((x, t), e))
19 of SOME rec_clo
20 => apply_abs (c, rec_clo)
21 | NONE
22 => WRONG (STUCK_LABEL l))
23
24 and eval_defunct (VAR x, e, c)
25 = (case assoc (x, e)
26 of SOME rec_clo
27 => apply_abs (c, rec_clo)
28 | NONE
29 => WRONG (STUCK_VAR x))
30 | eval_defunct (OBJECT v, e, c)
31 = apply_abs (c, close_object (v, e))
32 | eval_defunct (INVOKE (t, l), e, c)
33 = eval_defunct (t, e, INV (l, c))
34 | eval_defunct (UPDATE (t, l, (x, t’)), e, c)
35 = eval_defunct (t, e, UPD (l, (x, t’), e, c))
36
37 fun main t = eval_defunct (t, empty_environment, ID)
38
39 end
40 end

Figure 9.11: Defunctionalised CPS interpreter for the ςρ-calculus

We now defunctionalise the continuations introduced by the CPS transformation. The
defunctionalisation introduces the new data type abs with constructors ID, INV and UPD
representing the initial continuation, continuations introduced when evaluating invocation
terms, and continuations introduced when evaluating update terms, respectively. Defunc-
tionalisation also introduces the apply function apply_abs, which dispatches over values of
type abs. The result of the defunctionalisation can be seen in Figure 9.11.

The defunctionalised interpreter is a direct implementation of the following abstract ma-
chine:

60

〈x, e, C〉 ⇒E 〈C, v〉
if lookup (x, e) = v

〈[li = ς(xi)ti
i∈{1...n}], e, C〉 ⇒E 〈C, [li = (ς(xi)ti)[e]

i∈{1...n}]〉
〈t.l, e, C〉 ⇒E 〈t, e, C[[].l]〉

〈t.l ⇐ ς(x)t′, e, C〉 ⇒E 〈t, e, C[[].l ⇐ (ς(x)t′)[e]]〉

〈[], v 〉 ⇒E v

〈C[[].lj], vn〉 ⇒E 〈tj , (xj , vn) · ej , C〉
if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]

i∈{1...n}]

〈C[[].lj ⇐ (ς(x)t)[e]], vn〉 ⇒E 〈C, [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]
i∈{1...n}\{j}]〉

if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]
i∈{1...n}]

Notice that the machine is equipped with an environment. For a closed term t, the machine
starts in the state 〈t, •, []〉, and continues until it is either stuck or reaches a result. The
machine is stuck if it reaches either of the states 〈C[[].l], v〉 or 〈C[[].l ⇐ (ς(x)t′)[e]], v〉 and v
does not contain a method labelled l. It is also stuck if it reaches a state 〈x, e, C〉, and x is
not bound in e (which never happens when evaluating closed terms).

Since we have derived the abstract machine from the natural semantics using semantic-
preserving program transformations, the natural semantics and the abstract machine specify
the same language. In the following section, we derive the same abstract machine from the
reduction semantics of the ςρ-calculus.

9.3 Syntactic Correspondence

For the syntactic correspondence, the starting point of the derivation is a reduction-based
evaluator for the ςρ-calculus.

The evaluator contains four new data types, shown in Figure 9.12.
The first two, called potential_redex and reduction_context, correspond to the gram-

mars for potential redexes and reduction contexts, respectively. The grammars were given in
Section 3.1.2. The last two, called contractum and value_or_decomposition, are data types
for the result of contraction and decomposition, respectively. The iteration function uses
values of the type contractum to determine whether evaluation can continue or is stuck,
and uses values of the type value_or_decomposition to determine whether a final value is
reached or whether further reduction must take place. The uses of the last two data types
will be eliminated during the derivation.

61

1 datatype potential_redex =
2 INVOKE_REDEXof receiver_closure ∗ label
3 | UPDATE_REDEXof receiver_closure ∗ label ∗ ((id ∗ term) ∗ environment)
4 | VAR_REDEX of id ∗ environment
5 | OBJECT_REDEX of receiver ∗ environment
6 | INVOKE_PROP of term ∗ label ∗ environment
7 | UPDATE_PROPof term ∗ label ∗ ((id ∗ term) ∗ environment)
8
9 datatype reduction_context =

10 ID_CONTEXT
11 | INVOKE_CONTEXT of label ∗ reduction_context
12 | UPDATE_CONTEXTof label ∗ ((id ∗ term) ∗ environment) ∗

reduction_context
13
14 datatype contractum = ACTUAL_CONTRACTUM of closure
15 | STUCK_CONTRACTUMof wrong
16
17 datatype value_or_decomposition = VAL of result
18 | DEC of reduction_context ∗ potential_redex

Figure 9.12: Data types of the reduction-based evaluator for the ςρ-calculus

Based on these data types, a direct implementation of the reduction semantics gives rise
to the evaluator displayed in Figures 9.13 and 9.14. An extra rule has been introduced to
handle the case where a final value is reached. The rule simply says that v → v.

62

1 structure Sigmarho_Reductionbased : Sigmarho_Evaluator =
2 struct
3 local open Util in
4
5 fun contract (VAR_REDEX (x, e))
6 = (case assoc (x, e)
7 of SOME c
8 => ACTUAL_CONTRACTUM (OBJECT_CLO c)
9 | NONE

10 => STUCK_CONTRACTUM (STUCK_VAR x))
11 | contract (OBJECT_REDEX (r, e))
12 = ACTUAL_CONTRACTUM (OBJECT_CLO (close_object (r, e)))
13 | contract (INVOKE_REDEX (c, l))
14 = (case lookup_label (c, l)
15 of SOME ((var, body), e)
16 => ACTUAL_CONTRACTUM
17 (GROUND_CLO (body, extend_environment (e, var, c)))
18 | NONE
19 => STUCK_CONTRACTUM (STUCK_LABEL l))
20 | contract (UPDATE_REDEX (c, l, ((x, t), e)))
21 = (case update (c, l, ((x, t), e))
22 of SOME c’
23 => ACTUAL_CONTRACTUM (OBJECT_CLO c’)
24 | NONE
25 => STUCK_CONTRACTUM (STUCK_LABEL l))
26 | contract (INVOKE_PROP (t, l, e))
27 = ACTUAL_CONTRACTUM (INVOKE_CLO (GROUND_CLO (t, e), l))
28 | contract (UPDATE_PROP (t, l, ((x, t’), e)))
29 = ACTUAL_CONTRACTUM (UPDATE_CLO (GROUND_CLO (t, e), l, ((x, t’), e)))
30
31 fun plug (ID_CONTEXT, c)
32 = c
33 | plug (INVOKE_CONTEXT (l, rc), c)
34 = plug (rc, INVOKE_CLO (c, l))
35 | plug (UPDATE_CONTEXT (l, ((x, t), e), rc), c)
36 = plug (rc, UPDATE_CLO (c, l, ((x, t), e)))

Figure 9.13: Reduction-based evaluator for the ςρ-calculus (continued in Figure 9.14)

63

37 fun decompose’ (GROUND_CLO (VAR x, e), rc)
38 = DEC (rc, VAR_REDEX (x, e))
39 | decompose’ (GROUND_CLO (OBJECT v, e), rc)
40 = DEC (rc, OBJECT_REDEX (v, e))
41 | decompose’ (GROUND_CLO (INVOKE (t, l), e), rc)
42 = DEC (rc, INVOKE_PROP (t, l, e))
43 | decompose’ (GROUND_CLO (UPDATE (t, l, (x, t’)), e), rc)
44 = DEC (rc, UPDATE_PROP (t, l, ((x, t’), e)))
45 | decompose’ (OBJECT_CLO c, rc) (∗ Extra rule ∗)
46 = VAL (VALUE c) (∗ Can only happen when rc = ID_CONTEXT ∗)
47 | decompose’ (INVOKE_CLO (OBJECT_CLO c, l), rc)
48 = DEC (rc, INVOKE_REDEX (c, l))
49 | decompose’ (INVOKE_CLO (c, l), rc)
50 = decompose’ (c, INVOKE_CONTEXT(l, rc))
51 | decompose’ (UPDATE_CLO (OBJECT_CLO c, l, ((x, t), e)), rc)
52 = DEC (rc, UPDATE_REDEX (c, l, ((x, t), e)))
53 | decompose’ (UPDATE_CLO (c, l, ((x, t), e)), rc)
54 = decompose’ (c, UPDATE_CONTEXT (l, ((x, t), e), rc))
55
56 fun decompose c
57 = decompose’ (c, ID_CONTEXT)
58
59 fun iterate (VAL v)
60 = v
61 | iterate (DEC (rc, pr))
62 = (case contract pr
63 of ACTUAL_CONTRACTUM c
64 => iterate (decompose (plug (rc, c)))
65 | STUCK_CONTRACTUM w
66 => WRONG w)
67
68 fun main t = iterate (decompose (plug (ID_CONTEXT,
69 GROUND_CLO (t, empty_environment))))
70
71 end
72 end

Figure 9.14: Reduction-based evaluator for the ςρ-calculus (continued from Figure 9.13)

Refocusing the reduction-based evaluator yields the evaluator displayed in Figures 9.15
and 9.16. The functions decompose and plug have now been eliminated, and the refocus
function has taken their place. Given a closure and a context, refocus will now find the
next potential redex directly, rather than reconstructing the entire closure and subsequently
decomposing it.

64

1 structure Sigmarho_Refocused : Sigmarho_Evaluator =
2 struct
3 local open Util in
4
5 fun contract (VAR_REDEX (x, e))
6 = (case assoc (x, e)
7 of SOME c
8 => ACTUAL_CONTRACTUM (OBJECT_CLO c)
9 | NONE

10 => STUCK_CONTRACTUM (STUCK_VAR x))
11 | contract (OBJECT_REDEX (r, e))
12 = ACTUAL_CONTRACTUM (OBJECT_CLO (close_object (r, e)))
13 | contract (INVOKE_REDEX (c, l))
14 = (case lookup_label (c, l)
15 of SOME ((var, body), e)
16 => ACTUAL_CONTRACTUM
17 (GROUND_CLO (body, extend_environment (e, var, c)))
18 | NONE
19 => STUCK_CONTRACTUM (STUCK_LABEL l))
20 | contract (UPDATE_REDEX (c, l, ((x, t), e)))
21 = (case update (c, l, ((x, t), e))
22 of SOME c’
23 => ACTUAL_CONTRACTUM (OBJECT_CLO c’)
24 | NONE
25 => STUCK_CONTRACTUM (STUCK_LABEL l))
26 | contract (INVOKE_PROP (t, l, e))
27 = ACTUAL_CONTRACTUM (INVOKE_CLO (GROUND_CLO (t, e), l))
28 | contract (UPDATE_PROP (t, l, ((x, t’), e)))
29 = ACTUAL_CONTRACTUM (UPDATE_CLO (GROUND_CLO (t, e), l, ((x, t’), e)))
30
31 fun refocus’ (GROUND_CLO (VAR x, e), rc)
32 = DEC (rc, VAR_REDEX (x, e))
33 | refocus’ (GROUND_CLO (OBJECT v, e), rc)
34 = DEC (rc, OBJECT_REDEX (v, e))
35 | refocus’ (GROUND_CLO (INVOKE (t, l), e), rc)
36 = DEC (rc, INVOKE_PROP (t, l, e))
37 | refocus’ (GROUND_CLO (UPDATE (t, l, (x, t’)), e), rc)
38 = DEC (rc, UPDATE_PROP (t, l, ((x, t’), e)))
39 | refocus’ (OBJECT_CLO c, rc)
40 = refocus’_aux (c, rc)
41 | refocus’ (INVOKE_CLO (c, l), rc)
42 = refocus’ (c, INVOKE_CONTEXT(l, rc))
43 | refocus’ (UPDATE_CLO (c, l, ((x, t), e)), rc)
44 = refocus’ (c, UPDATE_CONTEXT (l, ((x, t), e), rc))
45 and refocus’_aux (c, ID_CONTEXT)
46 = VAL (VALUE c)
47 | refocus’_aux (c, INVOKE_CONTEXT (l, rc))
48 = DEC (rc, INVOKE_REDEX (c, l))
49 | refocus’_aux (c, UPDATE_CONTEXT (l, ((x, t), e), rc))
50 = DEC (rc, UPDATE_REDEX (c, l, ((x, t), e)))
51
52 fun refocus (c, rc) = refocus’ (c, rc)

Figure 9.15: Refocused evaluator for the ςρ-calculus (continued in Figure 9.16)

65

53 fun iterate (VAL v)
54 = v
55 | iterate (DEC (rc, pr))
56 = (case contract pr
57 of ACTUAL_CONTRACTUM c
58 => iterate (refocus’ (c, rc))
59 | STUCK_CONTRACTUM w
60 => WRONG w)
61
62 fun main t = iterate (refocus
63 (GROUND_CLO (t, empty_environment), ID_CONTEXT))
64
65 end
66 end

Figure 9.16: Refocused evaluator for the ςρ-calculus (continued from Figure 9.15)

Fusing iterate and refocus functions using fixed-point promotion yields the evaluator
in Figures 9.17 and 9.18. The fixed-point promotion has eliminated all calls to functions
iterate, refocus, refocus’ and refocus’_aux, so their definitions have been removed.
Similarly, there is no longer any need for the data type value_or_decomposition, since
iterate_refocus now either returns the found value directly, or calls the contraction func-
tion on the found redex.

66

1 structure Sigmarho_Refocused_Fused : Sigmarho_Evaluator =
2 struct
3 local open Util in
4
5 fun contract (VAR_REDEX (x, e))
6 = (case assoc (x, e)
7 of SOME c
8 => ACTUAL_CONTRACTUM (OBJECT_CLO c)
9 | NONE

10 => STUCK_CONTRACTUM (STUCK_VAR x))
11 | contract (OBJECT_REDEX (r, e))
12 = ACTUAL_CONTRACTUM (OBJECT_CLO (close_object (r, e)))
13 | contract (INVOKE_REDEX (c, l))
14 = (case lookup_label (c, l)
15 of SOME ((var, body), e)
16 => ACTUAL_CONTRACTUM
17 (GROUND_CLO (body, extend_environment (e, var, c)))
18 | NONE
19 => STUCK_CONTRACTUM (STUCK_LABEL l))
20 | contract (UPDATE_REDEX (c, l, ((x, t), e)))
21 = (case update (c, l, ((x, t), e))
22 of SOME c’
23 => ACTUAL_CONTRACTUM (OBJECT_CLO c’)
24 | NONE
25 => STUCK_CONTRACTUM (STUCK_LABEL l))
26 | contract (INVOKE_PROP (t, l, e))
27 = ACTUAL_CONTRACTUM (INVOKE_CLO (GROUND_CLO (t, e), l))
28 | contract (UPDATE_PROP (t, l, ((x, t’), e)))
29 = ACTUAL_CONTRACTUM (UPDATE_CLO (GROUND_CLO (t, e), l, ((x, t’), e)))

Figure 9.17: Refocused and fused evaluator for the ςρ-calculus (continued in Figure 9.18)

67

30
31 fun iterate_refocus (GROUND_CLO (VAR x, e), rc)
32 = (case contract (VAR_REDEX (x, e))
33 of ACTUAL_CONTRACTUM c
34 => iterate_refocus (c, rc)
35 | STUCK_CONTRACTUM w
36 => WRONG w)
37 | iterate_refocus (GROUND_CLO (OBJECT v, e), rc)
38 = (case contract (OBJECT_REDEX (v, e))
39 of ACTUAL_CONTRACTUM c
40 => iterate_refocus (c, rc)
41 | STUCK_CONTRACTUM w
42 => WRONG w)
43 | iterate_refocus (GROUND_CLO (INVOKE (t, l), e), rc)
44 = (case contract (INVOKE_PROP (t, l, e))
45 of ACTUAL_CONTRACTUM c
46 => iterate_refocus (c, rc)
47 | STUCK_CONTRACTUM w
48 => WRONG w)
49 | iterate_refocus (GROUND_CLO (UPDATE (t, l, (x, t’)), e), rc)
50 = (case contract (UPDATE_PROP (t, l, ((x, t’), e)))
51 of ACTUAL_CONTRACTUM c
52 => iterate_refocus (c, rc)
53 | STUCK_CONTRACTUM w
54 => WRONG w)
55 | iterate_refocus (OBJECT_CLO c, rc)
56 = iterate_refocus_aux (c, rc)
57 | iterate_refocus (INVOKE_CLO (c, l), rc)
58 = iterate_refocus (c, INVOKE_CONTEXT(l, rc))
59 | iterate_refocus (UPDATE_CLO (c, l, ((x, t), e)), rc)
60 = iterate_refocus (c, UPDATE_CONTEXT (l, ((x, t), e), rc))
61 and iterate_refocus_aux (c, ID_CONTEXT)
62 = VALUE c
63 | iterate_refocus_aux (c, INVOKE_CONTEXT (l, rc))
64 = (case contract (INVOKE_REDEX (c, l))
65 of ACTUAL_CONTRACTUM c
66 => iterate_refocus (c, rc)
67 | STUCK_CONTRACTUM w
68 => WRONG w)
69 | iterate_refocus_aux (c, UPDATE_CONTEXT (l, ((x, t), e), rc))
70 = (case contract (UPDATE_REDEX (c, l, ((x, t), e)))
71 of ACTUAL_CONTRACTUM c
72 => iterate_refocus (c, rc)
73 | STUCK_CONTRACTUM w
74 => WRONG w)
75
76 fun main t = iterate_refocus (GROUND_CLO (t, empty_environment), ID_CONTEXT)
77
78 end
79 end

Figure 9.18: Refocused and fused evaluator for the ςρ-calculus (continued from Figure 9.17)

68

1 structure Sigmarho_Refocused_Fused_Inlined : Sigmarho_Evaluator =
2 struct
3 local open Util in
4
5 fun iterate_refocus (GROUND_CLO (VAR x, e), rc)
6 = (case assoc (x, e)
7 of SOME c
8 => iterate_refocus (OBJECT_CLO c, rc)
9 | NONE

10 => WRONG (STUCK_VAR x))
11 | iterate_refocus (GROUND_CLO (OBJECT v, e), rc)
12 = iterate_refocus (OBJECT_CLO (close_object (v, e)), rc)
13 | iterate_refocus (GROUND_CLO (INVOKE (t, l), e), rc)
14 = iterate_refocus (INVOKE_CLO (GROUND_CLO (t, e), l), rc)
15 | iterate_refocus (GROUND_CLO (UPDATE (t, l, (x, t’)), e), rc)
16 = iterate_refocus (UPDATE_CLO (GROUND_CLO (t, e), l, ((x, t’), e)), rc)
17 | iterate_refocus (OBJECT_CLO c, rc)
18 = iterate_refocus_aux (c, rc)
19 | iterate_refocus (INVOKE_CLO (c, l), rc)
20 = iterate_refocus (c, INVOKE_CONTEXT(l, rc))
21 | iterate_refocus (UPDATE_CLO (c, l, ((x, t), e)), rc)
22 = iterate_refocus (c, UPDATE_CONTEXT (l, ((x, t), e), rc))
23 and iterate_refocus_aux (c, ID_CONTEXT)
24 = VALUE c
25 | iterate_refocus_aux (c, INVOKE_CONTEXT (l, rc))
26 = (case lookup_label (c, l)
27 of SOME ((var, body), e)
28 => iterate_refocus
29 (GROUND_CLO (body, extend_environment (e, var, c)), rc)
30 | NONE
31 => WRONG (STUCK_LABEL l))
32 | iterate_refocus_aux (c, UPDATE_CONTEXT (l, ((x, t), e), rc))
33 = (case update (c, l, ((x, t), e))
34 of SOME c’
35 => iterate_refocus (OBJECT_CLO c’, rc)
36 | NONE
37 => WRONG (STUCK_LABEL l))
38
39 fun main t = iterate_refocus (GROUND_CLO (t, empty_environment), ID_CONTEXT)
40
41 end
42 end

Figure 9.19: Evaluator for the ςρ-calculus, with inlined contraction function

Since the contraction function is now always called on known redex types, we can inline
the body of contract and simplify the terms. In doing so, we eliminate the need for the
contractum data type. The result can be seen in Figure 9.19.

69

1 structure Sigmarho_Simplified : Sigmarho_Evaluator =
2 struct
3 local open Util in
4
5 fun iterate_refocus (GROUND_CLO (VAR x, e), rc)
6 = (case assoc (x, e)
7 of SOME c
8 => iterate_refocus_aux (c, rc)
9 | NONE

10 => WRONG (STUCK_VAR x))
11 | iterate_refocus (GROUND_CLO (OBJECT v, e), rc)
12 = iterate_refocus_aux (close_object (v, e), rc)
13 | iterate_refocus (GROUND_CLO (INVOKE (t, l), e), rc)
14 = iterate_refocus (GROUND_CLO (t, e), INVOKE_CONTEXT(l, rc))
15 | iterate_refocus (GROUND_CLO (UPDATE (t, l, (x, t’)), e), rc)
16 = iterate_refocus (GROUND_CLO (t, e),
17 UPDATE_CONTEXT (l, ((x, t’), e), rc))
18 | iterate_refocus (OBJECT_CLO c, rc) (∗ No longer called ∗)
19 = iterate_refocus_aux (c, rc)
20 | iterate_refocus (INVOKE_CLO (c, l), rc) (∗ No longer called ∗)
21 = iterate_refocus (c, INVOKE_CONTEXT(l, rc))
22 | iterate_refocus (UPDATE_CLO (c, l, ((x, t), e)), rc) (∗ No longer called ∗)
23 = iterate_refocus (c, UPDATE_CONTEXT (l, ((x, t), e), rc))
24 and iterate_refocus_aux (c, ID_CONTEXT)
25 = VALUE c
26 | iterate_refocus_aux (c, INVOKE_CONTEXT (l, rc))
27 = (case lookup_label (c, l)
28 of SOME ((var, body), e)
29 => iterate_refocus
30 (GROUND_CLO (body, extend_environment (e, var, c)), rc)
31 | NONE
32 => WRONG (STUCK_LABEL l))
33 | iterate_refocus_aux (c, UPDATE_CONTEXT (l, ((x, t), e), rc))
34 = (case update (c, l, ((x, t), e))
35 of SOME c’
36 => iterate_refocus_aux (c’, rc)
37 | NONE
38 => WRONG (STUCK_LABEL l))
39
40 fun main t = iterate_refocus (GROUND_CLO (t, empty_environment), ID_CONTEXT)
41
42 end
43 end

Figure 9.20: Simplified evaluator for the ςρ-calculus

The evaluator now calls itself recursively on known closure types. Inlining the function
body of iterate_refocus whenever possible yields a simplified evaluator in Figure 9.20.

70

1 structure Sigmarho_Closure_Eliminated : Sigmarho_Evaluator =
2 struct
3 local open Util in
4
5 fun iterate_refocus (VAR x, e, rc)
6 = (case assoc (x, e)
7 of SOME c
8 => iterate_refocus_aux (c, rc)
9 | NONE

10 => WRONG (STUCK_VAR x))
11 | iterate_refocus (OBJECT v, e, rc)
12 = iterate_refocus_aux (close_object (v, e), rc)
13 | iterate_refocus (INVOKE (t, l), e, rc)
14 = iterate_refocus (t, e, INVOKE_CONTEXT(l, rc))
15 | iterate_refocus (UPDATE (t, l, (x, t’)), e, rc)
16 = iterate_refocus (t, e, UPDATE_CONTEXT (l, ((x, t’), e), rc))
17 and iterate_refocus_aux (c, ID_CONTEXT)
18 = VALUE c
19 | iterate_refocus_aux (c, INVOKE_CONTEXT (l, rc))
20 = (case lookup_label (c, l)
21 of SOME ((var, body), e)
22 => iterate_refocus (body, extend_environment (e, var, c), rc)
23 | NONE
24 => WRONG (STUCK_LABEL l))
25 | iterate_refocus_aux (c, UPDATE_CONTEXT (l, ((x, t), e), rc))
26 = (case update (c, l, ((x, t), e))
27 of SOME c’
28 => iterate_refocus_aux (c’, rc)
29 | NONE
30 => WRONG (STUCK_LABEL l))
31
32 fun main t = iterate_refocus (t, empty_environment, ID_CONTEXT)
33
34 end
35 end

Figure 9.21: Evaluator for the ςρ-calculus after closure elimination

The evaluator now only creates ground closures, and so no other closure types are ever
used in the evaluation of a term. We can therefore eliminate the closure data type alto-
gether by ‘lifting’ the contents of the GROUND_CLOs in the entire program. In doing so, we also
eliminate the now unused cases in iterate_refocus. The resulting evaluator is displayed
in Figure 9.21.

The evaluator implements a state-transition system, i.e., an abstract machine. Further-
more, the abstract machine is the same as the one derived by the functional correspon-
dence, up to reordering of state components. This fact can be verified by observing that the
types abs and reduction_context are isomorphic, and that iterate_refocus and iterate
_refocus_aux are equivalent to eval_defunct and apply_abs, respectively.

Since the abstract machines are identical, the natural semantics and the reduction seman-
tics of the ςρ-calculus (and, of course, the abstract machine) define the same language. This
equivalence is illustrated in the following diagram:

71

Natural semantics
for the ςρ-calculus

functional
correspondence

// Abstract machine
for the ςρ-calculus

Reduction semantics
for the ςρ-calculus

syntactic
correspondence

oo

9.4 Summary and Conclusions

We have derived two abstract machines for the ςρ-calculus; one from the natural seman-
tics using the functional correspondence, and one from the reduction semantics using the
syntactic correspondence. The two machines are identical, and provide yet another lan-
guage description for the ςρ-calculus, along with the natural and reduction semantics given
in Chapter 3.

Since the functional and syntactic correspondences are both semantic preserving, the
interpreter, the evaluator and the abstract machine define the same language. The fact that
the two derived abstract machines are identical proves the equivalence between the natural
semantics and the reduction semantics of the ςρ-calculus. Furthermore, the proof has been
obtained by mechanical derivation rather than by using pen and paper.

72

Chapter 10

Formal Connection

The two previous chapters have presented two abstract machines, one for the ς-calculus
and one for the ςρ-calculus. Since for each language, the abstract machine can be derived
from both the natural semantics and the reduction semantics using semantics-preserving
transformations, the three language specifications are equivalent.

We now turn to the question of equivalence between the two calculi. This chapter presents
the formal connection between the ς-calculus and the ςρ-calculus by proving that the abstract
machines for the two languages are strongly bisimilar.

We first consider the relation between values of the ς-calculus and values of the ςρ-
calculus. ςρ-values are object closures, and hence, they contain environments. These en-
vironments contain the substitutions that were ‘delayed’ during the evaluation that resulted
in the closure, so by ‘forcing’ these substitutions to be carried out, we obtain a ς-value. Forc-
ing the delayed substitutions induces a mapping from ςρ-values to ς-values, and we present
this mapping formally, as well as similar mappings for terms, methods and contexts.

We then present a relation between states of the two abstract machines. This relation
is defined in terms of the mappings above, and can informally be thought of as forcing all
substitutions that have been captured in the current environment and context, and in the
object closures and method closures created during evaluation.

Finally, we prove that the relation is a strong bisimulation, thereby establishing the com-
putational equivalence of the two calculi.

10.1 From Closures to Terms

Since the category of values of the ς-calculus is different from the category of values of the
ςρ-calculus, we must define a mapping from ςρ-values to ς-values in order to prove com-
putational equivalence between the two calculi. Since ςρ-values contain method closures, a
similar mapping must be defined for method closures. We let the set FV (t) denotes the set
of free variables of t (as defined by Abadi and Cardelli [1, page 61]). The mappings are then
defined by simultaneous induction as follows:

73

subV([li = (ς(xi)ti)[ei]
i∈{1...n}]) = [li = subM(ς(xi)ti, ei)

i∈{1...n}]

subM(ς(x)t, e) = ς(x)t{subV(vi)/xi} ∀xi ∈ FV (t) \ {x},
where lookup (xi, e) = vi

Here we have extended the notation for substitutions to account for the simultaneous sub-
stitution of multiple values for multiple variables. subV maps values of the ςρ-calculus to
values of the ς-calculus, and subM maps method closures to methods.

Since the mappings force the substitution of all free variables in a value or method, the
mappings are only well-defined provided that all free variables of the value or method are
bound in the corresponding environment (including free variables of the closures bound in
those environments, which must be bound in the environments contained in those closures,
and so on). For closures generated by the ςρ abstract machine when evaluation starts with a
closed term, such bindings will always exist.

We also need a mapping from intermediate terms of the ςρ abstract machine to interme-
diate terms in the ς abstract machine, and a mapping from ςρ-contexts to ς-contexts. The
intermediate terms of the ςρ abstract machine in general contain free variables, so the map-
ping must also take an environment into account. The mappings are defined as follows,
using subV and subM as defined above:

subT(t, e) = t{subV(vi)/xi} ∀xi ∈ FV (t),
where lookup (xi, e) = vi

subC([]) = []
subC(C[[].l]) = (subC(C))[[].l]

subC(C[[].l ⇐ (ς(x)t)[e]]) = (subC(C))[[].l ⇐ subM(ς(x)t, e)]

subT maps (term, environment) pairs to terms, and subC maps contexts of the ςρ-calculus to
contexts of the ς-calculus. Again, these mappings are only well-defined if all free variables
are bound in the corresponding environment.

In the following section, we use these mappings to define a bisimulation relation on the
two abstract machines.

10.2 Bisimilarity

To prove bisimilarity between the two abstract machines, we must define a relation between
states of the ς abstract machine and the states of the ςρ abstract machine. The relation is
defined using the mappings from the previous sections, as follows:

Definition 1. Let STςρ denote the set of states that the ςρ abstract machine may enter when evalu-
ating a closed term, and let STς denote the set of states that the ς abstract machine may enter when
evaluating a closed term. The substitution relation 'S: STςρ × STς is defined as follows:

〈t, e, C〉 'S 〈subT(t, e), subC(C)〉
〈C, v〉 'S 〈subC(C), subV(v)〉

v 'S subV(v)

74

〈v, C〉 ⇒S 〈C, v〉
〈t.l, C〉 ⇒S 〈t, C[[].l]〉

〈t.l ⇐ ς(x)t′, C〉 ⇒S 〈t, C[[].l ⇐ ς(x)t′]〉

〈[], v 〉 ⇒S v

〈C[[].lj], vn〉 ⇒S 〈tj{vn/xj}, C〉
if 1 ≤ j ≤ n, where vn = [li = ς(xi)tii∈{1...n}]

〈C[[].lj ⇐ ς(x)t], vn〉 ⇒S 〈C, [lj = ς(x)t, li = ς(xi)ti
i∈{1...n}\{j}]〉

if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti
i∈{1...n}]

Figure 10.1: The abstract machine for the ς-calculus, from page 46

〈x, e, C〉 ⇒E 〈C, v〉
if lookup (x, e) = v

〈[li = ς(xi)ti
i∈{1...n}], e, C〉 ⇒E 〈C, [li = (ς(xi)ti)[e]

i∈{1...n}]〉
〈t.l, e, C〉 ⇒E 〈t, e, C[[].l]〉

〈t.l ⇐ ς(x)t′, e, C〉 ⇒E 〈t, e, C[[].l ⇐ (ς(x)t′)[e]]〉

〈[], v 〉 ⇒E v

〈C[[].lj], vn〉 ⇒E 〈tj , (xj , vn) · ej , C〉
if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]i∈{1...n}]

〈C[[].lj ⇐ (ς(x)t)[e]], vn〉 ⇒E 〈C, [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]
i∈{1...n}\{j}]〉

if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]
i∈{1...n}]

Figure 10.2: The abstract machine for the ςρ-calculus, from page 61

For ease of reference, the abstract machines are shown again in Figures 10.1 and 10.2. We are
now ready to prove the main result of this chapter, namely that the relation in Definition 1 is
a bisimulation:

Theorem 1. For the evaluation of closed terms, the abstract machines from Sections 8.2 and 9.2 are
strongly bisimilar with respect to 'S .

Proof. By induction on the execution of the abstract machine for the ςρ-calculus:

Base case: Let t be a closed term. The starting state in the evaluation of t in the ςρ abstract
machine is 〈t, •, []〉, which is in relation to 〈subT(t, •), subC([])〉. By the definitions of subT

and subC, 〈subT(t, •), subC([])〉 = 〈t, []〉, which is the starting state in the evaluation of t in
the ς abstract machine, so the two machines start in related states.

75

Induction step: Let se 'S ss, and let ss ⇒S s′s and se ⇒E s′e. We must show that s′e 'S s′s.
This is done by case on se:

• se = 〈x, e, C〉:
Then s′e = 〈C, v〉 and ss = 〈subT(x, e), subC(C)〉 = 〈subV(v), subC(C)〉, where v =
lookup (x, e), and by the definition of ⇒S , s′s = 〈subC(C), subV(v)〉.
By the definition of 'S , 〈C, v〉 'S 〈subC(C), subV(v)〉, and so s′e 'S s′s.

If x is not bound in e, then the original term was not closed.

• se = 〈[li = ς(xi)ti
i∈{1...n}], e, C〉:

Then s′e = 〈C, [li = (ς(xi)ti)[e]
i∈{1...n}]〉 and ss = 〈subT([li = ς(xi)ti

i∈{1...n}], e), C〉.
subT([li = ς(xi)ti

i∈{1...n}], e) = subV([li = (ς(xi)ti)[e]
i∈{1...n}]) since x cannot occur free

in ς(x)t, and hence by the definition of ⇒S , s′s = 〈C, subV([li = (ς(xi)ti)[e]
i∈{1...n}])〉.

By definition, 〈C, [li = (ς(xi)ti)[e]
i∈{1...n}]〉 'S 〈C, subV([li = (ς(xi)ti)[e]

i∈{1...n}])〉, and
so s′e 'S s′s.

• se = 〈t.l, e, C〉:
Then s′e = 〈t, e, C[[].l]〉 and ss = 〈subT(t.l, e), subC(C)〉 = 〈subT(t, e).l, subC(C)〉,
and so by the definition of ⇒S , s′s = 〈subT(t, e), subC(C)[[].l]〉.
By the definition of subC, subC(C)[[].l] = subC(C[[].l]), and by the definition of 'S ,
〈t, e, C[[].l]〉 'S 〈subT(t, e), subC(C[[].l])〉 and so s′e 'S s′s.

• se = 〈t.l ⇐ ς(x)t′, e, C〉:
Then s′e = 〈t, e, C[[].l ⇐ (ς(x)t′)[e]]〉 and ss = 〈subT(t.l ⇐ ς(x)t′, e), subC(C)〉. Since
x cannot occur free in ς(x)t′, subT(t.l ⇐ ς(x)t′, e) = subT(t, e).l ⇐ subM(ς(x)t′, e),
and so by the definition of ⇒S , s′s = 〈subT(t, e), subC(C)[[].l ⇐ subM(ς(x)t′, e)]〉.
By definition, subC(C)[[].l ⇐ subM(ς(x)t′, e)] = subC(C[[].l ⇐ (ς(x)t′)[e]]), and by the
definition of 'S , 〈t, e, C[[].l ⇐ (ς(x)t′)[e]]〉 'S 〈subT(t, e), subC(C[[].l ⇐ (ς(x)t′)[e]])〉
and so s′e 'S s′s.

• se = 〈[], v〉:
Then s′e = v and ss = 〈subC([]), subV(v)〉, and since subC([]) = [], then by the
definition of ⇒S , s′s = subV(v).

By the definition 'S , v 'S subV(v), and so s′e 'S s′s.

• se = 〈C[[].lj], vn〉, where vn = [li = (ς(xi)ti)[ei]
i∈{1...n}] and 1 ≤ j ≤ n:

Then s′e = 〈tj , (xj , vn) · ej , C〉 and ss = 〈subC(C[[].lj]), subV(vn)〉.
Let subM(ς(xj)tj, ej) = ς(xj)t′j , for some t′j . Then, since subC(C[[].lj]) = subC(C)[[].lj]
we get by the definition of ⇒S that s′s = 〈t′j{subV(vn)/xj}, subC(C)〉.
Since subM(ς(xj)tj , ej) substitutes all free variables in tj except occurrences of xj to
obtain t′j , we have that subT(tj , (xj , vn) · ej) = t′j{subV(vn)/xj}. By the definition
of 'S , we then get that 〈tj , (xj, vn) · ej , C〉 'S 〈t′j{subV(vn)/xj}, subC(C)〉, and so
s′e 'S s′s.

If j < 1 or j > n, then both machines are stuck.

76

• se = 〈C[[].lj ⇐ (ς(x)t)[e]], vn〉, where vn = [li = (ς(xi)ti)[ei]
i∈{1...n}] and 1 ≤ j ≤ n:

Then s′e = 〈C, [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]i∈{1...n}\{j}]〉 and by the definition of 'S

and subV, ss = 〈subC(C[[].lj ⇐ (ς(x)t)[e]]), [li = subM(ς(xi)ti, ei)
i∈{1...n}]〉.

Since subC(C[[].lj ⇐ (ς(x)t)[e]]) = subC(C)[[].lj ⇐ subM(ς(x)t, e)], then by the defi-
nition of ⇒S , s′s = 〈subC(C), [lj = subM(ς(x)t, e), li = subM(ς(xi)ti, ei)

i∈{1...n}\{j}]〉.
By the definition 'S and subV, 〈C, [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]

i∈{1...n}\{j}]〉 'S

〈subC(C), [lj = subM(ς(x)t, e), li = subM(ς(xi)ti, ei)
i∈{1...n}\{j}]〉, and so s′e 'S s′s.

If j < 1 or j > n, then both machines are stuck.

Corollary 1 (Full correctness of the ςρ-calculus). If the ςρ abstract machine computes a value v
as the result of a closed term t, then the ς abstract machine computes the value subV(v) for the same
term.

10.3 Computational Equivalence

Since the abstract machine for the ς-calculus and the abstract machine for the ςρ-calculus are
bisimilar, we conclude that the ς-calculus and the ςρ-calculus are computationally equiva-
lent. Hence, we can complete our diagram by connecting the two abstract machines:

Natural semantics
for the ς-calculus

functional
correspondence

// Abstract machine
for the ς-calculus

bisimilarity

���
�
�
�
�
�

Reduction semantics
for the ς-calculus

syntactic
correspondence

oo

Natural semantics
for the ςρ-calculus

functional
correspondence

// Abstract machine
for the ςρ-calculus

OO�
�
�
�
�
�

Reduction semantics
for the ςρ-calculus

syntactic
correspondence

oo

Since the mappings from Section 10.1 are only defined when all free variables of the
terms, methods and values in question are bound in the corresponding environments, the
proof of bisimulation is only valid when the machines evaluate closed terms. However, if we
extend the mappings so that unbound variables are mapped to themselves, bisimulation still
holds. Of course, if the machines ever enter a state in which such a variable must be evalu-
ated, they are both stuck (one because the variable is not bound in the current environment
and the other because no transition exists to handle variables).

10.4 Summary and Conclusions

This chapter has presented a formal connection between the ς-calculus and the ςρ-calculus.
To connect the categories of values of the two calculi, we have presented mappings from

ςρ-values to ς-values. We have also presented similar mappings for methods, terms and

77

contexts. Using these mappings, we have defined a relation between states of the abstract
machine for the ςρ-calculus to states of the abstract machine for the ς-calculus. We have
proved that this relation is a strong bisimulation.

The bisimilarity result implies that the two calculi are computationally equivalent. In
other words, the semantic descriptions given in Chapters 2 and 3, as well as the two abstract
machines derived in Chapters 8 and 9, all specify the same language.

78

Chapter 11

Conclusion – Derivation and
Equivalence

We have presented two abstract machines, one for the ς-calculus and one for the ςρ-calculus.
The two machines have been obtained by derivation from the semantic descriptions of the
calculi, using the functional and syntactic correspondences.

Since both the abstract machines can be derived from both the natural semantics and the
reduction semantics of their respective calculi, they prove the relative computational equiva-
lence between those two semantic descriptions. Furthermore, the proof has been established
by derivation, rather than by pen and paper.

We have also presented a mapping from values of the ςρ-calculus to values of the ς-
calculus. Using this mapping, we have proved that the abstract machine for the ς-calculus
and the abstract machine for the ςρ-calculus are strongly bisimilar, which establishes the
computational equivalence between the two calculi.

79

80

Part IV

Conclusion

81

82

Chapter 12

Conclusion and Perspectives

In this final chapter of the dissertation we summarise our results, and we present possible
directions for further study.

12.1 Summary

In this dissertation, we have seen how natural semantics, abstract machines and reduction
semantics for Abadi and Cardelli’s untyped ς-calculus can be inter-derived using Danvy et
al.’s functional and syntactic correspondences.

Using the functional and syntactic correspondences, we have derived an abstract ma-
chine from both the natural semantics and the reduction semantics of the ς-calculus. The
machine is new, and the fact that it can be derived from both the natural semantics and the
reduction semantics by means of semantic-preserving program transformations establishes
the computational equivalence of the two semantic specifications.

We have also presented a new version of the ς-calculus. This new calculus, called the ςρ-
calculus, is defined using explicit substitutions. The use of explicit substitutions, as opposed
to the actual substitutions of the ς-calculus, allows for a calculus which is closer to realistic
language implementations. Indeed, source terms are now invariant through execution (in-
stead of being modified by actual substitution), and therefore, their representation can be
changed, e.g., by a compiler.

Using the functional and syntactic correspondences, we have derived an abstract ma-
chine from both the natural semantics and the reduction semantics of the ςρ-calculus, similar
to how it was done for the ς-calculus. Again, identical machines can be derived from both
the natural semantics and the reduction semantics by means of semantic-preserving pro-
gram transformations, which establishes the computational equivalence of the two semantic
descriptions.

Finally, we have shown that the abstract machine for the ς-calculus and the abstract ma-
chine for the ςρ-calculus are strongly bisimilar. The bisimilarity result formally connects
the two calculi, by establishing their relative computational equivalence. Since the two cal-
culi are equivalent, the ςρ-calculus provides a definition of an object-oriented computational
model in terms of explicit substitutions.

83

12.2 Perspectives

We wrap up the treatment of the ς-calculus by suggesting a few possible directions for fur-
ther work.

Object references: The ς-calculus captures a number of traditional object-oriented features,
such as method updates (a generalisation of field update) and a notion of self. Further,
the calculus can be used to model object-oriented phenomena such as classes, traits, and
inheritance [1, Section 6.6], and can be extended with a type system with support for a notion
of subtyping [1, Chapter 7]. However, the ς-calculus does not capture a notion of object
identity, which is a feature found in practically any object-oriented programming language
(at least in all the ones known to the present author).

To be able to capture or model such a notion, the calculus could be extended with a
store, and with syntactic constructs to manipulate the contents of the store. A calculus thus
extended would correspond more closely to actual object-oriented languages, and it would
be interesting to see the result of the functional and syntactic correspondences applied to
such a calculus.

Connection with other calculi: Since the purpose of the ς-calculus is to provide an object-
oriented model of computation, it is necessary to establish that the calculus can indeed be
used to describe any computable function. Abadi and Cardelli flesh out this claim by pro-
viding a translation of terms of the λ-calculus to terms of the ς-calculus [1, Page 66].

However, they do not address the question of what reduction strategy this encoding
induces, nor do they establish any type of connection between the result of evaluating the
λ-term and the result of evaluating the ς-encoded λ-term. These topics are the subject of
ongoing joint work with Olivier Danvy and Zaynah Dargaye.

84

Chapter 13

Bibliographic References

[1] Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

[2] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit sub-
stitutions. Journal of Functional Programming, 1(4):375–416, 1991. A preliminary version
was presented at the Seventeenth Annual ACM Symposium on Principles of Program-
ming Languages (POPL 1990).

[3] Mads Sig Ager. Partial Evaluation of String Matchers & Constructions of Abstract Machines.
PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark, January 2006.

[4] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Dale Miller, editor, Pro-
ceedings of the Fifth ACM-SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’03), pages 8–19, Uppsala, Sweden, August 2003. ACM
Press.

[5] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence be-
tween monadic evaluators and abstract machines for languages with computational
effects. Theoretical Computer Science, 342(1):149–172, 2005. Extended version available as
the research report BRICS RS-04-28.

[6] Małgorzata Biernacka. A Derivational Approach to the Operational Semantics of Functional
Languages. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark,
January 2006.

[7] Małgorzata Biernacka and Olivier Danvy. A concrete framework for environment ma-
chines. ACM Transactions on Computational Logic, 9(1):1–30, 2007. Article #6. Extended
version available as the research report BRICS RS-06-3.

[8] Małgorzata Biernacka and Olivier Danvy. A syntactic correspondence between context-
sensitive calculi and abstract machines. Theoretical Computer Science, 375(1-3):76–108,
2007. Extended version available as the research report BRICS RS-06-18.

[9] Dariusz Biernacki. The Theory and Practice of Programming Languages with Delimited Con-
tinuations. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark,
December 2005.

85

[10] Pierre-Louis Curien. An abstract framework for environment machines. Theoretical
Computer Science, 82:389–402, 1991.

[11] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–195,
1994. A preliminary version was presented at the Fourth European Symposium on
Programming (ESOP 1992).

[12] Olivier Danvy. From reduction-based to reduction-free normalization. In Sergio Antoy
and Yoshihito Toyama, editors, Proceedings of the Fourth International Workshop on Reduc-
tion Strategies in Rewriting and Programming (WRS’04), volume 124(2) of Electronic Notes
in Theoretical Computer Science, pages 79–100, Aachen, Germany, May 2004. Elsevier Sci-
ence. Invited talk.

[13] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In Clemens
Grelck, Frank Huch, Greg J. Michaelson, and Phil Trinder, editors, Implementation and
Application of Functional Languages, 16th International Workshop, IFL’04, number 3474 in
Lecture Notes in Computer Science, pages 52–71, Lübeck, Germany, September 2004.
Springer-Verlag. Recipient of the 2004 Peter Landin prize. Extended version available
as the research report BRICS RS-03-33.

[14] Olivier Danvy. An Analytical Approach to Program as Data Objects. DSc thesis, Depart-
ment of Computer Science, University of Aarhus, Aarhus, Denmark, October 2006.

[15] Olivier Danvy. Personal communication, Aarhus, Denmark, December 2007.

[16] Olivier Danvy and Jacob Johannsen. Inter-deriving semantic artifacts for object-
oriented programming. In Wilfrid Hodges and Ruy de Queiroz, editors, Proceedings of
the 15th Workshop on Logic, Language, Information and Computation (WoLLIC 2008), num-
ber 5110 in Lecture Notes in Artificial Intelligence, pages 1–16, Edinburgh, Scotland,
July 2008. Springer-Verlag.

[17] Olivier Danvy and Kevin Millikin. Refunctionalization at work. Science of Computer
Programming, 200? In press. A preliminary version is available as the research report
BRICS RS-07-7.

[18] Olivier Danvy and Kevin Millikin. On the equivalence between small-step and big-step
abstract machines: a simple application of lightweight fusion. Information Processing
Letters, 106(3):100–109, 2008.

[19] Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen. On one-pass CPS transformations.
Journal of Functional Programming, 17(6):793–812, 2007.

[20] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald Sønder-
gaard, editor, Proceedings of the Third International ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming (PPDP’01), pages 162–174, Firenze, Italy,
September 2001. ACM Press. Extended version available as the research report BRICS
RS-01-23.

[21] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Research Re-
port BRICS RS-04-26, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, November 2004. A preliminary version appeared in the informal

86

proceedings of the Second International Workshop on Rule-Based Programming (RULE
2001), Electronic Notes in Theoretical Computer Science, Vol. 59.4.

[22] Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308–320, 1964.

[23] Jan Midtgaard. Transformation, Analysis, and Interpretation of Higher-Order Procedural Pro-
grams. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark, June
2007.

[24] Kevin Millikin. A Structured Approach to the Transformation, Normalization and Execution
of Computer Programs. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus,
Denmark, May 2007.

[25] Lasse R. Nielsen. A study of defunctionalization and continuation-passing style. PhD thesis,
BRICS PhD School, University of Aarhus, Aarhus, Denmark, July 2001. BRICS DS-01-7.

[26] Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point promotion. In
Matthias Felleisen, editor, Proceedings of the Thirty-Fourth Annual ACM Symposium on
Principles of Programming Languages, SIGPLAN Notices, Vol. 42, No. 1, pages 143–154,
New York, NY, USA, January 2007. ACM Press.

[27] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

[28] John C. Reynolds. Definitional interpreters for higher-order programming languages.
In Proceedings of 25th ACM National Conference, pages 717–740, Boston, Massachusetts,
1972. Reprinted in Higher-Order and Symbolic Computation 11(4):363–397, 1998, with
a foreword [30].

[29] John C. Reynolds. The discoveries of continuations. pages 233–247, 1993.

[30] John C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic Compu-
tation, 11(4):355–361, 1998.

87

Recent BRICS Report Series Publications

RS-08-6 Jacob Johannsen.An Investigation of Abadi and Cardelli’s Un-
typed Calculus of Objects. June 2008. xii+87 pp.

RS-08-5 Olivier Danvy and Jacob Johannsen.Inter-Deriving Seman-
tic Artifacts for Object-Oriented Programming. June 2008.
ii+13 pp. Extended version of a paper to appear in WoLLIC
2008.

RS-08-4 Olivier Danvy and Kevin Millikin. Refunctionalization at Work.
June 2008. ii+25 pp. To appear inScience of Computer Pro-
gramming. A preliminary version is available as the research
report BRICS RS-07-7.

RS-08-3 Johan Munk. A Study of Syntactic and Semantic Artifacts and
its Application to Lambda Definability, Strong Normalization,
and Weak Normalization in the Presence of State. April 2008.
xi+144 pp.

RS-08-2 Gudmund Skovbjerg Frandsen and Piotr Sankowski.Dynamic
Normal Forms and Dynamic Characteristic Polynomial. April
2008. 21 pp. To appear in ICALP ’08.

RS-08-1 Anders Møller. Static Analysis for Event-Based XML Process-
ing. jan 2008. 23 pp. Appears in PLAN-X ’08.

RS-07-18 Jan Midtgaard.Control-Flow Analysis of Functional Programs.
December 2007. iii+38 pp.

RS-07-17 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir. A
Cancellation Theorem for 7BCCSP. December 2007. 30 pp.

RS-07-16 Olivier Danvy and Kevin Millikin. On the Equivalence between
Small-Step and Big-Step Abstract Machines: A Simple Appli-
cation of Lightweight Fusion. November 2007. ii+11 pp. To
appear in Information Processing Letters(extended version).
Supersedes BRICS RS-07-8.

RS-07-15 Jooyong Lee.A Case for Dynamic Reverse-code Generation.
August 2007. ii+10 pp.

RS-07-14 Olivier Danvy and Michael Spivey.On Barron and Strachey’s
Cartesian Product Function. July 2007. ii+14 pp.

RS-07-13 Martin Lange. Temporal Logics Beyond Regularity. July 2007.
82 pp.

