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Abstract

We show that the standard normalization-by-evaluation construction for the
simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus,
with the central type-indexed logical relation replaced by a “recursively defined”
invariant relation, in the style of Pitts. In fact, the construction can be seen as
generalizing a computational-adequacy argument for an untyped, call-by-name
language to normalization instead of evaluation.

In the untyped setting, not all terms have normal forms, so the normalization
function is necessarily partial. We establish its correctness in the senses of
soundness (the output term, if any, is in normal form and β-equivalent to the
input term); identification (β-equivalent terms are mapped to the same result);
and completeness (the function is defined for all terms that do have normal
forms). We also show how the semantic construction enables a simple yet formal
correctness proof for the normalization algorithm, expressed as a functional
program in an ML-like, call-by-value language.

Finally, we generalize the construction to produce an infinitary variant of
normal forms, namely Böhm trees. We show that the three-part characterization
of correctness, as well as the proofs, extend naturally to this generalization.

∗Extended version of an article to appear in RAIRO – Theoretical Informatics and Applications.
An earlier version appeared in the proceedings of FOSSACS 2004 [FR04, FR03].

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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B.2 Isomorphisms for Böhm trees . . . . . . . . . . . . . . . . . . . . . . . 49

2



1 Introduction

1.1 Reduction-based and reduction-free normalization

Traditional accounts of term normalization are based on a directed notion of reduction
(such as β-reduction), which can be applied anywhere within a term. A term is said
to be a normal form if no reductions can be performed on it. If the reduction relation
is confluent, normal forms are uniquely determined, so normalization is a (potentially
partial) function on terms. Some terms (such as Ω) may not have normal forms
at all; or a particular reduction strategy (such as normal-order reduction) may be
required to guarantee arrival at a normal form when one exists; such a strategy is
called complete. There is a very large body of work dealing with normalization in
reduction-based settings.

However, in recent years, a rather different notion of normalization has emerged,
so-called reduction-free normalization. As the name suggests, it is not based on a
directed notion of reduction, but rather on an undirected notion of term equivalence.
Equivalence may be defined as simply the reflexive-transitive-symmetric closure of an
existing reduction relation, but it does not have to be: any congruence relation on
terms may be used. The task is then to define a normalization function on terms,
such that the output of the function is equivalent to the input, and such that any two
equivalent terms are mapped to identical outputs [CD97].

For some notions of equivalence (such as β-convertibility of untyped lambda-
terms), it is actually impossible to define a computable, total normalization function
with both of these properties; we must thus accept that the normalization function
may be partial. However, even in that case, we can impose a completeness constraint:
if we have an independent syntactic characterization of acceptable normal forms, we
can require that the function both produce terms in this form as output, and that it
be defined on all terms equivalent to a normal form.

1.2 Normalization by evaluation

A particularly natural way of obtaining a reduction-free normalization function is
known as normalization by evaluation (NBE), based on the following idea: Suppose
we can construct a denotational model of the term syntax (i.e., such that equivalent
terms have the same denotation), with the property that a syntactic representation
of any normal-form term can be extracted from its denotation; such a model is called
residualizing. Then the normalization function can be expressed simply as a compo-
sitional interpretation in the model, followed by extraction.

A priori, such a normalization function is not necessarily effectively computable. It
can be given a computational interpretation if the denotational model is constructed
in intuitionistic set theory [CD97], but this gets somewhat complicated for domain-
theoretic models, especially those involving reflexive domains. In such cases, it is
often easier to establish that the constructions are effective by showing that they can
expressed as images of program terms in a language for which the domain-theoretic
semantics is already known to be computationally adequate.

(It should be noted that the term NBE is also sometimes used for a related concept,
based on reducing – usually in a compositional way – the normalization problem, which
may in general involve open terms of higher type, to an evaluation problem, which
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involves normalization of only closed terms of base type. The required transformation
is often syntactically related to the model-based construction above, but the model
itself is not made explicit; and in fact, the subsequent evaluation process may still be
specified entirely in terms of reductions.)

1.3 The Berger-Schwichtenberg normalization algorithm

Perhaps the best-known NBE algorithm is due to Berger and Schwichtenberg [BS91].
It finds βη-long normal forms of simply-typed λ-terms. We present here its outline,
glossing over inessential details.

Types are of the form τ ::= b | τ1 → τ2. A natural set-theoretic model interprets
each base type b as some set, and the function type as the set of all functions between
the interpretations of the types, i.e., [[τ1 → τ2]] = [[τ1]]→ [[τ2]]. For a type assignment
Γ, we also take [[Γ]] =

∏
x∈domΓ[[Γ(x)]].

Let Λ be the set of syntactic λ-terms (written with explicit constructors for em-
phasis) over a set of variables V. For a well-typed term Γ ` m : τ , we can then express
its semantics [[m]] ∈ [[Γ]]→ [[τ ]] as follows:

[[VAR(x)]] ρ = ρ(x)
[[LAM(xτ ,m0)]] ρ = λa[[τ ]]. [[m0]] ρ[x 7→ a]
[[APP(m1,m2)]] ρ = [[m1]] ρ ([[m2]] ρ)

It is easy to check that such a model is sound for conversion, i.e., that whenm↔βη m
′,

then [[m]] = [[m′]].
Consider now a model where all base types are interpreted as the set of (open)

syntactic λ-terms, i.e., [[b]] = Λ for all b. In this model, we can define a pair of type-
indexed function families – reification, ↓τ : [[τ ]] → Λ, and reflection, ↑τ : Λ → [[τ ]] – by
mutual induction on the type index τ :

↓b l = l ↓τ1→τ2 f = LAM(xτ1 , ↓τ2 (f(↑τ1 VAR(x)))) (x “fresh”)

↑b l = l ↑τ1→τ2 l = λa[[τ1]]. ↑τ2 (APP(l, ↓τ1 a))

For simplicity, let us only consider normal forms of closed terms. Then reification can
serve directly as the extraction function: one can check that, for a term ` m : τ in βη-
long normal form, ↓τ ([[m]] ∅) ↔α m. Hence, by soundness of the model, for any term
m′ with m′ ↔βη m, ↓τ ([[m′]] ∅) = ↓τ ([[m]] ∅) ↔α m ↔βη m

′. Alternatively, one can
show the latter property directly, for an arbitrary m′. Either way, the typical proof
ultimately involves a logical-relations argument, even if this argument is pushed en-
tirely into a standard result about the syntax (namely, that every well-typed term has
a βη-long normal form). The latter approach, however, generalizes better, especially
to systems where not all terms have normal forms.

1.4 A tentative algorithm for untyped terms

In an untyped (or, more accurately, unityped) setting, we may hope to get a residu-
alizing model by interpreting the single type of terms as a domain D = Λ+(D→D).
(Again, we gloss over domain-theoretic subtleties for expository purposes.) We can
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then define variants of reification, ↓ : D → Λ, and reflection, ↑ : Λ → D, roughly
analogous to the simply-typed case:

↓ d = case d of
{
in1(l) → l
in2(f) → LAM(x, ↓ (f(↑ (VAR(x))))) (x “fresh”)

↑ l = in1(l) .

Note that reification is now defined by general recursion, rather than induction. We
can also construct an interpretation, [[m]] ∈ (V→D)→D, by

[[VAR(x)]] ρ = ρ(x)
[[LAM(x,m0)]] ρ = in2(λd. [[m0]] ρ[x 7→ d])

[[APP(m1,m2)]] ρ = case [[m1]] ρ of
{
in1(l) → ↑ (APP(l, ↓ ([[m2]] ρ)))
in2(f) → f ([[m2]] ρ) .

Here, reflection is performed “on demand”: when application needs a semantic func-
tion, but [[m1]]ρ is a piece of syntax, it is reflected just enough to allow the application
to be performed.

Again, it can be checked that β-convertible terms have the same denotation. It is
also fairly easy to verify that, for a closed m in β-normal form, ↓ ([[m]] ∅) ↔α m. What
is not obvious at all, however, is that when ↓ ([[m′]] ∅) = m for a general m′, then m′

must be syntactically β-convertible to a normal form. Indeed, the problem is a gener-
alization of the usual computational-adequacy problem for a denotational semantics
of a functional language: if the denotation of a closed term is not ⊥ (undefined), must
the term then evaluate to a value?

For a simply typed language, PCF, adequacy of the natural domain-theoretic
semantics was shown by Plotkin, using a logical-relations argument [Plo77]. Pitts
showed that essentially the same argument applies to an untyped language, except
that the central relation is no longer constructed by induction on types, but as a
solution of a more general “relation equation”; he also showed a general method for
solving such equations, yielding invariant relations [Pit93].

In this paper, we first formalize the construction of the normalization function from
above, addressing especially the issues of potential divergence and generation of fresh
variable names (Section 2). We then show correctness of this function by a general-
ized computational-adequacy construction (Section 3) and how the domain-theoretic
analysis directly validates a functional program implementing the construction (Sec-
tion 4). Finally, we show how the construction can be generalized naturally to Böhm
trees (Section 5).

1.5 Related work

The closest related work to ours is probably the NBE-based (in the alternate, reduction-
oriented sense) algorithm for untyped β-normalization proposed by Aehlig and Joachim-
ski [AJ04]. However, while the functional programs ultimately derived from the anal-
yses are quite similar, the correctness arguments are completely different: theirs are
based on syntactic concepts and results from higher-order rewriting theory, rather
than on the domain-theoretic constructions underlying ours.
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We believe that the domain-theoretic approach enables a more direct and precise
correctness proof for the normalizer, as actually implemented. In Aehlig and Joachim-
ski’s work, the abstract algorithm is expressed as a small-step operational semantics
for a specialized, two-level λ-calculus with named bound variables; whereas the actual
normalization program is formulated as a compositional interpreter in Haskell, using
de Bruijn indices for bound variables, and a reflexive type for the meanings of higher-
typed terms. It thus remains a potentially significant task to verify that the concrete
Haskell program correctly implements the abstract algorithm. On the other hand,
formally relating the domain-theoretic constructions in the model-based normalizer
to the functional terms implementing them, is completely straightforward.

An untyped, reduction-based NBE-like algorithm can also be found in disguise
in Grégoire and Leroy’s work [GL02], whose focus is on compilation. Their concrete
algorithm of strong reduction (i.e., β-normalization) by iterated symbolic weak reduc-
tion (akin to ↑ and [[·]]) and readback (akin to ↓ ) is ultimately quite similar to ours.
Their algorithm also handles several language extensions, such as inductive datatypes
and guarded fixpoints. However, as they consider only a strongly-normalizing frag-
ment of the λ-calculus, establishing correctness becomes significantly simpler. Their
implementation takes the form of an abstract machine, whose (5000-line) correctness
proof is mechanically checked using a proof assistant. They do not mention how the
abstract machine is actually implemented.

Many of the constructions in the present paper are inspired by the first author’s
work on type-directed partial evaluation [Fil99]. Apart from the obvious differ-
ences arising from typed vs. untyped languages, a significant change is also that
the TDPE work considered equivalence defined semantically (equality of denotations,
under all interpretations of “dynamic” constants), while here we consider syntactic β-
convertibility. Accordingly, the central invariant relation ties denotations to syntactic
terms, rather than to denotations in another semantics.

Essentially the same program as in Section 4, but expressed in FreshML, appears
in a recent paper by Shinwell et al. [SPG03, Figure 7]. However, the focus there
is on a practical application of fresh-name generation, rather than on normalization
as such. Indeed, the underlying algorithm (informally attributed to Coquand) is not
supported by a formal correctness argument. In our variant, generation of fresh names
is handled explicitly: since constructed output terms are never subsequently analyzed
by pattern-matching, using a general framework such as FreshML, or higher-order
abstract syntax, is probably overkill. However, we anticipate that a different “back
end” for output generation could be used, and have deliberately tried to keep the
constructions and proofs modular with respect to the term-generation operations.
We thus expect that essentially the same arguments – perhaps even a little simplified
– could be used to verify correctness of the FreshML variant of the normalizer as
well.
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2 A semantic normalization construction

2.1 Syntax and semantics of the untyped λ-calculus

Syntax Let V = {x, y, . . .} be a countably infinite set of (object) variables, with x
and v ranging over V. The set of λ-terms m is then the least set Λ such that

Λ = {VAR(x) | x ∈ V} ∪ {LAM(x,m0) | x ∈ V,m0 ∈ Λ} ∪
{APP(m1,m2) | m1 ∈ Λ,m2 ∈ Λ} .

Note that we do not identify α-equivalent terms at the level of syntax. The set of free
variables of a term, FV (m), is defined in the usual way. For any finite set of variables
∆, we write Λ∆ for the set of λ-terms over ∆, i.e.,

Λ∆ = {m ∈ Λ | FV (m) ⊆ ∆} .

Substitutions For technical reasons, we take simultaneous (as opposed to single-
variable), capture-avoiding substitution as the basic concept. Accordingly, we say
that a substitution θ is a finite partial function from variables to terms. We take
FV (θ) =

⋃
x∈dom θ FV (θ(x)), and define the action of θ on a term m in the usual

way, by structural induction on m:

VAR(x)[θ] =
{
θ(x) if x ∈ dom θ
VAR(x) otherwise

LAM(x,m0)[θ] = LAM(x′,m0[θ[x 7→ VAR(x′)]])
where x′ 6∈ FV (θ) ∪ (FV (m0) \ {x})

APP(m1,m2)[θ] = APP(m1[θ],m2[θ])

where f [a 7→ b] is function extension: f [a 7→ b](a′) = b if a′ = a, and f(a′) otherwise.
To keep the substitution operation deterministic, we assume that the x′ in the LAM-
clause is picked as some arbitrary but fixed function of the (finite) set of variables
it needs to avoid. As a special case, we use the standard notation m[m′/x] to mean
m[ ∅[x 7→m′] ].

Convertibility and normalization We define convertibility between λ-terms,
written m↔ m′, by the axiom schemas for α- and β-conversion,

LAM(x,m) ↔ LAM(x′,m[x′/x]) (x′ 6∈ FV (m) \ {x})
APP(LAM(x,m),m′) ↔ m[m′/x] ,

together with the standard equivalence and compatibility rules, making ↔ into a
congruence relation on terms.

We further define atomic (also known as neutral) and normal forms, as follows:

àt VAR(x)
àt m1 ǹf m2

àt APP(m1,m2)
àt m

ǹf m
ǹf m0

ǹf LAM(x,m0)
.

For s ∈ {nf, at}, we take Ns = {m | s̀ m}, i.e., the set of terms that can be
shown to be of syntactic form s by a finite number of rule applications.

We then expect a normalization function on terms to satisfy that the output, if
any, is in normal form and convertible to the input (soundness); convertible terms
either give the same output, or neither one does (identification); and if a term has a
normal form at all, the normalization function will return one (completeness).
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Semantics A natural way of defining a denotational model of convertibility is in
terms of a reflexive pointed cpo D. Reflexivity means that the continuous-function
space [D→D] is a retract of D, i.e., that there exist continuous functions

φ : [D → D] → D and ψ : D → [D → D] ,

with ψ ◦ φ = id[D→D]. The induced interpretation, [[m]] ∈ [[V → D] → D], is then:

[[VAR(x)]] ρ = ρ(x)
[[LAM(x,m0)]] ρ = φ(λdD. [[m0]] ρ[x 7→ d])

[[APP(m1,m2)]] ρ = ψ([[m1]] ρ) ([[m2]] ρ) .

Lemma 1 The interpretation has two expectable properties:

a. If ∀x ∈ FV (m). ρ(x) = ρ′(x), then [[m]] ρ = [[m]] ρ′.

b. Let θ = [x1 7→m1, . . . , xn 7→mn] be a substitution.
Then [[m[θ]]] ρ = [[m]] ρ[x1 7→ [[m1]] ρ, . . . , xn 7→ [[mn]] ρ].

Proof: Part (a) is a straightforward induction on the structure of m. Part (b)
follows by induction on the structure of m, using part (a) in the LAM-case. �
Lemma 2 (model soundness) If m↔ m′ then [[m]] = [[m′]].

Proof: By induction on the derivation of m ↔ m′, using Lemma 1 for α- and
β-conversion, and using that ψ ◦ φ = id[D→D] for β-conversion. �

2.2 Output-term generation

We want to account rigorously for the generation of fresh names, and do so in a
modular manner. We will therefore construct a pointed cpo Λ̂ (dependent on the name
generation scheme) with elements denoted by l, together with continuous wrapper
functions,

V̂AR : V → Λ̂ L̂AM : [V → Λ̂] → Λ̂ ÂPP : Λ̂× Λ̂ → Λ̂ ,

where, in particular, L̂AM provides a fresh name to be used in constructing the body
of the λ-abstraction.

Let N be a set (discrete cpo) containing at least the natural numbers, with an
operation · + 1 : N → N, agreeing with the successor operation on naturals. Let
G = {g0, g1, ...} be a countably infinite subset of V, such that gi = gj implies i = j,
and let gen : N → V be such that gen(n) = gn when n ∈ ω.

We write b·c for the inclusion from A to A⊥; and for f : A→ B with B pointed,
we write ·?f for f ’s strict extension to A⊥, i.e., ⊥?f = ⊥B and bac?f = f(a). (As is
conventional in functional-programming syntax, function application by juxtaposition
binds tighter than all explicit infix operators, including ?.)

Definition 1 We take Λ̂ = [N → Λ⊥] and define wrapper functions for constructing
λ-terms using de Bruijn-level (not -index!) naming as follows:

V̂AR(v) = λnN. bVAR(v)c
L̂AM(f) = λnN. f (gen(n)) (n+ 1) ? λmΛ

0 . bLAM(gen(n),m0)c
ÂPP(l1, l2) = λnN. l1 n ? λm

Λ
1 . l2 n ? λm

Λ
2 . bAPP(m1,m2)c .

8



Note 1 If we took freshness as a primitive concept, like in FreshML, we could simply
use Λ̂ = Λ⊥; V̂AR(v) = bVAR(v)c; L̂AM(f) = f x?λm0. bLAM(x,m0)c, with x fresh
for f ; and ÂPP(l1, l2) = l1 ? λm1. l2 ? λm2. bAPP(m1,m2)c.

2.3 A residualizing model

From standard domain-theoretic results (e.g., Pitts [Pit93]), we know that there exists
a pointed cpo Dr, together with an isomorphism

iD : Dr
∼=→ (Λ̂ + [Dr → Dr])⊥ .

We write

tm(l) = i−1
D (bin1(l)c) fun(f) = i−1

D (bin2(f)c) ⊥Dr = i−1
D (⊥) .

Then any element of Dr can be uniquely written as one of tm(l), fun(f), or ⊥Dr .
Moreover, the standard domain-theoretic solution is in fact a so-called minimal

invariant [Pit93], which we will exploit in the correctness proof. (In the specific
case of Dr, the minimal-invariant condition says that the following “copy function”
e : Dr →Dr, recursively defined in the least-fixed-point sense,

e(d) = case d of




tm(l) → tm(l)
fun(f) → fun(e ◦ f ◦ e)
⊥Dr → ⊥Dr

is in fact the identity function on Dr.)
We can now define the reification function, ↓ : Dr → Λ̂, and the reflection function,

↑ : Λ̂ → Dr, as follows:

↓ d = case d of




tm(l) → l

fun(f) → L̂AM(λxV . ↓ (f(↑ (V̂AR(x)))))
⊥Dr → ⊥bΛ

↑ l = tm(l) ,

where the recursive definition of ↓ is again interpreted as the least fixed point. Using
these, we construct appropriate functions φr : [Dr→Dr]→Dr and ψr : Dr→[Dr→Dr]:

φr(f) = fun(f)

ψr(d) = case d of




tm(l) → λd′Dr . ↑ ÂPP(l, ↓ d′)
fun(f) → f
⊥Dr → ⊥[Dr→Dr] .

Clearly, we have that ψr ◦φr = id[Dr→Dr], since iD was an isomorphism. The induced
interpretation is denoted by [[·]]r. We can now define a putative normalization function:

Definition 2 For any ∆, let ]∆ = max ({n + 1 | gn ∈ ∆} ∪ {0}) (i.e., the least n
such that ∀n′ ≥ n. gn′ 6∈ ∆). We then define the function norm∆ : Λ∆ → Λ⊥ by

norm∆(m) = ↓ ([[m]]r (λxV . ↑ (V̂AR(x)))) ]∆ .

We also define the general function norm : Λ→ Λ⊥ like above, but with ]∆ replaced
by 0. Then for any ∆ such that ∆ ∩G = ∅, and m ∈ Λ∆, norm(m) = norm∆(m).
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3 Correctness of the construction

3.1 Correctness of the wrappers

We first define what it means for an element of Λ̂ to represent a λ-term with some
additional properties:

Definition 3 For l ∈ Λ̂, ∆ ⊆fin V, s ∈ {at, nf}, and m ∈ Λ∆, we define the repre-
sentation relation / by

l /∆
s m iff ∀n ≥ ]∆. l n = ⊥ ∨ ∃m′ ∈ Λ∆. l n = bm′c ∧m′ ↔ m ∧m′ ∈ Ns .

That is, as long as we avoid clashes with generated bound-variable names, any concrete
term generated from l has only free variables in ∆, is convertible to m, and is of
syntactic form s. Note, however, that we only capture a notion of partial correctness
here: if l does not generate a term at all, the conditions are vacuously satisfied.

Lemma 3 For fixed ∆, s, and m, the predicate P = {l | l /∆
s m} is pointed (i.e.,

⊥bΛ ∈ P ) and inclusive (i.e., closed under limits of ω-chains).

Proof: Straightforward, noting that / is expressed as an intersection of inverse im-
ages by a continuous function (application to n) of a (necessarily inclusive) predicate
on the flat domain Λ⊥. �

Lemma 4 The representation relation is closed under weakening and conversion:

a. If l /∆
s m and ∆ ⊆ ∆′, then also l /∆′

s m.

b. If l /∆
s m and m′ ∈ Λ∆ with m↔ m′, then also l /∆

s m′.

Proof: Both parts are immediate from the definition. For part (a), assume l /∆
s m

and ∆ ⊆ ∆′, and consider an n ≥ ]∆′. Then also n ≥ ]∆, and thus, by the assumption
on l, if l n 6= ⊥, there exists an m′ ∈ Λ∆ ⊆ Λ∆′

, satisfying the conditions in l /∆′
s m.

For part (b), assume l /∆
s m, and let m′ ∈ Λ∆ with m ↔ m′ be given. Then,

when n ≥ ]∆ and l n 6= ⊥, there exists an m′′ ∈ Λ∆ such that l n = bm′′c, m′′ ↔ m,
and m′′ ∈ Ns. By transitivity of ↔, we must also have m′′ ↔ m′, so l /∆

s m′ as
required. �

Lemma 5 Representations of terms behave much like the terms themselves:

a. If v ∈ ∆, then V̂AR(v) /∆
at VAR(v).

b. If l1 /∆
at m1 and l2 /∆

nf m2, then ÂPP(l1, l2) /∆
at APP(m1,m2).

c. If l /∆
at m, then also l /∆

nf m.

d. Let f ∈ [V → Λ̂] and m ∈ Λ∆∪{x}. If ∀v /∈ ∆.fv /∆∪{v}
nf m[VAR(v)/x], then

L̂AM(f) /∆
nf LAM(x,m).
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Proof: Parts (a), (b), and (c) are straightforward, where (b) uses that convertibility
is a congruence wrt. APP. We will now prove (d).

Let f , x, and m, satisfy the condition of the lemma, and let n ≥ ]∆ and m′ with
L̂AM(f) n = bm′c be given; we must show that m′ ∈ Λ∆, m′ ↔ LAM(x,m), and
m′ ∈ Nnf .

From the definition of L̂AM(f), we must have that, for some m0, f gn (n+ 1) =
bm0c and m′ = LAM(gn,m0). By definition of ], gn 6∈ ∆, so by assumption on f ,
f gn /∆∪{gn}

nf m[VAR(gn)/x]. Further, since n+ 1 ≥ ](∆∪ {gn}), the definition of /
gives us that m0 ∈ Λ∆∪{gn}, m0 ↔ m[VAR(gn)/x], and m0 ∈ Nnf ,. But then clearly
LAM(gn,m0) ∈ Λ∆, LAM(gn,m0) ∈ Nnf , and

LAM(gn,m0) ↔ LAM(gn,m[VAR(gn)/x]) ↔ LAM(x,m) ,

where the first conversion is by congruence wrt. LAM and the second is a valid α-
conversion, since gn 6∈ ∆ ensures that gn 6∈ FV (m) \ {x}. �

The constructions and results in the next section rely only on those properties
of the wrappers from Definition 1 and the relation / from Definition 3 that were
established in Lemmas 3–5, not on the definitions themselves.

3.2 Adequacy of the residualizing model

To construct the central relation between terms and their residualizing denotations,
we first state an abstract version of a result due to Pitts [Pit93]:

Theorem 1 (existence of invariant relations) Let A be a cpo, and let i : D ∼=→
(A+[D→D])⊥ be a minimal invariant. Let T be a set, and let predicates P1 ⊆ A×T ,
P2 ⊆ T , and P3 ⊆ T × T × T be given, such that {a | P1(a, t)} is inclusive for every
t ∈ T . Then there exists a relation C ⊆ D × T , with {d | d C t} inclusive for every
t ∈ T , such that, for all d ∈ D and t ∈ T ,

d C t iff



d = ⊥D ∨
∃a. d = i−1(bin1(a)c) ∧ P1(a, t) ∨
∃f. d = i−1(bin2(f)c) ∧ P2(t) ∧
∀d′ ∈ D; t′, t′′ ∈ T. P3(t, t′, t′′) ∧ d′ C t′ ⇒ f(d′) C t′′


 .

Proof: See Appendix A �

We can recover Pitts’s original result as follows. Let ΛZ be an extension of Λ
with PCF-style integer arithmetic, and let ⇓ be the usual big-step, call-by-name
evaluation relation on Λ∅

Z
. We then take A as Z, T as Λ∅

Z
, P1(n,m) as m ⇓ n, P2(m)

as ∃x,m0.m ⇓ LAM(x,m0), and P3(m,m′,m′′) as ∀x,m0.m ⇓ LAM(x,m0) ⇒ m′′ =
m0[m′/x]. Note that, by determinacy of ⇓, the x and m0 are uniquely determined
when they exist, so P2 and P3 would naturally be joined into a single condition.

The computational-adequacy proof for evaluation then shows, by a straightforward
structural induction on m, that if ρ : V → D and θ : V ⇀ Λ∅

Z
are such that ∀x ∈

FV (m). ρ(x) C θ(x), then [[m]]ρ C m[θ]. For the special case when m is itself a closed
term, we then immediately read off that if [[m]]∅ 6= ⊥D then m must evaluate to a
value.
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When generalizing to normalization, there are two complications. First, we con-
sider symmetric equivalence, not directed evaluation, so the relation d C − must be
closed under arbitrary β-conversions, not just head-β-expansions as before. Second,
since we also normalize under lambdas, we must in general consider substitutions
that replace variables with open terms. Accordingly, we replace the fixed set of closed
terms, Λ∅, with a Kripke-style family of term sets, indexed by their allowed free
variables, Λ∆. Somewhat surprisingly, Pitts’s result – although in the generalized
formulation – accounts directly for these adaptations:

Lemma 6 There exists a relation . such that for all ∆, d ∈ Dr and m ∈ Λ∆,

d .∆ m iff



d = ⊥Dr ∨
∃l. d = tm(l) ∧ l /∆

at m ∨
∃f. d = fun(f) ∧ (∃x ∈ V,m0 ∈ Λ∆∪{x}.LAM(x,m0) ↔ m)
∧ ∀∆′ ⊇ ∆, d′ ∈ Dr,m

′ ∈ Λ∆′
,m1 ∈ Λ∆′

.

m↔ m1 ∧ d′ .∆′
m′ ⇒ f(d′) .∆′

APP(m1,m
′)


 .

Proof: By Theorem 1, taking A = Λ̂ and T = {(∆,m) | ∆ ⊆fin V ∧m ∈ Λ∆}, with
the predicates chosen as

P1 = {(l, (∆,m)) | l /∆
at m}

P2 = {(∆,m) | ∃x ∈ V,m0 ∈ Λ∆∪{x}.LAM(x,m0) ↔ m}
P3 = {((∆,m), (∆′,m′), (∆′′,m′′)) |

∆ ⊆ ∆′ = ∆′′ ∧ ∃m1 ∈ Λ∆′
.m↔ m1 ∧m′′ = APP(m1,m

′)}
using the equivalence [∀x.(∃y.P (x, y)) ⇒ Q(x)] ⇔ [∀x.∀y.P (x, y) ⇒ Q(x)]. P1 is
inclusive in its first argument by Lemma 3. We write d .∆ m instead of d C (∆,m).

�

Note how, in the function case, we require that f and m can also be meaningfully
applied to arguments from later worlds ∆′, much like in a conventional, type-indexed
Kripke logical relation [Mit96, p.590].

Lemma 7 The relation . shares two key properties with /:

a. If d .∆ m and ∆ ⊆ ∆′, then also d .∆′
m.

b. If d .∆ m and m′ ∈ Λ∆ with m↔ m′, then also d .∆ m′.

Proof: We proceed according to the cases for d .∆ m in Lemma 6:

Case d = ⊥Dr : Both parts are immediate.

Case d = tm(l): Both parts follow directly from the corresponding parts of
Lemma 4, taking s = at.

Case d = fun(f): For (a), if m0 ∈ Λ∆∪{x}, then also m0 ∈ Λ∆′∪{x}. Likewise, any ∆′′

with ∆′′ ⊇ ∆′ in the universal quantification also satisfies ∆′′ ⊇ ∆.

For (b), any m0 satisfying LAM(x,m0) ↔ m also satisfies LAM(x,m0) ↔ m′ by
transitivity. Similarly, the terms m1 satisfying m ↔ m1 are the same as those
that satisfy m′ ↔ m1. �
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The following two lemmas will combine to establish adequacy of our semantics:

Lemma 8 For all l ∈ Λ̂, d ∈ Dr, and m ∈ Λ∆,

a. If l /∆
at m, then ↑ l .∆ m.

b. If d .∆ m, then ↓ d /∆
nf m.

Proof: Part (a) follows immediately from Lemma 6(⇐) and the definition of ↑ .
For part (b), recall that reification was conceptually defined in terms of the con-

tinuous function Φ : [Dr → Λ̂] → [Dr → Λ̂],

Φ(ϕ) = λdDr . case d of




tm(l) → l

fun(f) → L̂AM(λxV. ϕ(f(↑ (V̂AR(x)))))
⊥Dr → ⊥bΛ

with ↓ = fix(Φ). Consider therefore the predicate

R = {ϕ ∈ [Dr → Λ̂] | ∀d,∆,m ∈ Λ∆. d .∆ m⇒ ϕ(d) /∆
nf m}.

It is straightforward to verify that R is pointed and inclusive, using the corresponding
properties of / (Lemma 3). To show that fix(Φ) ∈ R by fixed-point induction, it
therefore suffices to show that for all ϕ ∈ R, Φ(ϕ) ∈ R.

Accordingly, assume that ϕ ∈ R and d .∆ m; we aim to prove that Φ(ϕ)(d) /∆
nf m.

We divide the argument into cases over d:

Case d = ⊥Dr : Then Φ(ϕ)(d) = ⊥bΛ, and thus ⊥bΛ /∆
nf m, by Lemma 3.

Case d = tm(l): Then Φ(ϕ)(d) = l, and by Lemma 6(⇒) and Lemma 5(c), l /∆
nf m.

Case d = fun(f): Then Φ(ϕ)(d) = L̂AM(λxV . ϕ(f(↑ (V̂AR(x))))). Let v 6∈ ∆ be ar-
bitrary. By Lemma 5(a), V̂AR(v) /∆∪{v}

at VAR(v), and so by part (a) above,

↑ (V̂AR(v)) .∆∪{v} VAR(v) .

By assumption on m and Lemma 6(⇒), there exist x and m0 ∈ Λ∆∪{x} such that
LAM(x,m0) ↔ m.

Take ∆′ = ∆ ∪ {v}, d′ = ↑ (V̂AR(v)), m′ = VAR(v), and m1 = LAM(x,m0). By
assumption on f , we then get that

f(↑ (V̂AR(v))) .∆∪{v} APP(LAM(x,m0),VAR(v)) .

Since APP(LAM(x,m0),VAR(v)) ↔ m0[VAR(v)/x], and . is closed under con-
version (Lemma 7(b)), we also have

f(↑ (V̂AR(v))) .∆∪{v} m0[VAR(v)/x] .

Hence, by assumption on ϕ,

(λxV.ϕ(f(↑ (V̂AR(x))))) v /∆∪{v}
nf m0[VAR(v)/x] .
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And thus, by Lemma 5(d),

L̂AM(λxV.ϕ(f(↑ (V̂AR(x))))) /∆
nf LAM(x,m0) .

Finally, since / is closed under conversion (Lemma 4(b)), we get Φ(ϕ)(d) /∆
nf m,

as required. �

Lemma 9 Let m ∈ ΛΓ, and for all x ∈ Γ, let θ(x) ∈ Λ∆ (in particular, Γ ⊆ dom θ).
If ∀x ∈ Γ. ρ(x) .∆ θ(x) then [[m]]r ρ .∆ m[θ].

Proof: By structural induction on m.

Case m = VAR(x): This follows immediately from the assumption on ρ and θ, since
[[VAR(x)]]r ρ = ρ(x).

Case m = LAM(x,m0): Take f = λd.[[m0]]r ρ[x 7→d]. Then iD([[m]]r ρ) = bin2(f)c, so
to use Lemma 6(⇐), we must establish that f and m[θ] satisfy the requirements
for the third alternative. First, from the definition of substitution, we get that
LAM(x,m0)[θ] = LAM(x′,m′

0) for some x′ and m′
0 = m0[θ[x 7→VAR(x′)]]. Clearly

m′
0 ∈ Λ∆∪{x′}, and LAM(x′,m′

0) ↔ m[θ] by reflexivity of ↔ .

Second, let ∆′ ⊇ ∆, d′, m1 ∈ Λ∆′
and m′ ∈ Λ∆′

be given, with m[θ] ↔ m1 and
d′ .∆′

m′; we must show that f(d′) .∆′
APP(m1,m

′). Take ρ′ = ρ[x 7→ d′] and
θ′ = θ[x 7→m′]. Using the assumption on d′ and m′ for x, and monotonicity of .
(Lemma 7(a)) for the remaining variables in Γ, we get that for all x′′ ∈ Γ ∪ {x},
ρ′(x′′) .∆′

θ′(x′′). Hence, by IH on m0, f(d′) = [[m0]]r ρ′ .∆′
m0[θ′]. And finally,

since

m0[θ′]
↔ APP(LAM(x,m0),VAR(x))[θ′] = APP(LAM(x,m0)[θ′],VAR(x)[θ′])
↔ APP(LAM(x,m0)[θ],m′) = APP(m[θ],m′)
↔ APP(m1,m

′) ,

and . is closed under conversion (Lemma 7(b)), we get f(d′) .∆′
APP(m1,m

′),
as required.

Case m = APP(m1,m2): Here, [[APP(m1,m2)]]r ρ = ψr([[m1]]r ρ) ([[m2]]r ρ). We di-
vide the argument into subcases over [[m1]]r ρ:

Case [[m1]]r ρ = ⊥Dr : Then ψr([[m1]]r ρ)([[m2]]r ρ) = ⊥ .∆ APP(m1,m2)[θ].

Case [[m1]]r ρ = tm(l): Then ψr([[m1]]r ρ)([[m2]]r ρ) = ↑ (ÂPP(l, ↓ ([[m2]]r ρ))). By
IH on m1 and Lemma 6(⇒), l /∆

at m1[θ], and by IH on m2 and Lemma 8(b),
↓ ([[m2]]r ρ) /∆

nf m2[θ]. Hence by Lemma 5(b),

ÂPP(l, ↓ ([[m2]]r ρ)) /∆
at APP(m1[θ],m2[θ]) = APP(m1,m2)[θ] = m[θ] .

And thus, by Lemma 8(a), ↑ (ÂPP(l, ↓ [[m2]]r ρ)) .∆ m[θ].

Case [[m1]]r ρ = fun(f): Then ψr([[m1]]r ρ)([[m2]]r ρ) = f([[m2]]r ρ). By IH on m1

and Lemma 6(⇒), we have, in particular, that if d′ .∆ m′ then f(d′) .∆

APP(m1[θ],m′). Take d′ = [[m2]]r ρ and m′ = m2[θ]. Then, using IH on m2,
f([[m2]]r ρ) .∆ APP(m1[θ],m2[θ]) = m[θ]. �
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3.3 Correctness of the normalization function

For showing completeness of the normalizer, we first establish that, for a term already
in normal form, reifying its residualizing denotation gives an always-defined term
generator.

Definition 4 For any l ∈ Λ̂, we define the uniform definedness predicate def(l) by
def(l) ⇔ ∀n ∈ ω. l n 6= ⊥.

Lemma 10 The wrapper functions preserve definedness:

a. For all v ∈ V, def(V̂AR(v)).

b. If for all v ∈ V, def(f v), then def(L̂AM(f)).

c. If def(l1) and def(l2), then def(ÂPP(l1, l2)).

Proof: Straightforward verification in each case. �

Lemma 11 Let m ∈ Λ and ρ ∈ [V → Dr] be such that for all x ∈ FV (m), there
exists an l with ρ(x) = ↑ l and def(l). Then,

a. If m ∈ Nat, then ∃l ∈ Λ̂. [[m]]r ρ = ↑ l ∧ def(l).

b. If m ∈ Nnf , then def(↓ ([[m]]r ρ)).

Proof: By simultaneous rule induction on àt · and ǹf ·. The relevant cases are:

Case àt VAR(x): Then [[m]]r ρ = ρ(x), and x ∈ FV (m), so the result follows directly
from the assumption on ρ.

Case àt APP(m1,m2) because àt m1 and ǹf m2: By IH(a) on the first premise,
there exists an l1 such that [[m1]]r ρ = ↑ l1 and def(l1). Therefore, [[m]]r ρ =
↑ (ÂPP(l1, ↓ ([[m2]]r ρ))). Take l2 = ↓ ([[m2]]r ρ) and l = ÂPP(l1, l2). By IH(b) on
the second premise, def(l2), so by Lemma 10(c), def(l), as required.

Case ǹf m because àt m: By IH(a) on the premise, [[m]]r ρ = ↑ l, with def(l). But
↓ (↑ l) = l, so also def(↓ [[m]]r ρ).

Case ǹf LAM(x,m0) because ǹf m0: Expanding the definition of ↓ for the func-
tional case, we have to show that def(L̂AM(λx.↓ ([[m0]]r ρ[x 7→ ↑ (V̂AR(x))]))). By
Lemma 10(b), it suffices to show that, for every v ∈ V, def(↓ ([[m0]]r ρ′)), where
ρ′ = ρ[x 7→ ↑ (V̂AR(v))]. This follows from IH(b) on the premise, if for every
x′ ∈ FV (m0), there exists an l, such that ρ′(x′) = ↑ l and def(l). But for x′ 6= x,
we must have x′ ∈ FV (m), so this follows from the assumption on ρ; and for
x′ = x, it follows from Lemma 10(a).

�

Theorem 2 (semantic correctness) norm∆ from Definition 2 is a normalization
function on Λ∆, i.e.,

a. (soundness) If norm∆(m) = bm′c, then m′ ∈ Λ∆, m′ ↔ m, and m′ ∈ Nnf .
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b. (identification) If m↔ m′, then norm∆(m) = norm∆(m′).

c. (completeness) If for some m′ ∈ Nnf , m′ ↔ m, then norm∆(m) 6= ⊥.

Proof: (Soundness) Let ρ0 = λxV. ↑ (V̂AR(x)), and let θ0 be the substitution
mapping every x in ∆ to VAR(x). By Lemma 5(a), for every x ∈ ∆, V̂AR(x) /∆

at

VAR(x) = θ0(x), and hence by Lemma 8(a), ρ0(x) .∆ θ0(x). By Lemma 9, we
then get that [[m]]r ρ0 .∆ m[θ0] ↔ m, and thus, by Lemma 8(b), ↓ ([[m]]r ρ0) /∆

nf m.
Assume now that norm∆(m) = ↓ ([[m]]r ρ0) ]∆ = bm′c. Taking n = ]∆ in Definition 3,
we can then immediately read off that m′ has the required properties.

(Identification) This follows directly from model soundness (Lemma 2), since the
residualizing model is indeed a model.

(Completeness) Using Lemma 10(a), we see that ρ0 satisfies the condition on ρ in
Lemma 11. Hence, by part (b) of the latter lemma and Definition 4, ↓ ([[m′]]r ρ0) ]∆ 6=
⊥. And thus, again by model soundness, also norm∆(m) = ↓ ([[m]]r ρ0) ]∆ 6= ⊥. �

Note that the correctness theorem does not completely pin down the behav-
ior of the normalizer: the soundness specification allows it to return any valid α-
variant of the normal form, such as normalizing the term LAM(x,LAM(y,VAR(y)))
to LAM(g0,LAM(g0,VAR(g0))). Conversely, completeness says only that if a term
has a β-normal form, the normalizer will also find one, though not necessarily the
same one.

It would also be possible to adopt a “tight” specification of normal forms, requiring
them to also be α-normal, such as the current de Bruijn-level naming. Then, a term
can have at most one normal form, and the normalizer will in fact find exactly that
one when it exists – which would allow us to combine soundness and completeness
into a single statement.

4 An implementation of the construction

4.1 Syntax and semantics of an ML-like call-by-value language

As our implementation language, we take a small fragment of Standard ML [MTHM97].
We deliberately choose an eager language, whose finer control over lifting allows us
to mirror all the semantic constructions almost exactly (i.e., up to isomorphism).
Any necessary laziness can be easily added by explicit thunking. On the other hand,
working in an inherently lazy language, such as Haskell, would make it harder to work
with, e.g., the set of λ-terms as a datatype, without also including spurious infinite
and partially-defined elements.

Syntax The fragment is parameterized by a sequence of recursive datatype decla-
rations, each of the form

datatype dti = In i
1 of τ i

11 * · · · * τ i
1n1

| · · · | In i
k of τ i

k1 * · · · * τ i
knk

,

where ML types τ are given by the grammar,

τ ::= unit | int | bool | string | τ1 -> τ2 | dti .
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Γ, x : τ ` x : τ Γ ` n : int Γ ` "v" : string Γ ` () : unit
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int
Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 = e2 : bool
(τ ground)

Γ ` e : int
Γ ` "g"^Int.toString e : string

Γ ` e : τ
Γ ` fn () => e : unit->τ

Γ, x : τ1 ` e : τ2
Γ ` fn x => e : τ1->τ2

Γ ` e1 : τ1->τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Γ ` e1 : τ i
j1 · · · Γ ` en : τ i

jnj

Γ ` In i
j(e1,. . .,enj) : dti

Γ ` e : dti

Γ, x11 : τ i
11, . . . , x1n1 : τ i

1n1
` e1 : τ · · · Γ, xk1 : τ i

k1, . . . , xknk
: τ i

knk
` ek : τ

Γ ` case e of In i
1(x11,. . .,x1n1) => e1 | · · · | In i

k(xk1,. . .,xknk
) => ek : τ

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ
Γ ` if e1 then e2 else e3 : τ

Γ, f : τ1->τ2, x : τ1 ` e1 : τ2 Γ, f : τ1->τ2 ` e2 : τ
Γ ` let fun f (x:τ1):τ2 = e in e2 end : τ

Figure 1: Typing rules for the ML fragment

The datatypes cannot be mutually recursive, but may be cumulative, i.e., later decla-
rations may refer to earlier ones. We say that a type is ground if it does not contain
– directly, or indirectly (through a datatype declaration) – any function spaces. For
notational simplicity, we assume that the set of λ-term variable names, V, is identified
with the set of ML character strings.

The syntax of ML expressions is then

e ::= x | n | "v" | () | e1 + e2 | e1 = e2 | "g"^Int.toString e |
fn () => e | fn x => e | e1 e2 | In i

j(e1,. . .,en) |
case e of In i

1(x11,. . .,x1n1) => e1 | · · · | In i
k(xk1,. . .,xknk

) => ek

if e1 then e2 else e3 | let fun f (x:τ1):τ2 = e1 in e2 end

where x and f range over ML variable names.

Typing We only consider well-typed ML expressions, as captured by the judgement
x1: τ1, . . . , xn: τn ` e : τ , asserting that e is of type τ , with free variables x1, . . . , xn of
types τ1, . . . , τn. The typing rules are shown in Figure 1

Denotational semantics For the meaning of ML types, we take

[[unit]]ml = 1 = {∗} [[int]]ml = Z [[bool]]ml = B [[string]]ml = V
[[τ1 -> τ2]]ml = [[[τ1]]ml → [[τ2]]ml

⊥ ] [[dti]]ml = Si ,
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[[x]]ml ξ = bξ(x)c [[n]]ml ξ = bnc [["v"]]ml ξ = bvc [[()]]ml ξ = b∗c
[[e1 + e2]]ml ξ = [[e1]]ml ξ ? λnZ

1 . [[e2]]
ml ξ ? λnZ

2 . bn1 + n2c
[[e1 = e2]]ml ξ = [[e1]]ml ξ ? λa

[[τ ]]ml

1 . [[e2]]ml ξ ? λa
[[τ ]]ml

2 . ba1 = a2c
[["g"^Int.toString e]]ml ξ = [[e]]ml ξ ? λnZ. bgnc

[[fn () => e]]ml ξ = bλu1.[[e]]ml ξc [[fn x => e]]ml ξ = bλa[[τ1]]
ml
.[[e]]ml ξ[x 7→ a]c

[[e1 e2]]ml ξ = [[e1]]ml ξ ? λf [[[τ1]]
ml→[[τ2]]

ml
⊥ ]. [[e2]]ml ξ ? λa[[τ1]]

ml
. f a

[[In i
j(e1,. . .,en)]]ml ξ =

[[e1]]ml ξ ? λa
[[τ i

j1]]ml

1 . · · · .[[en]]ml ξ ? λa
[[τ i

jn]]ml

n . bιIn i
j
(a1, . . . , an)c

[[case e of In i
1(x11,. . .,x1n1) => e1 | · · · | In i

k(xk1,. . .,xknk
) => ek]]ml ξ =

[[e]]ml ξ ? λsSi

. case s of



ιIn i

1
(a1, . . . , an1) → [[e1]]ml ξ[x11 7→ a1, . . . , x1n1 7→ an1 ]

...
ιIn i

k
(a1, . . . , ank

) → [[ek]]ml ξ[xk1 7→ a1, . . . , xknk
7→ ank

]

[[if e1 then e2 else e3]]ml ξ = [[e1]]ml ξ ? λbB. case b of
{

tt → [[e2]]ml ξ
ff → [[e3]]ml ξ

[[let fun f (x:τ1):τ2 = e1 in e2 end]]ml ξ =
[[e2]]ml ξ[f 7→ fix(λθ[[[τ1]]

ml→[[τ2]]
ml
⊥ ].λa[[τ1]]

ml
.[[e1]]ml ξ[f 7→ θ, x 7→ a]︸ ︷︷ ︸

Θf

)]

Figure 2: Denotational semantics of the ML fragment.

where, for each dti,

idti : Si ∼=→ ([[τ i
11]]

ml × · · · × [[τ i
1n1

]]ml) + · · ·+ ([[τ i
k1]]

ml × · · · × [[τ i
knk

]]ml)

is a minimal-invariant solution to the evident predomain equation. We write

ιIn i
j
(a1, . . . , an) = i−1

dti(inj(a1, . . . , an))

for the constructor functions. Any element of Si can thus be uniquely written as the
image of a constructor function.

When all the τ i
·· (and hence also dti) are ground, the least solution Si will again be

a set (discrete cpo), and could be constructed using standard set-theoretic methods.
In the general case, one must use, e.g., the domain-theoretic inverse-limit construction,
straightforwardly adapted to predomains.

The meaning of ML expressions is defined by induction on the typing derivation;
for conciseness we write only the expressions themselves. The semantics is structured
such that if Γ ` e : τ and for all (xi : τi) ∈ Γ, ξ(xi) ∈ [[τi]]ml, then [[e]]ml ξ ∈ [[τ ]]ml

⊥ .
The full semantics is shown in Figure 2

For notational convenience in the following, we will assume that all function names
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datatype term = VAR of string | LAM of string*term | APP of term*term

datatype sem = TM of int -> term | FUN of (unit -> sem) -> sem;

let fun down (s:sem):int->term = fn n =>

(case s of

TM l => l n

| FUN f => LAM("g"^Int.toString n,

down (f (fn () => TM(fn n’ => VAR("g"^Int.toString n)))) (n+1)))

in let fun eval (m:term):(string->sem)->sem = fn p =>

(case m of

VAR x => p x

| LAM(x,m0) => FUN(fn d => eval m0

(fn x’ => if x = x’ then d () else p x’))

| APP(m1,m2) => (case (eval m1 p) of

TM l => TM(fn n => APP(l n,down (eval m2 p) n))

| FUN f => f (fn () => eval m2 p)))

in let fun norm (m:term):term =

down (eval m (fn x => TM(fn n => VAR(x)))) 0

in norm end end end

Figure 3: The normalization algorithm, NORM .

f in a program are distinct. For a fixed program, we can then unambiguously use
θf = fix(Θf ) to refer to the denotation of f in the let fun-construct.

Evaluation semantics We say that a complete program is a closed expression of
type τ1 -> τ2 -> · · ·-> τn -> τ0 (n ≥ 0), where each τi is a ground type. For such types,
let Cτ = [[τ ]]ml denote the set of values underlying τ , e.g., Cint = Z. A complete
program e : τ1 -> τ2 -> · · · -> τn -> τ0 then determines a computable partial function
e • (·) : Cτ1 × · · · × Cτn ⇀ Cτ0 , given, e.g., by

e • (c1, . . . , cn) = c0 iff (e c1 · · · cn) ⇓ml c0 ,

where ⇓ml is the usual big-step operational semantics of expressions, and c denotes
the syntactic representation of the value c.

Theorem 3 (computational adequacy of denotational semantics) For a com-
plete ML program e, e• (c1, . . . , cn) = c0 iff [[e]]ml∅?λf1. f1 c1 ? · · · ? λfn.fn cn = bc0c.
Proof: Modulo trivial syntactic differences, an equivalent formulation of the se-
mantics in terms of strict functions between pointed cpos, rather than general ones
between cpos, and the obvious generalization to multiple (non-mutually recursive)
datatypes, this is shown in, e.g., [Pit96, Section 5]. The primary difficulty is, of
course, the definition of the logical relation at types dti, which is again achieved by
exploiting the minimal-invariant properties of the (Si, idti). �

4.2 The normalization algorithm

The concrete representation of the normalization algorithm, with many of the auxil-
iary definitions inlined, is shown in Figure 3. We have taken dt1 = term with three
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constructors In1
1 = VAR, In1

2 = LAM, and In1
3 = APP. Note that term is a ground type.

To keep the notation concise, we assume that the chosen predomain-equation solution
coincides exactly with our representation of terms, i.e., [[term]]ml = Λ, ιLAM(v,m) =
LAM(v,m), etc. Similarly, we have instantiated dt2 as the type sem, with construc-
tors TM and FUN. We write S = [[sem]]ml, but here we do not a priori require that
S⊥ = Dr.

Since ML is a call-by-value language, we must simulate the implicit call-by-name
nature of the residualizing semantics using thunking. We have defined sem so that
[[sem]]ml

⊥ ∼= Dr; then semantic functions with codomain Dr can be represented directly
as ML functions into sem, while functions with domain Dr are represented as ML
functions with source type unit -> sem. As an optimization, however, the strict
function ↓ : Dr → Λ̂ is represented as simply an ML function on sem.

It is easy to check that the top-level expression, NORM : term -> term, is a well-
typed complete program in our sense.

Examples The following examples illustrate how the program behaves. Let SA ≡
LAM(x,APP(VAR(x),VAR(x))) and Omega ≡ APP(SA,SA).

a. NORM • (Omega) diverges.

b. NORM • (APP(LAM(x,LAM(x,VAR(x))),Omega)) = LAM(g0,VAR(g0)).

c. NORM • (LAM(y,LAM(g4,VAR(z)))) = LAM(g0,LAM(g1,VAR(z))).

Let us now formally relate the abstract and concrete constructions. To obtain a
perfect correspondence between semantic term generators and their implementation,
we choose N = Z, with gen(n) = gn = gn when n ≥ 0, e.g., gen(13) = g13; then
[[int -> term]]ml = Λ̂. Recall that we had Dr

∼= (Λ̂ + [Dr → Dr])⊥, while [[sem]]ml =
S ∼= Λ̂ + [[1→ S⊥]→ S⊥]. We can then show:

Lemma 12 There exists an isomorphism iDS : Dr
∼=→ S⊥, satisfying:

a. For all l ∈ Λ̂, iDS (tm(l)) = bιTM(l)c.
b. For all f ∈ [Dr → Dr], iDS (fun(f)) = bιFUN(λt[1→S⊥]. iDS (f(i−1

DS (t ∗))))c.
c. iDS (⊥Dr) = ⊥S⊥.

Proof: See Appendix B.1. �

We can also state three lemmas, relating the central domain-theoretic functions
to the denotations of their syntactic counterparts:

Lemma 13 For all d ∈ Dr and n ∈ Z, ↓ dn = iDS (d) ? λsS . θdown s ? λl
bΛ. l n.

Proof: By fixed-point induction on Φ×Θdown (where Φ is as in the proof of Lemma 8),
using the predicate R ⊆ [Dr → Λ̂]× [S→ Λ̂⊥] defined by

R = {(ϕ, θ) | ∀d ∈ Dr, n ∈ Z. ϕ d n = iDS (d) ? λsS .θ s ? λl
bΛ.l n}.

We aim to establish that (fix(Φ), fix(Θdown)) ∈ R. It is straightforward to verify
that R is pointed and inclusive. Assume that (ϕ, θ) ∈ R; we then must show that
(Φ(ϕ),Θdown(θ)) ∈ R. Accordingly, let arbitrary d and n be given, and consider d:
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Case d = ⊥Dr : By Lemma 12(c), iDS (d) = ⊥S⊥ , and so

iDS (d) ? λsS .Θdown(θ) s ? λl
bΛ.l n

= ⊥Λ⊥ .

Similarly, Φ(ϕ) d n = ⊥bΛ n = ⊥Λ⊥ .

Case d = tm(l): Let ξ = ∅[down 7→ θ, s 7→ ιTM(l)]; we calculate:

iDS (d) ? λsS .Θdown(θ) s ? λl
bΛ.l n

= iDS (tm(l)) ? λsS .Θdown(θ) s ? λl
bΛ.l n

= bιTM(l)c ? λsS .Θdown(θ) s ? λl
bΛ.l n (by Lemma 12(a))

= Θdown(θ) (ιTM(l)) ? λl
bΛ.l n

= [[fn n => (case s of TM l => l n | ...)]]ml ξ ? λl
bΛ.l n

= [[l n]]ml ξ[n 7→ n, l 7→ l]
= l n

Similarly, Φ(ϕ) d n = Φ(ϕ)(tm(l)) n = l n.

Case d = fun(f): Let ξ = ∅[down 7→ θ, s 7→ ιFUN(λt. iDS (f(i−1
DS (t ∗))))] and let ξ′ =

ξ[n 7→ n, f 7→ (λt. iDS (f(i−1
DS (t ∗))))]; again,

iDS (d) ? λsS .Θdown(θ) s ? λl
bΛ.l n

= iDS (fun(f)) ? λsS .Θdown(θ) s ? λl
bΛ.l n

= bιFUN(λt. iDS (f(i−1
DS (t ∗))))c ? λsS .Θdown(θ) s ? λl

bΛ.l n (by Lemma 12(b))
= [[fn n => (case s of ...| FUN f => LAM ...)]]ml ξ ? λl

bΛ.l n
= [[LAM("g"^Int.toString(n), down (f (fn () => ...)) (n+1))]]ml ξ′

= [[down (f (fn () => ...)) (n+1)]]ml ξ′ ? λmΛ.bLAM(gn,m)c
= [[f (fn () => ...)]]ml ξ′︸ ︷︷ ︸

s′

? λsS .θ s ? λl
bΛ.l(n+ 1) ? λmΛ.bLAM(gn,m)c

Now,
s′

= [[f (fn () => TM(fn n’ => VAR("g"^Int.toString(n))))]]ml ξ′

= b(λt. iDS (f(i−1
DS (t ∗))))c ? λg.bλu.[[TM(fn ...)]]ml ξ′c ? λa.g a

= iDS (f(i−1
DS (bιTM(λn′Z.bVAR(gn)c)c)))

= iDS (f(tm(λn′Z.bVAR(gn)c))) (by Lemma 12(a))
= iDS (f(↑ (V̂AR(gn)))) (by Def. of V̂AR and ↑ )

Now, the IH that (ϕ, θ) ∈ R says that ∀d′, n′. ϕ d′ n′ = iDS (d′) ? λsS .θ s?λl
bΛ.l n′.

Taking d′ = f(↑ (V̂AR(gn))) and n′ = n+ 1, we continue the original calculation:

[[f (fn () => ...)]]ml ξ′ ? λsS .θ s ? λl
bΛ.l(n+ 1) ? λmΛ.bLAM(gn,m)c

= iDS (f(↑ (V̂AR(gn)))) ? λsS .θ s ? λl
bΛ.l(n+ 1) ? λmΛ.bLAM(gn,m)c

= ϕ(f(↑ (V̂AR(gn)))) (n+ 1) ? λmΛ.bLAM(gn,m)c (by IH)
Similarly,
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Φ(ϕ) d n
= Φ(ϕ)(fun(f)) n
= L̂AM(λxV . ϕ(f(↑ (V̂AR(x))))) n
= ϕ(f(↑ (V̂AR(gn)))) (n+ 1) ? λmΛ. bLAM(gn,m)c (by Def. of L̂AM)

�

Lemma 14 For all m ∈ Λ, ρ ∈ [V → Dr], and % ∈ [V → S⊥], satisfying that ∀x ∈
FV (m). iDS (ρ(x)) = %(x), iDS ([[m]]r ρ) = θevalm ? λg. g %.

Proof: By structural induction on m. Let m, ρ and % be given such that ∀x ∈
FV (m).iDS (ρ(x)) = %(x). Let ξ = ∅[down 7→ θdown]. By the fixed-point equation, since
θeval = fix(Θeval),

θeval m ? λg.g %
= Θeval(θeval) m ? λg.g %
= [[fn p => (case m of ...)]]ml ξ[eval 7→ θeval, m 7→m] ? λg.g %
= [[case m of ...]]ml ξ[eval 7→ θeval, m 7→m, p 7→ %]

Let ξ′ = ξ[eval 7→ θeval, m 7→ m, p 7→ %]. Consider m:

Case m = VAR(x): Then,

θeval m ? λg.g %
= [[case m of VAR x => p x | ...]]ml ξ′

= [[p x]]ml ξ′[x 7→ x]
= %(x)

Since clearly x ∈ FV (m), we have iDS (ρ(x)) = %(x) by assumption on ρ and %.
Thus similarly,

iDS ([[m]]r ρ)
= iDS ([[VAR(x)]]r ρ)
= iDS (ρ(x))
= %(x)

Case m = LAM(x,m0): Let ξ′′ = ξ′[x 7→ x, m0 7→ m0]. Then,
θeval m ? λg.g %
= [[case m of ... | LAM(x,m0) => FUN(...) | ...]]ml ξ′

= [[FUN(fn d => eval m0 (...))]]ml ξ′′

= bιFUN(λt1→S⊥ .[[eval m0 (fn x’ => if ...)]]ml ξ′′[d 7→ t])c
= bιFUN(λt.θeval m0 ? λg.g (λx′V.[[if ...]]ml ξ′′[d 7→ t, x’ 7→ x′])︸ ︷︷ ︸

f

)c

Similarly,
iDS ([[m]]r ρ)
= iDS ([[LAM(x,m0)]]r ρ)
= iDS (φr(λdDr .[[m0]]r ρ[x 7→ d]))
= iDS (fun(λdDr .[[m0]]r ρ[x 7→ d]))
= bιFUN(λt.iDS ((λdDr .[[m0]]r ρ[x 7→ d]) (i−1

DS (t ∗))))c (by Lemma 12(b))
= bιFUN(λt.iDS ([[m0]]r ρ[x 7→ i−1

DS (t ∗)])︸ ︷︷ ︸
f ′

)c
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It remains now to prove that f = f ′. Let any t′ : 1 → S⊥ be given.

Let ρ0 = ρ[x 7→ i−1
DS (t′ ∗)] and %0 = (λx′V .[[if ...]]ml ξ′′[d 7→ t′, x’ 7→x′]). First we

verify that ρ0 and %0 satisfy the requirements of the IH for m0, namely that for
all x′ ∈ FV (m0) ⊆ {x} ∪ FV (m), iDS (ρ0(x′)) = %0(x′). This is straightforward;
first for x′ = x:

%0(x)
= [[if x=x’ then d () else p x’]]ml ξ′′[d 7→ t′, x’ 7→ x]
= t′ ∗
= iDS (i−1

DS (t′ ∗))
= iDS (ρ0(x))

Then for any x′′ ∈ FV (m0) \ {x}:
%0(x′′)
= [[if x=x’ then d () else p x’]]ml ξ′′[d 7→ t′, x’ 7→ x′′]
= %(x′′)
= iDS (ρ(x′′)) (by assumption on ρ and %)
= iDS (ρ0(x′′))

Hence,
f t′

= θeval m0 ? λg.g %0

= iDS ([[m0]]r ρ0) (by IH on m0)
= f ′ t′

Since t′ was arbitrary, f = f ′.

Case m = APP(m1,m2): Let ξ′′ = ξ′[m1 7→ m1, m2 7→ m2]. Then,

θeval m ? λg.g %
= [[case m of ... | APP(m1,m2) => (case ...)]]ml ξ′

= [[case (eval m1 p) of ...]]ml ξ′′

Now,
[[eval m1 p]]ml ξ′′

= θeval m1 ? λg.g %
= iDS ([[m1]]r ρ) (by IH on m1)

Consider [[m1]]r ρ:

Case [[m1]]r ρ = ⊥Dr : Then by Lemma 12(c) also iDS ([[m1]]r ρ) = ⊥, and so θeval m?
λg.g % = ⊥S⊥ .
Similarly,

iDS ([[m]]r ρ)
= iDS ([[APP(m1,m2)]]r ρ)
= iDS (ψr(⊥Dr)([[m2]]r ρ))
= iDS (⊥[Dr→Dr] ([[m2]]r ρ))
= iDS (⊥Dr)
= ⊥S⊥

Case [[m1]]r ρ = tm(l1): Then,
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θeval m ? λg.g %
= [[case (eval m1 p) of TM l => TM(fn n ...) | ...]]ml ξ′′

= [[TM(fn n => APP (...))]]ml ξ′′[l 7→ l1]
= bιTM(λnZ.[[APP(l n, down (eval m2 p) n)]]ml ξ′′[l 7→ l1, n 7→ n]︸ ︷︷ ︸

l

)c

Similarly,
iDS ([[m]]r ρ)
= iDS ([[APP(m1,m2)]]r ρ)
= iDS (ψr (tm(l1)) ([[m2]]r ρ))
= iDS (↑ ÂPP(l1, ↓ ([[m2]]r ρ)))
= iDS (tm(ÂPP(l1, ↓ ([[m2]]r ρ)))) (by Def. of ↑ )
= bιTM(ÂPP(l1, ↓ ([[m2]]r ρ)))c (by Lemma 12(a))
= bιTM(λnZ.l1 n ? λm

′
1.↓ ([[m2]]r ρ) n ? λm′

2.bAPP(m′
1,m

′
2)c︸ ︷︷ ︸

l′

)c

Again, it remains to show that l = l′. Let any n ∈ Z be given.
Let ξ′′′ = ξ′′[l 7→ l1, n 7→ n]; we calculate:

l n
= [[APP(l n, down (eval m2 p) n)]]ml ξ′′′

= l1 n ? λm
′
1. [[down (eval m2 p)]]ml ξ′′′ ? λl2. l2 n ? λm′

2. bAPP(m′
1,m

′
2)c

= l1 n ? λm
′
1. θevalm2 ? λg. g % ? λs. θdown s ? λl2. l2 n ? λm

′
2. bAPP(m′

1,m
′
2)c

= l1 n ? λm
′
1. iDS ([[m2]]r ρ) ? λs. θdown s ? λl2. l2 n ? λm′

2. bAPP(m′
1,m

′
2)c

(by IH on m2)
= l1 n ? λm

′
1. ↓ ([[m2]]r ρ)n ? λm′

2. bAPP(m′
1,m

′
2)c (by Lemma 13)

= l′ n

Since n was arbitrary, l = l′.
Case [[m1]]r ρ = fun(f): Then by Lemma 12(b), we have iDS ([[m1]]r ρ) =

bιFUN(λt1→S⊥ . iDS (f(i−1
DS (t ∗))))c. Thus,

θeval m ? λg.g %
= [[case (eval m1 p) of ... | FUN f => f (fn ...)]]ml ξ′′

= [[f (fn () => eval m2 p)]]ml ξ′′[f 7→ (λt.iDS (f(i−1
DS (t ∗))))])

= (λt.iDS (f(i−1
DS (t ∗)))) (λu.θevalm1 ? λg. g %)

= (λt.iDS (f(i−1
DS (t ∗)))) (λu.iDS ([[m2]]r ρ)) (By IH on m2)

= iDS (f ([[m2]]r ρ))

Similarly,
iDS ([[m]]r ρ)
= iDS ([[APP(m1,m2)]]r ρ)
= iDS (ψr(fun(f)) ([[m2]]r ρ))
= iDS (f ([[m2]]r ρ))

�

Lemma 15 For all m ∈ Λ, norm(m) = θnorm m.

Proof: Let m be given, and let ξ = ∅[down 7→ θdown, eval 7→ θeval, norm 7→ θnorm, m 7→
m]. Let further b%c = [[fn x => TM(fn n => VAR(x))]]ml ξ and ρ = (λxV.↑ (V̂AR(x))).
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We first verify that % and ρ satisfy the requirements of Lemma 14, namely that
for all x′ ∈ V ⊃ FV (m),

%(x′)
= [[fn x => TM(fn n => VAR(x))]]ml ξ ? λf.f(x′)
= [[TM(fn n => VAR(x))]]ml ξ[x 7→ x′]
= bιTM(λnZ.bVAR(x′)c)c
= bιTM(V̂AR(x′))c (by Def. of V̂AR)
= iDS (tm(V̂AR(x′))) (by Lemma 12(a))
= iDS (↑ (V̂AR(x′))) (by Def. of ↑)
= iDS (ρ(x′))

Hence, by a single unrolling of the fixed-point equation θnorm = Θnorm(θnorm),

θnorm m
= [[down (eval m (fn x => TM(fn n => VAR(x)))) 0]]ml ξ
= [[eval m (fn x => TM(fn n => VAR(x)))]]ml ξ ? λs.θdown s ? λl.l 0
= θeval m ? λg.g % ? λs.θdown s ? λl.l 0
= iDS ([[m]]r ρ) ? λs.θdown s ? λl.l 0 (by Lemma 14)
= ↓ ([[m]]r ρ) 0 (by Lemma 13)
= norm(m) (by Def. of norm)

�
Theorem 4 (implementation correctness) The program NORM satisfies that for
all m,m′ ∈ Λ, NORM • (m) = m′ ⇔ norm(m) = bm′c.

Proof: A direct consequence of Lemma 15 and Theorem 3, since [[NORM ]]ml ∅ =
bθnormc. �

Together with semantic correctness (Theorem 2) and Definition 2 of norm, this tells us
that NORM correctly computes the normal form of all λ-terms without free occurrences
of gi-variables (including, in particular, all closed terms).

5 A generalization to Böhm trees

Recall that the correctness of our normalization algorithm was expressed in terms of
simple conditionals. Soundness was, essentially, “if the algorithm returns a result,
that result is correct”; and completeness, “if a correct result exists, the algorithm will
find one”. We now set out to extend these statements to a more general notion of
normal forms, effectively replacing “if” with “to the extent that”.

5.1 From λ-terms to λ-trees

We adopt a new view of normalization results, generalizing the flat domain Λ⊥ of
lifted λ-terms to a more elaborate domain of lazy λ-trees, which will allow us to talk
formally about partial and infinite terms. The intended reading of a λ-tree result is
that the finitely reachable, defined parts of the tree represent committed output from
the normalizer.
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Syntax Let Λ be the cpo of λ-trees M , defined as a minimal-invariant solution to
the recursive domain equation

iΛ : Λ ∼=→ (V + V × Λ + Λ× Λ)⊥ ,

with the constructors for Λ-elements given by:

� = i−1
Λ (⊥)

VAR(x) = i−1
Λ (bin1(x)c)

LAM(x,M0) = i−1
Λ (bin2(x,M0)c)

APP(M1,M2) = i−1
Λ (bin3(M1,M2)c)

Again, any element of Λ can be uniquely written as one of these four forms.
We also have a natural interpretation of the domain-theoretic ordering on Λ: M v

M ′ precisely when M ′ can be obtained by replacing some occurrences of � in M with
suitable subtrees. Note that, since Λ is a cpo, it necessarily also contains infinite
trees, such as

⊔
n∈ω LAM(x1, · · ·LAM(xn,�)) = LAM(x1,LAM(x2, · · ·)).

We define the cut function |·|· : Λ× ω → Λ by induction on k:

|M |0 = � |�|k+1 = � |VAR(x)|k+1 = VAR(x)
|LAM(x,M0)|k+1 = LAM(x, |M0|k) |APP(M1,M2)|k+1 = APP(|M1|k, |M2|k)

That is, |M |k replaces all parts of the tree M above height k with �. As we would
expect, every tree is the limit of its finite cuts:

Lemma 16 For any M ∈ Λ, M =
⊔

k∈ω |M |k.
Proof: The function δ : [Λ → Λ] → [Λ → Λ] associated to the domain equation is
given by

δ(e)(M) = case M of




VAR(v) → VAR(v)
LAM(v,M0) → LAM(v, eM0)

APP(M1,M2) → APP(eM1, eM2)
� → �

It is easy to check, by induction on k, that |M |k = δk(⊥[Λ→Λ])(M). Hence, by
the minimal-invariant property,

⊔
k∈ω |M |k =

⊔
k∈ω δ

k(⊥)M = (
⊔

k∈ω δ
k(⊥))M =

fix(δ)(M) = idΛM = M . �

A tree is called finite if it is equal to one of its cuts, and total if it contains no �.
Thus, finite, total λ-trees are in one-to-one correspondence with ordinary λ-terms, as
previously defined. We also have a natural inclusion of ordinary λ-terms into λ-trees,
〈·〉 : Λ→ Λ, defined inductively in the obvious way.

Compatibility We can extend any predicate on λ-terms, P ⊆ Λ, to a corresponding
predicate on λ-trees, P † ⊆ Λ, by

P † = {M ∈ Λ | ∀k ∈ ω. ∃m ∈ P. |M |k v 〈m〉} .
That is, M ∈ P † if every finite cut of M can be increased to a total tree, satisfying the
original predicate. When a tree already represents a proper term, the extension has
no effect: 〈m〉 ∈ P † iff m ∈ P . We also note that P † is downward closed: if M ∈ P †
and M ′ v M , then also M ′ ∈ P †; and that extension is monotone: if P ⊆ P ′, then
P † ⊆ P ′†.
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Definition 5 For M ∈ Λ and m ∈ Λ∆, we define the compatibility relations ↔† and
↔†

∆ by

M ↔† m ⇔ M ∈ {m′ ∈ Λ | m′ ↔ m}†
M ↔†

∆ m ⇔ M ∈ {m′ ∈ Λ∆ | m′ ↔ m}†

Note that, like convertibility, compatibility is defined with respect to concrete
terms, not α-equivalence classes. Thus,

LAM(g0,LAM(g0,�)) ↔† LAM(x,LAM(y,VAR(y)))

(because the � can still be increased to VAR(g0), making the two sides convertible),
but we do not have

LAM(g0,LAM(g0,�)) ↔† LAM(x,LAM(y,VAR(x))) .

Böhm trees We can view Böhm trees [Bar84, Chapter 10] as a particular kind of
λ-trees. Informally, a Böhm tree is either �, or a generalized head normal form,

LAM(x1, · · ·LAM(xn,APP(APP(VAR(x),M1), · · ·Mm))) ,

where n,m ≥ 0, and each Mi is itself a Böhm tree. However, we need to make precise
how this evidently circular definition is to be interpreted.

Formally, we define Böhm trees in terms of the following rules:

b̀t � (BT-�)

ǹf M

b̀t M
(BT-nf)

àt M

ǹf M
(NF-at)

ǹf M0

ǹf LAM(x,M0)
(NF-lam)

àt VAR(x)
(AT-var)

àt M1 b̀t M2

àt APP(M1,M2)
(AT-app)

These rules determine an operator F on subsets of B = {bt, nf, at} ×Λ, where F (X)
is the set of conclusions occurring in rule instances with premises from X :

F (X) = {(bt,�)} ∪ · · · ∪ {(at,APP(M1,M2)) | (at,M1) ∈ X ∧ (bt,M2) ∈ X} .

F is clearly monotone, i.e., X ⊆ X ′ ⇒ F (X) ⊆ F (X ′). We say that a set X ⊆ B is
F -closed if F (X) ⊆ X , i.e., if everything derivable by the rule instances with premises
from X , is already in X .

WhenX is inclusive, so is F (X), because inclusiveness is preserved by finite unions,
and the constructor functions (as well as pairing with constants) are order-monics,
i.e., also reflect v, so their direct images preserve inclusiveness.

Since both subsets of B and inclusive subsets of B are closed under arbitrary
intersections, they each form complete lattices. Thus, by the Knaster-Tarski fixed-
point theorem, we get the least F -closed set Bfin ⊆ B by taking the intersection
over all F -closed subsets of B, and the least F -closed inclusive set Binf ⊆ B as the
intersection of all F -closed inclusive subsets of B.

The associated rule induction principles are: if a predicate P on B is F -closed,
then Bfin ⊆ P (since Bfin was the least F -closed set). Analogously, if P is both F -
closed and inclusive, then Binf ⊆ P . As special cases we get inversion principles :
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Bfin = F (Bfin) and Binf = F (Binf), i.e., every element of either set can be written as
the conclusion of a rule with premises in the corresponding set. Naturally, Bfin ⊆ Binf ,
because Bfin is the least of all fixed points of F .

We write Bfin
s for {M | (s,M) ∈ Bfin}, and analogously for Binf

s . The set of Böhm
trees is then defined to be Binf

bt ; the finite Böhm trees are Bfin
bt .

(Note, incidentally, that Böhm trees are not simply the uniform extension of finite
normal forms to λ-trees, N †

nf . The latter (which could be called infinitary normal
forms) are merely the λ-trees that do not contain any evident β-redexes. We thus
have Binf

bt ⊆ N †
nf , but the opposite inclusion does not hold: infinitary normal forms

include non-Böhm trees, such as LAM(x,�) or APP(APP(· · · , x), x).
Nor should Binf

bt be confused with the set of trees determined by a coinductive
reading of the above rules, i.e., the greatest fixed point of F . That set still contains,
e.g., the tree LAM(x0,LAM(x1, · · ·)). Even though we allow Böhm trees to be infinite,
each run of curried abstractions or applications must be finite, like in the inductive
reading of the rules.)

Again, we expect that a reduction-free Böhm normalizer will output Böhm trees
that are compatible with the input term (soundness); that convertible inputs are
mapped to the same Böhm tree (identification); and that the output tree is as large
as possible (completeness).

5.2 A semantic Böhm-tree construction

The modularity of output-term generation, originally motivated by flexible genera-
tion of fresh names, also allows us to “locally” re-target the existing normalization
construction to Böhm trees.

Output-tree generation For any f : A→ B, where A and B are pointed cpos, we
define its smashed strict extension, ·�? f : A→ B, by ⊥A�? f = ⊥B, and a�? f = f(a)
otherwise.

We first define tree-based analogs of the wrapper functions from Section 2.2, again
using de Bruijn-level naming:

Definition 6 (cf. Definition 1) Let Λ̂ = [N → Λ], and define

V̂AR(v) = λnN.VAR(v)

L̂AM(f) = λnN. f (gen(n)) (n+ 1)�? λMΛ
0 .LAM(gen(n),M0)

ÂPP(l1, l2) = λnN. l1 n�? λMΛ
1 .APP(M1, l2 n)

Note that ÂPP is strict in its first argument only. Making it strict in both,
would revert the normalizer to always produce either � or a finite, total λ-tree as the
result, just like the original version. Strictness in the first argument does not actually
matter, since the function will never be applied to a �-representative; however, from
an operational viewpoint, it is convenient to know that it is safe to evaluate the
argument eagerly. Making L̂AM non-strict would not affect correctness with respect
to compatibility, but the output would no longer necessarily be a Böhm tree.
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The residualizing model The construction of the residualizing model from Sec-
tion 2.3 can be reused verbatim, since it only relies on Λ̂ being a pointed cpo with
continuous wrapper functions. Only the codomain of the putative Böhm normalizer
changes:

Definition 7 (cf. Definition 2) For any ∆, we define the function bt∆ : Λ∆ → Λ
by

bt∆(m) = ↓ ([[m]]r (λxV. ↑ (V̂AR(x)))) ]∆ .

Again, we write just bt : Λ → Λ for the variant where ]∆ is replaced with 0, noting
that it agrees with bt∆ whenever ∆ ∩G = ∅.

5.3 Correctness of the construction

The proof proceeds very much like in the original, finitary case.

Basic results about compatibility

Lemma 17 P † is inclusive for any P .

Proof: We need to show that ∀k ∈ ω. ∃m ∈ P. |M |k v 〈m〉 is an inclusive predicate
in M . By closure under intersections, it is enough to consider a fixed k. But, for
any chain (Mi)i∈ω, there must be an i0 such that ∀i ≥ i0.|Mi|k = |Mi0 |k. Hence, if
Mi0 ∈ P †, the m ∈ P such that |Mi0 |k v 〈m〉 will also work for all subsequent i, and
thus also for

⊔
i∈ω Mi. �

Lemma 18 The constructor functions preserve compatibility:

a. For all m and ∆, � ↔†
∆ m.

b. If v ∈ ∆, then VAR(v) ↔†
∆ VAR(v).

c. If M ↔†
∆∪{v} m, then LAM(v,M) ↔†

∆ LAM(v,m).

d. If M1 ↔†
∆ m1 and M2 ↔†

∆ m2, then APP(M1,M2) ↔†
∆ APP(m1,m2).

Proof: Straightforward. Part (a) uses that � is the least element in Λ and that ↔
is reflexive; part (b) uses that both v and ↔ are reflexive; parts (c) and (d) use that
LAM(v, ·) and APP(·, ·) are monotonic and that ↔ is a congruence wrt. LAM and
APP, respectively. �

Correctness of the wrappers

Definition 8 (cf. Definition 3) For l ∈ Λ̂, m ∈ Λ∆, and s ∈ {nf, at}, we define
the representation relation / by

l /∆
s m iff ∀n ≥ ]∆. l n↔†

∆ m ∧ (l n = � ∨ l n ∈ Binf
s ) .

The correctness of the wrappers will need to be established with respect to the
new definition of /. The original “interface” lemmas of / (Lemmas 3, 4, and 5) can
actually be restated verbatim – this considerably simplifies establishing soundness.
Of course, the underlying meanings, and hence the proofs, of the Lemmas do change,
according to the new definitions for the Böhm-tree construction.
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Lemma 19 (cf. Lemma 3) For fixed ∆, s, and m, the predicate P = {l | l /∆
s m}

is pointed and inclusive.

Proof: Pointedness is immediate. Inclusiveness also follows directly, since the rela-
tion is defined in terms of universal quantification, conjunction, finite disjunction, and
inverse image by the (continuous) application function from the inclusive predicates
↔†

∆ (by Definition 5 and Lemma 17) and Binf
s (by construction). �

Lemma 20 (cf. Lemma 4) The representation relation is closed under weakening
and conversion:

a. If l /∆
s m and ∆ ⊆ ∆′, then also l /∆′

s m.

b. If l /∆
s m and m′ ∈ Λ∆ with m↔ m′, then also l /∆

s m′.

Proof: The proof is analogous to that of Lemma 4, with part (a) now exploiting
monotonicity of predicate extension: when n ≥ ]∆′ ≥ ]∆, l n ∈ {m′ ∈ Λ∆ | m′ ↔
m}† ⊆ {m′ ∈ Λ∆′ | m′ ↔ m}†. Part (b) just uses transitivity of↔, like in the original
proof. �

Lemma 21 (cf. Lemma 5) Representations of terms behave much like the terms
themselves:

a. If v ∈ ∆, then V̂AR(v) /∆
at VAR(v).

b. If l1 /∆
at m1 and l2 /∆

nf m2, then ÂPP(l1, l2) /∆
at APP(m1,m2).

c. If l /∆
at m, then also l /∆

nf m.

d. Let f ∈ [V → Λ̂] and m ∈ Λ∆∪{x}. If ∀v /∈ ∆.fv /∆∪{v}
nf m[VAR(v)/x], then

L̂AM(f) /∆
nf LAM(x,m).

Proof: In each case, assume that an arbitrary n ≥ ]∆ is given. Then the proofs for
each case proceed as follows:

a. Let arbitrary v ∈ ∆ be given. Then V̂AR(v) n = VAR(v). The first conjunct
in / then follows from Lemma 18(b), and the second by Rule AT-var.

b. Assume that l1 /∆
at m1 and l2 /∆

nf m2. Let further M1 = l1 n and M2 = l2 n.
Consider M1. If M1 = �, then ÂPP(l1, l2)n = �; thus, the first conjunct holds
by Lemma 18(a), and the second by its left disjunct.

If M1 6= �, then ÂPP(l1, l2)n = APP(M1,M2). By definition of / for l1,
M1 ↔†

∆ m1 and M1 ∈ Binf
at . Analogously, M2 ↔†

∆ m2 and M2 = � ∨M2 ∈
Binf

nf . Since these two possibilities correspond to Rules BT-� and BT-nf, we
have M2 ∈ Binf

bt . And thus, APP(M1,M2) ↔†
∆ APP(m1,m2) follows from

Lemma 18(d), and APP(M1,M2) ∈ Binf
at by Rule AT-app.

c. Immediate, by Rule NF-at.
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d. Let f , x, and m, satisfy the condition of the lemma, and let M0 = f gn (n +
1). Consider M0. If M0 = �, then L̂AM(f)n = �, so the first conjunct of
L̂AM(f) /∆

nf LAM(x,m) holds by Lemma 18(a), and the second by its left
disjunct.

If M0 6= �, then L̂AM(f) n = LAM(gn,M0). By definition of ]∆, gn 6∈ ∆,
and so by assumption on f , f gn /∆∪{gn}

nf m[VAR(gn)/x]. Thus, since n+ 1 ≥
](∆ ∪ {gn}), the definition of / gives us that

M0 ↔†
∆∪{gn} m[VAR(gn)/x] ∧M0 ∈ Binf

nf .

By Lemma 18(c), LAM(gn,M0) ↔†
∆ LAM(gn,m[VAR(gn)/x]). Now, since gn 6∈

∆ ensures that gn 6∈ FV (m) \ {x}, LAM(gn,m[VAR(gn)/x]) ↔ LAM(x,m) is
a valid α-conversion. By construction of ↔†

∆ (Definition 5) and transitivity
of ↔, also LAM(gn,M0) ↔†

∆ LAM(x,m). Finally, from M0 ∈ Binf
nf , we get

LAM(gn,M0) ∈ Binf
nf by Rule NF-lam. �

Adequacy of the residualizing model By virtue of the above “interface” lem-
mas, the verbatim insertion of Lemmas 6, 7, 8, and 9 and their proofs remain correct
with the Böhm tree definitions, modulo a simple substitution of references to Lem-
mas 3–5 with references to Lemmas 19–21, respectively.

Correctness of the Böhm-tree normalization function The key technical
property of Böhm trees we will need for the completeness result, is that any finite cut
of a Böhm tree can be extended to a finite Böhm tree, still approximating the original
one. Thus, it will suffice to consider only approximants of the output term that are
themselves Böhm trees.

Definition 9 For any Böhm tree M ∈ Binf
bt , and k ∈ ω, we define the Böhm cut

‖M‖k by induction on k, as follows:

‖M‖0 = � ‖�‖k+1 = � ‖VAR(x)‖k+1 = VAR(x)

‖LAM(x,M0)‖k+1 = ‖M0‖k �? λM ′
0.LAM(x,M ′

0)

‖APP(M1,M2)‖k+1 = ‖M1‖k �? λM ′
1.APP(M ′

1, ‖M2‖k)

Intuitively, ‖M‖k is the largest (necessarily finite) Böhm tree such that ‖M‖k v |M |k.
It is constructed by cutting off branches early, if they do not reach a complete Böhm-
subtree within the remaining height limit.

Lemma 22 Böhm cuts satisfy:

a. ∀k. ‖M‖k ∈ Bfin
bt .

b. ∀k. ‖M‖k v |M |k.
c. ∀k. ∃k′. |M |k v ‖M‖k′ .

(These are the only properties of ‖M‖k that we will subsequently use.)
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Proof: We prove (a) and (b) together by, induction on k. (They could also have
been proven separately). The strengthened induction hypothesis is

P (k) ⇔ ∀(s,M) ∈ Binf . (‖M‖k ∈ Bfin
s ∨ ‖M‖k = �) ∧ ‖M‖k v |M |k.

All parts of P (0) are immediate. For the inductive step, we assume P (k) and aim to
show P (k + 1). Let M ∈ Binf

s ; we distinguish cases on M :

Case M = �: All parts are trivial.

Case M = VAR(x): Then ‖M‖k+1 = VAR(x), which belongs to all of Bfin
at , Bfin

nf , and
Bfin

bt ; and VAR(x) = |VAR(x)|k+1.

Case M = LAM(x,M0): By the inversion principle for Binf , M ∈ Binf
bt must be be-

cause M ∈ Binf
nf ; and that again must be because M0 ∈ Binf

nf . Now consider
‖M0‖k. If ‖M0‖k = �, then also ‖M‖k+1 = �, and all requirements are triv-
ially satisfied. Otherwise, ‖M‖k+1 = LAM(x, ‖M0‖k). By the IH, we get that
‖M0‖k ∈ Bfin

nf and ‖M0‖k v |M0|k, from which we immediately conclude that also
LAM(x, ‖M0‖k) ∈ Bfin

nf and LAM(x, ‖M0‖k) v LAM(x, |M0|k) = |M |k+1.

Case M = APP(M1,M2): Like above, we must have APP(M1,M2) ∈ Binf
at ⊆ Binf

nf ⊆
Binf

bt , hence M1 ∈ Binf
at and M2 ∈ Binf

bt . If ‖M1‖k = �, then also ‖M‖k+1 = �, and
we are done. Otherwise, ‖M‖k+1 = APP(‖M1‖k, ‖M2‖k). By IH on M1, we get
that ‖M1‖k ∈ Bfin

at and ‖M1‖k v |M1|k. By IH on M2, ‖M2‖k ∈ Bfin
bt (which holds

even if ‖M2‖k = �), and ‖M2‖k v |M2|k. Hence, APP(‖M1‖k, ‖M2‖k) ∈ Bfin
at ,

and ‖M‖k+1 v APP(|M1|k, |M2|k) = |M |k+1.

For (c), the proof is by the inclusive variant of rule induction. We strengthen the
induction hypothesis to

P (s,M) ⇔ ∀k.∃k′.|M |k v ‖M‖k′ ∧ (s 6= bt ⇒ ‖M‖k′ 6= �) .

And we want to show that for all (s,M) ∈ Binf , P (s,M). First, we must establish that
P is inclusive. By closedness under intersection, and inverse image by projections, it
suffices to show that, for every fixed s and k,

Ps,k(M) ⇔ ∃k′.|M |k v ‖M‖k′ ∧ (s 6= bt ⇒ ‖M‖k′ 6= �)

is inclusive. So, consider a chain M1 vM2 v · · · such that there exist k′1, k
′
2, ... with

∀i.|Mi|k v ‖Mi‖k′i ∧ (s 6= bt ⇒ ‖Mi‖k′i 6= �) ;

we must show that there also exists a k′ such that |⊔iMi|k v ‖⊔
iMi‖k′ and (s 6=

bt ⇒ ‖⊔
i Mi‖k′ 6= �).

But since there can be no infinite ascending chain of λ-trees of height at most k,
there must exist an i0 such that ∀i ≥ i0, |Mi|k = |Mi0 |k, and so |⊔i Mi|k = |Mi0 |k.
Take k′ = k′i0 . Then, by monotonicity of ‖ − ‖k′ , we conclude,

|
⊔
i

Mi|k = |Mi0 |k v ‖Mi0‖k′ v ‖
⊔
i

Mi‖k′

as required. Moreover, when s 6= bt, we have ‖Mi‖k′ 6= �, so also ‖⊔
iMi‖k′ 6= �.

Now, we need to show that P is closed under the rules defining Binf. There are 6
cases to consider:
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Case (BT-�). To show: P (bt,�). For any k, |�|k = �, so we can just take k′ = 0.
The second conjunct is vacuously true.

Case (BT-nf. To show: P (bt,M), assuming P (nf,M). The result follows immedi-
ately from the assumption (forgetting the extra guarantee that ‖M‖k′ 6= �).

Case (NF-at). To show: P (nf,M), assuming P (at,M). The result follows immedi-
ately from the assumption.

Case (NF-lam). To show: P (nf,LAM(x,M0)), assuming P (nf,M0). Let k be given;
we must find a k′ such that |LAM(x,M0)|k v ‖LAM(x,M0)‖k′ , and ‖LAM(x,M0)‖k′

6= �.

By the assumption, there exists a k′0 such that |M0|k v ‖M0‖k′0 and ‖M0‖k′0 6= �.
Take k′ = k′0 + 1. Then

|LAM(x,M0)|k v |LAM(x,M0)|k+1 = LAM(x, |M0|k) v LAM(x, ‖M0‖k′0)
= ‖M0‖k′0 �? λM ′

0.LAM(x,M ′
0) = ‖LAM(x,M0)‖k′0+1 = ‖LAM(x,M0)‖k′ .

Case (AT-var). To show: P (at,VAR(x)). For any k, |VAR(x)|k v VAR(x) =
‖VAR(x)‖1, so we can take k′ = 1.

Case (AT-app). To show: P (at,APP(M1,M2), assuming P (at,M1) and P (bt,M2).
Let k be given; we must find a k′ such that |APP(M1,M2)|k v ‖APP(M1,M2)‖k′

and ‖APP(M1,M2)‖k′ 6= �.

By the assumptions, there exists a k′1 such that |M1|k v ‖M1‖k1 and ‖M1‖k′1 6= �,
and a k′2 such that |M2|k v ‖M2‖k′2 . Take k′ = max(k′1, k′2) + 1. Then, noting
that for any M and k′ ≤ k′′, ‖M‖k′ v ‖M‖k′′ , we get:

|APP(M1,M2)|k v |APP(M1,M2)|k+1 = APP(|M1|k, |M2|k)
v APP(‖M1‖k′1 , ‖M2‖k′2) v APP(‖M1‖max(k′1,k′2), ‖M2‖max(k′1,k′2))
= ‖M1‖max(k′1,k′2) �? λM ′

1.APP(M ′
1, ‖M2‖max(k′1,k′2))

= ‖APP(M1,M2)‖max(k′1,k′2)+1 = ‖APP(M1,M2)‖k′ .

�

For showing completeness, it will also be convenient to disregard the exact variable
names occurring in the output tree. Accordingly, we define the (evidently continuous)
shape function $ : Λ→ Λ, by

$ � = � $ VAR(x) = VAR(x$)
$ LAM(x,M0) = LAM(x$, $M0) $ APP(M1,M2) = APP($M1, $M2)

where x$ is some arbitrary but fixed variable. From the definition of the ordering
relation on Λ, it is easy to see that if M vM ′ but $M ′ v $M , then M = M ′.

We can now refine the previous characterization of the wrapper functions, to state
that they produce representatives that are at least as defined as some given finite
tree:

Definition 10 (cf. Definition 4) For any finiteM , and l ∈ Λ̂, we define the bounded
uniform definedness predicate defM (l) by defM (l) ⇔ ∀n ∈ ω. $M v $ (l n). We also
write def+M (l) for M 6= � ∧ defM (l).
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Lemma 23 (cf. Lemma 10) The wrapper functions preserve bounded definedness:

a. For all v ∈ V, def+VAR(x)(V̂AR(v)).

b. If for all v ∈ V, def+M0
(f v), then def+LAM(x,M0)

(L̂AM(f)).

c. If def+M1
(l1) and defM2(l2), then def+APP(M1,M2)(ÂPP(l1, l2)).

Proof: In each case, let an arbitrary n ∈ ω be given. Then,

a. We have to show that $ VAR(x) v $ VAR(v). But by the definition of $ ·, both
sides are simply VAR(x$), so the inequality holds.

b. We have to show that $ LAM(x,M0) v $ (f gn (n+ 1)�? λM ′
0.LAM(gn,M

′
0)).

Let M ′
0 = f gn (n + 1). By the assumption on f , def+M0

(f gn), so M0 6= �
and $M0 v $M ′

0. Hence also M ′
0 6= �, and it only remains to show that

$ LAM(x,M0) v $ LAM(gn,M
′
0), which follows immediately from the definition

of $ .

c. We have to show that $ APP(M1,M2) v $ (l1 n�? λM ′
1.APP(M ′

1, l2 n)). Let
M ′

1 = l1 n and M ′
2 = l2 n. By assumptions on l1 and l2, we then get that

M1 6= �, $M1 v $M ′
1, and $M2 v $M ′

2. So, again, we get M ′
1 6= �, and then

$ APP(M1,M2) v $ APP(M ′
1,M

′
2) by the definition of $ . �

Lemma 24 (cf. Lemma 11) Let m ∈ Λ and ρ ∈ [V → Dr] be such that ∀x ∈
FV (m). ∃l ∈ Λ̂. ρ(x) = ↑ l ∧ def+VAR(x)(l). Then, for any M ∈ Λ with M v 〈m〉,

a. If M ∈ Bfin
at , then ∃l.[[m]]r ρ = ↑ l ∧ def+M (l).

b. If M ∈ Bfin
nf , then def+M (↓ [[m]]r ρ).

c. If M ∈ Bfin
bt , then defM (↓ [[m]]r ρ).

Proof: By rule induction for Bfin, with respect to the evident combined predicate,
giving two cases for each part of the lemma:

a. For Rule (AT-var), we have M = VAR(x), so we must have m = VAR(x).
Then [[m]]r ρ = ρ(x), and since x ∈ FV (m), the result follows directly from the
assumption on ρ.

For Rule (AT-app), we have M = APP(M1,M2), with M1 ∈ Bfin
at and M2 ∈

Bfin
bt , so we must have m = APP(m1,m2), with M1 v 〈m1〉 and M2 v 〈m2〉.

By IH(a) on the first premise, there exists an l1 such that [[m1]]r ρ = ↑ l1 and
def+M1

(l1). Therefore, [[m]]r ρ = ψr(tm(l1)) ([[m2]]r ρ) = ↑ (ÂPP(l1, ↓ ([[m2]]r ρ))).

Take l2 = ↓ ([[m2]]r ρ) and l = ÂPP(l1, l2). By IH(c) on the second premise,
defM2(l2), so by Lemma 23(c), def+M (l), as required.

b. For Rule (NF-at), we have M ∈ Bfin
at . By IH(a) on the premise, [[m]]r ρ = ↑ l,

for some l with def+M (l). But ↓ (↑ l) = l, so also def+M (↓ ([[m]]r ρ)).

For Rule (NF-lam), we have M = LAM(x,M0), with M0 ∈ Bfin
nf , so we must

havem = LAM(x,m0) withM0 v 〈m0〉, and thus [[m]]r ρ = fun(λd.[[m0]]r ρ[x 7→ d]).
Expanding the definition of ↓ for the functional case, we have to show that

def+LAM(x,M0)
(L̂AM(λx.↓ ([[m0]]r ρ[x 7→ ↑ (V̂AR(x))]))) .
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By Lemma 23(b), it suffices to show, for every v ∈ V, def+M0
(↓ ([[m0]]r ρ′)), where

ρ′ = ρ[x 7→ ↑ (V̂AR(v))]. This follows from IH(b) on the premise, if for every
x′ ∈ FV (m0), there exists an l, such that ρ′(x′) = ↑ l and def+VAR(x′)(l). But
for x′ 6= x, we must have x′ ∈ FV (m), so this follows from the assumption on
ρ; and for x′ = x, it follows from Lemma 23(a).

c. For Rule (BT-�), we have M = �, so the result follows trivially, since any m
satisfies def�(↓ ([[m]]r ρ)).

For Rule (BT-nf), we have M ∈ Bfin
nf , so by IH(b) on the premise, we get

def+M (↓ ([[m]]r ρ)), from which also defM (↓ ([[m]]r ρ)). �

We can now show the main completeness lemma:

Lemma 25 Let m ∈ Λ∆. If M ↔† m and M ∈ Binf
bt then $M v $ bt∆(m).

Proof: Since for any λ-tree M , M =
⊔

k |M |k (Lemma 16), by continuity of $ , we
get the desired result from

⊔
k $ |M |k v $ bt∆(m). By the definition of

⊔
, it thus

suffices to show, for all k, that $ |M |k v $ bt∆(m).
Let k be given. By Lemma 22(c), there exists a k′ such that |M |k v ‖M‖k′ . From

the definition of M ↔† m, we get that, for this k′, there exists an m′ ∈ Λ, such that
|M |k′ v 〈m′〉 and m↔ m′. Since ‖M‖k′ v |M |k′ (Lemma 22(b)), we must also have
‖M‖k′ v 〈m′〉.

Let ρ0 = λx.↑ (V̂AR(x)); by Lemma 23(a), this clearly satisfies the condition on
ρ in Lemma 24. Since ‖M‖k′ ∈ Bfin

bt (Lemma 22(a)), Lemma 24(c) gives us that
def‖M‖k′ (↓ ([[m′]]r ρ0)), so in particular $ ‖M‖k′ v $ (↓ ([[m′]]r ρ0) ]∆). Thus, using
model soundness, $ ‖M‖k′ v $ (↓ ([[m]]r ρ0) ]∆) = $ bt∆(m). Finally, from |M |k v
‖M‖k′ , we get $ |M |k v $ ‖M‖k′, and thus $ |M |k v $ bt∆(m), as required. �

Theorem 5 (cf. Theorem 2) bt∆ from Definition 7 is a Böhm-tree normalization
function on Λ∆, i.e., for all m,m′ ∈ Λ∆,

a. (soundness) bt∆(m) ↔†
∆ m and bt∆(m) ∈ Binf

bt .

b. (identification) If m↔ m′, then bt∆(m) = bt∆(m′).

c. (completeness) bt∆(m) is maximal among M ∈ Binf
bt such that M ↔† m.

Proof: (Soundness) and (identification) are shown verbatim as in Theorem 2 (using
Lemma 21(a) instead of Lemma 5(a)), with the unsurprising exception that unfolding
the new definition for / (using Definition 8 instead of Definition 3), again taking n =
]∆, yields bt∆(m) = �∨bt∆(m) ∈ Binf

nf , from which we get the desired bt∆(m) ∈ Binf
bt

by Rule BT-� or Rule BT-nf, respectively.
(Completeness) Let M ∈ Binf

bt with M ↔† m be given; we must show that M
cannot be strictly greater than bt∆(m). So assume that bt∆(m) vM . By Lemma 25,
$M v $ bt∆(m), so we must actually have bt∆(m) = M . �

From downwards closure of ↔†, we get a simple, intuitive characterization of
soundness: in any finite approximation (not necessarily a level-uniform cut) of bt∆(m),
we can replace all holes � with proper terms, to obtain a term convertible to the orig-
inal m. (In particular, if bt∆(m) 6= �, by the inversion principle for Binf

bt , we see
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datatype term = VAR of string | LAM of string*term | APP of term*term

datatype tree = LVAR of string | LLAM of string*(unit->tree)

| LAPP of (unit->tree)*(unit->tree)

datatype sem = TM of int -> tree | FUN of (unit -> sem) -> sem;

let fun down (s:sem):int->tree = fn n =>

(case s of

TM l => l n

| FUN f => LLAM("g"^Int.toString n, (fn v => fn () => v)

(down (f (fn () => TM(fn n’ => LVAR("g"^Int.toString n))))

(n+1))))

in let fun eval (m:term):(string->sem)->sem = fn p =>

(case m of

VAR x => p x

| LAM(x,m0) => FUN(fn d => eval m0

(fn x’ => if x = x’ then d () else p x’))

| APP(m1,m2) => (case (eval m1 p) of

TM l => TM(fn n =>

LAPP((fn v => fn () => v) (l n),

fn () => down (eval m2 p) n))

| FUN f => f (fn () => eval m2 p)))

in let fun bt (m:term):tree =

down (eval m (fn x => TM(fn n => LVAR(x)))) 0

in bt end end end

Figure 4: The Böhm normalization algorithm, BT .

that the original term must have at least a head normal form.) On the other hand,
completeness says that no such replacement for a hole already present in bt∆(m) can
have even a head normal form, since this would contradict that the result tree was
maximal.

Like in the finitary case, the characterization of normal forms for soundness and
completeness is based on β-normalization only. If we restricted our definition of
Böhm trees to only α-normal ones (i.e., using a fixed naming convention for bound
variables), instead of saying that the output was a maximal Böhm tree compatible
with the input, we would have that it was the largest.

5.4 An implementation of the construction

As before, the development of an actual algorithm and its proof of correctness is
straightforward, given the domain-theoretic construction. Unsurprisingly, we shall
need to identify � with divergence, to obtain a computable algorithm (shown in
Figure 4), returning so-called effective Böhm trees.

As before, we assume [[term]]ml = Λ, and take T = [[tree]]ml and S = [[sem]]ml.
Note that tree is overly lazy when representing Böhm trees and we therefore need to
strictify the representations of L̂AM and ÂPP explicitly, using the idiom (fn v =>
fn () => v). As remarked in Section 5.2, the latter strictification is in fact optional,
but advantageous from an efficiency perspective.
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Lemma 26 There exists an isomorphism iΛT : Λ ∼=→ T⊥, satisfying:

a. iΛT (�) = ⊥T⊥ .

b. For all x, iΛT (VAR(x)) = bιLVAR(x)c.
c. For all x and M0, iΛT (LAM(x,M0)) = bιLLAM(x, λu1.iΛT (M0))c.
d. For all M1 and M2, iΛT (APP(M1,M2)) = bιLAPP(λu1.iΛT (M1), λu1.iΛT (M2))c.

Proof: See Appendix B.2 �

We can also relate the our two variants of strict extension:

Lemma 27 For M ∈ Λ and f : Λ→Λ, iΛT (M�? f) = iΛT (M)?λtT . iΛT (f(i−1
ΛT (btc))).

Proof: By cases on M : if M = �, then iΛT (M) = ⊥, and hence

iΛT (M �? f) = iΛT (�) = ⊥ = ⊥ ? λt. iΛT (f(i−1
ΛT (btc)))

= iΛT (M) ? λt. iΛT (f(i−1
ΛT (btc))) .

On the other hand, if M 6= �, then iΛT (M) = btc for some t ∈ T , and thus

iΛT (M �? f) = iΛT (f M) = iΛT (f (i−1
ΛT (iΛT (M)))) = iΛT (f (i−1

ΛT (btc)))
= btc ? λt. iΛT (f (i−1

ΛT (btc))) = iΛT (M) ? λt. iΛT (f (i−1
ΛT (btc))) . �

Like in the finitary case, we have chosen N = Z, so that Λ̂ = [Z → Λ] is the
base domain in the definition of Dr, whereas in S, we use the isomorphic [Z→ T⊥].
Therefore, we get a slightly more complicated characterization of the relationship
between the two residualizing models:

Lemma 28 (cf. Lemma 12) There exists an isomorphism iDS : Dr
∼=→ S⊥, satisfy-

ing:

a. For all l ∈ Λ̂, iDS (tm(l)) = bιTM(λnZ.iΛT (l n))c.
b. For all f ∈ [Dr → Dr], iDS (fun(f)) = bιFUN(λt1→S⊥ . iDS (f(i−1

DS (t ∗))))c.
c. iDS (⊥Dr) = ⊥S⊥

Proof: See Appendix B.1. �

We are now in position to relate the central domain-theoretic functions to the
denotations of their syntactic counterparts:

Lemma 29 (cf. Lemma 13) For all d ∈ Dr and n ∈ Z,

iΛT (↓ dn) = iDS (d) ? λsS . θdown s ? λl
[Z→T⊥]. l n

Proof: By fixed-point induction on Φ×Θdown (where Φ is as in the proof of Lemma 8,
but with the Böhm-tree definitions), using the predicate R ⊆ [Dr → Λ̂] × [S → Λ̂⊥]
defined by

R = {(ϕ, θ) | ∀d ∈ Dr, n ∈ Z. iΛT (ϕ d n) = iDS (d) ? λsS .θ s ? λl[Z→T⊥].l n}
The proof proceeds similarly to the proof of Lemma 13, expect that the isomorphism
iΛT must now also be accounted for. Assume that (ϕ, θ) ∈ R, and let arbitrary d and
n be given. The cases d = ⊥Dr and d = tm(l) are essentially unchanged, but now
using Lemmas 26(a) and 28(a), respectively.
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Case d = fun(f): Let ξ = ∅[down 7→ θ, s 7→ ιFUN(λt. iDS (f(i−1
DS (t ∗))))] and let ξ′ =

ξ[n 7→ n, f 7→ (λt. iDS (f(i−1
DS (t ∗))))]. Then,

iDS (d) ? λsS .Θdown(θ) s ? λl[Z→T⊥].l n
= iDS (fun(f)) ? λsS .Θdown(θ) s ? λl[Z→T⊥].l n

= bιFUN(λt. iDS (f(i−1
DS (t ∗))))c ? λsS .Θdown(θ) s ? λl[Z→T⊥].l n

(by Lemma 28(b))
= [[fn n => (case s of ...| FUN f => LLAM ...)]]ml ξ ? λl[Z→T⊥].l n
= [[LLAM("g"^Int.toString(n), (fn v => fn () => v) (...)]]ml ξ′

= [[down (f ...) ...]]ml ξ′ ? λtT .bλu.btcc ? λt[1→T⊥].bιLLAM(gn, t)c
= [[down (f (fn () => ...)) (n+1)]]ml ξ′ ? λtT .bιLLAM(gn, λu.btc)c
= [[f (...)]]ml ξ′︸ ︷︷ ︸

s′

? λsS .θ s ? λl[Z→T⊥].l(n+ 1) ? λtT .bιLLAM(gn, λu.btc)c

Now,
s′

= [[f (fn () => TM(fn n’ => LVAR("g"^Int.toString(n))))]]ml ξ′

= b(λt. iDS (f(i−1
DS (t ∗))))c ? λg.bλu.[[TM(fn ...)]]ml ξ′c ? λa.g a

= iDS (f(i−1
DS (bιTM(λn′Z.bιLVAR(gn)c)c)))

= iDS (f(i−1
DS (bιTM(λn′Z.iΛT (VAR(gn)))c))) (by Lemma 26(b))

= iDS (f(tm(λn′Z.VAR(gn)))) (by Lemma 28(a))
= iDS (f(↑ (V̂AR(gn)))) (by Def. of V̂AR and ↑ )

The fixed point assumption on ϕ and θ says that for all d′ ∈ Dr and n′ ∈ Z,
iΛT (ϕ d′ n′) = iDS (d′) ? λsS .θ s ? λl[Z→T⊥].l n′. Taking d′ = f(↑ (V̂AR(gn))) and
n′ = n+ 1, we continue:

[[f (...)]]ml ξ′ ? λsS .θ s ? λl[Z→T⊥].l(n+ 1) ? λtT .bιLLAM(gn, λu.btc)c
= iΛT (ϕ (f(↑ (V̂AR(gn)))) (n+ 1)) ? λtT .bιLLAM(gn, λu.btc)c (by IH)

Similarly,
iΛT (Φ(ϕ) d n)
= iΛT (Φ(ϕ)(fun(f)) n)
= iΛT (L̂AM(λxV. ϕ(f(↑ (V̂AR(x))))) n)
= iΛT (ϕ(f(↑ (V̂AR(gn)))) (n+ 1)�? λMΛ.LAM(gn,M)) (by Def. of L̂AM)
= iΛT (ϕ(f(↑ (V̂AR(gn)))) (n+ 1)) ? λt′T . iΛT (LAM(gn, i

−1
ΛT (btc)))

(by Lemma 27)
= iΛT (ϕ(f(↑ (V̂AR(gn)))) (n+ 1)) ? λt′T . bιLLAM(gn, λu.btc)c

(by Lemma 26(c))

�
Lemma 30 (cf. Lemma 14) For all m ∈ Λ, ρ ∈ [V→Dr], and % ∈ [V→S⊥], such
that ∀x ∈ FV (m). iDS (ρ(x)) = %(x), iDS ([[m]]r ρ) = θevalm ? λg. g %.

Proof: By structural induction on m. The proof of Lemma 14 can be reused
verbatim (using Lemma 28 instead of Lemma 12), except for the single subcase of
application where the eval definitions actually differ.

We now establish this subcase, which is to be understood in the corresponding
context from the proof of Lemma 14.
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Case m = APP(m1,m2):

Case [[m1]]r ρ = tm(l1): By Lemma 28(a),
θeval m ? λg.g %
= [[case (eval m1 p) of TM l => TM(fn n ...) | ...]]ml ξ′′

= [[TM(fn n => LAPP(...))]]ml ξ′′[l 7→ λn. iΛT (l1 n)]
= bιTM(λnZ.[[LAPP(...)]]ml ξ′′[l 7→ λn. iΛT (l1 n), n 7→ n]︸ ︷︷ ︸

l

)c

Similarly,
iDS ([[m]]r ρ)
= iDS ([[APP(m1,m2)]]r ρ)
= iDS (ψr (tm(l1)) ([[m2]]r ρ))
= iDS (↑ ÂPP(l1, ↓ ([[m2]]r ρ)))
= iDS (tm(ÂPP(l1, ↓ ([[m2]]r ρ)))) (by Def. of ↑ )
= bιTM(λn. iΛT (ÂPP(l1, ↓ ([[m2]]r ρ)) n))c (by Lemma 28(a))
= bιTM(λn.iΛT (l1 n�? λM ′

1.APP(M ′
1, ↓ ([[m2]]r ρ) n))︸ ︷︷ ︸

l′

)c (by Def. of ÂPP)

Again, it remains to show that l = l′. Let any n ∈ Z be given.
Let ξ′′′ = ξ′′[l 7→ λn. iΛT (l1 n), n 7→ n]. We calculate:

l n
= [[LAPP((fn v => fn () => v) (l n), fn () => ...)]]ml ξ′′′

= iΛT (l1 n) ? λt1.[[fn () => ...]]ml ξ′′′ ? λt2.bιLAPP(λu.bt1c, t2)c
= iΛT (l1 n) ? λt1.bιLAPP(λu.bt1c, λu.[[down (eval m2 p) n]]ml ξ′′′)c
= iΛT (l1 n) ? λt1.bιLAPP(λu.bt1c, λu.iDS ([[m2]]r ρ) ? λs.θdown s ? λl2.l2 n)c

(by IH on m2)
= iΛT (l1 n) ? λt1. bιLAPP(λu.bt1c, λu.iΛT (↓ ([[m2]]r ρ) n))c (by Lemma 29)
= iΛT (l1 n) ? λt1. iΛT (APP(i−1

ΛT (bt1c), ↓ ([[m2]]r ρ) n)) (by Lemma 26(d))
= iΛT (l1 n�? λM1.APP(M1, ↓ ([[m2]]r ρ) n)) (by Lemma 27)
= l′ n

Since n was arbitrary, l = l′.
�

Theorem 6 (cf. Lemma 15) For all m ∈ Λ, iΛT (bt(m)) = θbt m.

Proof: Let m be given, and let ξ = ∅[down 7→ θdown, eval 7→ θeval, bt 7→ θbt, m 7→ m].
Let further b%c = [[fn x => TM(fn n => LVAR(x))]]ml ξ and ρ = (λxV .↑ (V̂AR(x))).

We first verify that % and ρ satisfy the requirements of Lemma 30, namely that
for all x′ ∈ V ⊃ FV (m),
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%(x′)
= [[fn x => TM(fn n => LVAR(x))]]ml ξ ? λf.f(x′)
= [[TM(fn n => LVAR(x))]]ml ξ[x 7→ x′]
= bιTM(λnZ.bιLVAR(x′)c)c
= bιTM(λnZ.iΛT (VAR(x′)))c (by Lemma 26(b))
= bιTM(λnZ.iΛT (V̂AR(x′) n))c (by Def. 6 of V̂AR)
= iDS (tm(λnZ.V̂AR(x′) n)) (by Lemma 28(a))
= iDS (↑ (V̂AR(x′))) (by Def. of ↑)
= iDS (ρ(x′))

Hence, by a single unrolling of the fixed-point equation θbt = Θbt(θbt),
θbt m
= [[down (eval m (fn x => TM(fn n => LVAR(x)))) 0]]ml ξ
= [[eval m (fn x => TM(fn n => LVAR(x)))]]ml ξ ? λs.θdown s ? λl.l 0
= θeval m ? λg.g % ? λs.θdown s ? λl.l 0
= iDS ([[m]]r ρ) ? λs.θdown s ? λl.l 0 (by Lemma 30)
= iΛT (↓ ([[m]]r ρ) 0) (by Lemma 29)
= iΛT (bt(m)) (by Def. 7 of bt)

�

We thus have that the concrete Böhm-tree algorithm is denotationally correct (up
to isomorphism). However, BT , although well-typed and closed, is not a complete
program, since tree is not a ground type. Hence, unlike for NORM , we cannot readily
observe the program output: we first need a formal model of observation of Böhm
trees.

5.5 Observing Böhm trees

5.5.1 Computations with infinite results

When the output of the normalizer is a partial, infinitary data structure, it is far less
clear what to consider a legitimate notion of observation of the output. In particular,
unlike linear streams, which can be naturally produced and printed incrementally, gen-
eral trees need either a concept of “fair” autonomous production (every non-� node
will eventually be printed), or a model based on interaction, where an independent
observer explicitly asks for successive nodes of the tree, while avoiding branches that
are (or might be) �. Properly formalizing each of these in the context of our simple
functional language, would be far beyond the scope of the present paper, however.

Instead, we will consider a very simple model of observation, where the observer
can only ask about one specific node in the tree, for each run; the notion of interaction
is thus lifted out as an extralinguistic concept into multiple (possibly even concurrent)
top-level evaluations. (Of course, since the language fragment we consider is pure,
many subcomputations can be shared across such evaluations; but our denotational
model deliberately does not account for such quantitative aspects.) This approach
will still allow us to state precisely that we can correctly inspect any reachable part
of the output tree, and observationally distinguish any non-identical trees.

To keep the construction concise in our limited ML fragment, we use a uniform,
numeric indexing scheme for nodes. In general, for any finitely branching (but poten-
tially infinitely deep) rooted tree, we can associate a unique natural number to each
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node as follows: the root node has index 0, and for a node with index n in the i’th
subtree of a k-ary root node, its index in the whole tree is n · k + i. That is, if we
consider a tree to be a node label a, and k (possibly 0) subtrees, we access the label
of the n’th node of a tree t, t@ n, as follows:

a(t1, . . . , tk) @ 0 = a (0≤k) a(t1, . . . , tk) @ n·k+i = ti @ n (1≤i≤k)

Note that the only invalid indices are those that would correspond to subtrees of a
zero-ary (i.e., leaf) node.

5.5.2 Observing λ-trees

For the specific case of λ-trees, we must also take into account partiality, and the fact
that various nodes have different information as the label. Accordingly, we define the
set of observation results by

O = {VR(v) | v ∈ V} ∪ {LM(v) | v ∈ V} ∪ {AP} ∪ {ER}
and define the operation · @ · : Λ × ω → O⊥ by course-of-values induction on the
second argument:

� @ n = ⊥ VAR(v) @ 0 = bVR(v)c VAR(v) @ n+1 = bERc
LAM(v,M0) @ 0 = bLM(v)c LAM(v,M0) @ n+1 = M0 @ n

APP(M1,M2) @ 0 = bAPc
APP(M1,M2) @ 2·n+1 = M1 @ n APP(M1,M2) @ 2·n+2 = M2 @ n

We note that node-observations completely characterize a λ-tree:

Lemma 31 If for all n ∈ ω, M @ n = M ′ @ n, then M = M ′.

Proof: By Lemma 16, it suffices to show that ∀k. |M |k = |M ′|k, by induction on k.
The case k = 0 is trivial: both sides are �. For the inductive step, we have to show
|M |k+1 = |M ′|k+1 assuming the kth cuts are equal. We proceed by cases on M :

Case M = �: Then M @ 0 = ⊥, so by assumption, also M ′ @ 0 = ⊥, and we must
have M ′ = �. Hence, in particular, |M |k+1 = |M ′|k+1 = �.

Case M = VAR(v): Then M @ 0 = bVR(v)c, so also M ′ @ 0 = bVR(v)c, which can
only happen if M ′ = VAR(v), so again we get |M |k+1 = |M ′|k+1 = VAR(v).

Case M = LAM(v,M0): Then M @ 0 = bLM(v)c, so also M ′ @ 0 = bLM(v)c, which
means that M ′ = LAM(v,M ′

0) for some M ′
0. Moreover, we have, for any n,

M0 @ n = M @ n+1 = M ′ @ n+1 = M ′
0 @ n. So by the IH, |M0|k = |M ′

0|k, and
thus |M |k+1 = LAM(v, |M0|k) = LAM(v, |M ′

0|k) = |M ′|k+1.

Case M = APP(M1,M2): Then M@0 = bAPc, so also M ′@0 = bAPc, which means
that M ′ = APP(M ′

1,M
′
2) for some M ′

1 and M ′
2. Now, for any n, M1 @ n = M @

2·n+1 = M ′ @ 2·n+1 = M ′
1 @ n, so by IH, |M1|k = |M ′

1|k. Analogously, we get
|M2|k = |M ′

2|k, and thus |M |k+1 = APP(|M1|k, |M2|k) = APP(|M ′
1|k, |M ′

2|k) =
|M ′|k+1.

�
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datatype res = VR of string | LM of string | AP of unit | ER of unit;

let fun obs (t:tree):int->res = fn n =>

(case t of

LVAR x => if n = 0 then VR x else ER ()

| LLAM(x,t0) => if n = 0 then LM x else obs (t0 ()) (n-1)

| LAPP(t1,t2) => if n = 0 then AP ()

else if n mod 2 = 1 then obs (t1 ()) ((n-1) div 2)

else obs (t2 ()) ((n-2) div 2))

in obs end

Figure 5: A simple observation function, OBS .

5.5.3 Implementing tree-observations in ML

The ML implementation of the observation function is shown in Figure 5. To represent
observation results, we introduce another ground datatype res; like for term, we
assume that [[res]]ml = O, and that the meanings of the constructors agree. We also
assume that the ML fragment has been extended with aritmetic operators -, div, and
mod, completely analogous to the existing +.

Lemma 32 For all M ∈ Λ and n ∈ ω, M @ n = iΛT (M) ? λt. θobs t ? λf. f n.

Proof: We first calculate, using that θobs = fix(Θobs), for any t ∈ T :
θobs t ? λf. f n
= Θobs(θobs) t ? λf. f n

= case t of




ιLVAR(v) → case n = 0 of
{

tt → bVR(v)c
ff → bERc

ιLLAM(v, t′0) → case n = 0 of
{

tt → bLM(v)c
ff → (t′0 ∗) ? λt0. θobs t0 ? λf. f (n− 1)

ιLAPP(t′1, t′2) →




case n = 0

of




tt → bAPc

ff →

case n mod 2 = 1

of
{

tt → (t′1 ∗) ? λt1. θobs t1 ? λf. f n−1
2

ff → (t′2 ∗) ? λt2. θobs t2 ? λf. f n−2
2







= case t of




ιLVAR(v) → case n of
{

0 → bVR(v)c
n′ + 1 → bERc

ιLLAM(v, t′0) → case n of
{

0 → bLM(v)c
n′ + 1 → (t′0 ∗) ? λt0. θobs t0 ? λf. f n′

ιLAPP(t′1, t
′
2) → case n of




0 → bAPc
2 · n′ + 1 → (t′1 ∗) ? λt1. θobs t1 ? λf. f n′
2 · n′ + 2 → (t′2 ∗) ? λt2. θobs t2 ? λf. f n′

The proof then proceeds by a straightforward course-of-values induction on n. We
assume the lemma holds for all n′ < n, and consider the four possibilities for M :

When M = �, both sides are ⊥, by Lemma 26(a). Of the remaining cases, we
show just M = LAM(x,M0) in detail:
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iΛT (LAM(x,M0)) ? λt. θobs t ? λf. f n
= bιLLAM(x, λu.iΛT M0)c ? λt. θobs t ? λf. f n (by Lemma 26(c))
= θobs (ιLLAM(x, λu.iΛT M0)) ? λf. f n

= case n of
{

0 → bLM(v)c
n′ + 1 → ((λu.iΛT M0) ∗) ? λt0. θobs t0 ? λf. f n′ (by calc. above)

= case n of
{

0 → bLM(v)c
n′ + 1 → iΛT M0 ? λt0. θobs t0 ? λf. f n

′

= case n of
{

0 → bLM(v)c
n′ + 1 →M0 @ n′ (by IH)

= LAM(x,M0) @ n (by Def. of @)
The cases for M = VAR(v) and M = APP(M1,M2) are completely analogous. �

Consider now an ML program whose datatype declarations are a union of those
in Figures 4 and 5 (in any order), and take

OBSBT = fn m => OBS (BT m) .

This is an ML expression of type term -> int -> res, i.e., a complete program.

Theorem 7 (cf. Theorem 4) For all m ∈ Λ, n ∈ ω, and o ∈ O, OBSBT •(m,n) = o
iff bt(m) @ n = boc.

Proof: We first note that, since BT and OBS are closed, for any ξ, [[BT ]]ml ξ = bθbtc
and [[OBS ]]ml ξ = bθobsc. Then,

[[OBSBT ]]ml∅ ? λf1. f1m ? λf2. f2 n
= [[fn m => OBS (BT m)]]ml∅ ? λf1. f1m ? λf2. f2 n
= [[OBS (BT m)]]ml ∅[m 7→m] ? λf2. f2 n
= (θbtm ? λt. θobs t) ? λf2. f2 n
= θbtm ? λt. θobs t ? λf2. f2 n
= iΛT (bt(m)) ? λt. θobs t ? λf2. f2 n (by Theorem 6)
= bt(m) @ n (by Lemma 32)

The result then follows immediately from Theorem 3. �

Moreover, Lemma 31 tells us that BT is also operationally correct with respect to
any other observation function (including ones using more user-friendly access paths),
because OBS -observations can already distinguish all elements of type tree, even those
that do not represent proper Böhm trees.

6 Conclusions and perspectives

We have presented a domain-theoretic analysis of a normalization-by-evaluation con-
struction for the untyped λ-calculus. Compared to the typed case, the main difference
is a change from induction on types to general recursion, both for function definitions
and for the domains and relations on them. That the correctness proof has a gener-
alized computational-adequacy result at its core, further strengthens the connection
between normalization and evaluation. Moreover, the algorithmic content of the con-
struction corresponds very directly to a simple functional program, enabling a precise
verification of the normalizer as actually implemented.
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There are several possible directions in which to extend or modify the present
work. Especially in the infinitary variant of the algorithm, there is some leeway in
exactly what kind of λ-trees we wish to consider as output, and our observation model
for them. It should also be possible to extend the language and notion of normaliza-
tion with interpreted constants in a suitable sense. But already the current results
indicate that the fundamental ideas of NBE are not incompatible with general recur-
sive types. Thus, reduction-free normalization may provide a complementary view of
other equational systems that are currently analyzed using exclusively reduction-based
methods. It might even be possible to find unified formulations of rewriting-theoretic
and model-theoretic normalization results about particular such systems.

Acknowledgment The authors wish to thank Olivier Danvy, as well as the FOS-
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A Existence of invariant relations

For completeness, we review Pitts’s technique. For conciseness, let us fix our attention
to the recursive domain equation

X ∼= (A+ [X → X ])⊥

where A is a cpo.
A solution to this equation is a pointed cpo D and an isomorphism i : D ∼=→

(A+ [D → D])⊥. Define the continuous function δ : [D → D] → [D → D] as

δ(e)(d) = case d of



i−1(bin1(a)c) → i−1(bin1(a)c)
i−1(bin2(f)c) → i−1(bin2(e ◦ f ◦ e)c)

⊥D → ⊥D

A solution is called a minimal invariant if fix(δ) = idD.
The following is well-known and can be found in in e.g. Pitts [Pit96]:

Theorem 8 For any cpo A, there exists a minimal invariant to the recursive domain
equation X ∼= (A+ [X → X ])⊥.

This section establishes the following result, which is an abstract version of the
construction used by Pitts to show computational adequacy for untyped PCF [Pit93]:

Theorem 1 Let A be a cpo, and let i : D ∼=→ (A+ [D→D])⊥ be a minimal invariant.
Let T be a set, and let predicates P1 ⊆ A× T , P2 ⊆ T , and P3 ⊆ T × T × T be given,
such that {a | P1(a, t)} is inclusive for every t ∈ T . Then there exists a relation
C ⊆ D × T , with {d | d C t} inclusive for every t ∈ T , such that, for all d ∈ D and
t ∈ T ,

d C t iff



d = ⊥D ∨
∃a. d = i−1(bin1(a)c) ∧ P1(a, t) ∨
∃f. d = i−1(bin2(f)c) ∧ P2(t) ∧
∀d′ ∈ D; t′, t′′ ∈ T. P3(t, t′, t′′) ∧ d′ C t′ ⇒ f(d′) C t′′


 .

To show the theorem, let A, (D, i), and T be given. Define a set Rel of relations
on D × T by

R ∈ Rel iff for all t ∈ T , {d | (d, t) ∈ R} is a pointed, inclusive subset of D.

Then (Rel ,⊆) is a partial order, where ⊆ is ordinary set inclusion. Since Rel is
closed under arbitrary intersection, (Rel ,⊆) is in fact a complete lattice. (Note,
however, that joins in this lattice are not in general set-theoretic unions, since the
union of an arbitrary family of inclusive relations need not itself be inclusive. Rather,⊔{Ri | i ∈ I} =

⋂{R ∈ Rel | ∀i ∈ I. Ri ⊆ R}, i.e., the smallest inclusive relation
containing all of the Ri.) In particular, Relop, i.e., Rel ordered by⊇, is also a complete
lattice, and so is Relop × Rel .
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Now, let predicates P1 ⊆ A×T , P2 ⊆ T ,and P3 ⊆ T ×T ×T be given, with P1(·, t)
inclusive for all t ∈ T . Define R : Relop × Rel → Rel by

R(R−, R+) =
(d, t)

∣∣∣∣∣∣∣∣
d = ⊥D ∨
∃a. d = i−1(bin1(a)c) ∧ P1(a, t) ∨
∃f. d = i−1(bin2(f)c) ∧ P2(t) ∧
∀d′ ∈ D; t′, t′′ ∈ T. P3(t, t′, t′′) ∧ (d′, t′) ∈ R− ⇒ (f(d′), t′′) ∈ R+


 .

R is clearly monotone. It is also easy to check that it preserves inclusivity: in
addition to the usual closure under abitrary intersection, finite union, and inverse
image, we use that the two existentials are guarded by order-monics, so that, e.g., in
the second disjunct, a chain d1 v d2 v · · · also induces a chain a1 v a2 v · · ·, allowing
us to exploit inclusivity of P1(·, t). To prove Theorem 1, we thus only need to show
that there exists a relation C ∈ Rel such that C = R(C,C). We first establish a
seemingly weaker result:

Lemma 33 There exist relations C−,C+ ∈ Rel, satisfying:

a. C− = R(C+,C−) and C+ = R(C−,C+).

b. For all R−, R+ ∈ Rel, if R− ⊆ R(R+, R−) and R(R−, R+) ⊆ R+, then R− ⊆
C− and C+ ⊆ R+.

Proof: Define the symmetric extension of R, R̂ : Relop × Rel → Relop × Rel , by

R̂(R−, R+) = (R(R+, R−),R(R−, R+)) .

Now R̂ is a monotonic operator on a complete lattice, so by the Knaster-Tarski
fixed-point theorem, R̂ has a fixed point (C−,C+) that is also the least prefixed point
of R̂. That is, we have (a) (C−,C+) = R̂(C−,C+), and (b) if R̂(R−, R+) vRelop×Rel

(R−, R+) then (C−,C+) vRelop×Rel (R−, R+). And these are precisely the properties
claimed in the statement of the lemma. �

For relations R,S ∈ Rel, we now define a predicate on e ∈ [D→D] by:

e : R ⊂ S iff ∀d ∈ D, t ∈ T.(d, t) ∈ R⇒ (e(d), t) ∈ S .
Since this predicate is defined as an intersection of inverse images of the inclusive S,
it is itself inclusive.

Lemma 34 If e : R ⊂ S then δ(e) : R(S,R) ⊂ R(R,S).

Proof: Assume e : R ⊂ S, and let (d, t) ∈ R(S,R) be given; we must show that
(δ(e)(d), t) ∈ R(R,S). Consider d. The cases d = ⊥D and d = i−1(bin1(l)c) do
not depend on R, S, or e, and are thus immediate. Assume now d = i−1(bin2(f)c)
where by assumption, P2(t) and ∀d′, t′, t′′.P3(t, t′, t′′) ∧ (d′, t′) ∈ S ⇒ (f(d′), t′′) ∈ R.
Then δ(e)(d) = i−1(bin2(e ◦ f ◦ e)c). P2(t) still holds. Let d′, t′, t′′ be given, such
that P3(t, t′, t′′) ∧ (d′, t′) ∈ R; we must show (e ◦ f ◦ e)(d′), t′′) ∈ S. We calculate: by
e : R ⊂ S, (e(d′), t′) ∈ S; by assumption on f , (f(e(d′)), t′′) ∈ R; and by e : R ⊂ S
again, (e(f(e(d′))), t′′) ∈ S, as required. �
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Finally, we can show that C− and C+ are in fact the same relation:

Lemma 35 The relations C− and C+ are equal.

Proof: We show that each relation is included in the other. First, take R− = C+

and R+ = C−. By Lemma 33(a) we then get that R+ = R(R−, R+) and R− =
R(R+, R−). Hence, by Lemma 33(b) (either half), C+ ⊆ C−.

Conversely, we have by Lemma 33(a) and Lemma 34 that if e : C− ⊂ C+ then
δ(e) : C− ⊂ C+. Since (⊥, t) ∈ C+ for any t, we also have ⊥[D→D] : C− ⊂ C+. Thus,
by fixed-point induction, fix(δ) : C− ⊂ C+. And since (D, i) is a minimal invariant,
fix(δ) = idD, and so idD : C− ⊂ C+, i.e. C− ⊆ C+. �

Taking C = C+ = C−, and using Lemma 33(a) (either half), we have thus estab-
lished C = R(C,C), and hence proven Theorem 1.

B Existence of isomorphisms

In the following, we show that the recursive domains used in the abstract normaliza-
tion constructions, correspond naturally to the predomains arising as the denotations
of recursive types in the ML implementation. Naturally, the two specific instances
covered here are examples of a more general correspondance, essentially building on
currying/uncurrying isomorphisms; however, setting up a proper framework for ob-
taining such correspondences uniformly, would be too tangential to the paper’s main
topic of NBE constructions.

B.1 Isomorphisms for the redualizing model

In appendix A, we considered minimal-invariant solutions (D, i) of the recursive do-
main equation,

X ∼= (A+ [X →X ])⊥ ,

where A was some fixed cpo. Similarly, we may consider the recursive predomain
equation,

Y ∼= B + [[1 → Y⊥] → Y⊥] ,

for some cpo B. A solution to this equation consists of a (bottomless) cpo S and
an isomorphism j : S ∼=→ B + [[1 → S⊥] → S⊥]. Define the continuous function
γ : [S → S⊥] → [S → S⊥] by

γ(e)(s) = case s of
{
j−1(in1(a)) → bj−1(in1(a))c
j−1(in2(f)) → bj−1(in2(λt1→S⊥ .f(λu.(t ∗) ? e) ? e))c

A solution is called a minimal invariant if fix(γ) = λs.bsc. The standard inverse-limit
construction, re-expressed in the setting of predomains and total continuous functions,
finds minimal-invariant solutions in this sense.

We will also need the following simple property about fixed points:

Lemma 36 Let D and E be pointed cpos, and let f : D → D and g : E → E
be continuous functions. If c : D → E is a strict continuous function such that
c ◦ f = g ◦ c, then c(fix(f)) = fix(g).
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Proof: By fixed point induction. Define the admissible predicate P (d, e) ⇔ c(d) = e
as an inverse image of the equality predicate. Since c is strict, we have P (⊥D,⊥E)
and so P is also pointed. Let now d and e be given such that P (d, e), i.e., c(d) = e.
By assumption on f and g, also c(f(d)) = g(c(d)) = g(e), i.e., P (f(d), g(e)). Thus by
the continuity of f and g, P (fix(f), fix(g)) or simply c(fix(f)) = fix(g). �

We are now in a position to establish the existence of isomorphisms between
domains and predomains from minimal invariants for the above equations.

Lemma 37 Let A and B be isomorphic cpos via iAB : A ∼=→ B; let (D, i) be a minimal
invariant for the recursive domain equation X ∼= (A+ [X → X ])⊥; and let (S, j) be a
minimal invariant for the recursive predomain equation Y ∼= B + [[1 → Y⊥] → Y⊥].
Then there exists an isomorphism iDS : D ∼=→ S⊥, satisfying

a. For all a ∈ A, iDS(i−1(bin1(a)c)) = bj−1(in1(iAB(a)))c.
b. For all f ∈ [D → D],

iDS(i−1(bin2(f)c)) = bj−1(in2(λt1→S⊥ . iDS(f(i−1
DS(t ∗)))))c.

c. iDS(⊥D) = ⊥S⊥.

Proof: By direct construction. For any strict functions h : D → S⊥ and k : S⊥ → D,
define the strict H(h, k) : D → S⊥ and K(h, k) : S⊥ → D by

H(h, k) = λd.case d of



i−1(bin1(a)c) → bj−1(in1(iAB(a)))c
i−1(bin2(f)c) → bj−1(in2(λt1→S⊥ . h(f(k(t ∗)))))c

⊥D → ⊥S⊥

K(h, k) = λs′.s′ ? λs. case s of
{
j−1(in1(b)) → i−1(bin1(i−1

AB(b))c)
j−1(in2(g)) → i−1(bin2(λd. k(g(λu1.h d)))c)

Then define (iDS , i
−1
DS) = fix(λ(h, k)[D→S⊥]×[S⊥→D].(H(h, k),K(h, k))).

We need to show that iDS and i−1
DS are in fact two-sided inverses. Let c be the

strict function λ(h, k).k ◦ h : [D→ S⊥]× [S⊥→D]→ [D→D]. Now,

(c ◦ λ(h, k).(H(h, k),K(h, k))) (h, k)
= K(h, k) ◦H(h, k)

= λd.case d of



i−1(in1(a)) → K(h, k)(bj−1(in1(iAB(a)))c)
i−1(in2(f)) → K(h, k)(bj−1(in2(λt. h(f(k(t ∗)))))c)

⊥D → K(h, k)(⊥S⊥)

= λd.case d of



i−1(in1(a)) → i−1(bin1(i−1

AB(iAB(a)))c)
i−1(in2(f)) → i−1(bin2(λd.k(

(
λt. h(f(k(t ∗)))) (λu.h d)))c)

⊥D → ⊥D

= λd.case d of



i−1(in1(a)) → i−1(bin1(a)c)
i−1(in2(f)) → i−1(bin2(k ◦ h ◦ f ◦ k ◦ h)c)

⊥D → ⊥D

= (λe.λd.case d of



i−1(in1(a)) → i−1(bin1(a)c)
i−1(in2(f)) → i−1(bin2(e ◦ f ◦ e)c)

⊥D → ⊥D


) (k ◦ h)

= (δ ◦ c) (h, k)
Hence, by Lemma 36 and the minimal invariant property of (D, i),

i−1
DS ◦ iDS = c(fix(λ(h, k).(H(h, k),K(h, k)))) = fix(δ) = idD .
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For the other direction, let c′ be the strict function λ(h, k).h ◦ k ◦ (λs.bsc) :
[D→ S⊥]× [S⊥→D]→ [S→ S⊥]. We proceed similarly,

(c′ ◦ λ(h, k).(H(h, k),K(h, k))) (h, k)
= H(h, k) ◦K(h, k) ◦ (λs.bsc)
= λs.case s of

{
j−1(in1(b)) → H(h, k) (i−1(bin1(i−1

AB(b))c))
j−1(in2(g)) → H(h, k) (i−1(bin2(λd.k(g(λu.h d)))c))

= λs.case s of
{
j−1(in1(b)) → bj−1(in1(iAB(i−1

AB(b))))c
j−1(in2(f)) → bj−1(in2(λt.h(

(
λd.k(g(λu.h d))

)
(k(t ∗)))))c

= λs.case s of
{
j−1(in1(b)) → bj−1(in1(b))c
j−1(in2(f)) → bj−1(in2(λt.h(k(f(λu.h(k(t ∗)))))))c

= λs.case s of



j−1(in1(b)) → bj−1(in1(b))c
j−1(in2(f)) → bj−1(in2(λt.

(f(λu.(t ∗) ? λs. h(k(bsc))) ?
λs. h(k(bsc))

)
))c

(by strictness of h and k)

= (λe.λs.case s of
{
j−1(in1(b)) → bj−1(in1(b))c
j−1(in2(f)) → bj−1(in2(λt.f(λu.(t ∗) ? e) ? e))c

}
)

(λs.h(k(bsc)))
= (γ ◦ c′) (h, k)

By Lemma 36 and the minimal-invariant property of (S, j),

iDS ◦ i−1
DS ◦ (λs.bsc) = c′(fix(λ(h, k).(H(h, k),K(h, k)))) = fix(γ) = λs.bsc .

Also, iDS(i−1
DS(⊥)) = ⊥ by strictness of iDS and i−1

DS . Thus, iDS : D ∼=→ S⊥ is indeed
an isomorphism. From the fixed point equation iDS = H(iDS , i

−1
DS), we can then

immediately read off the additional properties in parts (a-c) of the Lemma. �

Lemma 37 in particular establishes Lemma 12, taking A = B = [Z → Λ⊥] and
iAB = id[Z→Λ⊥]. It also establishes Lemma 28, with A = [Z→Λ], B = [Z→ T⊥], and
iAB = λl.λn.iΛT (l n), where iΛT : Λ ∼=→ T⊥ is the isomorphism from Lemma 26.

B.2 Isomorphisms for Böhm trees

The proof of the existence of isomorphisms for Böhm trees proceeds analogously with
above. For a cpo A, a solution to the recursive domain equation,

X ∼= (A+A×X +X ×X)⊥

is a pointed cpo D and an isomorphism i : D ∼=→ (A + A × D + D × D)⊥. The
corresponding δ : [D → D] → [D → D] is given by,

δ(e)(d) = case d of




i−1(bin1(a)c) → i−1(bin1(a)c)
i−1(bin2(a, d0)c) → i−1(bin2(a, e(d0))c)
i−1(bin3(d1, d2)c) → i−1(bin3(e(d1), e(d2))c)

⊥D → ⊥D

Again, a solution is a minimal invariant if fix(δ) = idD.
Similarly, the recursive predomain equation,

Y ∼= A+A× [1 → Y⊥] + [1 → Y⊥]× [1 → Y⊥]
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has a minimal-invariant solution consisting of a (bottomless) cpo S and an isomor-
phism j : S ∼=→ A + A × [1 → S⊥] + [1 → S⊥] × [1 → S⊥], such that the continuous
function γ : [S → S⊥] → [S → S⊥] given by

γ(e)(s) = case s of




j−1(in1(a)) → bj−1(in1(a))c
j−1(in2(a, t0)) → bj−1(in2(a, λu. (t0 ∗) ? e))c
j−1(in3(t1, t2)) → bj−1(in3(λu. (t1 ∗) ? e, λu. (t2 ∗) ? e))c

satisfies fix(γ) = λs.bsc.
Lemma 38 Let A a cpo, let (D, i) be a minimal invariant for the recursive domain
equation X ∼= (A + A×X +X ×X)⊥, and let (S, j) be a minimal invariant for the
recursive predomain equation Y ∼= A + A × [1 → Y⊥] + [1 → Y⊥] × [1 → Y⊥]. Then
there exists an isomorphism iDS : D ∼=→ S⊥, satisfying

a. iDS(⊥D) = ⊥S⊥.

b. For all a, iDS(i−1(bin1(a)c)) = bj−1(in1(a))c.
c. For all a and d, iDS(i−1(bin2(a, d0)c) = bj−1(in2(a, λu1.iDS(d0)))c.
d. For all d1 and d2,

iDS(i−1(bin3(d1, d2)c)) = bj−1(in3(λu1.iDS(d1), λu1.iDS(d2)))c.
Proof: By direct construction. For any strict functions h : D → S⊥ and k : S⊥ → D,
define the strict H(h) : D → S⊥ and K(k) : S⊥ → D by

H(h) = λd.case d of




i−1(bin1(a)c) → bj−1(in1(a))c
i−1(bin2(a, d0)c) → bj−1(in2(a, λu. h(d0)))c
i−1(bin3(d1, d2)c) → bj−1(in3(λu. h(d1), λu. h(d2)))c

⊥D → ⊥S⊥

K(k) = λs′.s′ ? λs. case s of




j−1(in1(a)) → i−1(bin1(a)c)
j−1(in2(a, t0)) → i−1(bin2(a, k(t0 ∗))c)
j−1(in3(t1, t2)) → i−1(bin3(k(t1 ∗), k(t2 ∗))c)

Then define (iDS , i
−1
DS) = fix(λ(h, k)[D→S⊥]×[S⊥→D].(H(h),K(k))).

Again, we need to show that iDS and i−1
DS are in fact two-sided inverses. Let c be

the strict function λ(h, k).k ◦ h : [D→ S⊥]× [S⊥→D]→ [D→D]. Now,

(c ◦ λ(h, k).(H(h),K(k))) (h, k)
= K(k) ◦H(h)

= λd.case d of




i−1(bin1(a)c) → i−1(bin1(a)c)
i−1(bin2(a, d0)c) → i−1(bin2(a, k((λu. h(d0)) ∗))c)
i−1(bin3(d1, d2)c) → i−1(bin3(k((λu. h(d1)) ∗), k((λu. h(d2)) ∗))c)

⊥D → ⊥D

= λd.case d of




i−1(bin1(a)c) → i−1(bin1(a)c)
i−1(bin2(a, d0)c) → i−1(bin2(a, (k ◦ h)(d0))c)
i−1(bin3(d1, d2)c) → i−1(bin3((k ◦ h)(d1), (k ◦ h)(d2))c)

⊥D → ⊥D

= (δ ◦ c) (h, k)
By Lemma 36 and the minimal invariant property of (D, i),

i−1
DS ◦ iDS = c(fix(λ(h, k).(H(h),K(k)))) = fix(δ) = idD .
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For the other direction, let c′ be the strict function λ(h, k).h ◦ k ◦ (λs.bsc) :
[D→ S⊥]× [S⊥→D]→ [S→ S⊥]. We proceed similarly,

(c′ ◦ λ(h, k).(H(h),K(k))) (h.k)

= λs.case s of




j−1(in1(a)) → bj−1(in1(a))c)
j−1(in2(a, t0)) → bj−1(in2(a, λu.h(k(t0 ∗))))c)
j−1(in3(t1, t2)) → bj−1(in3(λu.h(k(t1 ∗)), λu.h(k(t2 ∗))))c)

= (γ ◦ c′) (h, k) (by strictness of h and k)

By Lemma 36 and the minimal invariant property of (S, j),

iDS ◦ i−1
DS ◦ (λs.bsc) = c′(fix(λ(h, k).(H(h),K(k)))) = fix(γ) = λs.bsc.

Thus, iDS : D ∼=→ S⊥ is indeed an isomorphism.
As before, the fixed point equation iDS = H(iDS, i

−1
DS) immediately yields the

remainder of the lemma. �

Lemma 38 establishes Lemma 26.
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