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Probabilistic Event Structures and Domains

Daniele Varacch, Hagen \6izer?, and Glynn Winskeél

1 LIENS -Ecole Normale Sugrieure, France
2 Institut fiir Theoretische Informatik - Universitzu Libeck, Germany
3 Computer Laboratory - University of Cambridge, UK

Abstract. This paper studies how to adjoin probability to event structures, lead-
ing to the model of probabilistic event structures. In their simplest form prob-
abilistic choice is localised to cells, where conflict arises; in which case proba-
bilistic independence coincides with causal independence. An application to the
semantics of a probabilistic CCS is sketched. An event structure is associated
with a domain—that of its configurations ordered by inclusion. In domain theory
probabilistic processes are denoted by continuous valuations on a domain. A key
result of this paper is a representation theorem showing how continuous valua-
tions on the domain of a confusion-free event structure correspond to the proba-
bilistic event structures it supports. We explore how to extend probability to event
structures which are not confusion-free via two notions of probabilistic runs of a
general event structure. Finally, we show how probabilistic correlation and prob-
abilistic event structures with confusion can arise from event structures which are
originally confusion-free by using morphisms to rename and hide events.

1 Introduction

There is a central divide in models for concurrent processes according to whether they
represent parallelism by nondeterministic interleaving of actions or directly as causal
independence. Where a model stands with respect to this divide affects how proba-
bility is adjoined. Most work has been concerned with probabilistic interleaving mod-
els [LS91,Seg95,DEPO2]. In contrast, we propose a probabilistic causal model, a form
of probabilistic event structure.

An event structure consists of a set of events with relations of causal dependency
and conflict. A configuration (a state, or partial run of the event structure) consists of
a subset of events which respects causal dependency and is conflict free. Ordered by
inclusion, configurations form a special kind of Scott domain [NPW81].

The first model we investigate is based on the idea that all conflict is resolved prob-
abilistically and locally. This intuition leads us to a simple model basedamfusion-
freeevent structures, a form of concrete data structures [KP93], but where computation
proceeds by making a probabilistic choice as to which event occurs at each currently
accessible cell. (The probabilistic event structures which arise are a special case of those
studied by Katoen [Kat96]—though our concentration on the purely probabilistic case
and the use of cells makes the definition simpler.) Such a probabilistic event structure
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immediately gives a “probability” weighting to each configuration got as the product
of the probabilities of its constituent events. We characterise those weightings (called
configuration valuationswhich result in this way. Understanding the weighting as a
true probability will lead us later to the important notion of probabilistic test.

Traditionally, in domain theory a probabilistic process is represented as a contin-
uous valuation on the open sets of a domain, i.e., as an element of the probabilistic
powerdomain of Jones and Plotkin [JP89]. We reconcile probabilistic event structures
with domain theory, lifting the work of [NPW81] to the probabilistic case, by showing
how they determine continuous valuations on the domain of configurations. In doing so
however we do not obtain all continuous valuations. We show that this is essentially for
two reasons: in valuations probability can “leak” in the sense that the total probability
can be strictly less thaty more significantly, in a valuation the probabilistic choices at
different cells need not be probabilistically independent. In the process we are led to a
more general definition of probabilistic event structure from which we obtain a key rep-
resentation theorem: continuous valuations on the domain of configurations correspond
to the more general probabilistic event structures.

How do we adjoin probabilities to event structures which are not necessarily confu-
sion-free? We argue that in general a probabilistic event structure can be identified with
a probabilistic run of the underlying event structure and that this corresponds to a prob-
ability measure over the maximal configurations. This sweeping definition is backed up
by a precise correspondence in the case of confusion-free event structures. Exploring
the operational content of this general definition leads us to consider probabilistic tests
comprising a set of finite configurations which are both mutually exclusive and exhaus-
tive. Tests do indeed carry a probability distribution, and as such can be regarded as
finite probabilistic partial runs of the event structure.

Finally we explore how phenomena such as probabilistic correlation between choi-
ces and confusion can arise through the hiding and relabeling of events. To this end
we present some preliminary results on “tight” morphisms of event structures, showing
how, while preserving continuous valuations, they can produce such phenomena.

2 Probabilistic Event Structures

2.1 Event Structures

An event structurés a triple€ = (E, <, #) such that

e F is a countable set @vents

e (E,<)is a partial order, called theausal order such that for every € E, the set
of events| e is finite;

e # is an irreflexive and symmetric relation, called ttenflict relation satisfying
the following: for everye,, es, e3 € E if e1 < ep ande; # e3 thenes # e3.

We say that the conflict; # e3 is inheritedfrom the conflicte; # e3, whene; < es.
Causal dependence and conflict are mutually exclusive. If two events are not causally
dependent nor in conflict they are said todmacurrent



A configurationz of an event structuré€ is a conflict-free downward closed subset
of £/, i.e., a subset of E satisfying: (1) whenever € x ande’ < e thene’ € x and (2)
foreverye, ¢’ € z, itis not the case that# ¢’. Therefore, two events of a configuration
are either causally dependent or concurrent, i.e., a configuration represents a run of
an event structure where events are partially ordered. The set of configuratiéns of
partially ordered by inclusion, is denoted A& ). The set of finite configurations is
written by L4, (€). We denote the empty configuration by

If 2 is a configuration andis an event such that¢ = andzU{e} is a configuration,
then we say that is enabledat z. Two configurations:, ' are said to beompatiblef
x Uz’ is a configuration. For every evenbf an event structur€, we definde] := | e,
and[e) := [e] \ {e}. It is easy to see that bofh] and[e) are configurations for every
evente and that therefore any events enabled afe).

We say that events; ande, are inimmediateconflict, and writee; #, €2 when
e1 # eo and bothe;) U [e2] and[e1] U [e2) are configurations. Note that the immediate
conflict relation is symmetric. It is also easy to see that a corfligt e; is immediate
if and only if there is a configuration where bathande, are enabled. Every conflict
is either immediate or inherited from an immediate conflict.

Lemma 2.1. In an event structure; # ¢’ if and only if there existy, e;, such thak, <
e,eq < €' eq #,, €0

Proof. Consider the sefe] x [¢]) N # consisting of the pairs of conflicting events,
and order it componentwise. Consider a minimal such (@aire; ). By minimality, any
event infeg) is not in conflict with any event iffe},]. Since they are both lower sets
we have thafey) U [ef] is a configuration. Analogously fdeg] U [ep). By definition
€o #M ep- The other direction follows from the definition éf. O

2.2 Confusion-free Event Structures

The most intuitive way to add probability to an event structure is to identify “probabilis-

tic events”, such as coin flips, where probability is associated locally. A probabilistic
event can be thought of as probability distribution oveeh, that is, a set of events (the
outcomes) that are pairwise in immediate conflict and that have the same set of causal
predecessors. The latter implies that all outcomes are enabled at the same configura-
tions, which allows us to say that the probabilistic event is either enabled or not enabled
at a configuration.

Definition 2.2. A partial cellis a setc of events such that ¢’ € ¢ impliese #., e’ and
[e) = [¢/). A maximal partial cell is called &ell.

We will now restrict our attention to event structures where each immediate conflict
is resolved through some probabilistic event. That is, we assume that cells are closed
under immediate conflict. This implies that cells are pairwise disjoint.

Definition 2.3. An event structure isonfusion-freef its cells are closed under imme-
diate conflict.



Proposition 2.4. An event structure is confusion-free if and only if the reflexive closure
of immediate conflict is transitive and inside cells, the latter meaningethgte’ —-

[e) = [¢).

Proof. Take an event structue. Suppose it is confusion-free. Consider three events
e,e’,e” such thate #, ¢’ ande’ #/, ¢”. Consider a celk containinge (there exists
one by Zorn's lemma). Sinceis closed under immediate conflict, it contairis By
definition of cell[e) = [¢’). Also, sincec containse’, it must contaire”. By definition

of cell, e #,, €”.

For the other direction we observe that if the immediate conflict is transitive, the
reflexive closure of immediate conflict is an equivalence. If immediate conflict is inside
cells, the cells coincide with the equivalence classes. In particular they are closed under
immediate conflict. O

In a confusion-free event structure, if an evert c is enabled at a configuratian
all the events of are enabled as well. In such a case we say that theisaltcessiblat
x. The set of accessible cellsais denoted bydcc(x). Confusion-free event structures
correspond to deterministic concrete data structures [NPW81,KP93] and to confusion-
free occurrence nets [NPW81].

We find it useful to define cells without directly referring to events. To this end we
introduce the notion ofovering

Definition 2.5. Given two configurations, 2’ € £(£) we say that’ coverse (written

x < z') if there existe ¢ x such that’ = x U {e}. For every finite configuration of a
confusion-free event structure partial coveringat x is a set of pairwise incompatible
configurations that cover. A coveringat x is a maximal partial covering at.

Proposition 2.6. In a confusion-free event structuredf is a covering atz, thenc =
{e|z U {e} € C} is a cell accessible at. Conversely, it is accessible at, then
C :={xU{e}|e € c}isacovering at:.

Proof. See Appendix B. O

In confusion-free event structures, we extend the partial order notation to cells by
writing e < ¢ if for some event’ € ¢’ (and therefore for all suchk) < e’. We write
¢ < ¢ if for some (unique) evert € ¢, e < ¢'. By [c) we denote the set of events
such thake < c.

2.3 Probabilistic Event Structures with Independence

Once an event structure is confusion-free, we can associate a probability distribution
with each cell. Intuitively it is as if we have a die local to each cell, determining the
probability with which the events at that cell occur. In this way we obtain our first
definition of a probabilistic event structure, a definition in which dice at different cells
are assumed probabilistically independent.

Definition 2.7. Whenf : X — [0,+oc] is a function, for eveny” C X, we define
fIY]:= > cy f(z). Acell valuationon a confusion-free event structug, <, #) is
afunctionp : E — [0, 1] such that for every cell, we havep[c] = 1.



Assuming probabilistic independence of all probabilistic events, every finite configura-
tion can be given a “probability” which is obtained as the product of probabilities of its
constituent events. This gives us a functiy, (£) — [0, 1] which we can characterise

in terms of the order-theoretic structure®f, (£) by using coverings.

Proposition 2.8. Let p be a cell valuation and let : L£q,(E) — [0, 1] be defined by
v(x) = I.exp(e). Then we have

(@) (Normality)v(L) =1;
(b) (Conservation) if” is a covering atz, thenv[C] = v(z);
(c) (Independence)if, y are compatible, then(x) - v(y) = v(z Uy) - v(z Ny).

Proof. Straightforward. O

Definition 2.9. A configuration valuation with independermea confusion-free event
structure& is a functionv : Lg,(€) — [0, 1] that satisfies normality, conservation
and independence. The configuration valuation associated with a cell valyagi®m
Prop. 2.8 is denoted by,.

Lemma 2.10.1f v : L, (E) — [0, 1] satisfies conservation, then it is contravariant,
ie.
r Cr = v(z) >v(').

Proof. By induction on the cardinality of’ \ z. If z = 2’ thenv(z) = v(z’). Take
xz C 2’/ and consider a maximal eveatin z’ \ z. Letz” := 2’ \ {e}. By induction
hypothesisu(z) > v(z”). Let ¢ be the cell ofe andC' be thec-covering ofz”. By
conservationy -~ v(y) = v(z"). Since for every € C we have that(y) > 0, then
it must also be that(y) < v(z”). Butz’ € C so thatv(z') < v(z”) < v(x). O

Proposition 2.11. If v is a configuration valuation with independence gnd £ —
[0,1] is a mapping such that([e]) = p(e) - v([e)) for all e € E, thenp is a cell
valuation such that, = v.

Proof. See Appendix B. O
Independence is essential to prove Proposition 2.11. We will show later (Theorem
5.3) the sense in which this condition amounts to probabilistic independence.
We give an example. Take the following confusion-free event struéuré;;, =
{a, b, c,d} with the discrete causal ordering and with# , b andc #, d. We represent
immediate conflict by a curly line.

a

b c~~d

We define a cell valuation ofy by p(a) = 1/3,p(b) = 2/3,p(c) = 1/4,p(d) =
3/4. The corresponding configuration valuation is defined as

o vy(Ll)=1;

o v,({a}) = 1/3,0,({b}) = 2/3, v,({c}) = 1/4,v,({d}) = 3/4;
o vy({a,c}) = 1/12,0,({b,c}) = 1/6, vp({a,d}) = 1/4,v,({b,d}) = 1/2.



In the event structure above, a coveringlatonsists of{a}, {b}, while a covering at
{a} consists of a, ¢}, {a, d}.

We conclude this section with a definition of a probabilistic event structure. Though,
as the definition indicates, we will consider a more general definition later, one in which
there can be probabilistic correlations between the choices at different cells.

Definition 2.12. A probabilistic event structure with independeroasists of a confu-
sion-free event structure together with a configuration valuation with independence.

3 A Process Language

Confusion-freeness is a strong requirement. But it is still possible to give a seman-
tics to a fairly rich language for probabilistic processes in terms of probabilistic event
structures with independence. The language we sketch is a probabilistic version of
value passing CCS. Following an idea of Milner, used in the context of confluent pro-
cesses [Mil89], we restrict parallel composition so that there is no ambiguity as to which
two processes can communicate at a channel; parallel composition will then preserve
confusion-freeness.

Assume a set of channels For simplicity we assume that a common set of values
V may be communicated over any chanme& L. The syntax of processes is given by:

P:=0]Y al(py,v).P, | a?(x).P | Pi||[Py| P\ A]
veV

P[f]|if bthen P, elseP; | X |recX.P

Herex ranges over value variableX, over process variablesl, over subsets of chan-
nels andf over injective renaming functions on channélsyver boolean expressions
(which make use of values and value variables). The coefficignése real numbers
suchthad .y p, = 1.

A closed process will denote a probabilistic event structure with independence, but
with an additional labelling function from events to output labéls input labelsa?v
whereaq is a channel and a value, orr. At the cost of some informality we explain the
probabilistic semantics in terms of CCS constructions on the underlying labelled event
structures, in which we treat pairs of labels consisting of an output tdbeind input
labela?v as complementary. (See e.g. the handbook chapter [WN95] or [Win82,Win87]
for an explanation of the event structure semantics of CCS.) For simplicity we restrict
attention to the semantics of closed process terms.

The nil proces$) denotes the empty probabilistic event structure. A closed output
processy . al(py,v).P, can perform a synchronisation at chanagbutputting a
value v with probability p,,, whereupon it resumes as the procéss EachP,, for
v € V, will denote a labelled probabilistic event structure with underlying labelled
event structur€[P,]. The underlying event structure of such a closed output process
is got by the juxtaposition of the family of prefixed event structures

al.E[P,] ,



with v € V, in which the additional prefixing events labelleld are put in (immedi-
ate) conflict; the new prefixing events labellga are then assigned probabilitigsto
obtain the labelled probabilistic event structure.

A closed input process?(x). P synchronises at channelinputting a value) and
resuming as the closed procd®w/x]. Such a procesB[v/x] denotes a labelled prob-
abilistic event structure with underlying labelled event structji@[v/x]]. The under-
lying labelled event structure of the input process is got as the parallel juxtaposition of
the family of prefixed event structures

a?.E[Plv/z]] ,

with v € V; the new prefixing events labelledv are then assigned probabilities

The probabilistic parallel composition corresponds to the usual CCS parallel com-
position followed by restricting away on all channels used for communication. In order
for the parallel compositioi® | P> to be well formed the set of input channels Bf
and P, must be disjoint, as must be their output channels. So, for instance, it is not
possible to form the parallel composition

> al(pu,v).0]la?(z).Py||a?(x).Ps .
veV

In this way we ensure that no confusion is introduced through synchronisation.

We first describe the effect of the parallel composition on the underlying event struc-
tures of the two components, assumed taFheand F,. This is got by CCS parallel
composition followed by restricting away events in aSet

(E1|E2)\ S

whereS consists of all labels!v, a?v for which alv appears inE; anda?v in Es, or
vice versa. In this way any communication betwégrandE; is forced when possible.
The newly introduced-events, corresponding to a synchronisation betweeal@an
event with probabilityp,, and ana?v-event with probabilityl, are assigned probability
Po-

ArestrictionP \ A has the effect of the CCS restriction

E[P]\{alv,a?v |veV &ae A}

on the underlying event structure; the probabilities of the events which remain stay the
same. A renamind@’[f] has the usual effect on the underlying event structure, proba-
bilities of events being maintained. A closed conditiofifalb then P, elsePs) has the
denotation ofP, whenb is true and ofP, whenb is false.

The recursive definition of probabilistic event structures follows that of event struc-
tures [Win87] carrying the extra probabilities along. Though care must be taken to en-
sure that a confusion-free event structure results: one way to ensure this is to insist that
for rec X.P to be well-formed the process variabfe may not occur under a parallel
composition.



4 Probabilistic Event Structures and Domains

The configurationg£(€), C) of a confusion-free event structufe ordered by inclu-

sion, form a domain, specificallydistributive concrete domaigcf. [NPW81,KP93]).

In traditional domain theory, a probabilistic process is denoted tgrdéinuous valu-
ation. Here we show that, as one would hope, every probabilistic event structure with
independence corresponds to a unique continuous valuation. However not all continu-
ous valuations arise in this way. Exploring why leads us to a more liberal notion of a
configuration valuation, in which there may be probabilistic correlation between cells.
This provides a representation of the normalised continuous valuations on distributive
concrete domains in terms of probabilistic event structures. (Appendix A includes a
brief survey of the domain theory we require and some of the rather involved proofs of
this section. All proofs of this section can be found in [Var03].)

4.1 Domains

The configurations of an event structure form a cohegteatgebraic domain, whose
compact elements are the finite configurations [NPW81]. The domain of configurations
of a confusion free has an independent equivalent characterisation as distributive con-
crete domain (for a formal definition of what this means, see [KP93]).

The probabilistic powerdomain of Jones and Plotkin [JP89] consists of continuous
valuations, to be thought of as denotations of probabilistic processesnfinuous
valuationon a DCPOD is a functionv defined on the Scott open subsetdnftaking
values or0, +oo], and satisfying:

e (Strictnessy(0) = 0;

e (Monotonicity)U CV = v(U) < v(V);

e (Modularity)v(U) + v(V) =v(UUV)+v(UNV);

e (Continuity) if 7 is a directed family of open sets(|J J) = supy ¢, v(U).

A continuous valuation is normalisedif v(D) = 1. Let V(D) denote the set of
normalised continuous valuations dhequipped with the pointwise order:< ¢ if for
all open setd/, v(U) < £(U). V(D) is a DCPO [JP89,Edags).

The open sets in the Scott topology represent observatiori3.isf an algebraic
domain andr € D is compact, th@rincipal set? x is open. Principal open sets can be
thought of as basic observations. Indeed they form a basis of the Scott topology.

Intuitively a normalised continuous valuationassigns probabilities to observa-
tions. In particular we could think of the probability of a principal openisets rep-
resenting the probability of.

4.2 Continuous and Configuration Valuations

As can be hoped, a configuration valuation with independence on a confusion-free event
structure€ corresponds to a normalised continuous valuation on the dof8&dh), C),
in the following sense.



Proposition 4.1. For every configuration valuation with independencen £ there is
a unique normalised continuous valuatioron £(£) such that for every finite configu-
ration z, v(1 x) = v(x).

Proof. The claim is a special case of the subsequent Theorem 4.4, |

While a configuration valuation with independence gives rise to a continuous val-
uation, not every continuous valuation arises in this way. As an example, consider the
event structur€; as defined in Section 2.3. Define

o v(T{a}) = v(1{b}) = v(1{c}) = v(1{d}) = 1/2;
i V(T{aa d}) = V(T{ba C}) = 1/2;
o v(H{a,c}) =v(1{b,d}) = 0;

and extend it to all open sets by modularity. It is easy to verify that it is indeed a con-
tinuous valuation or (&, ). Define a function : Lg,(€1) — [0,1] by v(zx) := v(T ).
This is not a configuration valuation with independence; it does not satisfy condition
(c) of Proposition 2.8. If we consider the compatible configurations {a},y := {c}
thenv(z Uy) -v(zNy) =0<1/4 =v(x) - v(y).

Also continuous valuations “leaking” probability do not arise from probabilistic
event structures with independence.

Definition 4.2. Denote the set of maximal elements of a DCPQy (D). A nor-
malised continuous valuatianon D is non-leakingdf for every open seb 2 (2(D),
we haver(0O) = 1.

This definition is new, although inspired by a similar concept in [Eda95]. For the sim-
plest example of a leaking continuous valuation, consider the event strdstem-
sisting of one event only, and the valuation defined a40) = 0, (1 L) = 1,
v(1{e}) = 1/2. The corresponding function : Lg,(£2) — [0, 1] violates condition
(b) of Proposition 2.8. The probabilities in the celloflo not sum up to 1.

We analyse how valuations without independence and leaking valuations can arise
in the next two sections.

4.3 Valuations Without Independence

Definition 2.12 of probabilistic event structures assumes the probabilistic independence
of choice at different cells. This is reflected by condit{opin Proposition 2.8 on which

it depends. In the first example above, the probabilistic choices in the two cells are not
independent: once we know the outcome of one of them, we also know the outcome
of the other. This observation leads us to a more general definition of a configuration
valuation and probabilistic event structure.

Definition 4.3. A configuration valuatioron a confusion-free event structuéeis a
functionv : Lg,(€) — [0, 1] such that:

(@) v(l)=1;
(b) if C'is a covering ate, thenv[C] = v(z).



A probabilistic event structurnsists of a confusion-free event structure together with
a configuration valuation.

Now we can generalise Proposition 4.1, and provide a converse:

Theorem 4.4. For every configuration valuation on £ there is a unique normalised
continuous valuation on £(£) such that for every finite configuration v(1 z) =
v(x). Moreoverv is non-leaking.

Proof. See Appendix C. |

Theorem 4.5. Let v be a non-leaking continuous valuation g4¢). The functiorv :
Lan(€) — [0,1] defined by (z) = v(] z) is a configuration valuation.

Proof. See Appendix C. O

Using this representation result, we are also able to characterise the maximal ele-
ments inV!(L(£)) as precisely the non-leaking valuations—a fact which is not known
for general domains.

Theorem 4.6. Let £ be a confusion-free event structure anduet V! (£(€)). Thenv
is non-leaking if and only if it is maximal.

Proof. See [Var03], Prop. 7.6.3 and Thm. 7.6.4. O

4.4 Leaking Valuations

There remain leaking continuous valuations, as yet unrepresented by any probabilistic
event structures. At first sight it might seem that to account for leaking valuations it
would be enough to relax conditigh) of Definition 4.3 to the following

(b") if C'is a covering ate, thenv[C] < v(x).

However, it turns out that this is not the right generalisation, as the following example
shows. Consider the event structdsewhereEs = {a, b} with the flat causal ordering

and no conflict. Define a “leaking configuration valuation"&nby v(L) = v({a}) =

v({b}) = 1,v({a,b}) = 0. The functiorw satisfies condition&) and(b’), but it cannot

be extended to a continuous valuation on the domain of configurations. However, we
can show that the leaking of probability is attributable to an “invisible” event.

Definition 4.7. Consider a confusion-free event structdte= (E, <, #). For every
cell ¢ we consider a new “invisible” event,. such thatd. ¢ F and ifc # ¢ then
0. # 0. Letd = {0, | cis acell}. We defin€y to be(Ey, <s, #5), Where

o Fy=FEUO,;
e <yis<extendedby <y d.ifforall ¢’ € c,e < ¢
o #,is# extended by #, 0. if there exists’ € ¢, ¢’ <e.

Soé&y is € extended by an extra invisible event at every cell. Invisible events can absorb
all leaking probability, as shown by Theorem 4.9 below.
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Definition 4.8. Let £ be a confusion-free event structureg8neralised configuration
valuationon& is a functionv : Lg,(£) — [0, 1] that can be extended to a configuration
valuation on€&j.

It is not difficult to prove that, when such an extension exists, it is unique.

Theorem 4.9. Let€ be a confusion-free event structure. ketLq, () — [0, 1]. There
exists a unique normalised continuous valuatioon £(£) with v(z) = v(T ), if and
only if v is a generalised configuration valuation.

Proof. See [Var03], Thm. 6.5.3. O
The above theorem completely characterises the normalised continuous valuations
on distributive concrete domains in terms of probabilistic event structures.

5 Probabilistic Event Structures as Probabilistic Runs

In the rest of the paper we investigate how to adjoin probabilities to event structures
which are not confusion-free. In order to do so, we find it useful to introduce two notions
of probabilistic run.

Configurations represent runs (or computation paths) of an event structure. What is
a probabilistic run (or probabilistic computation path) of an event structure? One would
expect a probabilistic run to be a form of probabilistic configuration, so a probability
distribution over a suitably chosen subset of configurations. As a guideline we con-
sider the traditional model of probabilistic automata [Seg95], where probabilistic runs
are represented in essentially two ways: as a probability measure over the set of max-
imal runs [Seg95], and as a probability distribution over finite runs of the same length
[dAHJO1].

The first approach is readily available to us, and where we begin. As we will see,
according to this view probabilistic event structures over an underlying event structure
& correspond precisely to the probabilistic rungof

The proofs of the results in this section are to be found in the appendix.

5.1 Probabilistic Runs of an Event Structure

The first approach suggests that a probabilistic run of an event struttuedaken to
be a probability measure on the maximal configurations(df).

Some basic notion of measure theory can be found in Appendix ALbe an
algebraic domain. Recall th&(D) denotes the set of maximal elementsi®fand
that for every compact element € D the principal set 1z is Scott open. The set
K(x) := T2 N (D) is called theshadowof =. We shall consider the-algebraS on
£2(D) generated by the shadows of the compact elements.

Definition 5.1. A probabilistic runof an event structur€ is a probability measure
on (2(L(£)),S), whereS is theos-algebra generated by the shadows of the compact
elements.

There is a tight correspondence between non-leaking valuations and probabilistic runs.
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Theorem 5.2. Let v be a non-leaking normalised continuous valuation on a coherent
w-algebraic domainD. Then there is a unique probability measuren S such that for
every compact element u(K (x)) = v(T x).

Let 1 be a probability measure o&. Then the functionv defined on open sets by
v(0) = u(0O N 2(D)) is a non-leaking normalised continuous valuation.

Proof. See Appendix C. O

According to the result above, probabilistic event structures over a common event
structure€ correspond precisely to the probabilistic runséofAmong these we can
characterise probabilistic event structuvgth independencen terms of the standard
measure-theoretic notion of independence. In fact, for such a probabilistic event struc-
ture, every two compatible configurations are probabilistically independent, given the
common past:

Proposition 5.3. Letv be a configuration valuation on a confusion-free event structure
E. Letu, be the corresponding measure as of Propositions 4.1 and Theorem 5.2. Then,
v is a configuration valuatiorwith independencdf for every two finite compatible
configurationse, y

(K@) 0 K(y) | K@ny) = po (K@) | K@ny) (K@) | K@ny).

Proof. See Appendix C. O

Note that the definition of probabilistic run of an event structure does not require
that the event structure is confusion-free. It thus suggests a general definition of a proba-
bilistic event structure as an event structure with a probability measomdts maximal
configurations, even when the event structure is not confusion-free. This definition, in
itself, is however not very informative and we look to an explanation in terms of finite
probabilistic runs.

5.2 Finite Runs

What is a finite probabilistic run? Following the analogy heading this section, we want
it to be a probability distribution over finite configurations. But which sets are suitable
to be the support of such distribution? In interleaving models, the sets of runs of the
same length do the job. For event structures this won'’t do.

To see why consider the event structure with only two concurrent euetity he
only maximal run assigns probability 1 to the maximal configurafierb}. This corre-
sponds to a configuration valuation which assigns 1 to be{tand{b}. Now these are
two configurations of the same size, but their common “probability” is equal to 2! The
reason is that the two configurations are compatible: they do not repedsaniative
choices. We therefore need to represent alternative choices, and we need to represent
them all. This leads us to the following definition.

Definition 5.4. Let £ be an event structure. partial testof £ is a setC of pairwise
incompatible configurations @f. A testis a maximal partial test. A test fmitary if all
its elements are finite.

12



Maximality of a partial testC can be characterised equivalentlyasnpleteness
for every maximal configuratios, there exists: € C such that: C z. The set of tests,
endowed with the Egli-Milner order has an interesting structure: the set of all tests is a
complete lattice, while finitary tests form a lattice.

Tests were designed to support probability distributions. So given a sensible val-
uation on finite configurations we expect it to restrict to probability distributions on
tests.

Definition 5.5. Letv be a functionCs, () — [0, 1]. Thenw is called atest valuatiorif
for all finitary testsC' we havev[C] = 1.

Theorem 5.6. Let i be a probabilistic run of. Definev : L4,(E) — [0,1] bywv(z) =
w(K (z)). Thenv is a test valuation.

Proof. See Appendix C. O

Note that Theorem 5.6 is for general event structures. We unfortunately do not
have a converse in general. However, there is a converse when the event structure is
confusion-free:

Theorem 5.7. Let€ be a confusion-free event structure. kdie a functionCq, (£) —
[0,1]. Therw is a configuration valuation if and only if it is a test valuation.

Proof. See Appendix C. O

The proof of this theorem hinges on a property of tests. The property is that of
whether partial tests can be completed. Clearly every partial test can be completed to a
test (by Zorn's lemma), but there exist finitary partial tests that cannot be completed to
finitary tests.

Definition 5.8. A finitary partial test ishonestif it is part of a finitary test. A finite
configuration is honest if it is honest as partial test.

Proposition 5.9. If £ is a confusion-free event structure and if a finite configuration
of &, thenx is honestinC(E).

Proof. See Appendix C. O
So confusion-free event structures behave well with respect to honesty. For general
event structures, the following is the best we can do at present:

Theorem 5.10.Let v be a test valuation o&. Let H be theo-algebra on22(L(£))
generated by the shadows of honest finite configurations. Then there exists a unique
measureu on’H such thatu(K (x)) = v(z) for every honest finite configuratian

Proof. See Appendix C. O

Theorem 5.11.If all finite configurations are honest, then for every test valuation
there exists a unique continuous valuatiarsuch that/(1 x) = v(x).

Proof. See Appendix C. O

But, we do not know whether in all event structures, every finite configuration is
honest. We conjecture this to be the case. If so this would entail the general converse to
Theorem 5.6 and so characterise probabilistic event structures, allowing confusion, in
terms of finitary tests.

13



6 Morphisms

It is relatively straightforward to understand event structures with independence. But
how can general test valuations on a confusion-free event structures arise? More gen-
erally how do we get runs of arbitrary event structures? We explore one answer in this
section. We show how to obtain test valuations as “projections” along a morphism from
a configuration valuation with independence on a confusion-free event structure. The
use of morphisms shows how general valuations are obtained through the hiding and
renaming of events.

6.1 Definitions

Definition 6.1 ([Win82,WN95]). Given two event structure$, £, a morphismf :
& — &' is apartial functionf : E — E’ such that

e whenever: € L(&) thenf(z) € L(E);
o foreveryz € L(E), forall er,es € xif f(e1), f(e2) are both defined andl(e;) =
f(eg), thene; = es.

Such morphisms define a categdiy. The operatoill extends to a functoES —
DCPO by L(f)(x) = f(z), whereDCPO is the category of DCPO’s and continuous
functions.

A morphismf : £ — £’ expresses how the occurrence of an everd induces
a synchronised occurrence of an evenEinSome events i are hidden (iff is not
defined on them) and conflicting eventsimay synchronise with the same evengin
(if they are identified byf).

The second condition in the definition guarantees that morphisms of event structures
“reflect” reflexive conflict, in the following sense. Letbe the relation# U Idg), and
letf: € — &' If f(e1) f(e2), thene; x eo. We now introduce morphisms that reflect
tests; such morphisms enable us to define a test valuatiGhfomm a test valuation on
£. To do so we need some preliminary definitions. Given a morplfisrd — &', we
say that an event @ is f-invisible, if it is not in the domain of . Given a configuration
x of £ we say that it isf-minimal if all its maximal events arg-visible. That isz is
f-minimal, when is minimal in the set of configurations that are mappet49. For
any configuratiorr, definez s to be thef-minimal configuration such that; C « and
f(x) = flzy).

Definition 6.2. A morphism of event structurgs: £ — £’ is tight when

e if y = f(x) andify’ D y, there exists’ D z ¢ such thayy’ = f(z');
o if y = f(x)andify’ C y, there exists’ C x; such that/ = f(z');
¢ all maximal configurations ar¢-minimal (no maximal event ig-invisible).

Tight morphisms have the following interesting properties:

Proposition 6.3. A tight morphism of event structures is surjective on configurations.
Givenf : £ — &' tight, if C’ is a finitary test of€’ then the set of -minimal inverse
images ofC’ along f is a finitary test inf.
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Proof. The f-minimal inverse images form always a partial test because morphisms
reflect conflict. Tightness is needed to show completeness. d

We now study the relation between valuations and morphisms. Given a function
v : Lan(€) — [0,+00] and a morphisny : £ — &’ we define a functiory (v) :
Lan(E') — [0,+00] by f(v)(y) = > {v(z) | f(x) =y andz is f-minimal}. We have:

Proposition 6.4. Let &, £’ be confusion-free event structuresa generalised configu-
ration valuation or€ and f : £ — £’ a morphism. Therf(v) is a generalised configu-
ration valuation org’.

See [Var03] for the proof. More straightforwardly:

Proposition 6.5. Let&, £ be event structures, be a test valuation o0&, andf : £ —
&’ atight morphism. Then the functigifv) is a test valuation og’.

Therefore we can obtain a run of a general event structure by projecting a run of a
probabilistic event structure with independence. Presently we don’t know whether every
run can be generated in this way.

6.2 Morphisms at work
The use of morphisms allows us to make interesting observations. Firstly we can give
an interpretation to probabilistic correlation. Consider the following event structures

&1 = (B1,<,#),E4 = (E4, <, #) whereé, is defined as follows:

o By ={ay,a2,b1,b2,c1,c2,d1,d2,e1,€2};
L4 61SalablacladlieQ§a2;b25025d2;
® c #Heg,ai #Hbi,ci #Mdi fori = 1,2.

al“~b1 Cl’\«dl a2’\~b2 CQNdQ

N N\

€1 €2

Above, curly lines represent immediate conflict, while the causal order proceeds up-
wards along the straight lines. The event structyrevas defined in Section 2.%; =
{a, b, ¢, d} with the discrete ordering and withy,, b ande #, d.

a ~~ ) C ~~~

Themapf : E4 — E; definedag (z;) =,z = a,b,c,d,i = 1,2 is atight morphism
of event structures.

Now suppose we have a global valuation with independermes,. We can define
it as cell valuation, by p(e;) = 3, p(a1) = p(c1) = p(ba) = p(d2) = 1, plaz) =
p(c2) = p(b1) = p(d1) = 0. It is easy to see that' := f(v), is the test valuation
defined in Section 4.2. For instance
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v ({a}) = vler,ar}) + vl{ezaz}) = 5

v'({a,d}) = v({e1,a1,d1}) +v({ea,az,d2}) = 0.

Thereforev’ is not a global valuation with independence: the correlation between the
cell {a,b} and the cell{¢,d} can be interpreted by saying that it is due to a hidden
choice between; andes.

In the next example a tight morphism takes us out of the class of confusion free event
structures. Consider the event structufgs= (E5, <,#),& = (Fs, <,#) where
Es = {a1,a2,b,c,d}; a1 < b, az < ¢,d; a1 #, as;

/

A1 ~~~~~ A3

while Eg = {b,c,d}; b#, c,d.
C~rr~ b~ d

Note the&s is not confusion free: it is in fact the simplest examplespimmetriocon-
fusion [RE96]. The magf : E5 — Es defined asf(xz) = z, x = b,¢,d is a tight
morphism of event structures. A test valuation on an event structure with confusion is
obtained as a projection along a tight morphism from a probabilistic event structure
with independence. Again this is obtained by hiding a choice.

In the next example we again restrict attention to confusion free event structures,
but we use a non-tight morphism. Such morphisms allow us to interpret conflict as
probabilistic correlation. Consider the event struct@tes= (E7, <, #),&3 = (F3, <
, #) where

o b7 ={a,b}a#,0;
e F3 = {a, b} with no conflict.

The mapf : E; — E3 defined ag (z) = x, z = a, bis a morphism of event structures.
It is not tight, because it is not surjective on configurations: the configurdtioh} is
not in the image off .

Consider the test valuationon &; defined as)({a}) = v({b}) = 1/2. The gen-
eralised global valuation’ = f(v) is then defined as follows! ({a}) = v'({b}) =
1/2,v'({a,b}) = 0. Itis not a test valuation, but by Theorem 4.9, we can extend it to a
test valuation otg7 »:

Og ~~a Op ~~~b

The (unigue) extension is defined as follows:
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o V'({0u}) = v'({%h}) = v'({a}) = v'({b}) = 1/2;
o V'({0a,0}) = v'({a,b}) = 0;
o V'({0a,0}) = v'({a, p}) = 1/2.

The conflict betweem andb in £; is seen i3 as a correlation between their cells.
Either way, we cannot obserueandb together.

7 Related and Future Work

In his PhD thesis, Katoen [Kat96] defines a notion of probabilistic event structure which
includes our probabilistic event structures with independence. But his concerns are
more directly tuned to a specific process algebra. So in one sense his work is more
general—his event structures also possess nondeterminism—while in another it is much
more specific in that it does not look beyond local probability distributions at cells.
Volzer [Voe01] introduces similar concepts based on Petri nets and a special case of
Theorem 5.10. Benveniste et al. have an alternative definition of probabilistic Petri nets
in [BFHO3], and there is clearly an overlap of concerns though some significant differ-
ences which require study.

We have explored how to add probability to the independence model of event struc-
tures. In the confusion-free case, this can be done in several equivalent ways: as val-
uations on configurations; as continuous valuations on the domain of configurations;
as probabilistic runs (probability measures over maximal configurations); and in the
simplest case, with independence, as probability distributions existing locally and in-
dependently at cells. Work remains to be done on a more operational understanding,
in particular on how to understand probability adjoined to event structures which are
not confusion-free. This involves relating probabilistic event structures to interleaving
models like Probabilistic Automata [Seg95] and Labelled Markov Processes [DEP02].
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A Domain Theory and Measure Theory—Basic Notions

A.1 Domain Theory

We briefly recall some basic notions of domain theory (see e.g. [AJ94{irected
complete partial order (DCPOis a partial order where every directed 3ehas a least
upper boundl | Y. An element: of a DCPOD is compac{or finite) if for every directed
Y and everyr < | |Y there existy € Y such that: < y. The set of compact elements
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is denoted byC'p(D). A DCPO is analgebraic domairif or everyxz € D, z is the
directed least upper bound pf: N C'p(D). Itis w-algebraicif Cp(D) is countable.

In a partial order, two elements are said todmnpatibleif they have a common
upper bound. A subset of a partial ordec@nsistenif every two of its elements are
compatible. A partial order isoherentf every consistent set has a least upper bound.

The Egli-Milner order on subsets of a partial order is definedXy< Y if for all
x € X there existy € Y,z < y and for ally € Y there exists € X, z < y. A subset
X of a DCPO isScott operif it is upward closed and if for every directed $étwhose
least upper bound is i, thenY N X # (). Scott open sets form tt&cott topology

A.2 Measure Theory

A c-algebraon a setf? is a family of subsets ofX which is closed under count-
able union and complementation and which cont#linghe intersection of an arbi-
trary family of o-algebras is again @-algebra. In particular i§ C P(£2), and= :=
{F | Fisac-algebra& S C F}, then() = is again as-algebra and it belongs t&.
We call() = thesmallesto-algebra containing.

If Sis atopology, the smallestalgebra containing is called theBorel o-algebra
of the topology. Note that although a topology is closed under arbitrary union, its Borel
o-algebra need not be.

A measure space a triple (12, F,v) whereF is ao-algebra onf2 andv is a
measureon F that is a functions : 7 — [0, +oo] satisfying:

e (Strictness)v(0) = 0;
e (Countable additivity) if A,,)»en is a countable family of pairwise disjoint sets of
F,thenv(U, ey An) = D nen Y(An) -

Finite additivity follows by putting4,, = () for all but finitely manyn.
Among the various results of measure theory we state two that we will need later.

Theorem A.1 ([Hal50] Theorem 9.E).Letr be a measure on a-algebraF, and let
A,, be a decreasing sequence of setFirthat isA,,11 C A,, such that/(A4y) < co.
Then

v (ﬂ An> = lim v(A,).

neN

One may ask when it is possible to extend a valuation on a topology to a measure
on the Borelo-algebra. This problem is discussed in Mauricio Alvarez-Manilla’s the-
sis [AMOQ]. The result we need is the following. It can also be found in [AESO00], as
Corollary 4.3.

Theorem A.2. Any normalised continuous valuation on a continuous DCPO extends
uniquely to a measure on the Borelalgebra.
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B Proofs from Section 2

Proposition 2.6. In a confusion-free event structure(ifis a covering atc, thenc =
{e|z U {e} € C} is a cell accessible at. Conversely, it is accessible at, then
C :={xU{e}|e € c}is acovering at:.

Proof. Let C be a covering at, and letc be defined as above. Then for every distinct
e, e’ € c,we have: # €', otherwiserU{e} andzU{e’ } would be compatible. Moreover
asle),[¢') C z, we have thafe] U [¢/) C 2 U {e} so that[e] U [¢’) is a configuration.
Analogously[e) U [¢'] is a configuration so that#,, ¢’. Now takee € c and suppose
there ise’ Z c such thak # , ¢’. Since# , is transitive, then for every’ € c, ¢’ # , ¢”.
Thereforez U {¢’} is incompatible with every configuration ifi, andz < z U {e'}.
Contradiction.

Conversely, take a cefl € Acc(x), and defineg” as above. Then clearly for every
z' € C,xz <z’ and also for every’, 2" € C, 2/, 2" are incompatible. Now consider
a configurationy, such thatr <t y. This meang = = U {e} for somee. If e € c then
y € C andy is compatible with itself. lfe ¢ ¢ then for everye’ € ¢, e, e’ are not in
immediate conflict. Suppose# ¢/, then, by lemma 2.1 there atle< e,d’ < ¢’ such
thatd #/, d'. Supposel < e then[e) U [¢'] would not be a conflict free. But that is not
possible ase) U [e'] C « U {e’} and the latter is a configuration. Analogously it is not
the case that’ < ¢’. This implies thatke #/, ¢’, a contradiction. Therefore for every
x € C,y andx are compatible. O

Proposition 2.11. If v is a configuration valuation with independence gnd £ —
[0,1] is a mapping such that([e]) = p(e) - v([e)) for all e € E, thenp is a cell
valuation such that, = v.

Proof. Consider now a celt. Then the se€ := {[c) U{e} | e € ¢} is a covering ajc).
Remember that i¢ € ¢, thenle) = [¢). Therefore ifu([e)) # 0 we have

Y ple) = v(le)/v([e)

=D vlleD/v([e) = Y v(w)/v((e)) = 1.
ecc zeC

We discuss later the casé[e)) = 0. In order to show that, = v we proceed by
induction on the size of the configurations. Because of normality, we have that

v, (0) = [T pole) =1 =0(0).

eel

Now assume that for every configuratigof sizen, v, (y) = v(y), take a configuration
x of sizen + 1. Take a maximal everte z so thaty := x \ {e} is still a configuration.
Sincex is a configuration, it must be that] C z and thusle) C y. Thereforele) =
y N [e]. First suppose([e)) # 0

w(@) =[] pe) =p(e)- I p(¢)

e'ex e'ey
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= p(e) - vp(y)
By induction hypothesis this is equal to

= p(e) - v(y) = (v([e])/v([e))) - v(v)
= v([e]) - v(y)/v(le)) = v([e]) - v(y)/v(y Nel)

And because of independence this is equal to

— o(y U fe]) = v(a).

If v([e)) = 0, by contravariance we havgx) = v(y) =0

vp(@) =[] p(e') =pe) - [] p(€)

e'cx e'cy

=p(e) - vp(y)
By induction hypothesis this is equal to

=p(e)-v(y) = 0=v(z).

Note that wherv([e)) = 0 it does not matter what valugsassumes on the eventsdn
Thus we can assume thadt] = 1. O

C Proofs of the Main Results

We provide here the proofs of Sections 4 and 5. The order in which these proofs are
presented does not follow the order in which they are introduced in the main body of
the paper.

C.1 Configuration and Continuous Valuations

Theorem 4.4. For every configuration valuation on £ there is a unique normalised
continuous valuation on £(£) such that for every finite configuration v(1 z) =
v(x). Moreoverv is non-leaking.

The proof of Theorem 4.4 will require various intermediate results. In the following
proofs we will writez for T x. We will use lattice notation for configurations. That is,
we will write z < y for x C y, x V y for z U y, and_L for the empty configuration.
To avoid complex case distinctions we also introduce a special elémepresenting
an impossible configuration. if, y are incompatible, the expression/ y will denote
T. Also, for every configuration valuation, v(T) = 0, finally T = §. The finite
configurations together with form a\v-semilattice.

We have to define a function from the Scott open set§(@¥) to the unit interval.
This value ofv on the principal open sets is determinedA§¥) = v(x). We first define
v on finite unions of principal open sets. Sin€€) is algebraic, such sets form a basis

21



of the Scott topology ofZ(£). We will then be able to define on all open sets by
continuity.
Let Pn be the set of principal open subsetsdt). That is

Pn={%|z € Lan(E)}U{0}.

Notice thatPn is closed under finite intersection becaase y = zVy. (If z,y are
not compatible the@ N3 = ) = T = z V y.) The family Pn is, in general, not closed
under finite union.

Let Bs be the set of finite unions of elements@f. That is

Bs={r1U...UZ, |7 € Pn, 1 <i<n}.
Using distributivity of intersection over union it is easy to prove the following.

Lemma C.1. The structure Bs, U, N) is a distributive lattice with top and bottom.

Since ther has to be modular, it will also satisfy the inclusion-exclusion principle. We
exploit this to definev. Let us definey : Bs — R as follows

v (@U...UZy) = Y (- (\/x)

0£ICI, iel

We have first to make sure that is well defined: If two expressions U ... Uz, and
71 U... U7y, represent the same set, then

3 o (Va) = 3 0V

0£ICI, i€l 0£JCIpm jeJ
Lemma C.2. We haver C 77 U... U7, if and only if there exists such thatr; < x.
Proof. Straightforward. O
Lemma C.3. If z,, < z,41 then

Z (—HI=ty (\/ sz) = Z (=)= (\/ xz> )
0£ICT, iel 0£TC i iel

Proof. Whenz,, < x,,+1 we have that,, V x,41 = z,41. Now

> =ity <\/ :c)

OAIC Iy iel

-3 ()

0A£ICI, iel

+ > =Dty <\/:c>

ICT, 4 el

n,n+1el

+ > (—1)1—11](\/%).

ICI, 41 icl

ngl,n+1el
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We claim that

S (-1t <\/x>+ S iy (\/x> ~0

n,ntlel ngl,n+1el

and this would prove our lemma. To prove the claim

SERTEHUN

ICIn 41 el
n,n+1el
= Z (71)‘1‘71’0 <\/ x; Va,V l‘n+1>
ISl 1 iel
= Z (*1)‘1‘_1’0 <\/ x; V ZnJrl)
ICIn_1 iel
=- Z (=1)lly (\/ x; V a:n+1>
ICl, 1 iel
- 2 (V)
ICI, 4 iel
nglntiel

O
Therefore we can safely remove “redundant” components from a finite union until
we are left with a minimal expression. The next lemma says that such minimal expres-
sion is unique, up to the order of the components.

LemmaC.4. Letz1U...Ux, =41 U...U¥ym, and let such expressions be minimal.
Thenn = m and there exists a permutatienof 7,, such that; = y, ;).

Proof. By lemma C.2, for every € I,, there exist somg € I,,, such thaty; < ;. Let
o : I, — I, be afunction choosing one su¢hSymmetrically let- : I,,, — I,, be such
thatz ;) < y;. Now | claim that for every, 7(o(i)) = i. Infactz, o)) < Yoy < .
The minimality of thex;’s implies the claim. Symmetrically(7(j)) = j, so thato is
indeed a bijection. O

Finally we observe that in the definition of, the order of ther; does not matter.
This concludes the proof of thag is well-defined.

Next we state a lemma saying thaf : Bs — R is a valuation on the lattice
(Bs,U,N). This is the crux of the proof of Theorem 4.4.

Lemma C.5. The functiony, : Bs — R satisfies the following properties:

e (Strictness) (D) = 0;
e (Monotonicity)U CV = 1,(U) < 11(V);
° (Modularity) l/o(U) + l/o(V) = l/o(U U V) + VQ(U n V)
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In particular, sincel. = L(E), for everyU € Bs, we have) = 15(0) < v(U) <
l/()(ﬁ(g)) = I/()(J_) = ’U(J.) =1.Soinfactyy : Bs — [0, ].]

Proof. Strictness is obvious.

We prove monotonicity in steps. First we prove a special case, that is forevery
tuple of finite configuration&r; ) and for every finite configuration if z7U. ..Uz, C
g, thenyg (1 U ... UZy,) < (7). We will do it by induction om.

The basis requires that= () < vo(7) = v(y) which is true. Suppose now that
71U...UT, 11 C 7. Fixy and consider alh+1-tuples(z;) such that;U. . .Uz, 1 C
and order them componentwise. Thatis) < (z]) if for everyi, z; < z.. Note that
if (z;) > (z]) then some of th¢z}) must be strictly smaller than some of the As
everyz; is finite this order is well founded. Suppose by contradiction that there exist an
n + 1-tuples for which

12 (zAlUUz/nI) >VQ(§/\)
and take a minimal such. If this is the case, therzathust be strictly greater than
We argue that there is a cellsuch thaty does not fillc, some of the;’s fill ¢ and for all
z; that do, the event € ¢ N z; is maximal inz;. Consider a maximal event € z; \ y.
If the cellc; of e; is maximal in allz; that fill ¢, then we are done. Otherwise consider
the firstz; that fills ¢; but for whichc; is not maximal. Consider a maximal event in
z;j lying abovec;. Consider its celt,. Sincec, is abovec,, clearlyc, cannot be filled
by any of thez; for i < j because, either they do not fil], or if they do, thernc; is
maximal. Continue this process until you reagh ; at which point we will have found
a cellc with the properties above.

Consider all the eventsy,...,ep,... € ¢t Foreveryh > 1letI" = {i ¢
I.41 | en € z}. Sincec is maximal and it is not filled by, then we have that for
everyi € I", 2/ := z; \ {es} is still a configuration and it is still abovg For every
i € I,41 letw; bez] if i belongs to somé”, and otherwise let; be z;. For what we
have said, all; are greater thap so thatw; U ... Uw,+1 C 7. Also the tuple(w;) is
strictly below(z;) in the well order defined above. We now show that

vo (Wi U...Uwns1) > ()
which contradicts minimality. To do that we show that
vo (Wi U...Uwny1) 21 (21U...UZy1) -
That is
Sy (\/ u%-) > Y o (\/ ) |
PAIC 41 i€l PAICTn41 iel

We can start erasing summands that do not changd. £ef,, ; \ Un>1 I" For every
i € I,w; = 2, thusifI C I'thenV/,_, w; = \/,.; zi. So that

(V)= (=)

! Cells can be finite or countable. We do the proof for the countable case, the finite case being
analogous and, in fact, simpler.

24



Removing the summands of the above shape, it is enough to prove that

>, (Dt (\/ wz-) > > (-t <\/ z) .

OAICT, 41 iel OAICT, 41 el
INT#0 INT#0

Also note that if for two different, 2’ > 1 we have that, it N I" # @ andI N I" # 0
then\/,.,z = T, thatisv (\/,c;z;) = 0, because it is the join of incompatible
configurations. Therefore we can rewrite the right-hand member of the inequation above

) > 3 o (Va).

h>1 Q);é[\[g[h el

For every: ¢ I we can define? to bew; U{e,}. All such Zzh are indeed configurations
because if ¢ I thencis accessible ab;. For everyl such thaf) # I \ I we have that
\/16[ ¢ = Tifandonlyif\/,., w; = T asey, is the only event in its cell appearing

in any configuration, so its introduction cannot cause an incompatibility that was not
already there. Now condition b) in the definition of configuration valuation says exactly

that
v <\/wt> = ZU <\/zlh> .
i€l h>1  \iel

(Where both members may be O\ff_; w; is alreadyT.) Therefore

> eV - $ etV
0#£ICT, 11 h>1 el OAIC T, 41 el
INT#D INT#£0

Now, the left hand member is absolutely convergent, becaisssenonnegative function

T s So(Vet) o X (Vo) <o

0#ICI, 1 h2>1 i€l OAICTy 41 iel
[\f?g@ INT#0

Therefore we can rearrange the terms as we like, in particular we can swap the two
summations symbols. Thus

> 3 o (Va) - 3 (Vi)
h>10#£1CT, 44 i€l OAICT, 4 el
INT#D INT#0
So to prove our claim it is enough to show that

> 3 corn(Va) s T e (v

h2>1 @#[\[C[h el h>10#1C1,, 11 icl
- INT#0
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Note thatif7\ 7 C I" then\/,c; 2z =V *. Therefore we can rewrite the inequation

as:

el z

> 3 (V) sE S o (v
h>1 @?g]\]g]h i€l h>1 m;elz\cf;%+1 icl

To prove the inequation holds, it is then enough to show that forhanyl .

S (V) 5o (v,
@#]\jglh el OAICTy 4 icl
INT#D

Subtracting the same quantity from both members we get equivalently

0< > (-pfity <\/ z§> .

0AICT, 41 iel
I\N(furhy#o

Let [" :=J,, I'. We can rewrite the sum above as

SOy (\/ Zf)

0£JCIh HCIUIh i€EHUJ

= > (e <1>'H'v< V )

@#Jgfh HngIh i€HUJ

Using BSV lemma (D.2) we can rewrite this as

S Y sy (1)%( \/ Z})

0£KCIh KCJCIr HCIUuIh 1€ HUJ

-y ¥ ¥ - K+|JUH1,< \/ Zg)

0£KCIM KCJCIr HCIuIh i€EHUJ

Fix K. Consider a sef such thatl’' C I C I,,4;. Sincel™, I U I" are a partition of
I,,+1, we have thatl := I'N (I UI")and.J := I N I" are a partition of . We use this
to rewrite the term above.

SN (piiHiEl (\/ Z?> '

P£KCIh KCICIn iel
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For everyK, and definingl := I \ K, we have that

S (R, <\/ Zg)

KCICIyq1 el
IR e BV RV
LCI,+1\K €K jEL
= (—1)0F2Kly (\/ th> + Z (—1)IEIF2IK, \/ (z]h v \/ 21
€K PALCI, 1\ K jEL icK

:%V4>+ > (e VEvVE

€K P#LCI,+1\K jEL €K

=0 <\/ zf) - Z (—1)!El=1y \/(zjh Y \/ 2

€K 0#ALCL 41\ K JEL €K

If \/;cxc 2 = T then the whole sum is equal to Otherwise it is equal to

S S
I \/zf — 1 U th\/\/zlh .

€K JE€I 1\ K ieK

Note that for everyj is
z]hv \/ zzhg \/ zzh
€K €K
so that

U EvVane Ve

jelLi 1\ K icK icK

Moreover observe thaf,,; \ K| < n + 1. By induction hypothesis

1/0<\/z2h>—1/0 U Z;L\//\72f >0.

€K je€LL 1\ K ieK
Thus we have proved that for evemytuple of finite configurationéz;) and for every
finite configurationy, if z3 U ... U T, C g, thenvy (z1U ... UT,) < 1(Y).
Monotonicity now follows from the following lemma:

Lemma C.6. If z4,..., 2,41 are finite configurations

vo(T1U...UZy) <o (Z1U...UZ, UZpiq) -
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Proof.
/\)

Vo(ﬁU...U@Ul‘nJ,_l

= > <—1>'”-1v< :u-)
OAICT, 1 iel

= Z (=)= ( x2> +v(Tpi1) — Z (—1)HI=1y <:cn+1 % \/ x2>
PAICT, iel 0£ICT, iel

= Z (—1)‘”_1’1] ( $Z> + U(In+1) — Z (—1)|I|_1’U (\/ Tpt1 V $Z>
P£ICI, icl 0£ICI, icl

—

= (TrU...UZp) + 1 (Tnt1) — 10 (x,ﬂxlu...Umnﬁmn)

> (T U...UT,) .
Therefore, by induction om,
v (ZTU...UZy) <pp(Z7U...UZ, Ug1 U ... UTm) .
Finally, to show monotonicity of, suppose that
271U UZ, CHU.. UG-

Then
NU...Um=21U...UZ, U1 U...UZm .

By the above observation we have
vo(T1U...UZy) <y (z1U...UZ, UGt U ... UTm)
=vy(T1U...UTm) -
0(C.6)
To prove modularity také; U ... U z,, andy; U. .. U ¥, we want to prove that
vo (T U...UTy) + v (1 U...UZy)

= (@U.. .Uy URU...UZm) + 1 (@U...UT) N (A U...UTn)) .
By distributivity we have that

(Z1U...UZy) N (L U...UTy)

=@ Ny)U@EINGE)U...U(@0NGm) -
Using the definitions, we have to prove that

e (o) o 5 ey

0AICI, i€l 0#£JCI, iel
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is equal to

I = Z (71)|IL+JJ\71” \/:ci\/\/yj

0#£TwJ el jeJ
ICI,,,JCIy,
+ 0> EOER N\ (@ivyy)
OAKCIL, X I, (i,5)eK

We can split the various ¥ J in three classes: whehis empty, wher! is empty, and
when both are not empty. So we can rewfitas

L= Y ()t (\/x)

0AICI, iel

+ > eV

0#JCIm, jedJ

3 e (Va Vo,
O#£ICTy, el JjeJ
0#ICIm

+ ) EOFT ) (@ivyy)
0#KCInX1Im (4,5)eK

The first two summands of this expression are equél,teo we have just to prove that
the last two are equal t@

Forevery) # 1 C I,,,0 # J C I,,, consider allK C I,, x I,, such thatr, (K) =
I,y (K) = J. We argue that for all such,

\/ a:t\/y] \/mt\/\/y].

(1,5)eK i€l JjE€J

In fact using commutativity, associativity and idempotency of the join, we can group all
thex; andy; on the left hand member. So that

\/ (Jﬁi\/yj): \/ x; V \/ Yj -

(i,5)eK icm1(K) jema(K)
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We can rewrite the the last two summands of the above expression as

Z (= 1)1y, \/xz\/\/y]

O#£ICTy, el JjeJ
0#JCIm
K|—1
+ > > (D) [\ (@ vyy)
0AICT, OAKCIyxIm (i,j)eK

0#JClm w1 (K)=1I,73(K)=J

:Z( I1e1-1,, \/xz\/\/y]

0£1C Iy iel jeJd
07IC I
K|-1
+ E g (—1)IKI=1y \/m,-\/\/yj
0AICT,  0£KCInxIn iel jeJ

0#JClm w1 (K)=1I 73 (K)=J

S o[ Vav V| [eorermte S e

OAIC Ty i€l JjEJ 0#KCIn X Im
0#ICIm 7 (K)=I,m3(K)=J

So it is enough to prove that for every finite séts/

(_1)|I&JJ\—1+ Z (_1)\1(\—1 =0.

0AKCInXIm
T (K)=1,m5(K)=J

which is the statement of Lemma D.1, to be proved in Appendix C. O
Now we are ready to defineon all Scott open sets.

Lemma C.7. For every Scott ope@® C L(£), we have thatthe sélV € Bs |U C O}
is directed and
o=JU.

Uco
UEBs

Proof. Directedness is straightforward. Moreover, sifi¢€) is algebraicPn is a basis
for the Scott topology (and so is, a fortioRs). O
Now, for every Scott open s€l, define
v(0) = sup vo(U).

Uco
UEBs

We then have the following, which concludes the proof of Theorem 4.4.

Lemma C.8. The functiorv is a valuation on the Scott-topology 6{£) such that for
every finite configurationr, v(T z) = v(x).

Continuity follows from an exchange of suprema, strictness and monotonicity are ob-
vious. Modularity follows from the modularity af, and continuity of the addition.
Finally, because of the monotonicity af, we have thav (1 z) = (T 2) = v(z). O

It remains to show that is non-leaking. We do this in the next section.
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C.2 Inductive tests

In order to show that' in non-leaking, we will introduce a restricted notion of test.
Before we look at tests in the context on the domain of configuration. These result are
valid in any event structure.

Definition C.9. Let C be a finitary set of configurations of an event structéiréNe
definef (C) asthe set), . Tz.

Clearly 1 (C) is Scott open. All the following properties are straightforward.

Proposition C.10. Let C be a finitary partial test of, then the Scott open subsets of
L(&) of the form? z, for x € C are pairwise disjoint. IfC, C’ are two finitary sets of
configurations of andC < C’ then? (C) 21 (C"). If C be a finitary complete set
of configurations of, then for every maximal configuratiane £(£), we have that

y €1 (0).

Proposition C.11. Let C, C’ be finitary tests. Thef' < C’ if and only if7 (C) 27
(.

Proof. of the non-trivial direction. Suppose(C) 21 (C’). If y € C’ theny €7 (C)
which means that there existse C such thatr < y. Vice versa ifx € C then by
completeness there exigise C’ such thatr,y are compatible. We have just argued
that there exists’ € C such that’ < y, which implies thatr, z’ are compatible. Since
C'is a test, we have that= 2z’ andz < y. O

Corollary C.12. Letwv be a continuous valuation ofi(€). If C'is a finitary partial test,
thenv(1 (C)) = > ,ccv(T ). If C,C" are finitary sets of configurations ardd < C’
thenw (1 (C)) > v(1 (C")).

As a corollary we have

Theorem C.13. Letv be a non-leaking valuation of(€). Definev : Lg,(€) — [0, 1]
byv(z) = v(1 x). Thenv is a test valuation.

Proof. Take a finitary tes€’. By the proposition above we have tHatC) 2 2(L(&)).
Therefore, since is non-leaking.

1> (1 (C)) = #(1 (C)) = H(RAL(E))) = 1

which impliesv (T (C)) = 1. Since the sets of the formz, for z € C are pairwise
disjoint, we have) | . v(1x) = 1, which finally implies thad . v(z) =1. O
We now define a special notion of test, only for confusion-free event structure.

Definition C.14. Let& be a confusion-free event structurezlis a configuration of,
andc is a cell accessible at we definer + ¢ do be the sefz U {e} |e € ¢}. LetY Y’
be two sets of configurations of a confusion-free event structure. We write

X,(cz) /
Y————=Y
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whenX C Y, foreveryr € X, ¢, is a cell accessible at, and

Y =Y\XUJz+c.
zeX

X,(cz)

We writeY — Y ifthere areX, (¢,.) such thaty’ Y’. As usual-* denotes

the reflexive and transitive closure of.

Definition C.15. Aninductive tesbf a confusion-free event structure is a 6edf con-
figurations such that

{0}y = C.

The idea is that we start the computation with the empty configuration, and, at every
step, we choose accessible cells to “activate” and we collect all the resulting configura-
tions. The next proposition is a sanity check for our definitions

Proposition C.16. If C, C’ are inductive tests
C<(C <= C-*C".

The direction<=) is proved by induction on the derivatigrt —* C’. The direction
=) is by induction on the derivatioff}} —* C. See [Var03].
As the choice of the name suggests we have the following result.

Proposition C.17. Every inductive test is a finitary test.

Proof. By induction on the derivations. The singleton of the empty configuration is a
test. Take an inductive te€t, a setX C C and for everyr € X a cell(c,) accessible

X, (ce .
atz. Let C#C’. We want to show thaf” is a test.

First consider two distinct configurations, 3y’ € C’. If 2/,y’ € C then they are
incompatible by induction hypothesis.af € C, andy’ = y U e for somey € C, then
x' # y, so thatr’, y are incompatible. Thusg’, 3’ are incompatible. It/ = z U e,
andy’ = y U e, for 2,y € C there are two possibilities. It # y, then they are
incompatible and so are/,y'. If z = y, thene, # e,, but they both belong to they
same cell, therefore they are in conflict, aridy’ are incompatible.

Now take any configuratiog. By induction hypothesis there exists= C such that
x, z are compatible. It € C’ we are done. I ¢ C’ then there are two possibilities.
Eitherz does not fille,., but then for every € ¢, z, z U e are compatible. Ot fills ¢,
with and eveng which implies that, z U é are compatible. O

As a corollary we have

Proposition 5.9. If £ is a confusion-free event structure and:iis a finite configuration
of £, thenx is honestinl(&).

Proof. Given a finite configuratiom, we obtain an inductive test containimdy firing
all the cells of the events af. d
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Not all test are inductive as the following example shows. Consider the event struc-
ture £ = (E,<,#) whereE = {a1,a2,b1,b2,c1,c2,d}, the order is trivial and
a1 # as, b1 # b, c1 # co. Let's call the three cells, b, c.

A1 ~~~ Q3 by ~~~ by C1 ~~~ C2 d
Consider the following sef’ of configurations

{{a1,b2,d}, {b1, c2,d}, {az, c1,d}, {ar, b1, 1}, {az, b2, c2} } -

The reader can easily verify thétis a test. If it were an inductive test, we should be
able to identify a cell that was chosen at the first step along the derivation. Because
of the symmetry of the situation, we can check whether it.if o were the first cell
chosen, every configuration @ would contain eitheti; or a,. But this is not the case

It is now easy to show the following

Proposition C.18. If v is a configuration valuation, and @ is an inductive test, then,
v[C] = 1.

Proof. By induction on the derivation Suppoééﬂc’ and)__ .- v(z) = 1. Con-
sider)_ . v(z). We can split this in

> v@)+ Y Y v@u{e}).

zeC\X zeX e€cy

Sincew is a configuration valuation, propeity) of definition 4.3 tells us that for every
re€X,> . v(xU{e})=wv(x). Therefore

Z v(x) + Z Z v(z U{e})

eccy

zeC\X z€X e€cy
= 3 v+ Y ) = Y we) =1
zeC\X zeX zeC

O
We can finally prove the following theorem, which concludes the proof of Theorem
4.4

Theorem C.19. Letv be a continuous valuation corresponding to a configuration val-
uationwv. Thenv is non-leaking.

We show that there exists an enumeration of the cell$,cn, such that ife,,, < c¢,,
thenm < n. We build it as follows. Since the cells are countably many, they come
equipped already with some enumeration. We start by picking the first.d8 enu-
merate all the cell§’ < ¢, by layers: first the cells of depth 0, then the cells of depth 1
and so on. There are only finitely many su¢hso we stop at some point. Finally we
enumerate. For all the cells enumerated so faf < ¢,, impliesm < n

2 This example bears a striking familiarity with Berry’s Gustave function

33



At every step, choose the next celin the old enumeration) that has not been
enumerated. Repeat the procedure above, enumerating the eelisthat have not yet
been enumerated. Finally enumerat€he invariant,, < ¢, = m < nis preserved.

With this enumeration at hand, consider the following chain of inductive t€sts:

{0}, Cy Xoen Cn11 , WhereX is the set of configurations € C,, such that, is
accessible at. We have the following properties:

for everyC,,, 2(L(&)) C1 (Cy);

T (Cn) QT (Cn—i-l);

if € C,, andz fills ¢, thenm < n;

if z € C, then every celt,,, with m < n enabled at is filled by x;

for every non maximal configuratiarnthere exists: such that ¢71 (C,,).

arwbdRE

Property (1) comes for the fact thi&, is a test. Property (2) comes from Proposition
C.11. Property (3) is by construction. Property (4) is shown by induction,arsing
the defining property of the enumeration. Take C,,.; and consider a cetl,, with
m < n + 1 enabled ate. If m < n thenc, £ c,, thereforec,, is enabled at’ :=
x \ ¢, € C,. By induction hypothesis,, is filled by 2/, and therefore is filled by
z. If m = n thenx has just been obtained by adding an event,jn(otherwisec,,
would not be enabled). To show (5), take a non maximal configuratidiere exists
a celle which is accessible at Suppose it's:,,. ConsidelC,, 1. Suppose there exists
x € Cpyy1 SUCh thate < z. Thene,, is notfilled byzx. By property (4)¢ is not enabled
atz. Consider a minimal eventin [c) \ z, and sayt;, = cell(e). Sincec, < ¢ = ¢,
thenh < m. By minimality of e, every eventiric;,) is in «. Therefore, is enabled at
x. By property (4)cy, is filled by z. Since[c) C z we have that € z. Thus the only
event in the cell ot that can be in: is e itself. Contradiction.

Therefore, combining (1) and (5)

N 1(Ca) = ALE)).

neN

By Theorem A.2, the valuation can be extended to a Borel measr&Ve have that
p(02(L(€))) = limy—0o 7(T (Cr)). Butzo(1 (Cy)) = v(1 (Cy)) = 1 becaus€, is an
inductive test. By Theorem A.1 we havé2(L£(£))) = 1. This implies that for every
openseD D (L(E)) we have

1> 0(0) = 5(0) > #(R(L(E))) =1.

As a corollary, using Theorem C.13 we get
Theorem C.20. If v is a configuration valuation, thenis a test valuation.
The other direction is also true

Theorem C.21. If v is a test valuation, then is a configuration valuation.
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Proof. First of allv(@) = 1, becausg} is a finitary test. Next we want to show that
for every finite configuration: and every coverin®, atx, v[D.] = v(z). Take a test
C containingz, which exists becauseis honest. Consider the test = C'\ {z} U D..

Notice thatC{L}’iC’. ThereforeC” is a test. So that[C'] = 1. Butv[C'] = v[C] —
v(x) + v[D,]. O
We have thus proved

Theorem 5.7. Let& be a confusion-free event structure. kdie a functionCa, (£) —
[0, 1]. Thenw is a configuration valuation if and only if it is a test valuation.

Note also that combining Theorems C.13 and C.21 we obtain

Theorem 4.5. Let v be a non-leaking continuous valuation @{&). The function
v: Lan(E) — [0,1] defined byw(z) = v(7 x) is a configuration valuation.

C.3 Continuous Valuation and Runs

Theorem 5.2. Letrv be a non-leaking normalised continuous valuation on a coherent
w-algebraic domainD. Then there is a unique probability measuren S such that for
every compact element u(K (z)) = v(T z).

Let © be a probability measure o§. Then the functions defined on open sets by
v(0) = u(O N (D)) is a non-leaking normalised continuous valuation.

Proof. Let i be a probability measure off2(D),S). The sets of the form z for =
compact are a basis of the Scott topology. Since the set of compact elements is count-
able, every open sé? is the countable union of basic open sets. Therefore every set
of the formO N £2(D) is the countable union of shadows of compact elements, and
it belongs toS. Thusv is well defined. It is obviously strict, monotone and modular.
By w-algebraicity, to prove continuity it is enough to prove continuity éechains
([AMOQ], Lemma 2.10). Take a countable increasing ch@jnwith limit O. Sincey is
a measure
w(O N 2(D)) = sup u(Or N 2(D)) .
keN
Thus
v(0) = (O N (D)) = sup u(Oy, N (D)) = supv(Ox)
keN keN
and we are done. The fact thats non-leaking follows from the definition.

Conversely, take a non-leaking valuatierBy the extension theorem for continuous
valuations of [AESO00], there is a unique measu@n the Scott-Borel sets dd which
extendsv. By Corollary 3.4 and 3.5 of [Law97], recalling that a coherent domain is
Lawson compact, there exists a decreasing countable chain of open sets converging
to 2(D), which is thus &G set and therefore is measurable. Sieds non-leaking,
v(£2(D)) = 1. Definey to be the restriction of to £2(D). It is indeed a probability
measure. Every set of the forthn (2(D) is measurable, and

pONRAD)) =0(0N2(D))
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= 9(0) + H(2(D)) — (O U (D)) .

Since2(D) COU (D) C D andi(D) = v(2(D)) = 1, thenalsa>(O U 2(D)) =
1, so that
MO NR(D)) =v(0) =v(0)

and we are done. |
As an easy corollary of this Theorem5.2 and of Theorem C.13 we have

Theorem 5.6. Let 1. be a probabilistic run of. Definev : La,(€) — [0,1] byv(z) =
w(K(x)). Thenv is a test valuation.

The following results applies to confusion free event structures only.

Proposition 5.3. Letv be a configuration valuation on a confusion-free event structure
E. Letyu, be the corresponding measure as of Propositions 4.1 and Theorem 5.2. Then,
v is a configuration valuatiorwith independencdf for every two finite compatible
configurationse, y

(K@) N K(y) | K@) = o (K@) | K@ny) (K@) | K@ny)) .

Proof. Suppose satisfies conditioffc) of proposition 2.8.
Take i, (K(:c) NK(y)| K(zN y)) . By definition (and assuming, (K(a: N y)) # 0)
we have

(K ()N |Kxﬁy))
uv(K y) N K( xﬂy)/uv( )
uv(K )/ﬂv( (:vﬁy))
uU(KmUy)/uu( wﬂy)

Uy)/v(zNy) =v(z) - v(y)/v(eny)?

v(x
= (v(x)/v(z Ny)) - (v(y)/v(z Ny))

= (o (K(2))/ o (K (z Ny)))

(o (K (y))/ 110 (K (z N y)))

= (o (K(z) N K(zNy))/pe(K(zNy)))
(o (K (y) N K (z Ny)) /1o (K (2 Ny)))

— (K@) | K@ny)) - (K@) | K@ny).

The converse is similar. d

In the following we prove a generalisation of Theorem 5.10. We generalise the
notions oftestandfinitary testto any coherent-algebraic domain. Aartial testof a
domainD is a setC of pairwise incompatible elements bX. A testis a maximal partial
test. Atestidinitaryif all its elements are compact. Lebe a functiorCp(D) — [0, 1].
Thenv is called atest valuatiorif for all finitary testC' we havev[C] = 1. A finitary
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partial test ishonestif it is part of a finitary test. A compact element is honest if it is
honest as partial test.

Theorem 5.10. Let D be a coherent-algebraic domain. Leb be a test valuation
on D. Let’H be theo-algebra onf2(D) generated by the shadows of honest compact
elements. Then there exists a uniqgue meaguwe H such thatu(K (z)) = v(z) for
every honest compact element

Proof. Consider the following sef” of subsets of2(D):
7 :={K(C) | Cis a honest finitary partial test

We claim that7 is a field of sets, i.e., that it is closed under binary union and com-
plementation. Sinc& is honest, it can be extended to a finitary testLet's call

C' := A\ C. Clearly C' is a honest finitary partial test. A (C") = K(C). On

the one hand{(C’) U K(C) = §2(D), because of completeness 4f On the other
hand K (C’) N K(C) = () as otherwise some element @fwill be compatible with
some elements af’. For the closure under union, consider two honest finitary partial
testsCy, Cy. Consider their completions, , A; and putC] := A1\ Cy, C) := Az\ Ch.
Let A be an common upper bounddf, A, which exists as finitary tests form a lattice.
Consider the subse(s of A defined as

C:={zeA|3a €Cra <zorim € Cozy < a}.

ClearlyC'is a honest finitary partial test. We claim tHé{C) = K (Cy) UK (Cs). Take

z € K(C). This means that there exists= C such thatr < z. Then either there exists
x1 € C1, with 1 < z < z, or there exista, € O, with zo < x < z. Either case
z € K(C1) UK(Cy).

Conversely assume € K (Cy) U K(Cy), sayz € K(Cy). Thereisz; € Cy such
thatz; < z. SinceA is complete there must existe A such that: < z. Sinced; < A
there existsr] € A; such thatr] < x < z. This implies that}, z; are compatible.
SinceA; is atesty] = x;. Thereforexr € C, andz € K(C).

We define a functiomn : 7 — [0, 1] by m(K(C)) = v[C]. We have to argue that
m is well defined, i.e. ifC;, Cs are such thak((C;) = K(Cs), thenv[C1] = v[C4].
Supposed; is a test completing’; and putC; = A; \ Cy. ThenCs U C1 is a finitary
testtoo. Itis clearly complete, and if an elemen€fwere compatible with an element
of C then it would also be compatible with some element’gfcontradicting thatd,
is atest. Thus[Cy] = 1 — v[C]] = v][Cy).

Now we argue thatn is o-additive on7 . Take a sequencg, of honest partial tests
such thatk’ (C,,) N K(C,,) = 0 and such that),, K(C,,) = K(C) for someC'. Then
we have to prove that

Y m(K(Cn)) = m(K(C)).

ConsiderC”’ such thatC U ¢! = § andC U C’ is a finitary test. Then, by the same
argument used abovig),, C,, U C" is a finitary test. Note the condition on disjointness
of the K(C,,). Therefore

Ucn

v =1-—v[C'] =v[C] = m(K(C)).
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On the other hand, rearranging the terms (and recalling the disjointness again) we get

Ucn

Thusm is ac-additive function defined on the field of sefs By Caratheodory
extension theorem we can extendto a measurg: on thec-algebra generated by
7, which containsH. Thus for all honest finite element&; (z) is measurable and
u(K(z)) = m(K(z)) = v(z). 0

v

= ZU[Cn] = Zm(K(Cn)) .

n

Theorem 5.11. If all compact elements are honest, then for every test valuatibare
exists a unique continuous valuationsuch thav (T z) = v(x).

Proof. Once we have the measyieof Theorem 5.10, we defing(1 ) := p(K(x)).
Itis well defined as: is honest and therefoi& (z) is measurable. Then-algebraicity
of D ensures that is a continuous valuation. O

C.4 An Alternative Way for the Proofs

An alternative way for proving all the results consists in starting from a result in the
extended version of [Voe01]. Adapting Lemma A.2 there, we obtain a direct proof of
Theorem C.20, and thus we get Theorem 5.7. Then via Theorems 5.10 and 5.2 we prove
Theorem 4.4, avoiding the combinatorial technicalities of its direct proof.

D Combinatorial Lemmas

We prove here two lemmas used during the proof of Theorem 4.4.

Lemma D.1. For every finite setg, J with |I| = n, |J| =m

> R =y

PAKCIXJ
m(K)=1I,m2(K)=J

Proof. Without loss of generality we can think 6f= {1,...,n}andJ = {1,...,m}.
Also we observe that a subg€tC I x J such thatr; (K) = I, m2(K) = Jisinfacta
surjective and total relation between the two sets.

Let

tn,m 1= > (1)l

DAKCIXJ
m (K)=1,ms(K)=J
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£, = {0 # K C 1 x J| K| odd mi(K) = I,ma(K) = J};

t6 = {0 # K C 1 x J||K|even m(K) =I,m(K) = J}.
Clearlyt,, ,,, =t ,,, —t3 .- We want to prove that, ,, = (—1)""™*!. We do this by
induction onn. It is easy to check that this is true far= 1. In this case, ifn is even
thent§ . =1 andt{,, =0, sothatt§, — 9, = (—1)"*""". Similarly if m is odd.

Now let's assume that for eveny, ¢, , = (—1)""P*! and let's try to compute
tnt1,m. 10 evaluate,; , we count all surjective and total relatios between/
and J together with their“sign”. Consider the pairs i of the form (n + 1, k) for
h € J. What do you get if you remove them? You get a total surjective relation between
{1,...,n}and a subselx of {1,...,m}.

Consider first the case whedgr = {1,...,m}. What is the contribution of suck’s
to t,+1,m? There arg”") ways of choosing pairs of the form(n + 1, ). And for
every such choice there afrg,,, (signed) relations. Adding the paifs+ 1, 2) possibly
modifies the sign of such relations. All in all the contribution amounts to

3 (”;) (—=1)*tnm -

1<s<m
Suppose now thalk is a proper subset dfl, . .., m} leaving outr elements.
n
...................... i

Since K is surjective, all such elemenismust be in a pair of the fornin + 1, k).
Moreover there can be pairs of the form(n + 1,4’) with b’ € Jx. What is the
contribution of suchK's to ¢,, ,,,? There are(’;?) ways of choosing the elements that are
left out. For every such choice and for everguch thad < s < m —r there arg(™, ")
ways of choosing thé’ € Jx. And for every such choice there atg,,—, (Signed)
relations. Adding the pairg: + 1, h) and(n + 1, i) possibly modifies the sign of such
relations. All in all, for every such thatl < r < m — 1, the contribution amounts to

<T) 1§§n,r <7:) (=1 -
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The (signed) sum of all these contribution will givets. 1 . Now we use the induc-
tion hypothesis and we write-1)"+7*! for ¢,, ,,. Thus:

m .
tn—i—l,m: Z (S)(_l)étn,m

1<s<m

D> (T) > (mgr)@l)“’*’“tn,m_r

1<r<m-—1 0<s<m-—r

- 5 (M)

1<s<m

+ Z (T) Z (ms_r)(_l)s-i-’n-ﬁ-'rn-f—l

1<r<m-—1 0<s<m-—r

Ny <T) oy (ms 7’) (1)5) |

By the binomial formula, fod < r < m — 1 we have

o=(1-nm =Y <msr>(1)5.

0<s<m-—r

So we are left with

byt = (1) (1<s<m (T) <_1)s)
= (-1t (Z (=) (_1)0)

— (_1)n+m+1 (0 _ 1)
_ (71)n+1+m+1 _ (71)(n+1)+m71' 0

LemmaD.2 (BSV lemma).Let X be a finite set and let : P(X) — R. Then

Yo Yy = Y Y (YR,

0£JCX PAKCX KCJCX

Proof. By induction on|X|. The base is obvious. Letf’ = X U {x}, with x ¢ X.

Consider
S ()EIEIE

0AKCX' KCJCX'
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We can split the sum in two, according to whetlécontains or does not contain

Z Z \7\+|K|f Z Z |]|+\K\f( )

PAKCX KCJCX' +€EKCX' KCJCX'

We now rewrite the second part of the expression, singling out the case iwheréx}.
In all the other cases we can wrileas H U {«} for some nonempty/ C X.

Z Z |J|+\K\f( )

PAKCX KCJCX'
+ > S (=pPHER ) 4 Y (=)
PAHCX HU{*}CJCX' *€JC X'

We now split each of the inner sums in the first line according to whettoemtains or
does not contain. Also note that —1)/1+1 = (—1)|7I=1, We have then

= Z ( Z (=D)IHIEF(g) + Z (_1)|J|+Kf(J))

PAKCX \KCJCX KU{+}CJCX"’

D DD DR LS (GRS DI C VS (€)
0AHCX HU{x}CJCX"’ *x€JC X'

Z Z — )KL ) Z Z (=) HIEL ()

0£KCX KCJCX PAKCX KU{x}CJCX'

+ Yo pPEEE ) 4 YT (D)
0AHCX HU{x}CJCX"’ *€JCX'

Now the second and the third member of the expression above cancel out.

Z Z DITHIE £y 4+ Z ESYELSTE)

PAKCX KCJCX *€JCX'

We now use the induction hypothesis on the first member

= > O+ YD oy = YD (oI ). O

0AICX *€JCX' 0#£ICX'
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