
BRICS
Basic Research in Computer Science

Probabilistic Event Structures and
Domains

Daniele Varacca
Hagen Völzer
Glynn Winskel

BRICS Report Series RS-04-10

ISSN 0909-0878 June 2004

B
R

IC
S

R
S

-04-10
V

aracca
etal.:

P
robabilistic

E
ventS

tructures
and

D
om

ains



Copyright c© 2004, Daniele Varacca & Hagen V̈olzer & Glynn
Winskel.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/10/



Probabilistic Event Structures and Domains

Daniele Varacca1?, Hagen Völzer2, and Glynn Winskel3

1 LIENS -École Normale Sup´erieure, France
2 Institut für Theoretische Informatik - Universit¨at zu Lübeck, Germany

3 Computer Laboratory - University of Cambridge, UK

Abstract. This paper studies how to adjoin probability to event structures, lead-
ing to the model of probabilistic event structures. In their simplest form prob-
abilistic choice is localised to cells, where conflict arises; in which case proba-
bilistic independence coincides with causal independence. An application to the
semantics of a probabilistic CCS is sketched. An event structure is associated
with a domain—that of its configurations ordered by inclusion. In domain theory
probabilistic processes are denoted by continuous valuations on a domain. A key
result of this paper is a representation theorem showing how continuous valua-
tions on the domain of a confusion-free event structure correspond to the proba-
bilistic event structures it supports. We explore how to extend probability to event
structures which are not confusion-free via two notions of probabilistic runs of a
general event structure. Finally, we show how probabilistic correlation and prob-
abilistic event structures with confusion can arise from event structures which are
originally confusion-free by using morphisms to rename and hide events.

1 Introduction

There is a central divide in models for concurrent processes according to whether they
represent parallelism by nondeterministic interleaving of actions or directly as causal
independence. Where a model stands with respect to this divide affects how proba-
bility is adjoined. Most work has been concerned with probabilistic interleaving mod-
els [LS91,Seg95,DEP02]. In contrast, we propose a probabilistic causal model, a form
of probabilistic event structure.

An event structure consists of a set of events with relations of causal dependency
and conflict. A configuration (a state, or partial run of the event structure) consists of
a subset of events which respects causal dependency and is conflict free. Ordered by
inclusion, configurations form a special kind of Scott domain [NPW81].

The first model we investigate is based on the idea that all conflict is resolved prob-
abilistically and locally. This intuition leads us to a simple model based onconfusion-
freeevent structures, a form of concrete data structures [KP93], but where computation
proceeds by making a probabilistic choice as to which event occurs at each currently
accessible cell. (The probabilistic event structures which arise are a special case of those
studied by Katoen [Kat96]—though our concentration on the purely probabilistic case
and the use of cells makes the definition simpler.) Such a probabilistic event structure
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immediately gives a “probability” weighting to each configuration got as the product
of the probabilities of its constituent events. We characterise those weightings (called
configuration valuations) which result in this way. Understanding the weighting as a
true probability will lead us later to the important notion of probabilistic test.

Traditionally, in domain theory a probabilistic process is represented as a contin-
uous valuation on the open sets of a domain, i.e., as an element of the probabilistic
powerdomain of Jones and Plotkin [JP89]. We reconcile probabilistic event structures
with domain theory, lifting the work of [NPW81] to the probabilistic case, by showing
how they determine continuous valuations on the domain of configurations. In doing so
however we do not obtain all continuous valuations. We show that this is essentially for
two reasons: in valuations probability can “leak” in the sense that the total probability
can be strictly less than1; more significantly, in a valuation the probabilistic choices at
different cells need not be probabilistically independent. In the process we are led to a
more general definition of probabilistic event structure from which we obtain a key rep-
resentation theorem: continuous valuations on the domain of configurations correspond
to the more general probabilistic event structures.

How do we adjoin probabilities to event structures which are not necessarily confu-
sion-free? We argue that in general a probabilistic event structure can be identified with
a probabilistic run of the underlying event structure and that this corresponds to a prob-
ability measure over the maximal configurations. This sweeping definition is backed up
by a precise correspondence in the case of confusion-free event structures. Exploring
the operational content of this general definition leads us to consider probabilistic tests
comprising a set of finite configurations which are both mutually exclusive and exhaus-
tive. Tests do indeed carry a probability distribution, and as such can be regarded as
finite probabilistic partial runs of the event structure.

Finally we explore how phenomena such as probabilistic correlation between choi-
ces and confusion can arise through the hiding and relabeling of events. To this end
we present some preliminary results on “tight” morphisms of event structures, showing
how, while preserving continuous valuations, they can produce such phenomena.

2 Probabilistic Event Structures

2.1 Event Structures

An event structureis a tripleE = 〈E,≤, #〉 such that

• E is a countable set ofevents;
• 〈E,≤〉 is a partial order, called thecausal order, such that for everye ∈ E, the set

of events↓ e is finite;
• # is an irreflexive and symmetric relation, called theconflict relation, satisfying

the following: for everye1, e2, e3 ∈ E if e1 ≤ e2 ande1 # e3 thene2 # e3.

We say that the conflicte2 # e3 is inherited from the conflicte1 # e3, whene1 < e2.
Causal dependence and conflict are mutually exclusive. If two events are not causally
dependent nor in conflict they are said to beconcurrent.
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A configurationx of an event structureE is a conflict-free downward closed subset
of E, i.e., a subsetx of E satisfying: (1) whenevere ∈ x ande′ ≤ e thene′ ∈ x and (2)
for everye, e′ ∈ x, it is not the case thate # e′. Therefore, two events of a configuration
are either causally dependent or concurrent, i.e., a configuration represents a run of
an event structure where events are partially ordered. The set of configurations ofE ,
partially ordered by inclusion, is denoted asL(E). The set of finite configurations is
written byLfin(E). We denote the empty configuration by⊥.

If x is a configuration ande is an event such thate 6∈ x andx∪{e} is a configuration,
then we say thate is enabledatx. Two configurationsx, x′ are said to becompatibleif
x∪x′ is a configuration. For every evente of an event structureE , we define[e] := ↓ e,
and[e) := [e] \ {e}. It is easy to see that both[e] and[e) are configurations for every
evente and that therefore any evente is enabled at[e).

We say that eventse1 ande2 are in immediateconflict, and writee1 #µ e2 when
e1 # e2 and both[e1) ∪ [e2] and[e1] ∪ [e2) are configurations. Note that the immediate
conflict relation is symmetric. It is also easy to see that a conflicte1 # e2 is immediate
if and only if there is a configuration where bothe1 ande2 are enabled. Every conflict
is either immediate or inherited from an immediate conflict.

Lemma 2.1. In an event structure,e # e′ if and only if there existe0, e
′
0 such thate0 ≤

e, e′0 ≤ e′, e0 #µ e′0.

Proof. Consider the set([e] × [e′]) ∩ # consisting of the pairs of conflicting events,
and order it componentwise. Consider a minimal such pair(e0, e

′
0). By minimality, any

event in[e0) is not in conflict with any event in[e′0]. Since they are both lower sets
we have that[e0) ∪ [e′0] is a configuration. Analogously for[e0] ∪ [e′0). By definition
e0 #µ e′0. The other direction follows from the definition of#. �

2.2 Confusion-free Event Structures

The most intuitive way to add probability to an event structure is to identify “probabilis-
tic events”, such as coin flips, where probability is associated locally. A probabilistic
event can be thought of as probability distribution over acell, that is, a set of events (the
outcomes) that are pairwise in immediate conflict and that have the same set of causal
predecessors. The latter implies that all outcomes are enabled at the same configura-
tions, which allows us to say that the probabilistic event is either enabled or not enabled
at a configuration.

Definition 2.2. A partial cellis a setc of events such thate, e′ ∈ c impliese #µ e′ and
[e) = [e′). A maximal partial cell is called acell.

We will now restrict our attention to event structures where each immediate conflict
is resolved through some probabilistic event. That is, we assume that cells are closed
under immediate conflict. This implies that cells are pairwise disjoint.

Definition 2.3. An event structure isconfusion-freeif its cells are closed under imme-
diate conflict.
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Proposition 2.4. An event structure is confusion-free if and only if the reflexive closure
of immediate conflict is transitive and inside cells, the latter meaning thate #µ e′ =⇒
[e) = [e′).

Proof. Take an event structureE . Suppose it is confusion-free. Consider three events
e, e′, e′′ such thate #µ e′ and e′#µ e′′. Consider a cellc containinge (there exists
one by Zorn’s lemma). Sincec is closed under immediate conflict, it containse′. By
definition of cell[e) = [e′). Also, sincec containse′, it must containe′′. By definition
of cell, e #µ e′′.

For the other direction we observe that if the immediate conflict is transitive, the
reflexive closure of immediate conflict is an equivalence. If immediate conflict is inside
cells, the cells coincide with the equivalence classes. In particular they are closed under
immediate conflict. �

In a confusion-free event structure, if an evente ∈ c is enabled at a configurationx,
all the events ofc are enabled as well. In such a case we say that the cellc isaccessibleat
x. The set of accessible cells atx is denoted byAcc(x). Confusion-free event structures
correspond to deterministic concrete data structures [NPW81,KP93] and to confusion-
free occurrence nets [NPW81].

We find it useful to define cells without directly referring to events. To this end we
introduce the notion ofcovering.

Definition 2.5. Given two configurationsx, x′ ∈ L(E) we say thatx′ coversx (written
xCx′) if there existse 6∈ x such thatx′ = x∪{e}. For every finite configurationx of a
confusion-free event structure, apartial coveringat x is a set of pairwise incompatible
configurations that coverx. A coveringat x is a maximal partial covering atx.

Proposition 2.6. In a confusion-free event structure ifC is a covering atx, thenc =
{e |x ∪ {e} ∈ C} is a cell accessible atx. Conversely, ifc is accessible atx, then
C := {x ∪ {e} | e ∈ c} is a covering atx.

Proof. See Appendix B. �
In confusion-free event structures, we extend the partial order notation to cells by

writing e < c′ if for some evente′ ∈ c′ (and therefore for all such)e < e′. We write
c < c′ if for some (unique) evente ∈ c, e < c′. By [c) we denote the set of eventse
such thate < c.

2.3 Probabilistic Event Structures with Independence

Once an event structure is confusion-free, we can associate a probability distribution
with each cell. Intuitively it is as if we have a die local to each cell, determining the
probability with which the events at that cell occur. In this way we obtain our first
definition of a probabilistic event structure, a definition in which dice at different cells
are assumed probabilistically independent.

Definition 2.7. Whenf : X → [0, +∞] is a function, for everyY ⊆ X , we define
f [Y ] :=

∑
x∈Y f(x). A cell valuationon a confusion-free event structure〈E,≤, #〉 is

a functionp : E → [0, 1] such that for every cellc, we havep[c] = 1.
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Assuming probabilistic independence of all probabilistic events, every finite configura-
tion can be given a “probability” which is obtained as the product of probabilities of its
constituent events. This gives us a functionLfin(E) → [0, 1] which we can characterise
in terms of the order-theoretic structure ofLfin(E) by using coverings.

Proposition 2.8. Let p be a cell valuation and letv : Lfin(E) → [0, 1] be defined by
v(x) = Πe∈xp(e). Then we have

(a) (Normality)v(⊥) = 1;
(b) (Conservation) ifC is a covering atx, thenv[C] = v(x);
(c) (Independence) ifx, y are compatible, thenv(x) · v(y) = v(x ∪ y) · v(x ∩ y).

Proof. Straightforward. �

Definition 2.9. A configuration valuation with independenceon a confusion-free event
structureE is a functionv : Lfin(E) → [0, 1] that satisfies normality, conservation
and independence. The configuration valuation associated with a cell valuationp as in
Prop. 2.8 is denoted byvp.

Lemma 2.10. If v : Lfin(E) → [0, 1] satisfies conservation, then it is contravariant,
i.e.:

x ⊆ x′ =⇒ v(x) ≥ v(x′) .

Proof. By induction on the cardinality ofx′ \ x. If x = x′ thenv(x) = v(x′). Take
x ⊆ x′ and consider a maximal evente in x′ \ x. Let x′′ := x′ \ {e}. By induction
hypothesisv(x) ≥ v(x′′). Let c be the cell ofe andC be thec-covering ofx′′. By
conservation,

∑
y∈C v(y) = v(x′′). Since for everyy ∈ C we have thatv(y) ≥ 0, then

it must also be thatv(y) ≤ v(x′′). But x′ ∈ C so thatv(x′) ≤ v(x′′) ≤ v(x). �

Proposition 2.11. If v is a configuration valuation with independence andp : E →
[0, 1] is a mapping such thatv([e]) = p(e) · v([e)) for all e ∈ E, thenp is a cell
valuation such thatvp = v.

Proof. See Appendix B. �
Independence is essential to prove Proposition 2.11. We will show later (Theorem

5.3) the sense in which this condition amounts to probabilistic independence.
We give an example. Take the following confusion-free event structureE1: E1 =

{a, b, c, d} with the discrete causal ordering and witha #µ b andc #µ d. We represent
immediate conflict by a curly line.

a /o/o/o b c /o/o/o d

We define a cell valuation onE1 by p(a) = 1/3, p(b) = 2/3, p(c) = 1/4, p(d) =
3/4. The corresponding configuration valuation is defined as

• vp(⊥) = 1;
• vp({a}) = 1/3, vp({b}) = 2/3, vp({c}) = 1/4, vp({d}) = 3/4;
• vp({a, c}) = 1/12, vp({b, c}) = 1/6, vp({a, d}) = 1/4, vp({b, d}) = 1/2.
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In the event structure above, a covering at⊥ consists of{a}, {b}, while a covering at
{a} consists of{a, c}, {a, d}.

We conclude this section with a definition of a probabilistic event structure. Though,
as the definition indicates, we will consider a more general definition later, one in which
there can be probabilistic correlations between the choices at different cells.

Definition 2.12. A probabilistic event structure with independenceconsists of a confu-
sion-free event structure together with a configuration valuation with independence.

3 A Process Language

Confusion-freeness is a strong requirement. But it is still possible to give a seman-
tics to a fairly rich language for probabilistic processes in terms of probabilistic event
structures with independence. The language we sketch is a probabilistic version of
value passing CCS. Following an idea of Milner, used in the context of confluent pro-
cesses [Mil89], we restrict parallel composition so that there is no ambiguity as to which
two processes can communicate at a channel; parallel composition will then preserve
confusion-freeness.

Assume a set of channelsL. For simplicity we assume that a common set of values
V may be communicated over any channela ∈ L. The syntax of processes is given by:

P ::= 0 |
∑
v∈V

a!(pv, v).Pv | a?(x).P | P1‖P2 | P \A |

P [f ] | if b then P1 elseP2 | X | recX.P

Herex ranges over value variables,X over process variables,A over subsets of chan-
nels andf over injective renaming functions on channels,b over boolean expressions
(which make use of values and value variables). The coefficientspv are real numbers
such that

∑
v∈V pv = 1.

A closed process will denote a probabilistic event structure with independence, but
with an additional labelling function from events to output labelsa!v, input labelsa?v
wherea is a channel andv a value, orτ . At the cost of some informality we explain the
probabilistic semantics in terms of CCS constructions on the underlying labelled event
structures, in which we treat pairs of labels consisting of an output labela!v and input
labela?v as complementary. (See e.g. the handbook chapter [WN95] or [Win82,Win87]
for an explanation of the event structure semantics of CCS.) For simplicity we restrict
attention to the semantics of closed process terms.

The nil process0 denotes the empty probabilistic event structure. A closed output
process

∑
v∈V a!(pv, v).Pv can perform a synchronisation at channela, outputting a

value v with probability pv, whereupon it resumes as the processPv. EachPv, for
v ∈ V , will denote a labelled probabilistic event structure with underlying labelled
event structureE [[Pv]]. The underlying event structure of such a closed output process
is got by the juxtaposition of the family of prefixed event structures

a!v.E [[Pv ]] ,
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with v ∈ V , in which the additional prefixing events labelleda!v are put in (immedi-
ate) conflict; the new prefixing events labelleda!v are then assigned probabilitiespv to
obtain the labelled probabilistic event structure.

A closed input processa?(x).P synchronises at channela, inputting a valuev and
resuming as the closed processP [v/x]. Such a processP [v/x] denotes a labelled prob-
abilistic event structure with underlying labelled event structureE [[P [v/x]]]. The under-
lying labelled event structure of the input process is got as the parallel juxtaposition of
the family of prefixed event structures

a?v.E [[P [v/x]]] ,

with v ∈ V ; the new prefixing events labelleda?v are then assigned probabilities1.
The probabilistic parallel composition corresponds to the usual CCS parallel com-

position followed by restricting away on all channels used for communication. In order
for the parallel compositionP1‖P2 to be well formed the set of input channels ofP1

andP2 must be disjoint, as must be their output channels. So, for instance, it is not
possible to form the parallel composition∑

v∈V

a!(pv, v).0‖a?(x).P1‖a?(x).P2 .

In this way we ensure that no confusion is introduced through synchronisation.
We first describe the effect of the parallel composition on the underlying event struc-

tures of the two components, assumed to beE1 andE2. This is got by CCS parallel
composition followed by restricting away events in a setS:

(E1 |E2) \ S

whereS consists of all labelsa!v, a?v for which a!v appears inE1 anda?v in E2, or
vice versa. In this way any communication betweenE1 andE2 is forced when possible.
The newly introducedτ -events, corresponding to a synchronisation between ana!v-
event with probabilitypv and ana?v-event with probability1, are assigned probability
pv.

A restrictionP \A has the effect of the CCS restriction

E [[P ]] \ {a!v, a?v | v ∈ V & a ∈ A}

on the underlying event structure; the probabilities of the events which remain stay the
same. A renamingP [f ] has the usual effect on the underlying event structure, proba-
bilities of events being maintained. A closed conditional(if b then P1 elseP2) has the
denotation ofP1 whenb is true and ofP2 whenb is false.

The recursive definition of probabilistic event structures follows that of event struc-
tures [Win87] carrying the extra probabilities along. Though care must be taken to en-
sure that a confusion-free event structure results: one way to ensure this is to insist that
for recX.P to be well-formed the process variableX may not occur under a parallel
composition.
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4 Probabilistic Event Structures and Domains

The configurations〈L(E),⊆〉 of a confusion-free event structureE , ordered by inclu-
sion, form a domain, specifically adistributive concrete domain(cf. [NPW81,KP93]).
In traditional domain theory, a probabilistic process is denoted by acontinuous valu-
ation. Here we show that, as one would hope, every probabilistic event structure with
independence corresponds to a unique continuous valuation. However not all continu-
ous valuations arise in this way. Exploring why leads us to a more liberal notion of a
configuration valuation, in which there may be probabilistic correlation between cells.
This provides a representation of the normalised continuous valuations on distributive
concrete domains in terms of probabilistic event structures. (Appendix A includes a
brief survey of the domain theory we require and some of the rather involved proofs of
this section. All proofs of this section can be found in [Var03].)

4.1 Domains

The configurations of an event structure form a coherentω-algebraic domain, whose
compact elements are the finite configurations [NPW81]. The domain of configurations
of a confusion free has an independent equivalent characterisation as distributive con-
crete domain (for a formal definition of what this means, see [KP93]).

The probabilistic powerdomain of Jones and Plotkin [JP89] consists of continuous
valuations, to be thought of as denotations of probabilistic processes. Acontinuous
valuationon a DCPOD is a functionν defined on the Scott open subsets ofD, taking
values on[0, +∞], and satisfying:

• (Strictness)ν(∅) = 0;
• (Monotonicity)U ⊆ V =⇒ ν(U) ≤ ν(V );
• (Modularity)ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V );
• (Continuity) ifJ is a directed family of open sets,ν

(⋃
J
)

= supU∈J ν(U).

A continuous valuationν is normalisedif ν(D) = 1. Let V1(D) denote the set of
normalised continuous valuations onD equipped with the pointwise order:ν ≤ ξ if for
all open setsU , ν(U) ≤ ξ(U). V1(D) is a DCPO [JP89,Eda95].

The open sets in the Scott topology represent observations. IfD is an algebraic
domain andx ∈ D is compact, theprincipal set↑x is open. Principal open sets can be
thought of as basic observations. Indeed they form a basis of the Scott topology.

Intuitively a normalised continuous valuationν assigns probabilities to observa-
tions. In particular we could think of the probability of a principal open set↑x as rep-
resenting the probability ofx.

4.2 Continuous and Configuration Valuations

As can be hoped, a configuration valuation with independence on a confusion-free event
structureE corresponds to a normalised continuous valuation on the domain〈L(E),⊆〉,
in the following sense.
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Proposition 4.1. For every configuration valuation with independencev on E there is
a unique normalised continuous valuationν onL(E) such that for every finite configu-
ration x, ν(↑ x) = v(x).

Proof. The claim is a special case of the subsequent Theorem 4.4. �
While a configuration valuation with independence gives rise to a continuous val-

uation, not every continuous valuation arises in this way. As an example, consider the
event structureE1 as defined in Section 2.3. Define

• ν(↑{a}) = ν(↑{b}) = ν(↑{c}) = ν(↑{d}) = 1/2;
• ν(↑{a, d}) = ν(↑{b, c}) = 1/2;
• ν(↑{a, c}) = ν(↑{b, d}) = 0;

and extend it to all open sets by modularity. It is easy to verify that it is indeed a con-
tinuous valuation onL(E1). Define a functionv : Lfin(E1) → [0, 1] by v(x) := ν(↑x).
This is not a configuration valuation with independence; it does not satisfy condition
(c) of Proposition 2.8. If we consider the compatible configurationsx := {a}, y := {c}
thenv(x ∪ y) · v(x ∩ y) = 0 < 1/4 = v(x) · v(y).

Also continuous valuations “leaking” probability do not arise from probabilistic
event structures with independence.

Definition 4.2. Denote the set of maximal elements of a DCPOD by Ω(D). A nor-
malised continuous valuationν on D is non-leakingif for every open setO ⊇ Ω(D),
we haveν(O) = 1.

This definition is new, although inspired by a similar concept in [Eda95]. For the sim-
plest example of a leaking continuous valuation, consider the event structureE2 con-
sisting of one evente only, and the valuation defined asν(∅) = 0, ν(↑⊥) = 1,
ν(↑{e}) = 1/2. The corresponding functionv : Lfin(E2) → [0, 1] violates condition
(b) of Proposition 2.8. The probabilities in the cell ofe do not sum up to 1.

We analyse how valuations without independence and leaking valuations can arise
in the next two sections.

4.3 Valuations Without Independence

Definition 2.12 of probabilistic event structures assumes the probabilistic independence
of choice at different cells. This is reflected by condition(c) in Proposition 2.8 on which
it depends. In the first example above, the probabilistic choices in the two cells are not
independent: once we know the outcome of one of them, we also know the outcome
of the other. This observation leads us to a more general definition of a configuration
valuation and probabilistic event structure.

Definition 4.3. A configuration valuationon a confusion-free event structureE is a
functionv : Lfin(E) → [0, 1] such that:

(a) v(⊥) = 1;
(b) if C is a covering atx, thenv[C] = v(x).

9



A probabilistic event structureconsists of a confusion-free event structure together with
a configuration valuation.

Now we can generalise Proposition 4.1, and provide a converse:

Theorem 4.4. For every configuration valuationv on E there is a unique normalised
continuous valuationν on L(E) such that for every finite configurationx, ν(↑ x) =
v(x). Moreoverν is non-leaking.

Proof. See Appendix C. �

Theorem 4.5. Let ν be a non-leaking continuous valuation onL(E). The functionv :
Lfin(E) → [0, 1] defined byv(x) = ν(↑ x) is a configuration valuation.

Proof. See Appendix C. �
Using this representation result, we are also able to characterise the maximal ele-

ments inV1(L(E)) as precisely the non-leaking valuations—a fact which is not known
for general domains.

Theorem 4.6. LetE be a confusion-free event structure and letν ∈ V1(L(E)). Thenν
is non-leaking if and only if it is maximal.

Proof. See [Var03], Prop. 7.6.3 and Thm. 7.6.4. �

4.4 Leaking Valuations

There remain leaking continuous valuations, as yet unrepresented by any probabilistic
event structures. At first sight it might seem that to account for leaking valuations it
would be enough to relax condition(b) of Definition 4.3 to the following

(b’) if C is a covering atx, thenv[C] ≤ v(x).

However, it turns out that this is not the right generalisation, as the following example
shows. Consider the event structureE3 whereE3 = {a, b} with the flat causal ordering
and no conflict. Define a “leaking configuration valuation” onE3 by v(⊥) = v({a}) =
v({b}) = 1, v({a, b}) = 0. The functionv satisfies conditions(a) and(b’), but it cannot
be extended to a continuous valuation on the domain of configurations. However, we
can show that the leaking of probability is attributable to an “invisible” event.

Definition 4.7. Consider a confusion-free event structureE = 〈E,≤, #〉. For every
cell c we consider a new “invisible” event∂c such that∂c 6∈ E and if c 6= c′ then
∂c 6= ∂c′ . Let∂ = {∂c | c is a cell}. We defineE∂ to be〈E∂ ,≤∂, #∂〉, where

• E∂ = E ∪ ∂;
• ≤∂ is≤ extended bye ≤∂ ∂c if for all e′ ∈ c, e ≤ e′;
• #∂ is # extended bye #∂ ∂c if there existse′ ∈ c, e′ ≤ e.

SoE∂ is E extended by an extra invisible event at every cell. Invisible events can absorb
all leaking probability, as shown by Theorem 4.9 below.
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Definition 4.8. Let E be a confusion-free event structure. Ageneralised configuration
valuationonE is a functionv : Lfin(E) → [0, 1] that can be extended to a configuration
valuation onE∂ .

It is not difficult to prove that, when such an extension exists, it is unique.

Theorem 4.9. LetE be a confusion-free event structure. Letv : Lfin(E) → [0, 1]. There
exists a unique normalised continuous valuationν onL(E) with v(x) = ν(↑ x), if and
only if v is a generalised configuration valuation.

Proof. See [Var03], Thm. 6.5.3. �
The above theorem completely characterises the normalised continuous valuations

on distributive concrete domains in terms of probabilistic event structures.

5 Probabilistic Event Structures as Probabilistic Runs

In the rest of the paper we investigate how to adjoin probabilities to event structures
which are not confusion-free. In order to do so, we find it useful to introduce two notions
of probabilistic run.

Configurations represent runs (or computation paths) of an event structure. What is
a probabilistic run (or probabilistic computation path) of an event structure? One would
expect a probabilistic run to be a form of probabilistic configuration, so a probability
distribution over a suitably chosen subset of configurations. As a guideline we con-
sider the traditional model of probabilistic automata [Seg95], where probabilistic runs
are represented in essentially two ways: as a probability measure over the set of max-
imal runs [Seg95], and as a probability distribution over finite runs of the same length
[dAHJ01].

The first approach is readily available to us, and where we begin. As we will see,
according to this view probabilistic event structures over an underlying event structure
E correspond precisely to the probabilistic runs ofE .

The proofs of the results in this section are to be found in the appendix.

5.1 Probabilistic Runs of an Event Structure

The first approach suggests that a probabilistic run of an event structureE be taken to
be a probability measure on the maximal configurations ofL(E).

Some basic notion of measure theory can be found in Appendix A. LetD be an
algebraic domain. Recall thatΩ(D) denotes the set of maximal elements ofD and
that for every compact elementx ∈ D the principal set ↑x is Scott open. The set
K(x) := ↑ x ∩ Ω(D) is called theshadowof x. We shall consider theσ-algebraS on
Ω(D) generated by the shadows of the compact elements.

Definition 5.1. A probabilistic runof an event structureE is a probability measure
on 〈Ω(L(E)),S〉, whereS is theσ-algebra generated by the shadows of the compact
elements.

There is a tight correspondence between non-leaking valuations and probabilistic runs.
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Theorem 5.2. Let ν be a non-leaking normalised continuous valuation on a coherent
ω-algebraic domainD. Then there is a unique probability measureµ onS such that for
every compact elementx, µ(K(x)) = ν(↑ x).
Let µ be a probability measure onS. Then the functionν defined on open sets by
ν(O) = µ(O ∩Ω(D)) is a non-leaking normalised continuous valuation.

Proof. See Appendix C. �
According to the result above, probabilistic event structures over a common event

structureE correspond precisely to the probabilistic runs ofE . Among these we can
characterise probabilistic event structureswith independencein terms of the standard
measure-theoretic notion of independence. In fact, for such a probabilistic event struc-
ture, every two compatible configurations are probabilistically independent, given the
common past:

Proposition 5.3. Letv be a configuration valuation on a confusion-free event structure
E . Letµv be the corresponding measure as of Propositions 4.1 and Theorem 5.2. Then,
v is a configuration valuationwith independenceiff for every two finite compatible
configurationsx, y

µv

(
K(x) ∩K(y) | K(x ∩ y)

)
= µv

(
K(x) |K(x ∩ y)

)
· µv

(
K(y) | K(x ∩ y)

)
.

Proof. See Appendix C. �
Note that the definition of probabilistic run of an event structure does not require

that the event structure is confusion-free. It thus suggests a general definition of a proba-
bilistic event structure as an event structure with a probability measureµ on its maximal
configurations, even when the event structure is not confusion-free. This definition, in
itself, is however not very informative and we look to an explanation in terms of finite
probabilistic runs.

5.2 Finite Runs

What is a finite probabilistic run? Following the analogy heading this section, we want
it to be a probability distribution over finite configurations. But which sets are suitable
to be the support of such distribution? In interleaving models, the sets of runs of the
same length do the job. For event structures this won’t do.

To see why consider the event structure with only two concurrent eventsa, b. The
only maximal run assigns probability 1 to the maximal configuration{a, b}. This corre-
sponds to a configuration valuation which assigns 1 to both{a} and{b}. Now these are
two configurations of the same size, but their common “probability” is equal to 2! The
reason is that the two configurations are compatible: they do not representalternative
choices. We therefore need to represent alternative choices, and we need to represent
them all. This leads us to the following definition.

Definition 5.4. Let E be an event structure. Apartial testof E is a setC of pairwise
incompatible configurations ofE . A testis a maximal partial test. A test isfinitary if all
its elements are finite.

12



Maximality of a partial testC can be characterised equivalently ascompleteness:
for every maximal configurationz, there existsx ∈ C such thatx ⊆ z. The set of tests,
endowed with the Egli-Milner order has an interesting structure: the set of all tests is a
complete lattice, while finitary tests form a lattice.

Tests were designed to support probability distributions. So given a sensible val-
uation on finite configurations we expect it to restrict to probability distributions on
tests.

Definition 5.5. Letv be a functionLfin(E) → [0, 1]. Thenv is called atest valuationif
for all finitary testsC we havev[C] = 1.

Theorem 5.6. Letµ be a probabilistic run ofE . Definev : Lfin(E) → [0, 1] byv(x) =
µ(K(x)). Thenv is a test valuation.

Proof. See Appendix C. �
Note that Theorem 5.6 is for general event structures. We unfortunately do not

have a converse in general. However, there is a converse when the event structure is
confusion-free:

Theorem 5.7. LetE be a confusion-free event structure. Letv be a functionLfin(E) →
[0, 1]. Thenv is a configuration valuation if and only if it is a test valuation.

Proof. See Appendix C. �
The proof of this theorem hinges on a property of tests. The property is that of

whether partial tests can be completed. Clearly every partial test can be completed to a
test (by Zorn’s lemma), but there exist finitary partial tests that cannot be completed to
finitary tests.

Definition 5.8. A finitary partial test ishonestif it is part of a finitary test. A finite
configuration is honest if it is honest as partial test.

Proposition 5.9. If E is a confusion-free event structure and ifx is a finite configuration
of E , thenx is honest inL(E).

Proof. See Appendix C. �
So confusion-free event structures behave well with respect to honesty. For general

event structures, the following is the best we can do at present:

Theorem 5.10. Let v be a test valuation onE . LetH be theσ-algebra onΩ(L(E))
generated by the shadows of honest finite configurations. Then there exists a unique
measureµ onH such thatµ(K(x)) = v(x) for every honest finite configurationx.

Proof. See Appendix C. �
Theorem 5.11. If all finite configurations are honest, then for every test valuationv
there exists a unique continuous valuationν, such thatν(↑ x) = v(x).

Proof. See Appendix C. �
But, we do not know whether in all event structures, every finite configuration is

honest. We conjecture this to be the case. If so this would entail the general converse to
Theorem 5.6 and so characterise probabilistic event structures, allowing confusion, in
terms of finitary tests.
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6 Morphisms

It is relatively straightforward to understand event structures with independence. But
how can general test valuations on a confusion-free event structures arise? More gen-
erally how do we get runs of arbitrary event structures? We explore one answer in this
section. We show how to obtain test valuations as “projections” along a morphism from
a configuration valuation with independence on a confusion-free event structure. The
use of morphisms shows how general valuations are obtained through the hiding and
renaming of events.

6.1 Definitions

Definition 6.1 ([Win82,WN95]). Given two event structuresE , E ′, a morphismf :
E → E ′ is a partial functionf : E → E′ such that

• wheneverx ∈ L(E) thenf(x) ∈ L(E ′);
• for everyx ∈ L(E), for all e1, e2 ∈ x if f(e1), f(e2) are both defined andf(e1) =

f(e2), thene1 = e2.

Such morphisms define a categoryES. The operatorL extends to a functorES →
DCPO byL(f)(x) = f(x), whereDCPO is the category of DCPO’s and continuous
functions.

A morphismf : E → E ′ expresses how the occurrence of an event inE induces
a synchronised occurrence of an event inE ′. Some events inE are hidden (iff is not
defined on them) and conflicting events inE may synchronise with the same event inE ′
(if they are identified byf ).

The second condition in the definition guarantees that morphisms of event structures
“reflect” reflexive conflict, in the following sense. Let? be the relation (#∪ IdE), and
let f : E → E ′. If f(e1) ? f(e2), thene1 ? e2. We now introduce morphisms that reflect
tests; such morphisms enable us to define a test valuation onE ′ from a test valuation on
E . To do so we need some preliminary definitions. Given a morphismf : E → E ′, we
say that an event ofE is f -invisible, if it is not in the domain off . Given a configuration
x of E we say that it isf -minimal if all its maximal events aref -visible. That isx is
f -minimal, when is minimal in the set of configurations that are mapped tof(x). For
any configurationx, definexf to be thef -minimal configuration such thatxf ⊆ x and
f(x) = f(xf ).

Definition 6.2. A morphism of event structuresf : E → E ′ is tight when

• if y = f(x) and ify′ ⊇ y, there existsx′ ⊇ xf such thaty′ = f(x′);
• if y = f(x) and ify′ ⊆ y, there existsx′ ⊆ xf such thaty′ = f(x′);
• all maximal configurations aref -minimal (no maximal event isf -invisible).

Tight morphisms have the following interesting properties:

Proposition 6.3. A tight morphism of event structures is surjective on configurations.
Givenf : E → E ′ tight, if C′ is a finitary test ofE ′ then the set off -minimal inverse
images ofC′ alongf is a finitary test inE .
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Proof. The f -minimal inverse images form always a partial test because morphisms
reflect conflict. Tightness is needed to show completeness. �

We now study the relation between valuations and morphisms. Given a function
v : Lfin(E) → [0, +∞] and a morphismf : E → E ′ we define a functionf(v) :
Lfin(E ′) → [0, +∞] by f(v)(y) =

∑
{v(x) | f(x) = y andx is f -minimal}. We have:

Proposition 6.4. LetE , E ′ be confusion-free event structures,v a generalised configu-
ration valuation onE andf : E → E ′ a morphism. Thenf(v) is a generalised configu-
ration valuation onE ′.

See [Var03] for the proof. More straightforwardly:

Proposition 6.5. LetE , E ′ be event structures,v be a test valuation onE , andf : E →
E ′ a tight morphism. Then the functionf(v) is a test valuation onE ′.

Therefore we can obtain a run of a general event structure by projecting a run of a
probabilistic event structure with independence. Presently we don’t know whether every
run can be generated in this way.

6.2 Morphisms at work

The use of morphisms allows us to make interesting observations. Firstly we can give
an interpretation to probabilistic correlation. Consider the following event structures
E1 = 〈E1,≤, #〉, E4 = 〈E4,≤, #〉 whereE4 is defined as follows:

• E4 = {a1, a2, b1, b2, c1, c2, d1, d2, e1, e2};
• e1 ≤ a1, b1, c1, d1, e2 ≤ a2, b2, c2, d2;
• e1 #µ e2, ai #µ bi, ci #µ di for i = 1, 2.

a1 /o b1 c1 /o d1 a2 /o b2 c2 /o d2

e1

FFFFFFFFF

333333








/o/o/o/o/o/o/o e2

4444444

������

xxxxxxxxx

Above, curly lines represent immediate conflict, while the causal order proceeds up-
wards along the straight lines. The event structureE1 was defined in Section 2.3:E1 =
{a, b, c, d} with the discrete ordering and witha #µ b andc #µ d.

a /o/o/o b c /o/o/o d

The mapf : E4 → E1 defined asf(xi) = x, x = a, b, c, d, i = 1, 2 is a tight morphism
of event structures.

Now suppose we have a global valuation with independencev onE4. We can define
it as cell valuationp, by p(ei) = 1

2 , p(a1) = p(c1) = p(b2) = p(d2) = 1, p(a2) =
p(c2) = p(b1) = p(d1) = 0. It is easy to see thatv′ := f(v), is the test valuation
defined in Section 4.2. For instance
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v′({a}) = v({e1, a1}) + v({e2, a2}) =
1
2

;

v′({a, d}) = v({e1, a1, d1}) + v({e2, a2, d2}) = 0 .

Thereforev′ is not a global valuation with independence: the correlation between the
cell {a, b} and the cell{c, d} can be interpreted by saying that it is due to a hidden
choice betweene1 ande2.

In the next example a tight morphism takes us out of the class of confusion free event
structures. Consider the event structuresE5 = 〈E5,≤, #〉, E6 = 〈E6,≤, #〉 where
E5 = {a1, a2, b, c, d}; a1 ≤ b, a2 ≤ c, d; a1 #µ a2;

b c d

a1 /o/o/o/o/o a2

222222

������

while E6 = {b, c, d}; b #µ c, d.

c /o/o/o b /o/o/o d

Note theE6 is not confusion free: it is in fact the simplest example ofsymmetriccon-
fusion [RE96]. The mapf : E5 → E6 defined asf(x) = x, x = b, c, d is a tight
morphism of event structures. A test valuation on an event structure with confusion is
obtained as a projection along a tight morphism from a probabilistic event structure
with independence. Again this is obtained by hiding a choice.

In the next example we again restrict attention to confusion free event structures,
but we use a non-tight morphism. Such morphisms allow us to interpret conflict as
probabilistic correlation. Consider the event structuresE7 = 〈E7,≤, #〉, E3 = 〈E3,≤
, #〉 where

• E7 = {a, b}: a #µ b;
• E3 = {a, b} with no conflict.

The mapf : E7 → E3 defined asf(x) = x, x = a, b is a morphism of event structures.
It is not tight, because it is not surjective on configurations: the configuration{a, b} is
not in the image off .

Consider the test valuationv on E7 defined asv({a}) = v({b}) = 1/2. The gen-
eralised global valuationv′ = f(v) is then defined as follows:v′({a}) = v′({b}) =
1/2, v′({a, b}) = 0. It is not a test valuation, but by Theorem 4.9, we can extend it to a
test valuation onE7,∂:

∂a
/o/o/o a ∂b

/o/o/o b

The (unique) extension is defined as follows:
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• v′({∂a}) = v′({∂b}) = v′({a}) = v′({b}) = 1/2;
• v′({∂a, ∂b}) = v′({a, b}) = 0;
• v′({∂a, b}) = v′({a, ∂b}) = 1/2.

The conflict betweena andb in E7 is seen inE3 as a correlation between their cells.
Either way, we cannot observea andb together.

7 Related and Future Work

In his PhD thesis, Katoen [Kat96] defines a notion of probabilistic event structure which
includes our probabilistic event structures with independence. But his concerns are
more directly tuned to a specific process algebra. So in one sense his work is more
general—his event structures also possess nondeterminism—while in another it is much
more specific in that it does not look beyond local probability distributions at cells.
Völzer [Voe01] introduces similar concepts based on Petri nets and a special case of
Theorem 5.10. Benveniste et al. have an alternative definition of probabilistic Petri nets
in [BFH03], and there is clearly an overlap of concerns though some significant differ-
ences which require study.

We have explored how to add probability to the independence model of event struc-
tures. In the confusion-free case, this can be done in several equivalent ways: as val-
uations on configurations; as continuous valuations on the domain of configurations;
as probabilistic runs (probability measures over maximal configurations); and in the
simplest case, with independence, as probability distributions existing locally and in-
dependently at cells. Work remains to be done on a more operational understanding,
in particular on how to understand probability adjoined to event structures which are
not confusion-free. This involves relating probabilistic event structures to interleaving
models like Probabilistic Automata [Seg95] and Labelled Markov Processes [DEP02].
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A Domain Theory and Measure Theory—Basic Notions

A.1 Domain Theory

We briefly recall some basic notions of domain theory (see e.g. [AJ94]). Adirected
complete partial order (DCPO)is a partial order where every directed setY has a least
upper bound

⊔
Y . An elementx of a DCPOD is compact(orfinite) if for every directed

Y and everyx ≤
⊔

Y there existsy ∈ Y such thatx ≤ y. The set of compact elements
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is denoted byCp(D). A DCPO is analgebraic domainif or every x ∈ D, x is the
directed least upper bound of↓ x ∩ Cp(D). It is ω-algebraicif Cp(D) is countable.

In a partial order, two elements are said to becompatibleif they have a common
upper bound. A subset of a partial order isconsistentif every two of its elements are
compatible. A partial order iscoherentif every consistent set has a least upper bound.

TheEgli-Milner order on subsets of a partial order is defined byX ≤ Y if for all
x ∈ X there existsy ∈ Y , x ≤ y and for ally ∈ Y there existsx ∈ X , x ≤ y. A subset
X of a DCPO isScott openif it is upward closed and if for every directed setY whose
least upper bound is inX , thenY ∩X 6= ∅. Scott open sets form theScott topology.

A.2 Measure Theory

A σ-algebra on a setΩ is a family of subsets ofX which is closed under count-
able union and complementation and which contains∅. The intersection of an arbi-
trary family of σ-algebras is again aσ-algebra. In particular ifS ⊆ P(Ω), andΞ :=
{F | F is aσ-algebra& S ⊆ F}, then

⋂
Ξ is again aσ-algebra and it belongs toΞ.

We call
⋂

Ξ thesmallestσ-algebra containingS.
If S is a topology, the smallestσ-algebra containingS is called theBorelσ-algebra

of the topology. Note that although a topology is closed under arbitrary union, its Borel
σ-algebra need not be.

A measure spaceis a triple (Ω,F , ν) whereF is a σ-algebra onΩ and ν is a
measureonF that is a functionν : F → [0, +∞] satisfying:

• (Strictness)ν(∅) = 0;
• (Countable additivity) if(An)n∈N is a countable family of pairwise disjoint sets of
F , thenν(

⋃
n∈N

An) =
∑

n∈N
ν(An) .

Finite additivity follows by puttingAn = ∅ for all but finitely manyn.
Among the various results of measure theory we state two that we will need later.

Theorem A.1 ([Hal50] Theorem 9.E).Let ν be a measure on aσ-algebraF , and let
An be a decreasing sequence of sets inF , that isAn+1 ⊆ An, such thatν(A0) < ∞.
Then

ν

(⋂
n∈N

An

)
= lim

n→∞ ν(An) .

One may ask when it is possible to extend a valuation on a topology to a measure
on the Borelσ-algebra. This problem is discussed in Mauricio Alvarez-Manilla’s the-
sis [AM00]. The result we need is the following. It can also be found in [AES00], as
Corollary 4.3.

Theorem A.2. Any normalised continuous valuation on a continuous DCPO extends
uniquely to a measure on the Borelσ-algebra.
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B Proofs from Section 2

Proposition 2.6. In a confusion-free event structure ifC is a covering atx, thenc =
{e |x ∪ {e} ∈ C} is a cell accessible atx. Conversely, ifc is accessible atx, then
C := {x ∪ {e} | e ∈ c} is a covering atx.

Proof. Let C be a covering atx, and letc be defined as above. Then for every distinct
e, e′ ∈ c, we havee # e′, otherwisex∪{e} andx∪{e′}would be compatible. Moreover
as[e), [e′) ⊆ x, we have that[e] ∪ [e′) ⊆ x ∪ {e} so that[e] ∪ [e′) is a configuration.
Analogously[e) ∪ [e′] is a configuration so thate #µ e′. Now takee ∈ c and suppose
there ise′ 6∈ c such thate #µ e′. Since#µ is transitive, then for everye′′ ∈ c, e′#µ e′′.
Thereforex ∪ {e′} is incompatible with every configuration inC, andx C x ∪ {e′}.
Contradiction.

Conversely, take a cellc ∈ Acc(x), and defineC as above. Then clearly for every
x′ ∈ C, x C x′ and also for everyx′, x′′ ∈ C, x′, x′′ are incompatible. Now consider
a configurationy, such thatx C y. This meansy = x ∪ {e} for somee. If e ∈ c then
y ∈ C andy is compatible with itself. Ife 6∈ c then for everye′ ∈ c, e, e′ are not in
immediate conflict. Supposee # e′, then, by lemma 2.1 there ared ≤ e, d′ ≤ e′ such
thatd #µ d′. Supposed < e then[e) ∪ [e′] would not be a conflict free. But that is not
possible as[e) ∪ [e′] ⊆ x ∪ {e′} and the latter is a configuration. Analogously it is not
the case thatd′ < e′. This implies thate #µ e′, a contradiction. Therefore for every
x ∈ C, y andx are compatible. �

Proposition 2.11. If v is a configuration valuation with independence andp : E →
[0, 1] is a mapping such thatv([e]) = p(e) · v([e)) for all e ∈ E, thenp is a cell
valuation such thatvp = v.

Proof. Consider now a cellc. Then the setC := {[c)∪ {e} | e ∈ c} is a covering at[c).
Remember that ife ∈ c, then[e) = [c). Therefore ifv([e)) 6= 0 we have∑

e∈c

p(e) =
∑
e∈c

v([e])/v([e))

=
∑
e∈c

v([e])/v([c)) =
∑
x∈C

v(x)/v([c)) = 1 .

We discuss later the casev([e)) = 0. In order to show thatvp = v we proceed by
induction on the size of the configurations. Because of normality, we have that

vpv (∅) =
∏
e∈∅

pv(e) = 1 = v(∅) .

Now assume that for every configurationy of sizen, vp(y) = v(y), take a configuration
x of sizen+1. Take a maximal evente ∈ x so thaty := x \ {e} is still a configuration.
Sincex is a configuration, it must be that[e] ⊆ x and thus[e) ⊆ y. Therefore[e) =
y ∩ [e]. First supposev([e)) 6= 0

vp(x) =
∏
e′∈x

p(e′) = p(e) ·
∏
e′∈y

p(e′)
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= p(e) · vp(y)

By induction hypothesis this is equal to

= p(e) · v(y) =
(
v([e])/v([e))

)
· v(y)

= v([e]) · v(y)/v([e)) = v([e]) · v(y)/v(y ∩ [e])

And because of independence this is equal to

= v(y ∪ [e]) = v(x) .

If v([e)) = 0, by contravariance we havev(x) = v(y) = 0

vp(x) =
∏
e′∈x

p(e′) = p(e) ·
∏
e′∈y

p(e′)

= p(e) · vp(y)

By induction hypothesis this is equal to

= p(e) · v(y) = 0 = v(x) .

Note that whenv([e)) = 0 it does not matter what valuesp assumes on the events inc.
Thus we can assume thatp[c] = 1. �

C Proofs of the Main Results

We provide here the proofs of Sections 4 and 5. The order in which these proofs are
presented does not follow the order in which they are introduced in the main body of
the paper.

C.1 Configuration and Continuous Valuations

Theorem 4.4. For every configuration valuationv on E there is a unique normalised
continuous valuationν on L(E) such that for every finite configurationx, ν(↑ x) =
v(x). Moreoverν is non-leaking.

The proof of Theorem 4.4 will require various intermediate results. In the following
proofs we will writex̂ for ↑ x. We will use lattice notation for configurations. That is,
we will write x ≤ y for x ⊆ y, x ∨ y for x ∪ y, and⊥ for the empty configuration.
To avoid complex case distinctions we also introduce a special element> representing
an impossible configuration. Ifx, y are incompatible, the expressionx ∨ y will denote
>. Also, for every configuration valuationv, v(>) = 0, finally >̂ = ∅. The finite
configurations together with> form a∨-semilattice.

We have to define a function from the Scott open sets ofL(E) to the unit interval.
This value ofν on the principal open sets is determined byν(x̂) = v(x). We first define
ν on finite unions of principal open sets. SinceL(E) is algebraic, such sets form a basis
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of the Scott topology ofL(E). We will then be able to defineν on all open sets by
continuity.

Let Pn be the set of principal open subsets ofL(E). That is

Pn = {x̂ | x ∈ Lfin(E)} ∪ {∅} .

Notice thatPn is closed under finite intersection becausex̂ ∩ ŷ = x̂ ∨ y. (If x, y are
not compatible then̂x ∩ ŷ = ∅ = >̂ = x̂ ∨ y.) The familyPn is, in general, not closed
under finite union.

Let Bs be the set of finite unions of elements ofPn. That is

Bs = {x̂1 ∪ . . . ∪ x̂n | x̂i ∈ Pn, 1 ≤ i ≤ n} .

Using distributivity of intersection over union it is easy to prove the following.

Lemma C.1. The structure〈Bs,∪,∩〉 is a distributive lattice with top and bottom.

Since theν has to be modular, it will also satisfy the inclusion-exclusion principle. We
exploit this to defineν. Let us defineν0 : Bs → R as follows

ν0 (x̂1 ∪ . . . ∪ x̂n) =
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
.

We have first to make sure thatν0 is well defined: If two expressionŝx1 ∪ . . .∪ x̂n and
ŷ1 ∪ . . . ∪ ŷm represent the same set, then

∑
∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
=

∑
∅6=J⊆Im

(−1)|J|−1v

∨
j∈J

yj

 .

Lemma C.2. We havêx ⊆ x̂1 ∪ . . . ∪ x̂n if and only if there existsi such thatxi ≤ x.

Proof. Straightforward. �
Lemma C.3. If xn ≤ xn+1 then∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
=

∑
∅6=I⊆In+1

(−1)|I|−1v

(∨
i∈I

xi

)
.

Proof. Whenxn ≤ xn+1 we have thatxn ∨ xn+1 = xn+1. Now∑
∅6=I⊆In+1

(−1)|I|−1v

(∨
i∈I

xi

)

=
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)

+
∑

I⊆In+1
n,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)

+
∑

I⊆In+1
n 6∈I,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)
.
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We claim that

∑
I⊆In+1
n,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)
+

∑
I⊆In+1

n 6∈I,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)
= 0

and this would prove our lemma. To prove the claim

∑
I⊆In+1
n,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)

=
∑

I⊆In−1

(−1)|I|−1v

(∨
i∈I

xi ∨ xn ∨ xn+1

)

=
∑

I⊆In−1

(−1)|I|−1v

(∨
i∈I

xi ∨ xn+1

)

= −
∑

I⊆In−1

(−1)|I|v

(∨
i∈I

xi ∨ xn+1

)

= −
∑

I⊆In+1
n 6∈I,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)

�
Therefore we can safely remove “redundant” components from a finite union until

we are left with a minimal expression. The next lemma says that such minimal expres-
sion is unique, up to the order of the components.

Lemma C.4. Let x̂1 ∪ . . . ∪ x̂n = ŷ1 ∪ . . . ∪ ŷm, and let such expressions be minimal.
Thenn = m and there exists a permutationσ of In such thatxi = yσ(i).

Proof. By lemma C.2, for everyi ∈ In there exist somej ∈ Im such thatyj ≤ xi. Let
σ : In → Im be a function choosing one suchj. Symmetrically letτ : Im → In be such
thatxτ(j) ≤ yj. Now I claim that for everyi, τ(σ(i)) = i. In factxτ(σ(i)) ≤ yσ(i) ≤ xi.
The minimality of thexi’s implies the claim. Symmetricallyσ(τ(j)) = j, so thatσ is
indeed a bijection. �

Finally we observe that in the definition ofν0, the order of thexi does not matter.
This concludes the proof of thatν0 is well-defined.

Next we state a lemma saying thatν0 : Bs → R is a valuation on the lattice
〈Bs,∪,∩〉. This is the crux of the proof of Theorem 4.4.

Lemma C.5. The functionν0 : Bs → R satisfies the following properties:

• (Strictness)ν0(∅) = 0;
• (Monotonicity)U ⊆ V =⇒ ν0(U) ≤ ν0(V );
• (Modularity)ν0(U) + ν0(V ) = ν0(U ∪ V ) + ν0(U ∩ V ).
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In particular, sincê⊥ = L(E), for everyU ∈ Bs, we have0 = ν0(∅) ≤ ν0(U) ≤
ν0(L(E)) = ν0(⊥̂) = v(⊥) = 1. So in factν0 : Bs → [0, 1].

Proof. Strictness is obvious.
We prove monotonicity in steps. First we prove a special case, that is for everyn-

tuple of finite configurations(xi) and for every finite configurationy, if x̂1∪ . . .∪ x̂n ⊆
ŷ, thenν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0(ŷ). We will do it by induction onn.

The basis requires that0 = ν0(∅) ≤ ν0(ŷ) = v(y) which is true. Suppose now that
x̂1∪. . .∪x̂n+1 ⊆ ŷ. Fix y and consider alln+1-tuples(zi) such that̂z1∪. . .∪ẑn+1 ⊆ ŷ
and order them componentwise. That is(zi) ≤ (z′i) if for every i, zi ≤ z′i. Note that
if (zi) > (z′i) then some of the(z′i) must be strictly smaller than some of thezi. As
everyzi is finite this order is well founded. Suppose by contradiction that there exist an
n + 1-tuples for which

ν0

(
ẑ1 ∪ . . . ∪ ẑn+1

)
> ν0(ŷ)

and take a minimal such. If this is the case, then allzi must be strictly greater thany.
We argue that there is a cellc, such thaty does not fillc, some of thezi’s fill c and for all
zi that do, the evente ∈ c ∩ zi is maximal inzi. Consider a maximal evente1 ∈ z1 \ y.
If the cellc1 of e1 is maximal in allzj that fill c1, then we are done. Otherwise consider
the firstzj that fills c1 but for whichc1 is not maximal. Consider a maximal event in
zj lying abovec1. Consider its cellc2. Sincec2 is abovec1, clearlyc2 cannot be filled
by any of thezi for i < j because, either they do not fillc1, or if they do, thenc1 is
maximal. Continue this process until you reachzn+1 at which point we will have found
a cellc with the properties above.

Consider all the eventse1, . . . , eh, . . . ∈ c.1 For everyh ≥ 1 let Ih = {i ∈
In+1 | eh ∈ zi}. Sincec is maximal and it is not filled byy, then we have that for
everyi ∈ Ih, z′i := zi \ {eh} is still a configuration and it is still abovey. For every
i ∈ In+1 let wi bez′i if i belongs to someIh, and otherwise letwi bezi. For what we
have said, allwi are greater thany so thatŵ1 ∪ . . . ∪ ŵn+1 ⊆ ŷ. Also the tuple(wi) is
strictly below(zi) in the well order defined above. We now show that

ν0

(
ŵ1 ∪ . . . ∪ ŵn+1

)
> ν0(ŷ)

which contradicts minimality. To do that we show that

ν0

(
ŵ1 ∪ . . . ∪ ŵn+1

)
≥ ν0

(
ẑ1 ∪ . . . ∪ ẑn+1

)
.

That is ∑
∅6=I⊆In+1

(−1)|I|−1v

(∨
i∈I

wi

)
≥

∑
∅6=I⊆In+1

(−1)|I|−1v

(∨
i∈I

zi

)
.

We can start erasing summands that do not change. LetĨ = In+1 \
⋃

h≥1 Ih For every

i ∈ Ĩ, wi = zi, thus ifI ⊆ Ĩ then
∨

i∈I wi =
∨

i∈I zi. So that

v

(∨
i∈I

wi

)
= v

(∨
i∈I

zi

)
.

1 Cells can be finite or countable. We do the proof for the countable case, the finite case being
analogous and, in fact, simpler.

24



Removing the summands of the above shape, it is enough to prove that

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

wi

)
≥

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

zi

)
.

Also note that if for two differenth, h′ ≥ 1 we have that, ifI ∩ Ih 6= ∅ andI ∩ Ih′ 6= ∅
then

∨
i∈I zi = >, that is v

(∨
i∈I zi

)
= 0, because it is the join of incompatible

configurations. Therefore we can rewrite the right-hand member of the inequation above
as ∑

h≥1

∑
∅6=I\Ĩ⊆Ih

(−1)|I|−1v

(∨
i∈I

zi

)
.

For everyi 6∈ Ĩ we can definezh
i to bewi∪{eh}. All suchzh

i are indeed configurations
because ifi 6∈ Ĩ thenc is accessible atwi. For everyI such that∅ 6= I \ Ĩ we have that∨

i∈I zh
i = > if and only if

∨
i∈I wi = > aseh is the only event in its cell appearing

in any configuration, so its introduction cannot cause an incompatibility that was not
already there. Now condition b) in the definition of configuration valuation says exactly
that

v

(∨
i∈I

wi

)
=
∑
h≥1

v

(∨
i∈I

zh
i

)
.

(Where both members may be 0 if
∨

i∈I wi is already>.) Therefore

∑
∅6=I⊆In+1

I\Ĩ 6=∅

∑
h≥1

(−1)|I|−1v

(∨
i∈I

zh
i

)
=

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

wi

)
.

Now, the left hand member is absolutely convergent, becausev is a nonnegative function
and ∑

∅6=I⊆In+1

I\Ĩ 6=∅

∑
h≥1

v

(∨
i∈I

zh
i

)
=

∑
∅6=I⊆In+1

I\Ĩ 6=∅

v

(∨
i∈I

wi

)
< +∞ .

Therefore we can rearrange the terms as we like, in particular we can swap the two
summations symbols. Thus

∑
h≥1

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

zh
i

)
=

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

wi

)
.

So to prove our claim it is enough to show that

∑
h≥1

∑
∅6=I\Ĩ⊆Ih

(−1)|I|−1v

(∨
i∈I

zi

)
≤
∑
h≥1

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

zh
i

)
.
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Note that ifI\Ĩ ⊆ Ih then
∨

i∈I zi =
∨

i∈I zh
i . Therefore we can rewrite the inequation

as:

∑
h≥1

∑
∅6=I\Ĩ⊆Ih

(−1)|I|−1v

(∨
i∈I

zh
i

)
≤
∑
h≥1

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

zh
i

)
.

To prove the inequation holds, it is then enough to show that for anyh ≥ 1.

∑
∅6=I\Ĩ⊆Ih

(−1)|I|−1v

(∨
i∈I

zh
i

)
≤

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

zh
i

)
.

Subtracting the same quantity from both members we get equivalently

0 ≤
∑

∅6=I⊆In+1
I\(Ĩ∪Ih)6=∅

(−1)|I|−1v

(∨
i∈I

zh
i

)
.

Let Ĩh :=
⋃

l6=h I l. We can rewrite the sum above as

∑
∅6=J⊆Ĩh

∑
H⊆Ĩ∪Ih

(−1)|H|+|J|−1v

( ∨
i∈H∪J

zh
i

)

=
∑

∅6=J⊆Ĩh

(−1)|J|−1
∑

H⊆Ĩ∪Ih

(−1)|H|v

( ∨
i∈H∪J

zh
i

)
.

Using BSV lemma (D.2) we can rewrite this as

∑
∅6=K⊆Ĩh

∑
K⊆J⊆Ĩh

(−1)|J|+|K|
∑

H⊆Ĩ∪Ih

(−1)|H|v

( ∨
i∈H∪J

zh
i

)

=
∑

∅6=K⊆Ĩh

∑
K⊆J⊆Ĩh

∑
H⊆Ĩ∪Ih

(−1)|K|+|J∪H|v

( ∨
i∈H∪J

zh
i

)

Fix K. Consider a setI such thatK ⊆ I ⊆ In+1. SinceĨh, Ĩ ∪ Ih are a partition of
In+1, we have thatH := I ∩ (Ĩ ∪ Ih) andJ := I ∩ Ĩh are a partition ofI. We use this
to rewrite the term above.

=
∑

∅6=K⊆Ĩh

∑
K⊆I⊆In+1

(−1)|I|+|K|v

(∨
i∈I

zh
i

)
.
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For everyK, and definingL := I \K, we have that

∑
K⊆I⊆In+1

(−1)|I|+|K|v

(∨
i∈I

zh
i

)

=
∑

L⊆In+1\K
(−1)|L|+2|K|v

∨
i∈K

zh
i ∨

∨
j∈L

zh
j


= (−1)0+2|K|v

(∨
i∈K

zh
i

)
+

∑
∅6=L⊆In+1\K

(−1)|L|+2|K|v

∨
j∈L

(zh
j ∨

∨
i∈K

zh
i )


= v

(∨
i∈K

zh
i

)
+

∑
∅6=L⊆In+1\K

(−1)|L|v

∨
j∈L

(zh
j ∨

∨
i∈K

zh
i )


= v

(∨
i∈K

zh
i

)
−

∑
∅6=L⊆In+1\K

(−1)|L|−1v

∨
j∈L

(zh
j ∨

∨
i∈K

zh
i )

 .

If
∨

i∈K zh
i = > then the whole sum is equal to0. Otherwise it is equal to

ν0

( ∨̂
i∈K

zh
i

)
− ν0

 ⋃
j∈In+1\K

̂
zh

j ∨
∨
i∈K

zh
i

 .

Note that for everyj is
̂

zh
j ∨

∨
i∈K

zh
i ⊆

∨̂
i∈K

zh
i

so that ⋃
j∈In+1\K

( ̂
zh

j ∨
∨
i∈K

zh
i ) ⊆

∨̂
i∈K

zh
i .

Moreover observe that|In+1 \K| < n + 1. By induction hypothesis

ν0

( ∨̂
i∈K

zh
i

)
− ν0

 ⋃
j∈In+1\K

̂
zh

j ∨
∨
i∈K

zh
i

 ≥ 0 .

Thus we have proved that for everyn-tuple of finite configurations(xi) and for every
finite configurationy, if x̂1 ∪ . . . ∪ x̂n ⊆ ŷ, thenν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0(ŷ).

Monotonicity now follows from the following lemma:

Lemma C.6. If x1, . . . , xn+1 are finite configurations

ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0

(
x̂1 ∪ . . . ∪ x̂n ∪ x̂n+1

)
.
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Proof.

ν0

(
x̂1 ∪ . . . ∪ x̂n ∪ x̂n+1

)
=

∑
∅6=I⊆In+1

(−1)|I|−1v

(∨
i∈I

xi

)

=
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
+ v(xn+1)−

∑
∅6=I⊆In

(−1)|I|−1v

(
xn+1 ∨

∨
i∈I

xi

)

=
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
+ v(xn+1)−

∑
∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xn+1 ∨ xi

)

= ν0 (x̂1 ∪ . . . ∪ x̂n) + ν0

(
x̂n+1

)
− ν0

(
̂xn+1 ∨ x1 ∪ . . . ∪ ̂xn+1 ∨ xn

)
≥ ν0 (x̂1 ∪ . . . ∪ x̂n) .

Therefore, by induction onm,

ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0 (x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ ŷm) .

Finally, to show monotonicity ofν0, suppose that

x̂1 ∪ . . . ∪ x̂n ⊆ ŷ1 ∪ . . . ∪ ŷm .

Then
ŷ1 ∪ . . . ∪ ŷm = x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ ŷm .

By the above observation we have

ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0 (x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ ŷm)

= ν0 (ŷ1 ∪ . . . ∪ ŷm) .

�(C.6)

To prove modularity takêx1 ∪ . . . ∪ x̂n andŷ1 ∪ . . . ∪ ŷm, we want to prove that

ν0 (x̂1 ∪ . . . ∪ x̂n) + ν0 (ŷ1 ∪ . . . ∪ x̂m)

= ν0 (x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ x̂m) + ν0 ((x̂1 ∪ . . . ∪ x̂n) ∩ (ŷ1 ∪ . . . ∪ x̂m)) .

By distributivity we have that

(x̂1 ∪ . . . ∪ x̂n) ∩ (ŷ1 ∪ . . . ∪ x̂m)

= (x̂1 ∩ ŷ1) ∪ (x̂1 ∩ ŷ2) ∪ . . . ∪ (x̂n ∩ ŷm) .

Using the definitions, we have to prove that

R :=
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
+

∑
∅6=J⊆Im

(−1)|I|−1v

(∨
i∈I

yj

)
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is equal to

L :=
∑
∅6=I]J

I⊆In,J⊆Im

(−1)|I]J|−1v

∨
i∈I

xi ∨
∨
j∈J

yj



+
∑

∅6=K⊆In×Im

(−1)|K|−1v

 ∨
(i,j)∈K

(xi ∨ yj)

 .

We can split the variousI ] J in three classes: whenJ is empty, whenI is empty, and
when both are not empty. So we can rewriteL as

L =
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)

+
∑

∅6=J⊆Im

(−1)|I|−1v

∨
j∈J

yj


+

∑
∅6=I⊆In
∅6=J⊆Im

(−1)|I]J|−1v

∨
i∈I

xi ∨
∨
j∈J

yj


+

∑
∅6=K⊆In×Im

(−1)|K|−1v

 ∨
(i,j)∈K

(xi ∨ yj)

 .

The first two summands of this expression are equal toR, so we have just to prove that
the last two are equal to0.

For every∅ 6= I ⊆ In, ∅ 6= J ⊆ Im consider allK ⊆ In × Im such thatπ1(K) =
I, π2(K) = J . We argue that for all suchK,

∨
(i,j)∈K

(xi ∨ yj) =
∨
i∈I

xi ∨
∨
j∈J

yj .

In fact using commutativity, associativity and idempotency of the join, we can group all
thexi andyj on the left hand member. So that

∨
(i,j)∈K

(xi ∨ yj) =
∨

i∈π1(K)

xi ∨
∨

j∈π2(K)

yj .

29



We can rewrite the the last two summands of the above expression as

∑
∅6=I⊆In
∅6=J⊆Im

(−1)|I]J|−1v

∨
i∈I

xi ∨
∨
j∈J

yj


+

∑
∅6=I⊆In
∅6=J⊆Im

∑
∅6=K⊆In×Im

π1(K)=I,π2(K)=J

(−1)|K|−1v

 ∨
(i,j)∈K

(xi ∨ yj)


=

∑
∅6=I⊆In
∅6=J⊆Im

(−1)|I]J|−1v

∨
i∈I

xi ∨
∨
j∈J

yj


+

∑
∅6=I⊆In
∅6=J⊆Im

∑
∅6=K⊆In×Im

π1(K)=I,π2(K)=J

(−1)|K|−1v

∨
i∈I

xi ∨
∨
j∈J

yj



=
∑

∅6=I⊆In
∅6=J⊆Im

v

∨
i∈I

xi ∨
∨
j∈J

yj


(−1)|I]J|−1 +

∑
∅6=K⊆In×Im

π1(K)=I,π2(K)=J

(−1)|K|−1

 .

So it is enough to prove that for every finite setsI, J

(−1)|I]J|−1 +
∑

∅6=K⊆In×Im
π1(K)=I,π2(K)=J

(−1)|K|−1 = 0 .

which is the statement of Lemma D.1, to be proved in Appendix C. �
Now we are ready to defineν on all Scott open sets.

Lemma C.7. For every Scott openO ⊆ L(E), we have that the set{U ∈ Bs | U ⊆ O}
is directed and

O =
⋃

U⊆O
U∈Bs

U .

Proof. Directedness is straightforward. Moreover, sinceL(E) is algebraic,Pn is a basis
for the Scott topology (and so is, a fortiori,Bs). �

Now, for every Scott open setO, define

ν(O) = sup
U⊆O
U∈Bs

ν0(U) .

We then have the following, which concludes the proof of Theorem 4.4.

Lemma C.8. The functionν is a valuation on the Scott-topology ofL(E) such that for
every finite configurationx, ν(↑ x) = v(x).

Continuity follows from an exchange of suprema, strictness and monotonicity are ob-
vious. Modularity follows from the modularity ofν0 and continuity of the addition.
Finally, because of the monotonicity ofν0, we have thatν(↑ x) = ν0(↑ x) = v(x). �

It remains to show thatν is non-leaking. We do this in the next section.
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C.2 Inductive tests

In order to show thatν in non-leaking, we will introduce a restricted notion of test.
Before we look at tests in the context on the domain of configuration. These result are
valid in any event structure.

Definition C.9. Let C be a finitary set of configurations of an event structureE . We
define↑ (C) as the set

⋃
x∈C ↑ x.

Clearly↑ (C) is Scott open. All the following properties are straightforward.

Proposition C.10. Let C be a finitary partial test ofE , then the Scott open subsets of
L(E) of the form↑x, for x ∈ C are pairwise disjoint. IfC, C′ are two finitary sets of
configurations ofE andC ≤ C′ then↑ (C) ⊇↑ (C′). If C be a finitary complete set
of configurations ofE , then for every maximal configurationy ∈ L(E), we have that
y ∈↑ (C).

Proposition C.11. Let C, C′ be finitary tests. ThenC ≤ C′ if and only if↑ (C) ⊇↑
(C ′).

Proof. of the non-trivial direction. Suppose↑ (C) ⊇↑ (C′). If y ∈ C′ theny ∈↑ (C)
which means that there existsx ∈ C such thatx ≤ y. Vice versa ifx ∈ C then by
completeness there existsy ∈ C′ such thatx, y are compatible. We have just argued
that there existsx′ ∈ C such thatx′ ≤ y, which implies thatx, x′ are compatible. Since
C is a test, we have thatx = x′ andx ≤ y. �

Corollary C.12. Letν be a continuous valuation onL(E). If C is a finitary partial test,
thenν(↑ (C)) =

∑
x∈C ν(↑x). If C, C′ are finitary sets of configurations andC ≤ C′

thenν(↑ (C)) ≥ ν(↑ (C ′)).

As a corollary we have

Theorem C.13. Letν be a non-leaking valuation onL(E). Definev : Lfin(E) → [0, 1]
byv(x) = ν(↑ x). Thenv is a test valuation.

Proof. Take a finitary testC. By the proposition above we have that↑ (C) ⊇ Ω(L(E)).
Therefore, sinceν is non-leaking.

1 ≥ ν(↑ (C)) = ν̄(↑ (C)) ≥ ν̄(Ω(L(E))) = 1

which impliesν(↑ (C)) = 1. Since the sets of the form↑x, for x ∈ C are pairwise
disjoint, we have

∑
x∈C ν(↑x) = 1, which finally implies that

∑
x∈C v(x) = 1. �

We now define a special notion of test, only for confusion-free event structure.

Definition C.14. LetE be a confusion-free event structure. Ifx is a configuration ofE ,
andc is a cell accessible atx we definex + c do be the set{x ∪ {e} |e ∈ c}. LetY, Y ′

be two sets of configurations of a confusion-free event structure. We write

Y
X,(cx) //Y ′
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whenX ⊆ Y , for everyx ∈ X , cx is a cell accessible atx, and

Y ′ = Y \X ∪
⋃

x∈X

x + cx .

We writeY → Y ′ if there areX, (cx) such thatY
X,(cx) //Y ′ . As usual→∗ denotes

the reflexive and transitive closure of→.

Definition C.15. An inductive testof a confusion-free event structure is a setC of con-
figurations such that

{∅} →∗ C .

The idea is that we start the computation with the empty configuration, and, at every
step, we choose accessible cells to “activate” and we collect all the resulting configura-
tions. The next proposition is a sanity check for our definitions

Proposition C.16. If C, C′ are inductive tests

C ≤ C′ ⇐⇒ C →∗ C′ .

The direction⇐=) is proved by induction on the derivationC →∗ C′. The direction
=⇒) is by induction on the derivation{∅} →∗ C. See [Var03].

As the choice of the name suggests we have the following result.

Proposition C.17. Every inductive test is a finitary test.

Proof. By induction on the derivations. The singleton of the empty configuration is a
test. Take an inductive testC, a setX ⊆ C and for everyx ∈ X a cell(cx) accessible

atx. Let C
X,(cx) //C′ . We want to show thatC′ is a test.

First consider two distinct configurationsx′, y′ ∈ C′. If x′, y′ ∈ C then they are
incompatible by induction hypothesis. Ifx′ ∈ C, andy′ = y ∪ e for somey ∈ C, then
x′ 6= y, so thatx′, y are incompatible. Thusx′, y′ are incompatible. Ifx′ = x ∪ ex

andy′ = y ∪ ey for x, y ∈ C there are two possibilities. Ifx 6= y, then they are
incompatible and so arex′, y′. If x = y, thenex 6= ey, but they both belong to they
same cell, therefore they are in conflict, andx′, y′ are incompatible.

Now take any configurationz. By induction hypothesis there existsx ∈ C such that
x, z are compatible. Ifx ∈ C′ we are done. Ifx 6∈ C′ then there are two possibilities.
Eitherz does not fillcx, but then for everye ∈ cx, z, x∪ e are compatible. Orz fills cx

with and event̄e which implies thatz, x ∪ ē are compatible. �
As a corollary we have

Proposition 5.9. If E is a confusion-free event structure and ifx is a finite configuration
of E , thenx is honest inL(E).

Proof. Given a finite configurationx, we obtain an inductive test containingx by firing
all the cells of the events ofx. �
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Not all test are inductive as the following example shows. Consider the event struc-
ture E = 〈E,≤, #〉 whereE = {a1, a2, b1, b2, c1, c2, d}, the order is trivial and
a1 # a2, b1 # b2, c1 # c2. Let’s call the three cellsa, b, c.

a1 /o/o/o a2 b1
/o/o/o b2 c1 /o/o/o c2 d

Consider the following setC of configurations{
{a1, b2, d}, {b1, c2, d}, {a2, c1, d}, {a1, b1, c1}, {a2, b2, c2}

}
.

The reader can easily verify thatC is a test. If it were an inductive test, we should be
able to identify a cell that was chosen at the first step along the derivation. Because
of the symmetry of the situation, we can check whether it isa. If a were the first cell
chosen, every configuration inC would contain eithera1 or a2. But this is not the case2.

It is now easy to show the following

Proposition C.18. If v is a configuration valuation, and ifC is an inductive test, then,
v[C] = 1.

Proof. By induction on the derivation SupposeC
X,cx //C′ and

∑
x∈C v(x) = 1. Con-

sider
∑

x′∈C′ v(x′). We can split this in∑
x∈C\X

v(x) +
∑
x∈X

∑
e∈cx

v(x ∪ {e}) .

Sincev is a configuration valuation, property(b) of definition 4.3 tells us that for every
x ∈ X ,

∑
e∈cx

v(x ∪ {e}) = v(x). Therefore∑
x∈C\X

v(x) +
∑
x∈X

∑
e∈cx

v(x ∪ {e})

=
∑

x∈C\X
v(x) +

∑
x∈X

v(x) =
∑
x∈C

v(x) = 1 .

�
We can finally prove the following theorem, which concludes the proof of Theorem

4.4

Theorem C.19. Letν be a continuous valuation corresponding to a configuration val-
uationv. Thenν is non-leaking.

We show that there exists an enumeration of the cells(cn)n∈N, such that ifcm < cn,
thenm < n. We build it as follows. Since the cells are countably many, they come
equipped already with some enumeration. We start by picking the first cellc. We enu-
merate all the cellsc′ < c, by layers: first the cells of depth 0, then the cells of depth 1
and so on. There are only finitely many suchc′, so we stop at some point. Finally we
enumeratec. For all the cells enumerated so farcm < cn impliesm < n

2 This example bears a striking familiarity with Berry’s Gustave function
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At every step, choose the next cellc (in the old enumeration) that has not been
enumerated. Repeat the procedure above, enumerating the cellsc′ < c that have not yet
been enumerated. Finally enumeratec. The invariantcm < cn =⇒ m < n is preserved.

With this enumeration at hand, consider the following chain of inductive tests:C0 =

{∅}, Cn
X,cn // Cn+1 , whereX is the set of configurationsx ∈ Cn such thatcn is

accessible atx. We have the following properties:

1. for everyCn, Ω(L(E)) ⊆↑ (Cn);
2. ↑ (Cn) ⊇↑ (Cn+1);
3. if x ∈ Cn andx fills cm thenm < n;
4. if x ∈ Cn then every cellcm with m < n enabled atx is filled byx;
5. for every non maximal configurationz there existsn such thatz 6∈↑ (Cn).

Property (1) comes for the fact theCn is a test. Property (2) comes from Proposition
C.11. Property (3) is by construction. Property (4) is shown by induction onn, using
the defining property of the enumeration. Takex ∈ Cn+1 and consider a cellcm with
m < n + 1 enabled atx. If m < n thencn 6< cm thereforecm is enabled atx′ :=
x \ cn ∈ Cn. By induction hypothesiscm is filled by x′, and therefore is filled by
x. If m = n thenx has just been obtained by adding an event incm (otherwisecm

would not be enabled). To show (5), take a non maximal configurationz. There exists
a cellc which is accessible atz. Suppose it’scm. ConsiderCm+1. Suppose there exists
x ∈ Cm+1 such thatx ≤ z. Thencm is not filled byx. By property (4),c is not enabled
atx. Consider a minimal evente in [c) \ x, and saych = cell(e). Sincech < c = cm,
thenh < m. By minimality of e, every event in[ch) is in x. Thereforech is enabled at
x. By property (4)ch is filled by x. Since[c) ⊆ z we have thate ∈ z. Thus the only
event in the cell ofe that can be inx is e itself. Contradiction.

Therefore, combining (1) and (5)⋂
n∈N

↑ (Cn) = Ω(L(E)) .

By Theorem A.2, the valuationν can be extended to a Borel measureν̄. We have that
ν̄(Ω(L(E))) = limn→∞ ν̄(↑ (Cn)). But ν̄(↑ (Cn)) = ν(↑ (Cn)) = 1 becauseCn is an
inductive test. By Theorem A.1 we havēν(Ω(L(E))) = 1. This implies that for every
open setO ⊇ Ω(L(E)) we have

1 ≥ ν(0) = ν̄(0) ≥ ν̄(Ω(L(E))) = 1 .

�
As a corollary, using Theorem C.13 we get

Theorem C.20. If v is a configuration valuation, thenv is a test valuation.

The other direction is also true

Theorem C.21. If v is a test valuation, thenv is a configuration valuation.
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Proof. First of all v(∅) = 1, because{∅} is a finitary test. Next we want to show that
for every finite configurationx and every coveringDc at x, v[Dc] = v(x). Take a test
C containingx, which exists becausex is honest. Consider the testC′ = C \{x}∪Dc.

Notice thatC
{x},c //C′ . ThereforeC′ is a test. So thatv[C′] = 1. But v[C′] = v[C] −

v(x) + v[Dc]. �
We have thus proved

Theorem 5.7. LetE be a confusion-free event structure. Letv be a functionLfin(E) →
[0, 1]. Thenv is a configuration valuation if and only if it is a test valuation.

Note also that combining Theorems C.13 and C.21 we obtain

Theorem 4.5. Let ν be a non-leaking continuous valuation onL(E). The function
v : Lfin(E) → [0, 1] defined byv(x) = ν(↑ x) is a configuration valuation.

C.3 Continuous Valuation and Runs

Theorem 5.2. Let ν be a non-leaking normalised continuous valuation on a coherent
ω-algebraic domainD. Then there is a unique probability measureµ onS such that for
every compact elementx, µ(K(x)) = ν(↑ x).
Let µ be a probability measure onS. Then the functionν defined on open sets by
ν(O) = µ(O ∩Ω(D)) is a non-leaking normalised continuous valuation.

Proof. Let µ be a probability measure on〈Ω(D),S〉. The sets of the form↑x for x
compact are a basis of the Scott topology. Since the set of compact elements is count-
able, every open setO is the countable union of basic open sets. Therefore every set
of the formO ∩ Ω(D) is the countable union of shadows of compact elements, and
it belongs toS. Thusν is well defined. It is obviously strict, monotone and modular.
By ω-algebraicity, to prove continuity it is enough to prove continuity forω-chains
([AM00], Lemma 2.10). Take a countable increasing chainOk with limit O. Sinceµ is
a measure

µ(O ∩Ω(D)) = sup
k∈N

µ(Ok ∩Ω(D)) .

Thus
ν(O) = µ(O ∩Ω(D)) = sup

k∈N

µ(Ok ∩Ω(D)) = sup
k∈N

ν(Ok)

and we are done. The fact thatν is non-leaking follows from the definition.
Conversely, take a non-leaking valuationν. By the extension theorem for continuous

valuations of [AES00], there is a unique measureν̂ on the Scott-Borel sets ofD which
extendsν. By Corollary 3.4 and 3.5 of [Law97], recalling that a coherent domain is
Lawson compact, there exists a decreasing countable chain of open sets converging
to Ω(D), which is thus aGδ set and therefore is measurable. Sinceν is non-leaking,
ν̂(Ω(D)) = 1. Defineµ to be the restriction of̂ν to Ω(D). It is indeed a probability
measure. Every set of the formO ∩Ω(D) is measurable, and

µ(O ∩Ω(D)) = ν̂(O ∩Ω(D))
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= ν̂(O) + ν̂(Ω(D)) − ν̂(O ∪Ω(D)) .

SinceΩ(D) ⊆ O ∪Ω(D) ⊆ D andν̂(D) = ν̂(Ω(D)) = 1, then alsôν(O ∪Ω(D)) =
1, so that

µ(O ∩Ω(D)) = ν̂(O) = ν(O)

and we are done. �
As an easy corollary of this Theorem5.2 and of Theorem C.13 we have

Theorem 5.6. Letµ be a probabilistic run ofE . Definev : Lfin(E) → [0, 1] byv(x) =
µ(K(x)). Thenv is a test valuation.

The following results applies to confusion free event structures only.

Proposition 5.3. Letv be a configuration valuation on a confusion-free event structure
E . Letµv be the corresponding measure as of Propositions 4.1 and Theorem 5.2. Then,
v is a configuration valuationwith independenceiff for every two finite compatible
configurationsx, y

µv

(
K(x) ∩K(y) | K(x ∩ y)

)
= µv

(
K(x) |K(x ∩ y)

)
· µv

(
K(y) | K(x ∩ y)

)
.

Proof. Supposev satisfies condition(c) of proposition 2.8.

Takeµv

(
K(x)∩K(y) |K(x∩ y)

)
. By definition (and assumingµv

(
K(x∩ y)

)
6= 0)

we have

µv

(
K(x) ∩K(y) | K(x ∩ y)

)
= µv

(
K(x) ∩K(y) ∩K(x ∩ y)

)
/µv

(
K(x ∩ y)

)
= µv

(
K(x) ∩K(y)

)
/µv

(
K(x ∩ y)

)
= µv

(
K(x ∪ y)

)
/µv

(
K(x ∩ y)

)
= v(x ∪ y)/v(x ∩ y) = v(x) · v(y)/v(x ∩ y)2

= (v(x)/v(x ∩ y)) · (v(y)/v(x ∩ y))
= (µv(K(x))/µv(K(x ∩ y)))
·(µv(K(y))/µv(K(x ∩ y)))

= (µv(K(x) ∩K(x ∩ y))/µv(K(x ∩ y)))
·(µv(K(y) ∩K(x ∩ y))/µv(K(x ∩ y)))

= µv

(
K(x) | K(x ∩ y)

)
· µv

(
K(y) | K(x ∩ y)

)
.

The converse is similar. �
In the following we prove a generalisation of Theorem 5.10. We generalise the

notions oftestandfinitary testto any coherentω-algebraic domain. Apartial testof a
domainD is a setC of pairwise incompatible elements ofD. A testis a maximal partial
test. A test isfinitary if all its elements are compact. Letv be a functionCp(D) → [0, 1].
Thenv is called atest valuationif for all finitary testC we havev[C] = 1. A finitary
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partial test ishonestif it is part of a finitary test. A compact element is honest if it is
honest as partial test.

Theorem 5.10. Let D be a coherentω-algebraic domain. Letv be a test valuation
on D. LetH be theσ-algebra onΩ(D) generated by the shadows of honest compact
elements. Then there exists a unique measureµ onH such thatµ(K(x)) = v(x) for
every honest compact elementx.

Proof. Consider the following setT of subsets ofΩ(D):

T := {K(C) | C is a honest finitary partial test} .

We claim thatT is a field of sets, i.e., that it is closed under binary union and com-
plementation. SinceC is honest, it can be extended to a finitary testA. Let’s call
C ′ := A \ C. Clearly C′ is a honest finitary partial test. AndK(C′) = K(C). On
the one handK(C ′) ∪ K(C) = Ω(D), because of completeness ofA. On the other
handK(C ′) ∩ K(C) = ∅ as otherwise some element ofC will be compatible with
some elements ofC′. For the closure under union, consider two honest finitary partial
testsC1, C2. Consider their completionsA1, A2 and putC′

1 := A1\C1, C
′
2 := A2\C2.

LetA be an common upper bound ofA1, A2, which exists as finitary tests form a lattice.
Consider the subsetsC of A defined as

C := {x ∈ A | ∃x1 ∈ C1.x1 ≤ x or ∃x2 ∈ C2.x2 ≤ x} .

ClearlyC is a honest finitary partial test. We claim thatK(C) = K(C1)∪K(C2). Take
z ∈ K(C). This means that there existsx ∈ C such thatx ≤ z. Then either there exists
x1 ∈ C1, with x1 ≤ x ≤ z, or there existsx2 ∈ C2, with x2 ≤ x ≤ z. Either case
z ∈ K(C1) ∪K(C2).

Conversely assumez ∈ K(C1) ∪K(C2), sayz ∈ K(C1). There isx1 ∈ C1 such
thatx1 ≤ z. SinceA is complete there must existx ∈ A such thatx ≤ z. SinceA1 ≤ A
there existsx′1 ∈ A1 such thatx′1 ≤ x ≤ z. This implies thatx′1, x1 are compatible.
SinceA1 is a test,x′1 = x1. Thereforex ∈ C, andz ∈ K(C).

We define a functionm : T → [0, 1] by m(K(C)) = v[C]. We have to argue that
m is well defined, i.e. ifC1, C2 are such thatK(C1) = K(C2), thenv[C1] = v[C2].
SupposeA1 is a test completingC1 and putC′

1 = A1 \ C1. ThenC2 ∪ C′
1 is a finitary

test too. It is clearly complete, and if an element ofC′
1 were compatible with an element

of C2 then it would also be compatible with some element ofC1 contradicting thatA1

is a test. Thusv[C1] = 1− v[C′
1] = v[C2].

Now we argue thatm is σ-additive onT . Take a sequenceCn of honest partial tests
such thatK(Cn) ∩K(Cm) = ∅ and such that

⋃
n K(Cn) = K(C) for someC. Then

we have to prove that ∑
n

m(K(Cn)) = m(K(C)) .

ConsiderC ′ such thatC ∪ C′ = ∅ andC ∪ C′ is a finitary test. Then, by the same
argument used above,

⋃
n Cn ∪ C′ is a finitary test. Note the condition on disjointness

of theK(Cn). Therefore

v

[⋃
n

Cn

]
= 1− v[C′] = v[C] = m(K(C)) .
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On the other hand, rearranging the terms (and recalling the disjointness again) we get

v

[⋃
n

Cn

]
=
∑

n

v[Cn] =
∑

n

m(K(Cn)) .

Thusm is a σ-additive function defined on the field of setsT . By Caratheodory
extension theorem we can extendm to a measureµ on theσ-algebra generated by
T , which containsH. Thus for all honest finite elements,K(x) is measurable and
µ(K(x)) = m(K(x)) = v(x). �

Theorem 5.11. If all compact elements are honest, then for every test valuationv there
exists a unique continuous valuationν, such thatν(↑ x) = v(x).

Proof. Once we have the measureµ of Theorem 5.10, we defineν(↑ x) := µ(K(x)).
It is well defined asx is honest and thereforeK(x) is measurable. Thenω-algebraicity
of D ensures thatν is a continuous valuation. �

C.4 An Alternative Way for the Proofs

An alternative way for proving all the results consists in starting from a result in the
extended version of [Voe01]. Adapting Lemma A.2 there, we obtain a direct proof of
Theorem C.20, and thus we get Theorem 5.7. Then via Theorems 5.10 and 5.2 we prove
Theorem 4.4, avoiding the combinatorial technicalities of its direct proof.

D Combinatorial Lemmas

We prove here two lemmas used during the proof of Theorem 4.4.

Lemma D.1. For every finite setsI, J with |I| = n, |J | = m∑
∅6=K⊆I×J

π1(K)=I,π2(K)=J

(−1)|K| = (−1)n+m−1 .

Proof. Without loss of generality we can think ofI = {1, . . . , n} andJ = {1, . . . , m}.
Also we observe that a subsetK ⊆ I × J such thatπ1(K) = I, π2(K) = J is in fact a
surjective and total relation between the two sets.

n

OOOOOOOOOOOOO

??
??

??
?

m

�������

Let
tn,m :=

∑
∅6=K⊆I×J

π1(K)=I,π2(K)=J

(−1)|K| ;
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ton,m := |{∅ 6= K ⊆ I × J | |K| odd, π1(K) = I, π2(K) = J}| ;

ten,m := |{∅ 6= K ⊆ I × J | |K| even, π1(K) = I, π2(K) = J}| .

Clearlytn,m = ten,m− ton,m. We want to prove thattn,m = (−1)n+m+1. We do this by
induction onn. It is easy to check that this is true forn = 1. In this case, ifm is even
thente1,m = 1 andto1,m = 0, so thatte1,m − to1,m = (−1)1+m+1. Similarly if m is odd.

Now let’s assume that for everyp, tn,p = (−1)n+p+1 and let’s try to compute
tn+1,m. To evaluatetn+1,m we count all surjective and total relationsK betweenI
andJ together with their“sign”. Consider the pairs inK of the form(n + 1, h) for
h ∈ J . What do you get if you remove them? You get a total surjective relation between
{1, . . . , n} and a subsetJK of {1, . . . , m}.

n

TTTTTTTTTTTTTTTTTTT •

��
��

��
�

m s

ppppppppppppp

Consider first the case whereJK = {1, . . . , m}. What is the contribution of suchK ’s
to tn+1,m? There are

(
m
s

)
ways of choosings pairs of the form(n + 1, h). And for

every such choice there aretn,m (signed) relations. Adding the pairs(n+1, h) possibly
modifies the sign of such relations. All in all the contribution amounts to

∑
1≤s≤m

(
m

s

)
(−1)stn,m .

Suppose now thatJK is a proper subset of{1, . . . , m} leaving outr elements.

n

NNNNNNNNNNNNN •

ppppppppppppp

s r

ppppppppppppp

SinceK is surjective, all such elementsh must be in a pair of the form(n + 1, h).
Moreover there can bes pairs of the form(n + 1, h′) with h′ ∈ JK . What is the
contribution of suchK ’s to tn,m? There are

(
m
r

)
ways of choosing the elements that are

left out. For every such choice and for everys such that0 ≤ s ≤ m− r there are
(
m−r

s

)
ways of choosing theh′ ∈ JK . And for every such choice there aretn,m−r (signed)
relations. Adding the pairs(n+1, h) and(n+1, h′) possibly modifies the sign of such
relations. All in all, for everyr such that1 ≤ r ≤ m− 1, the contribution amounts to(

m

r

) ∑
1≤s≤m−r

(
m

s

)
(−1)s+rtn,m−n .
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The (signed) sum of all these contribution will give ustn+1,m. Now we use the induc-
tion hypothesis and we write(−1)n+p+1 for tn,p. Thus:

tn+1,m =
∑

1≤s≤m

(
m

s

)
(−1)stn,m

+
∑

1≤r≤m−1

(
m

r

) ∑
0≤s≤m−r

(
m− r

s

)
(−1)s+rtn,m−r

=
∑

1≤s≤m

(
m

s

)
(−1)s+n+m+1

+
∑

1≤r≤m−1

(
m

r

) ∑
0≤s≤m−r

(
m− r

s

)
(−1)s+n+m+1

= (−1)n+m+1

 ∑
1≤s≤m

(
m

s

)
(−1)s

+
∑

1≤r≤m−1

(
m

r

) ∑
0≤s≤m−r

(
m− r

s

)
(−1)s

 .

By the binomial formula, for1 ≤ r ≤ m− 1 we have

0 = (1− 1)m−r =
∑

0≤s≤m−r

(
m− r

s

)
(−1)s .

So we are left with

tn+1,m = (−1)n+m+1

 ∑
1≤s≤m

(
m

s

)
(−1)s


= (−1)n+m+1

 ∑
0≤s≤m

(
m

s

)
(−1)s −

(
m

0

)
(−1)0


= (−1)n+m+1 (0− 1)

= (−1)n+1+m+1 = (−1)(n+1)+m−1 . �

Lemma D.2 (BSV lemma).LetX be a finite set and letf : P (X) → R. Then∑
∅6=J⊆X

(−1)|J|−1f(J) =
∑

∅6=K⊆X

∑
K⊆J⊆X

(−1)|J|+|K|f(J) .

Proof. By induction on|X |. The base is obvious. LetX ′ = X ∪ {∗}, with ∗ 6∈ X .
Consider ∑

∅6=K⊆X′

∑
K⊆J⊆X′

(−1)|J|+|K|f(J)
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We can split the sum in two, according to whetherK contains or does not contain∗.

=
∑

∅6=K⊆X

∑
K⊆J⊆X′

(−1)|J|+|K|f(J) +
∑

∗∈K⊆X′

∑
K⊆J⊆X′

(−1)|J|+|K|f(J)

We now rewrite the second part of the expression, singling out the case whereK = {∗}.
In all the other cases we can writeK asH ∪ {∗} for some nonemptyH ⊆ X .

=
∑

∅6=K⊆X

∑
K⊆J⊆X′

(−1)|J|+|K|f(J)

+
∑

∅6=H⊆X

∑
H∪{∗}⊆J⊆X′

(−1)|J|+|H|+1f(J) +
∑

∗∈J⊆X′
(−1)|J|+1f(J)

We now split each of the inner sums in the first line according to whetherJ contains or
does not contain∗. Also note that(−1)|J|+1 = (−1)|J|−1. We have then

=
∑

∅6=K⊆X

 ∑
K⊆J⊆X

(−1)|J|+|K|f(J) +
∑

K∪{∗}⊆J⊆X′
(−1)|J|+|K|f(J)


+

∑
∅6=H⊆X

∑
H∪{∗}⊆J⊆X′

(−1)|J|+|H|+1f(J) +
∑

∗∈J⊆X′
(−1)|J|−1f(J)

=
∑

∅6=K⊆X

∑
K⊆J⊆X

(−1)|J|+|K|f(J) +
∑

∅6=K⊆X

∑
K∪{∗}⊆J⊆X′

(−1)|J|+|K|f(J)

+
∑

∅6=H⊆X

∑
H∪{∗}⊆J⊆X′

(−1)|J|+|H|+1f(J) +
∑

∗∈J⊆X′
(−1)|J|−1f(J)

Now the second and the third member of the expression above cancel out.

=
∑

∅6=K⊆X

∑
K⊆J⊆X

(−1)|J|+|K|f(J) +
∑

∗∈J⊆X′
(−1)|J|−1f(J)

We now use the induction hypothesis on the first member

=
∑

∅6=J⊆X

(−1)|J|−1f(J) +
∑

∗∈J⊆X′
(−1)|J|−1f(J) =

∑
∅6=J⊆X′

(−1)|J|−1f(J) . �
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