
B
R

IC
S

R
S

-04-7
Ǩretı́nský

etal.:
O

n
the

E
xpressive

P
ow

er
ofE

xtended
P

rocess
R

ew
rite

S
ystem

s

BRICS
Basic Research in Computer Science

On the Expressive Power of
Extended Process Rewrite Systems

Mojm ı́r K řetı́nský
Vojt ěchŘehák
Jan Strejček

BRICS Report Series RS-04-7

ISSN 0909-0878 April 2004

Copyright c© 2004, Mojmı́r K řetı́nský & Vojt ěchŘehák & Jan
Strejček.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/7/

On the Expressive Power
of Extended Process Rewrite Systems∗

M. Křet́ınský, V. Řehák†, and J. Strejček

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic
{kretinsky,rehak,strejcek}@fi.muni.cz

April, 2004

Abstract

We provide a unified view on three extensions of Process rewrite
systems (PRS) and compare their and PRS’s expressive power.
We show that the class of Petri Nets is less expressible up to
bisimulation than the class of Process Algebra extended with fi-
nite state control unit. Further we show our main result that the
reachability problem for PRS extended with a so called weak finite
state unit is decidable.

1 Introduction

An automatic verification of current software systems often needs to
model them as infinite-state systems, i.e. systems with an evolving struc-
ture and operating on unbounded data types: a network of mobile phones
is a concurrent system with evolving structure which dynamically changes
its size (and can become very large). Robustness of the network re-
quires that underlying protocols should work for an arbitrarily large

∗This work has been supported by GAČR, grant No. 201/03/1161.
†The co-author is supported by Marie Curie Fellowship of the European Commu-

nity Programme Improving the Human Research Potential and the Socio-economic
Knowledge Base under contract number HPMT-CT-2000-00093.

1

(i.e. potentially infinite) number of client processes. A JAVA applet dy-
namically downloads classes over the network and executes their meth-
ods, the stack of activation records should be seen as potentially infinite.

Infinite-state systems can be specified in a number of ways with their
respective advantages and limitations. Petri nets, pushdown automata,
and process algebras like BPA, BPP, or PA all serve to exemplify this.
Here we employ the classes of infinite-state systems defined by term
rewrite systems and called PRS (Process Rewrite Systems) as introduced
by Mayr [12]. PRS subsume a variety of the formalisms studied in the
context of formal verification (e.g. all the models mentioned above).

A Process Rewrite System is a finite set of rules t
a−→ t′ where a is an

action under which a subterm t can be reduced onto a subterm t′. Terms
are build up from an empty process ε and a set of process constants
using (associative) sequential “.” and (associative and commutative)
parallel “‖” operators. The semantics of PRS can be defined by labelled
transition systems (LTS) – labelled directed graphs whose nodes (states
of the system) correspond to terms modulo properties of “.” and “‖”
and edges correspond to individual actions (computational steps) which
can be performed in a given state. The relevance of various subclasses
of PRS for modelling and analysing programs is shown e.g. in [7], for
automatic verification see for example surveys [5, 18].

Mayr [12] has also shown that the reachability problem (i.e. given
terms t, t′: is t reducible to t′?) for PRSs is decidable. This property is
important to automatic verification as many verification problems, e.g.
verification of safety properties, reduce to the reachability problem. Most
research (with some recent exceptions, e.g. [3, 7]) has been devoted to the
PRS classes from the lower part of the PRS hierarchy, especially to push-
down automata (PDA), Petri nets (PN) and their respective subclasses.
We mention the successes of PDA in modeling recursive programs (with-
out process creation), PN modeling dynamic creation of concurrent pro-
cesses (without recursive calls), and CPDS (communicating pushdown
systems [2]) modeling both features. All of these formalisms subsume a
notion of a finite state unit (FSU) keeping some kind of global informa-
tion which is accessible by the ready to be reduced components of a PRS
term – hence a FSU can regulate rewriting. On the other hand, using a
FSU to extend the PRS rewriting mechanism is very powerful since the
state-extended version of PA (sePA) processes has a full Turing-power
[1] – the decidability of reachability is lost for sePA, all its superclasses
(see Fig. 1), and CPDS as well.

2

In brief, the purpose of this paper is to present suitable models for
some real-life patterns of software systems such that reachability remains
decidable. We have proposed two PRS extensions, namely fcPRS ([19],
inspired by concurrent constraint programming [17]) and wPRS ([9] for
PRS equipped with weak FSU inspired by weak automata [16]). It is
shown that they increase the expressive power of those PRS subclasses
which do not subsume the notion of finite control. By our opinion
(sub)classes of wPRS are suitable for modeling some software systems
which can be found in the areas of real-time control programs and com-
munication and cryptographic protocols. In wPRS rewriting, FSU can
cycle in any control state, but it can change its state only finitely many
times. Hence an LTS generated by wPRS models the consecutive execu-
tion of the respective (and differently working) phases of the mentioned
software systems.

The outline of the paper is a follows: after some preliminaries we
introduce a uniform framework for specifying all extended PRS for-
malisms in Section 3 and compare their relative expressibility with re-
spect to strong bisimulation in Section 4. Here we also solve (to the
best of our knowledge) an open problem of the relationship between PN
and sePA classes by showing that PN are less expressible (up to bisim-
ulation) than sePA. In Section 5 we show that all classes of our fcPRS
and wPRS extensions keep the reachability problem decidable. The last
section summarises our results.

Related work: In the context of reachability analysis one can see at
least two approaches: (i) abstraction (approximate) analysis techniques
on stronger ’models’ such as sePA and its superclasses with undecidable
reachability, e.g. see a recent work [2], and (ii) precise techniques for
’weaker’ models, e.g. PRS classes with decidable reachability, e.g. [10]
and another recent work [3]. In the latter one, symbolic representations
of set of reachable states are built with respect to various term structural
equivalences. Among others it is shown that for the PAD class and the
same equivalence as in this paper, when properties of sequential and par-
allel compositions are taken into account, one can construct nonregular
representations based on counter tree automata.

3

2 Preliminaries

A labelled transition system (LTS) L is a tuple (S, Act,−→, α0), where
S is a set of states or processes, Act is a set of atomic actions or labels,
−→⊆ S × Act × S is a transition relation (written α

a−→ β instead of
(α, a, β) ∈−→), α0 ∈ S is a distinguished initial state.

We use the natural generalization α
σ−→ β for finite sequences of

actions σ ∈ Act∗. The state α is reachable if there is σ ∈ Act∗ such that
α0

σ−→ α. Let Const = {X, . . .} be a countably infinite set of process
constants. The set T of process terms (ranged over by t, . . .) is defined
by the abstract syntax t = ε | X | t1.t2 | t1‖t2, where ε is the empty term,
X ∈ Const is a process constant (used as an atomic process), ’‖’ and ’.’
mean parallel and sequential compositions respectively.

The set Const(t) is the set of all constants occurring in a process
term t. We always work with equivalence classes of terms modulo com-
mutativity and associativity of ’‖’ and modulo associativity of ’.’ We also
define ε.t = t = t.ε and t‖ε = t.

We distinguish four classes of process terms: ’1’ stands for terms
consisting of a single process constant only (i.e. ε 6∈ 1), ’S’ are sequential
terms – without parallel composition, ’P’ are parallel terms – without
sequential composition, ’G’ are general terms – with arbitrarily nested
sequential and parallel compositions.

Definition 2.1. Let Act = {a, b, · · · } be a countably infinite set of
atomic actions, α, β ∈ {1, S, P, G} such that α ⊆ β. An (α, β)-PRS
(process rewrite system) ∆ is a pair (R, t0), where

• R is a finite set of rewrite rules of the form t1
a−→ t2, where t1 ∈ α,

t1 6= ε, t2 ∈ β are process terms and a ∈ Act is an atomic action,

• t0 ∈ β is an initial state.

Given PRS ∆ we define Const(∆) as the set of all constants occurring
in the rewrite rules of ∆ or in its initial state, and Act(∆) as the set of
all actions occurring in the rewrite rules of ∆. We sometimes write
(t1

a−→ t2) ∈ ∆ instead of (t1
a−→ t2)∈R.

The semantics of ∆ is given by the LTS (S, Act(∆),−→, t0), where
S = {t ∈ β | Const(t) ⊆ Const(∆)} and −→ is the least relation
satisfying the inference rules:

(t1
a−→ t2) ∈ ∆

t1
a−→ t2

,
t1

a−→ t′1
t1‖t2 a−→ t′1‖t2

,
t1

a−→ t′1
t1.t2

a−→ t′1.t2
.

4

If no confusion arises, we sometimes speak about a “process rewrite
system” meaning a “labelled transition system generated by process
rewrite system”.

Some classes of (α, β)-PRS correspond to widely known models as fi-
nite state systems (FS), basic process algebras (BPA), basic parallel pro-
cesses (BPP), process algebras (PA), pushdown processes (PDA, see [6]
for justification), and Petri nets (PN). The other classes were introduced
(and named as PAD, PAN, and PRS) by Mayr [12]. The correspondence
between (α, β)-PRS classes and acronyms just mentioned can be seen in
Figure 1.

3 Extended PRS

In this section we recall the definitions of three different extensions of
process rewrite systems, namely state-extended PRS (sePRS) [8], PRS
with a finite constraint system (fcPRS) [19], and PRS with a weak finite-
state unit (wPRS) [9]. In all cases, the PRS formalism is extended with
a finite state unit of some kind.

sePRS State-extended PRS corresponds to PRS extended with s fi-
nite state unit without any other restrictions. The well-known example of
this extension is the state-extended BPA class (also known as pushdown
processes).

wPRS The notion of weakness employed in wPRS formalism corre-
sponds to weak automaton [16] in automata theory. The behaviour of a
weak state unit is acyclic, i.e. states of state unit are ordered and non-
increasing during every sequence of actions. As the state unit is finite,
its state can be changed only finitely many times during every sequence
of actions.

fcPRS The extension of PRS with finite constraint systems is mo-
tivated by concurrent constraint programming (CCP) (see e.g. [17]). In
CCP the processes work with a shared store (seen as a constraint on val-
ues that variables can represent) via two operations, tell and ask. The
tell adds a constraint to the store provided the store remains consistent.
The ask is a test on the store – it can be executed only if the current
store implies a specified constraint.

Formally, values of store form a bounded lattice (called a constraint
system) with the lub operation ∧ (least upper bound), the least element
tt, and the greatest element ff. The execution of tell(n) changes the value

5

of the store from o to o ∧ n (provided o ∧ n 6= ff – consistency check).
The ask(m) can be executed if the current value of the store o is greater
than m.

The state unit of fcPRS has the same properties as the store in CCP.
We add two constraints (m, n) to each rewrite rule. The application of
a rule corresponds to the concurrent execution of ask(m), tell(n), and
rewriting:

• a rule can be applied only if the actual store o satisfies m ≤ o and
o ∧ n 6= ff,

• the application of the rule rewrites the process term and changes
the store to o ∧ n.

At first we define the common syntax of extended PRS and then we
specify the individual restrictions on state units.

Definition 3.1. Let Act = {a, b, · · · } be a countably infinite set of
atomic actions, α, β ∈ {1, S, P, G} such that α ⊆ β. An extended (α, β)-
PRS ∆ is a tuple (M,≤, R, m0, t0), where

• M is a finite set of states of state unit,

• ≤ is a binary relation over M ,

• R is a finite set of rewrite rules of the form (m, t1)
a−→ (n, t2),

where t1 ∈ α, t1 6= ε, t2 ∈ β, m, n ∈ M , and a ∈ Act,

• Pair (m0, t0) ∈ M × β forms a distinguished initial state of the
system.

The specific type of extended (α, β)-PRS is given by further require-
ments on ≤. An extended (α, β)-PRS is

• (α, β)-sePRS without any requirements.1

• (α, β)-wPRS iff (M,≤) is a partially ordered set.

• (α, β)-fcPRS iff (M,≤) is a bounded lattice. The lub operation
(least upper bound) is denoted by ∧, the least and the greatest
elements are denoted by tt and ff, respectively. We also assume
that m0 6= ff.

1In this case, the relation ≤ can be omitted from the definition.

6

To shorten our notation we prefer mt over (m, t). As in the PRS case,
instead of (mt1

a−→ nt2) ∈ R where ∆ = (M,≤, R, m0, t0), we usually
write (mt1

a−→ nt2) ∈ ∆. The meaning of Const(∆) (process constants
used in rewrite rules) and Act(∆) (actions occurring in rewrite rules) for
a given extended PRS ∆ is also the same as in the PRS case.

The semantics of extended (α, β)-PRS ∆ is given by the correspond-
ing labelled transition system (S, Act(∆),−→, m0t0), where S = M×{t ∈
β | Const(t) ⊆ Const(∆)}2 and the relation −→ is defined as the least
relation satisfying the inference rule corresponding to the application of
rewrite rules (and dependent on the concrete formalism):

sePRS
(mt1

a−→ nt2) ∈ ∆

mt1
a−→ nt2

wPRS
(mt1

a−→ nt2) ∈ ∆

mt1
a−→ nt2

if n ≤ m

fcPRS
(mt1

a−→ nt2) ∈ ∆

ot1
a−→ (o ∧ n)t2

if m ≤ o and o ∧ n 6= ff

and two common inference rules

mt1
a−→ nt′1

mt1‖t2 a−→ nt′1‖t2
,

mt1
a−→ nt′1

mt1.t2
a−→ nt′1.t2

,

where t1, t2, t
′
1 ∈ T and m, n, o ∈ M .

Instead of (1, S)-sePRS, (1, S)-wPRS, (1, S)-fcPRS, . . . we use a more
natural notation seBPA, wBPA, fcBPA, etc. The class seBPP is also
known as parallel pushdown automata (PPDA) or multiset automata
(MSA), see [14].

4 Expressiveness

Figure 1 describes the hierarchy of PRS classes and their extended coun-
terparts with respect to bisimulation equivalence. If any process in class
X can be also defined (up to bisimulation) in class Y we write X ⊆ Y . If
additionally Y 6⊆ X holds, we write X (Y and say X is less expressive
than Y . This is depicted by the line(s) connecting X and Y with Y

2If ∆ is an fcPRS, we eliminate the states with ff as they are unreachable.

7

sePRS

wPRS

ttttttttttttttttttttttttttt

IIIIIIIIIIIIIIIIIIIIIIIII

fcPRS

tttttttttttttttttttttttttt

IIIIIIIIIIIIIIIIIIIIIIIII

PRS
(G, G)-PRS

ttttttttttttttttttttttttt

IIIIIIIIIIIIIIIIIIIIIIII

sePAD sePAN

wPAD

JJJJJJJJJJJJJJJJJJJJJJJJJJJ wPAN

uuuuuuuuuuuuuuuuuuuuuuuuu

fcPAD

JJJJJJJJJJJJJJJJJJJJJJJJJJ fcPAN

uuuuuuuuuuuuuuuuuuuuuuuuu
PAD

(S, G)-PRS

JJJJJJJJJJJJJJJJJJJJJJJJJJ
PAN

(P, G)-PRS

vvvvvvvvvvvvvvvvvvvvvvvv

sePA

oooooooooooooooooooooo

NNNNNNNNNNNNNNNNNNNN

wPA

ttttttttttttttttttttttttttt

HHHHHHHHHHHHHHHHHHHHHHHHH

fcPA

ttttttttttttttttttttttttttt

HHHHHHHHHHHHHHHHHHHHHHHHH

{se,w,fc}PDA=PDA=seBPA
(S, S)-PRS

PA
(1, G)-PRS

tttttttttttttttttttttttttt

HHHHHHHHHHHHHHHHHHHHHHHH
{se,w,fc}PN=PN

(P, P)-PRS

seBPP=MSA

wBPA wBPP

fcBPA fcBPP

BPA
(1, S)-PRS

SSSSSSSSSSSSSSSSSSS
BPP

(1, P)-PRS

lllllllllllllllll

{se,w,fc}FS=FS
(1, 1)-PRS

Figure 1: The hierarchy of classes defined by (extended) rewrite
formalisms.

placed higher than X in Figure 1. The dotted lines represent the facts
X ⊆ Y , where we just conjecture that X (Y hold.

Some observations (even up to isomorphism) are immediate, for ex-
ample (i) collapses of the classes FS, PDA and PN with their extended
analogues, (ii) if e ∈ {se, w, fc} and X ⊆ Y then eX ⊆ eY, and (iii)
(α, β)-PRS ⊆ (α, β)-fcPRS ⊆ (α, β)-wPRS ⊆ (α, β)-sePRS for every
(α, β)-PRS class.

8

The strictness (’(’) of the PRS-hierarchy has been proved by Mayr [12],
that of the corresponding classes of PRS and fcPRS has been proved
in [19], and that of relating fcPRSs, wPRSs, and MSA is shown in [9].
Note the strictness relations wX (seX hold for all X = PA, PAD, PAN,
PRS due to our reachability result for wPRS given in Sec. 5 and due to
the full Turing-power of sePA [1].

These proofs together with Moller’s result establishing MSA (PN [15]
complete the strictness proof of Figure 1 – with one exception, namely
the relation between PN and sePA classes. Looking at two lines leaving
sePA down to the left and down to the right, we note the “left-part col-
lapse” of (S, S)-PRS and PDA proved by Caucal [6] (up to isomorphism).
The right-part counterpart is slightly different due to the previously men-
tioned MSA (PN. In the next subsection we prove PN (sePA (in fact
it suffices to show PN ⊆ sePA as the strictness is obvious).

4.1 PN (sePA

We now show that Petri nets are less expressive (with respect to bisim-
ulation) than state-extended Process Algebras. The proof is done by a
construction of a sePA ∆′ bisimilar to a given PN ∆. In this section,
a Petri net is considered in traditional notation (via finite sets of la-
belled transitions and places). A state of a PN is a marking of the places
P1, P2, . . . , Pk, k = |Const(∆)| and it is given as a k-tuple, where the i-th
component stands for the number of tokens at place Pi.

Let Li be the maximal number of arrows between any transition and
place Pi. We put Mi = k ∗ Li.

Each state of sePA ∆′ will consist of a term (a parallel composition
of k counters for corresponding marking) and a state of a finite-state
control unit (FSU). Each state of FSU is the product of three parts as:

{1, . . . , k} × ({−M1, . . . , 2∗M1}× . . .×{−Mk, . . . , 2∗Mk}) × {0, 1}k

update controller modulo counter empty info

The update controller goes around the range and refers to the counter
being updated in the next step. The modulo counter is k-tuple of counters
with values from −Mi to 2 ∗ Mi. Each of them saves the number of
tokens in one state counted modulo Mi. The empty info says which term
counters are empty.

We define 2k process constants Bi, Xi ∈ Const(∆′), Bi representing
the bottom of i-th counter and Xi representing Mi tokens at place Pi.

9

For a given initial marking α = (p1, p2, . . . , pk) of a PN ∆ we construct
the following initial state of the sePA ∆′

1(m1, m2, . . . , mk)(e1, e2, . . . , ek)t1‖t2‖ · · · ‖tk
where mi = pi mod Mi, if n = 0 then ei = 1 else ei = 0, and ti = Xn

i Bi,
where n = pi div Mi. In other words we have pi = mi + n ∗Mi.

For each PN transition ((l1, l2, . . . , lk)
a−→ (r1, r2, . . . , rk)) ∈ ∆ we

construct the set of sePA rules

s(m1, . . . , mk)(e1, . . . , ek)t
a−→ s′(m′

1, . . . , m
′
k)(e

′
1, . . . , e

′
k)t

′

such that they obey the following conditions:

• Update controller conditions: s ∈ {1, . . . , k} and s′ = (s mod k)+1.

• The general conditions for modulo counters and empty infos (1 ≤
i ≤ k):

– mi, m
′
i ∈ {−Mi, . . . , 2 ∗Mi}, ei, e

′
i ∈ {0, 1},

– if ei = 1 then mi ≥ li (i.e. the transition can be performed),

– if i 6= s then m′
i = mi − li + ri, e

′
i = ei

else m′
s = (ms − ls + rs) mod Ms

We now specify e′s and the terms t, t′. The first two Bottom rules, t = Bs,
are the rules for working with the empty stack. The next three Top rules,
t = Xs, describe the rewriting of a process constant Xs. Depending on
the values of ms − ls + rs, there are dec, inc, and basic variants manipu-
lating the s-th stack.

Rule t ms − ls + rs ∈ e′s t′

Bottom-basic rule Bs {0, . . . , Ms − 1} 1 Bs

Bottom-inc rule Bs {Ms, . . . , 2 ∗Ms} 0 Xs.Bs

Top-dec rule Xs {−Ms, . . . ,−1} 0 ε
Top-basic rule Xs {0, . . . , Ms − 1} 0 Xs

Top-inc rule Xs {Ms, . . . , 2 ∗Ms} 0 Xs.Xs

Notation. In the following Lemmata 4.1 to 4.3 let β be a reachable
state of sePA ∆′, β = s(m1, m2, . . . , mk)(e1, e2, . . . , ek)t1‖t2‖ . . .‖tk, and
ni to be the number of constants Xi in the term ti of β. We also
refer to α as a marking of PN ∆ corresponding to the state β, and
pi is the number of tokens at the i-th place of the marking α, and
((l1, l2, . . . lk)

a−→ (r1, r2, . . . rk)) ∈ ∆ is a PN rule.
The following lemma shows that modulo counters never overflow.

10

Lemma 4.1. −Mi + Li − 1 < mi < 2 ∗Mi −Li for all reachable states.

Proof. If the i-th stack has been just updated, then −1 < mi < Mi. As
there are exactly k − 1 states to the next updating and each transition
works with at most Li tokens of Pi, each of the states differs from the
updated one by at most (k − 1) ∗ Li tokens at Pi. As Mi = k ∗ Li, the
lemma holds.

Lemma 4.2. pi = mi + ni ∗Mi for all reachable states.

Proof. For the initial state the lemma is implied directly from the defini-
tion. The inductive step proving the lemma for other reachable states is a
straightforward consequence of the m′

i and t′ conditions in the definition
of sePA rules.

Lemma 4.2 shows that every sePA state β saves the numbers of tokens
of α. The following lemma proves that every transition of ∆ can be
performed in α if and only if there is a corresponding rewrite rule that
can be used in β.

Lemma 4.3. pi ≥ li iff (ei = 0 or mi ≥ li) for all reachable states.

Proof. If the i-th stack has just been updated and ei = 1, a Bottom-basic
rule was used and so mi = pi. These conditions stay unchanged till the
next updating.

If ei has been updated to 0, then pi ≥ Mi. There are k − 1 states to
the next updating. Hence pi ≥ Mi − (k − 1) ∗ Li = Li in all these states
and according to the definition of Li, Li ≥ li and so pi ≥ li.

Theorem 4.4. PN (sePA with respect to bisimulation.

Proof. Lemma 4.1 and Lemma 4.2 show that the construction of sePA
presented here, saves every marking correctly, while Lemma 4.3 proves
that the corresponding states are bisimilar. Hence, PN ⊆ sePA (with
respect to bisimulation). Strictness follows from two of the results men-
tioned in the introduction, namely the full Turing-power of sePA [1] and
the decidability of reachability for PRS [12].

5 Reachability for wPRS is decidable

In the following we show that for a given wPRS ∆ and its states rt1, st2
it is decidable whether st2 is reachable from rt1 or not (st2 is reachable
from rt1 if a sequence of actions σ such that rt1

σ−→ st2) exists.

11

Our proof exhibits a similar structure to the proof of decidability
of the reachability problem for PRS [12]; at first we reduce the general
problem to the reachability problem for wPRS with rules containing at
most one occurrence of a sequential or parallel operator, and then we
solve this subproblem using the fact that reachability problems for both
PN and PDA are decidable [11, 4]. The latter part of the proof is based
on a new idea of passive steps presented later.

As the labels on rewrite rules are not relevant here, we omit them
in this section. To distinguish between rules and rewriting sequences we
use rt1 �∆ st2 to denote that in wPRS ∆ the state st2 is reachable from
rt1. Further, states of weak state unit are called weak states.

Definition 5.1. Let ∆ be a wPRS. A rewrite rule in ∆ is parallel or
sequential if it has one of the following forms:

parallel: pX −→ qY ‖Z pX‖Y −→ qZ pX −→ qY pX −→ qε,
sequential: pX −→ qY.Z pX.Y −→ qZ pX −→ qY pX −→ qε,

where X, Y, Z are process constants and p, q are weak states. A rule is
trivial if it is both parallel and sequential (i.e. it has the form pX −→ qY
or pX −→ qε). A wPRS ∆ is in normal form if every rewrite rule in ∆
is parallel or sequential.

Lemma 5.2. For wPRS ∆, terms t1, t2, and weak states r, s, there are
terms t′1, t

′
2 of wPRS ∆′ in normal form satisfying rt1 �∆ st2 ⇐⇒

rt′1 �∆′
st′2. Moreover, wPRS ∆′ and terms t′1, t

′
2 can be effectively con-

structed.

Proof. In this proof we assume that the sequential composition is left-
associative. It means that the term X.Y.Z is (X.Y).Z and so its subterms
are X, Y , Z, and X.Y , but not Y.Z. However, the term Y ‖Z is a subterm
of X.(Y ‖Z).

Let size(t) denote the number of sequential and parallel operators in
term t. For every wPRS ∆, let ki be the number of rules (rt1 −→ st2) ∈ ∆
that are neither parallel nor sequential and size(rt1 −→ st2) = i, where
size(rt1 −→ st2) = size(t1) + size(t2). Thus, ∆ is in normal form iff
ki = 0 for every i. In this case, let n = 0. Otherwise, let n be the
maximal i such that ki 6= 0 (n existing as the set of rules is finite). We
define norm(∆) to be the pair (n, kn).

Now we describe a procedure transforming ∆ (if it is not in a nor-
mal form) onto a wPRS ∆′ and terms t1, t2 onto terms t′1, t

′
2 such that

norm(∆′) < norm(∆) (with respect to lexicographical ordering) and
rt1 �∆ st2 ⇐⇒ rt′1 �∆′

st′2.

12

Let us assume that wPRS ∆ is not in normal form. Then there is
a rule that is neither sequential nor parallel and has the maximal size.
Take a non-atomic subterm t of this rule and replace every subterm t in ∆
(i.e. in rewrite rules and initial term) and in t1 and t2 by a fresh constant
X. Then add two rules pX −→ pt and pt −→ pX for each weak state p.
This yields a new wPRS ∆′ and terms t′1 and t′2 where the constant X
serves as an abbreviation for the term t. By the definition of norm we get
norm(∆′) < norm(∆). The correctness of our transformation remains
to be demonstrated:

rt1 �∆ st2 ⇐⇒ rt′1 �∆′
st′2

The implication ⇐= is obvious. For the opposite direction we show that
every rewriting step in ∆ from pl1 to ql2 under the rule (pl −→ ql′) ∈ ∆
corresponds to a sequence of several rewriting steps in ∆′ leading from
pl′1 to ql′2, where l′1, l

′
2 equal to l1, l2 with all occurrences of t replaced by

X. Let us assume the rule pl −→ ql′ modifies a subterm t of pl1, and/or
a subterm t appears in ql2 after the rule application (other cases are
trivial). If the rule modifies a subterm t of l1 there are two cases. Either
l subsumes whole t and then the corresponding rule in ∆′ (with t replaced
by X) can be applied directly on pl′1, or due to the left-associativity of
sequential operator, t is not a subterm of the right part of any sequential
composition in l1 and thus the application of the corresponding rule in
∆′ on pl′1 is preceded by an application of the added rule pX −→ pt.
The situation when subterm t appears in ql2 after the application of
the considered rule is similar. Either l′ subsumes whole t and then the
application of the corresponding rule in ∆′ results directly in ql′2, or t is
not a subterm of the right part of any sequential composition in l2 and
thus the application of the corresponding rule in ∆′ is followed by an
application of the added rule qt −→ qX reaching the state ql′2.

By repeating this procedure we finally get a wPRS ∆′′ in normal form
and terms t′′1,t

′′
2 satisfying rt1 �∆ st2 ⇐⇒ rt′′1 �∆′′

st′′2.

Mayr’s proof of the reachability problem for PRS now completes the
PRS ∆ in normal form into so-called transitive normal form satisfying
(X −→ Y) ∈ ∆ whenever X �∆ Y . This step employs the local effect of
rewriting under sequential rules in a parallel environment and vice versa.
Intuitively, whenever there is a rewriting sequence

X‖Y −→ (X1.X2)‖Y −→ (X1.X2)‖Z −→ X2‖Z

13

in PRS in normal form, then the rewriting of each parallel component is
independent in the sense that there are also rewriting sequences X −→
X1.X2 −→ X2 and Y −→ Z. This does not hold for wPRS in nor-
mal form as the rewriting on one parallel component can influence the
rewriting on other parallel components via a weak state unit. To get its
independence back we introduce the concept of passive steps emulating
changes of a weak state produced by the environment.

Definition 5.3. A finite sequence of weak states pairs PS = {(pi, qi)}n
i=1

satisfying p1 > q1 ≥ p2 > q2 ≥ · · · ≥ pn > qn is called passive steps.
Let ∆ be a wPRS and PS be passive steps. By ∆ + PS we denote

a system ∆ with an added rule pX −→ qX for each (p, q) in PS and
X ∈ Const(∆). For all terms t1, t2 and weak states r, s we write

rt1 �∆+PS
triv st2 iff rt1 �∆+PS st2 via trivial rules,

rt1 �∆+PS
seq st2 iff rt1 �∆+PS st2 via sequential rules,

rt1 �∆+PS
par st2 iff rt1 �∆+PS st2 via parallel rules.

Informally, rt1 �∆+PS st2 means that the state rt1 can be rewritten
onto state st2 provided a weak state can be passively changed from p to
q for every passive step (p, q) in PS . Thanks to the finiteness of a weak
state unit, the number of different passive steps is finite.

Definition 5.4. Let wPRS ∆ be in normal form. If for every X, Y ∈
Const(∆), weak states r, s, and passive steps PS it holds that

• rX �∆+PS sY =⇒ rX �∆+PS
triv sY

then ∆ is in flatted normal form,

• rX �∆+PS
seq sY =⇒ rX �∆+PS

triv sY
then ∆ is in sequential flatted normal form,

• rX �∆+PS
par sY =⇒ rX �∆+PS

triv sY
then ∆ is in parallel flatted normal form.

The following lemma says that it is sufficient to check reachability
via sequential rules and via parallel rules in order to construct a wPRS
in flatted normal form. This allows to reduce the reachability problem
for wPRS to the reachability problems for wPN and wPDA (i.e. to the
reachability problems for PN and PDA).

Lemma 5.5. If a wPRS is in both sequential and parallel flatted normal
form then it is in flatted normal form as well.

14

Proof. We assume the contrary and derive a contradiction. Let ∆ be a
wPRS in sequential and parallel flatted normal form. Now let us choose
passive steps PS and a rewriting sequence in ∆+PS leading from rX to
sY such that rX 6�∆+PS

triv sY and the number of applications of non-trivial
rewrite rules used in the sequence is minimal.

As the wPRS ∆ is in both sequential and parallel flatted normal form,
rX 6�∆+PS

seq sY and rX 6�∆+PS
par sY . Hence, both sequential and parallel

operators occur in the rewriting sequence. There are two cases.

1. Assume that a sequential operator appears first. The parallel op-
erator is then introduced by a rule in the form pU −→ qU1‖U2

applied to a state pU.t, where t ∈ S. From q(U1‖U2).t �∆+PS sY
and the fact that at most one process constant can be removed in
one rewriting step, it follows that in the rest of the sequence con-
sidered, the term (U1‖U2) is rewritten onto a process constant (say
V) first. Let PS ′ be PS in this case.

2. Assume that a parallel operator appears first. The sequential op-
erator is then introduced by a rule in the form pU −→ qU1.U2

applied to a state pU‖t, where t ∈ P . The rest of the sequence
subsumes steps rewriting the term U1.U2 onto a process constant
(say V). Contrary to the previous case, these steps can be inter-
leaved with steps rewriting other parallel components and possibly
changing weak state. Let PS ′ be passive steps PS merged with
these changes of weak states.

Consequently, we have a rewriting sequence in ∆ + PS ′ from pU to oV
(for some o) with fewer applications of non-trivial rewrite rules. As the
number of applications of non-trivial rewrite rules used in the original
sequence is minimal we get pU 6�∆+PS ′

triv oV . This contradicts our choice
of rX, sY , and PS .

Lemma 5.6. For every wPRS system ∆ in normal form, terms t1, t2 over
Const(∆), and weak states r, s of ∆ a wPRS ∆′ can be constructed such
that ∆′ is in flatted normal form satisfying rt1 �∆ st2 ⇐⇒ rt1 �∆′

st2.

Proof. To obtain ∆′ we enrich ∆ by trivial rewrite rules transforming the
system into sequential and parallel flatted normal forms, which suffices
thanks to Lemma 5.5. Using algorithms deciding reachability for PDA
and PN, the algorithm checks if there are some weak states r, s, constants
X, Y ∈ Const(∆), and passive steps PS = {(pi, qi)}n

i=1 (satisfying r ≥ p1

15

and qn ≥ s as weak states pairs beyond this range are of no use here)
such that rX �∆+PS

seq sY ∨ rX �∆+PS
par sY and rX 6�∆+PS

triv sY . We
finish if the answer is negative. Otherwise we add to ∆ rules rX −→
p1Z1, qiZi −→ pi+1Zi+1 for i = 1, . . . , n − 1, and qnZn −→ sY , where
Z1, . . . , Zn are fresh process constants (if n = 0 then we add just the rule
rX −→ sY). The algorithm then repeats this procedure on the system
with added rules with one difference; the X, Y ranges over the constants
of the original system ∆. This is sufficient as new constants occur only
in trivial rules3. The algorithm terminates as the number of iterations is
bounded by the number of pairs of states rX, sY of ∆, times the number
of passive steps PS . The correctness follows from the fact that added
rules have no influence on reachability.

Theorem 5.7. The reachability problem for wPRS is decidable.

Proof. Let ∆ be a wPRS and rt1, st2 its states. We want to decide
whether rt1 �∆ st2 or not. Clearly rt1 �∆ st2 ⇐⇒ rX �∆′

sY ,
where X, Y are fresh constants and ∆′ arises from ∆ by the addition of
the rules rX −→ rt1 and st2 −→ sY 4. Hence we can directly assume
that t1, t2 are process constants, say X, Y . Lemma 5.2 and Lemma 5.6
successively reduce the question whether rX �∆ sY to question whether
rX �∆′

sY , where ∆′ is in flatted normal form – note that Lemma 5.2
does not change terms t1, t2 if they are process constants. The definition
of flatted normal form implies rX �∆′

sY ⇐⇒ rX �∆′
triv sY . Finally

the relation rX �∆′
triv sY is easy to check.

6 Conclusions

We have presented a unified view on some (non-conservative) extensions
of Process Rewrite Systems. Comparing the mutual expressiveness of
the respective subclasses up to bisimulation equivalence, we have added
some new strict relations, including the class of Petri Nets being less
expressible than the class of Process Algebra extended with finite state
control unit. We have shown that our extensions keep the reachability
problem decidable and we believe that they may be suitable for modeling
some real-life software systems.

3If the system with added rules is not in sequential or parallel flatted normal form,
then there is a counterexample with the constants X, Y of the original system ∆.

4If t2 = ε then this is not a correct rule. In this case we need to add to ∆′ a rule
pt −→ qY for each rule (pt −→ qε) ∈ ∆.

16

References

[1] A. Bouajjani, R. Echahed, and P. Habermehl. On the verifica-
tion problem of nonregular properties for nonregular processes. In
Proc. of LICS’95. IEEE, 1995.

[2] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the
static analysis of concurrent programs with procedures. Interna-
tional Journal on Foundations of Computer Science, 14(4):551–582,
2003.

[3] A. Bouajjani and T. Touili. Reachability Analysis of Process Rewrite
Systems. In Proc. of FST&TCS-2003, volume 2914 of LNCS, pages
74–87. Springer, 2003.

[4] J. R. Büchi. Regular canonical systems. Arch. Math. Logik u. Grund-
lagenforschung, 6:91–111, 1964.

[5] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on
infinite structures. In Handbook of Process Algebra, pages 545–623.
Elsevier, 2001.

[6] D. Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106:61–86, 1992.

[7] J. Esparza. Grammars as processes. In Formal and Natural Com-
puting, volume 2300 of LNCS. Springer, 2002.

[8] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like
equivalences with finite-state processes. Theoretical Computer Sci-
ence, 258:409–433, 2001.

[9] M. Křet́ınský, V. Řehák, and J. Strejček. Process Rewrite Systems
with Weak Finite-State Unit. Technical Report FIMU-RS-2003-05,
Masaryk University Brno, 2003. to appear in ENTCS as Proc.of
INFINITY 03.

[10] D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-
processes. In Proc. of CONCUR’98, volume 1466 of LNCS, pages
50–66, 1998.

[11] E. W. Mayr. An algorithm for the general petri net reachability
problem. In Proc. of 13th Symp. on Theory of Computing, pages
238–246. ACM Press, 1981.

17

[12] R. Mayr. Process rewrite systems. Information and Computation,
156(1):264–286, 2000.

[13] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[14] F. Moller. Infinite results. In Proc. of CONCUR’96, volume 1119 of
LNCS, pages 195–216. Springer, 1996.

[15] F. Moller. Pushdown Automata, Multiset Automata and Petri Nets,
MFCS Workshop on concurrency. Electronic Notes in Theoretical
Computer Science, 18, 1998.

[16] D. Muller, A. Saoudi, and P. Schupp. Alternating automata, the
weak monadic theory of trees and its complexity. Theoret. Computer
Science, 97(1–2):233–244, 1992.

[17] V. A. Saraswat and M. Rinard. Concurrent constraint programming.
In Proc. of 17th POPL, pages 232–245. ACM Press, 1990.

[18] J. Srba. Roadmap of infinite results. EATCS Bulletin, (78):163–175,
2002. http://www.brics.dk/~srba/roadmap/.

[19] J. Strejček. Rewrite systems with constraints, EXPRESS’01. Elec-
tronic Notes in Theoretical Computer Science, 52, 2002.

18

Recent BRICS Report Series Publications

RS-04-7 Mojḿır K řetı́nský, Vojt ěch Řehák, and Jan Strejček. On the
Expressive Power of Extended Process Rewrite Systems. April
2004. 18 pp.

RS-04-6 Gudmund Skovbjerg Frandsen and Igor E. Shparlinski. On
Reducing a System of Equations to a Single Equation. March
2004. 11 pp. To appear in Schicho and Singer, editors,ACM
SIGSAM International Symposium on Symbolic and Algebraic
Computation, ISSAC ’04 Proceedings, 2004.

RS-04-5 Biernacki Dariusz and Danvy Olivier.From Interpreter to Logic
Engine by Defunctionalization. March 2004. 20 pp. To ap-
pear in Bruynooghe, editor, International Symposium on Logic
Based Program Development and Transformation, LOPSTR ’03
Proceedings, Revised Selected Papers, LNCS, 2003. This report
supersedes the earlier BRICS report RS-03-25.

RS-04-4 Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and
Kim G. Larsen. Optimal Strategies in Priced Timed Game Au-
tomata. February 2004. 32 pp.

RS-04-3 Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A Func-
tional Correspondence between Call-by-Need Evaluators and
Lazy Abstract Machines. February 2004. 17 pp. This report
supersedes the earlier BRICS report RS-03-24. Extended ver-
sion of an article to appear inInformation Processing Letters.

RS-04-2 Gerth Stølting Brodal, Rolf Fagerberg, Ulrich Meyer, and Nor-
bert Zeh. Cache-Oblivious Data Structures and Algorithms for
Undirected Breadth-First Search and Shortest Paths. February
2004. 19 pp.

RS-04-1 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
Luttik. Split-2 Bisimilarity has a Finite Axiomatization over CCS
with Hennessy’s Merge. January 2004. 16 pp.

RS-03-53 Kyung-Goo Doh and Peter D. Mosses.Composing Program-
ming Languages by Combining Action-Semantics Modules. De-
cember 2003. 39 pp. Appears inScience of Computer Program-
ming, 47(1):2–36, 2003.

