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Abstract

This note shows that split-2 bisimulation equivalence (also known as
timed equivalence) affords a finite equational axiomatization over the process
algebra obtained by adding an auxiliary operation proposed by Hennessy in
1981 to the recursion free fragment of Milner’s Calculus of Communicat-
ing Systems. Thus the addition of a single binary operation, viz. Hennessy’s
merge, is sufficient for the finite equational axiomatization of parallel com-
position modulo this non-interleaving equivalence. This result is in sharp
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contrast to a theorem previously obtained by the same authors to the effect
that the same language is not finitely based modulo bisimulation equivalence.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 08A70, 03B45, 03C05,
68Q10, 68Q45, 68Q55, 68Q70.
CR SUBJECT CLASSIFICATION (1991): D.3.1, F.1.1, F.1.2, F.3.2, F.3.4,
F.4.1.
KEYWORDS AND PHRASES: Concurrency, process algebra, CCS, bisimula-
tion, split-2 bisimulation, non-interleaving equivalences, Hennessy’s merge,
left merge, communication merge, parallel composition, equational logic,
complete axiomatizations, finitely based algebras.

1 Introduction

This note offers a contribution to the fascinating study of equational characteri-
zations of the parallel composition operation modulo (variations on) the classic
notion of bisimulation equivalence [14, 19]. In particular, we provide a finite equa-
tional axiomatization ofsplit-2 bisimulation equivalence—a notion of bisimulation
equivalence based on the assumption that actions have observable beginnings and
endings [9, 10, 11]—over the recursion, relabelling and restriction free fragment of
Milner’s CCS [14] enriched with an auxiliary operator proposed by Hennessy in a
1981 preprint entitled“On the relationship between time and interleaving”and its
published version [11]. To put this contribution, and its significance, in its research
context, we find it appropriate to recall briefly some of the key results in the his-
tory of the study of equational axiomatizations of parallel composition in process
algebra.

Research on equational axiomatizations of behavioural equivalences over pro-
cess algebras incorporating a notion of parallel composition can be traced at least
as far back as the seminal paper [12], where Hennessy and Milner offered, amongst
a wealth of other classic results, a complete equational axiomatization of bisimu-
lation equivalence over the recursion free fragment of CCS. (See the paper [5] for
a more detailed historical account highlighting, e.g., Hans Beki´c’s early contribu-
tions to this field of research.) The axiomatization given by Hennessy and Milner
in that paper dealt with parallel composition using the so-calledexpansion law—
an axiom schema with a countably infinite number of instances that is essentially
an equational formulation of the Plotkin-style rules describing the operational se-
mantics of parallel composition. This raised the question of whether the parallel
composition operator could be axiomatized in bisimulation semantics by means of
a finite collection of equations. This question was answered positively by Bergstra
and Klop, who gave in [8] a finite equational axiomatization of the merge operator
in terms of the auxiliary left merge and communication merge operators. Moller
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clarified the key role played by the expansion law in the axiomatization of parallel
composition over CCS by showing in [16, 17, 18] that strong bisimulation equiva-
lence isnot finitely based over CCS and PA without the left merge operator. Thus
auxiliary operators like the ones used by Bergstra and Klop are indeed necessary
to obtain a finite axiomatization of parallel composition. Moreover, Moller proved
in [16, 17] that his negative result holds true for each “reasonable congruence”
that is included in standard bisimulation equivalence. In particular, this theorem
of Moller’s applies to split-2 bisimulation equivalence since that equivalence is
“reasonable” in Moller’s technical sense.

In his paper [11], Hennessy proposed an axiomatization of observation congru-
ence [12] (also known as rooted weak bisimulation equivalence) and timed congru-
ence (essentially rooted weak split-2 bisimulation equivalence) over a CCS-like
recursion free process language. Those axiomatizations used an auxiliary oper-
ator, denoted|/ by Hennessy, that is essentially a combination of Bergstra and
Klop’s left and communication merge operators. Apart from having soundness
problems (see the reference [1] for a general discussion of this problem, and cor-
rected proofs of Hennessy’s results), the proposed axiomatization of observation
congruence offered inop. cit. is infinite, as it used a variant of the expansion the-
orem from [12]. Confirming a conjecture by Bergstra and Klop in [8, page 118],
and answering problem 8 in [2], we showed in [3] that the language obtained by
adding Hennessy’s merge to CCS doesnotafford a finite equational axiomatization
modulo bisimulation equivalence. This is due to the fact that, in strong bisimula-
tion semantics, no finite collection of equations can express the interplay between
interleaving and communication that underlies the semantics of Hennessy’s merge.
Technically, this is captured in our proof of the main result in [3] by showing that
no finite collection of axioms that are valid in bisimulation semantics can prove all
of the equations in the following family:

a0 |/
n∑

i=0

āai ≈ a

n∑
i=0

āai +
n∑

i=0

τai (n ≥ 0) .

In split-2 semantics, however, these equations are not sound, since they express
some form of interleaving. Indeed, we prove that, in sharp contrast to the situation
in standard bisimulation semantics, Hennessy’s mergecan be finitely axiomatized
modulo split-2 bisimulation equivalence, and its use suffices to yield a finite axiom-
atization of the parallel composition operation. This shows that “reasonable con-
gruences” finer than standard bisimulation equivalence can be finitely axiomatized
over CCS using Hennessy’s merge as the single auxiliary operation—compare with
the non-finite axiomatizability results for these congruences offered in [16, 17].

The paper is organized as follows. We begin by presenting preliminaries on
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the language CCSH—the extension of CCS with Hennessy’s merge operator—and
split-2 bisimulation equivalence in Sect. 2. We then offer a finite equational axiom
system for split-2 bisimulation equivalence over CCSH , and prove that it is sound
and complete (Sect. 3).

This is a companion paper to [3], where the interested readers may find further
motivation and more references to related literature. However, we have striven to
make it readable independently of that paper. Some familiarity with [1, 11] and
the basic notions on process algebras and bisimulation equivalence will be helpful,
but is not necessary, in reading this study. The uninitiated reader is referred to the
textbooks [6, 14] for extensive motivation and background on process algebras.
Precise pointers to material in [1, 11] will be given whenever necessary.

2 The language CCSH

The language for processes we shall consider in this paper, henceforth referred to
as CCSH , is obtained by adding Hennessy’s merge operator from [11] to the recur-
sion, restriction and relabelling free subset of Milner’s CCS [14]. This language is
given by the following grammar:

p ::= 0 | µp | p + p | p | p | p |/ p ,

whereµ ranges over a set ofactionsA. We assume thatA has the form{τ}∪Λ∪Λ̄,
whereΛ is a given set ofnames, Λ̄ = {ā | a ∈ Λ} is the set ofcomplement names,
andτ is a distinguished action. Following Milner [14], the action symbolτ will
result from the synchronized occurrence of the complementary actionsa andā. We
let a, b range over the set ofvisible actionsΛ∪Λ̄. As usual, we postulate that¯̄a = a
for each namea ∈ Λ. We shall usep, q, r to range over process terms. Thesize
of a term is the number of operation symbols in it. Following standard practice in
the literature on CCS and related languages, trailing0’s will often be omitted from
terms.

The structural operational semantics for the language CCSH given by Hen-
nessy in [11, Sect. 2.1] is based upon the idea that visible actions have a beginning
and an ending. Moreover, for each visible actiona, these distinct events may be
observed, and are denoted byS(a) andF (a), respectively. We define

E = A ∪ {S(a), F (a) | a ∈ Λ ∪ Λ̄} .

In the terminology of [11], this is the set ofevents, and we shall usee to range over
it. As usual, we writeE∗ for the collection of finite sequences of events.
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Table 1: SOS Rules forS (µ ∈ A, a ∈ Λ ∪ Λ̄ ande ∈ E)

ap
S(a)−→ aSp aSp

F (a)−→ p µp
µ−→ p

p
e−→ s

p + q
e−→ s

q
e−→ s

p + q
e−→ s

s
e−→ s′

s | t e−→ s′ | t
t

e−→ t′

s | t e−→ s | t′
s

a−→ s′, t
ā−→ t′

s | t τ−→ s′ | t′

p
e−→ s

p |/ q
e−→ s | q

p
a−→ p′, q

ā−→ q′

p |/ q
τ−→ p′ | q′

The operational semantics for the language CCSH is given in terms of binary
next-state relations

e−→, one for each evente ∈ E. As explained in [11], the
relations

e−→ are defined over the set ofstatesS, an extension of CCSH obtained
by adding new prefixing operationsaS (a ∈ Λ ∪ Λ̄) to the signature for CCSH .
More formally, the set of states is given by the following grammar:

s ::= p | aSp | s | s ,

wherep ranges over CCSH . Intuitively, a state of the formaSp is one in which the
execution of actiona has started, but has not terminated yet. We shall uses, t to
range over the set of statesS.

The Plotkin style rules for the languageS are given in Table 1; comments on
these rules may be found in [11, Sect. 2.1].

Definition 2.1 For a sequence of eventsσ = e1 · · · ek (k ≥ 0), and statess, s′, we
write s

σ−→ s′ iff there exists a sequence of transitions

s = s0
e1−→ s1

e2−→ · · · ek−→ sk = s′ .

If s
σ−→ s′ holds for some states′, thenσ is atraceof s.

The depthof a states, written depth(s), is the length of the longest trace it
affords.

In this paper, we shall consider the language CCSH , and more generally the set of
statesS, modulo split-2 bisimulation equivalence [4, 9, 11]. (The weak variant of
this relation is calledt-observational equivalenceby Hennessy in [11]. Later on,
this relation has been calledtimed equivalencein [4]. Here we adopt the terminol-
ogy introduced by van Glabbeek and Vaandrager in [9].)
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Definition 2.2 Split-2 bisimulation equivalence, denoted by↔2S , is the largest
symmetric relation overS such that whenevers ↔2S t ands

e−→ s′, then there is
a transitiont

e−→ t′ with s′ ↔2S t′.
We shall also sometimes refer to↔2S assplit-2 bisimilarity. If s ↔2S t, then

we say thats andt aresplit-2 bisimilar.

In what follows, we shall mainly be interested in↔2S as it applies to the lan-
guage CCSH . The interested reader is referred to [11, Sect. 2.1] for examples of
(in)equivalent terms with respect to↔2S . Here, we limit ourselves to remarking
that↔2S is a non-interleaving equivalence. For example, the reader can easily
check that

a | b↔2S/ a | b + ab↔2S/ ab + ba .

It is well-known that split-2 bisimulation equivalence is indeed an equivalence re-
lation. Moreover, two split-2 bisimulation equivalent states afford the same finite
non-empty set of traces, and have therefore the same depth.

The following result can be shown following standard lines—see, e.g., [4].

Fact 2.1 Split-2 bisimilarity is a congruence over the language CCSH . Moreover,
for all statess, s′, t, t′, if s↔2S s′ andt↔2S t′, thens | t↔2S s′ | t′.
A standard question a process algebraist would ask at this point, and the one that
we shall address in the remainder of this paper, is whether split-2 bisimulation
equivalence affords a finite equational axiomatization over the language CCSH .
As we showed in [3], standard bisimulation equivalence is not finitely based over
the language CCSH . In particular, we arguedibidem that no finite collection of
equations over CCSH that is sound with respect to bisimulation equivalence can
prove all of the equations

en : a0 |/ pn ≈ apn +
n∑

i=0

τai (n ≥ 0) , (1)

wherea0 denotes0, am+1 denotesa(am), and the termspn are defined thus:

pn =
n∑

i=0

āai (n ≥ 0) .

Note, however, that none of the equationsen holds with respect to↔2S . In fact,
for eachn ≥ 0, the transition

apn +
n∑

i=0

τai S(a)−→ aSpn
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Table 2: The Axiom SystemE for CCSH Modulo↔2S

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

HM1 (x + y) |/ z ≈ x |/ z + y |/ z

HM2 (x |/ y) |/ z ≈ x |/ (y | z)
HM3 x |/ 0 ≈ x

HM4 0 |/ x ≈ 0
HM5 (τx) |/ y ≈ τ(x | y)
HM6 ax |/ ((āy |/ w) + z) ≈ ax |/ ((āy |/ w) + z) + τ(x | y | w)

M x | y ≈ (x |/ y) + (y |/ x)

cannot be matched, modulo↔2S , by the terma0 |/ pn. Indeed, the only state
reachable froma0 |/ pn via anS(a)-labelled transition isaS0 | pn. This state is
not split-2 bisimilar toaSpn because it can perform the transition

aS0 | pn
S(ā)−→ aS0 | āS0 ,

whereas the only initial eventaSpn can embark in isF (a). Thus the family of
equations on which our proof of the main result from [3] was based is unsound
with respect to split-2 bisimilarity. Indeed, as we shall show in what follows, split-
2 bisimilarity affords a finite equational axiomatization over the language CCSH ,
if the set of actionsA is finite. Hence it is possible to finitely axiomatize split-2
bisimilarity over CCS using a single auxiliary binary operation, viz. Hennessy’s
merge.

3 An Axiomatization of Split-2 Bisimilarity over CCS H

Let E denote the collection of equations in Table 2. In those equations the symbols
x, y,w, z are variables. Equation HM6 is an axiom schema describing one equation
per visible actiona. Note thatE is finite, if so isA.

We write E ` p ≈ q, wherep, q are terms in the language CCSH that may
possibly contain occurrences of variables, if the equationp ≈ q can be proven
from those inE using the standard rules of equational logic. For example, using

7



axioms A1, A2, A3, M, HM1 and HM2, it is possible to derive the equations:

x | 0 ≈ x (2)

0 | x ≈ x (3)

x | y ≈ y | x and (4)

(x | y) | z ≈ x | (y | z) (5)

that state that, modulo↔2S , the language CCSH is a commutative monoid with
respect to parallel composition with0 as unit element. (In light of the provability
of (5), we have taken the liberty of omitting parentheses in the second summand of
the term at the right-hand side of equation HM6 in Table 2.) Moreover, it is easy
to see that:

Fact 3.1 For each CCSH termp, if p ↔2S 0, then the equationp ≈ 0 is provable
using A4, HM4 and M.

All of the equations in the axiom systemE may be found in the axiomatization of t-
observational congruence proposed by Hennessy in [11]. However, the abstraction
from τ -labelled transitions underlying t-observational congruence renders axiom
HM2 above unsound. (See the discussion in [1, Page 854 and Sect. 3].) Indeed, to
the best of our knowledge, it is yet unknown whether (t-)observational congruence
affords a finite equational axiomatization over CCS, with or without Hennessy’s
merge.

Our aim, in the remainder of this note, will be to show that, in the presence of
a finite collection of actionsA, split-2 bisimilarity (that is strong t-bisimulation)is
finitely axiomatizable over the language CCSH . This is the import of the following:

Theorem 3.1 For all CCSH termsp, q not containing occurrences of variables,
p ↔2S q if, and only if,E ` p ≈ q.

We now proceed to prove the above theorem by establishing separately that the
axiom systemE is sound and complete.

Proposition 3.1 [Soundness] For all CCSH termsp, q, if E ` p ≈ q, thenp↔2S q.

Proof: Since↔2S is a congruence over the language CCSH (Fact 2.1), it suffices
only to check that each of the equations inE is sound. The verification is tedious,
but not hard, and we omit the details. 2

Remark 3.1 For later use in the proof of Proposition 3.3, we note that equations
(2)–(5) also hold modulo↔2S when the variablesx, y, z are allowed to range over
the set of statesS.
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The proof of the completeness of the equations inE with respect to↔2S follows
the general outline of that of [11, Theorem 2.1.2]. As usual, we rely upon the
existence of normal forms for CCSH terms. In the remainder of this paper, process
terms are considered modulo associativity and commutativity of +. In other words,
we do not distinguishp+q andq+p, nor(p+q)+r andp+(q+r). This is justified
because, as previously observed, split-2 bisimulation equivalence satisfies axioms
A1, A2 in Table 2. In what follows, the symbol= will denote equality modulo
axioms A1, A2. We use asummation

∑
i∈{1,...,k} pi to denotep1 + · · ·+ pk, where

the empty sum represents0.

Definition 3.1 The set NF ofnormal formsis the least subset of CCSH such that
∑
i∈I

(aipi |/ p′i) +
∑
j∈J

τqj ∈ NF ,

whereI, J are finite index sets, if the following conditions hold:

1. the termspi, p
′
i (i ∈ I) andqj (j ∈ J) are contained in NF and

2. if aipi |/ p′i
τ−→ q for someq, thenq = qj for somej ∈ J .

Proposition 3.2 [Normalization] For each CCSH termp, there is a term̂p ∈ NF
such thatE ` p ≈ p̂.

Proof: Define the relation≺ on CCSH terms thus:

p ≺ q if, and only if,

• depth(p) < depth(q) or

• depth(p) = depth(q) and the size ofp is smaller than that ofq.

Note that≺ is a well-founded relation, so we may use≺-induction. The remainder
of the proof consists of a case analysis on the syntactic form ofp.

We only provide the details for the casep = q |/ r. (The casesp = 0, p = q+r
andp = µq are trivial—the last owing to the fact thatµq ≈ µq |/ 0 is an instance
of axiom HM3—, and the casep = q | r follows from the case that is treated in
detail using axiom M.)

Assume therefore thatp = q |/ r. Thendepth(q) ≤ depth(p) and the size ofq
is smaller than that ofp, soq ≺ p. Hence, by the induction hypothesis there exists
q̂ ∈ NF such thatE ` q ≈ q̂, say

q̂ =
∑
i∈I

(aiqi |/ q′i) +
∑
j∈J

τq′′j .
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By axiomsHM1, HM2, HM4 andHM5 it follows that

p ≈
∑
i∈I

aiqi |/ (q′i | r) +
∑
j∈J

τ(q′′j | r) .

Sincedepth(q′i), depth(q′′j ) < depth(q̂) = depth(q) for eachi ∈ I andj ∈ J , it
follows that

depth(q′i | r), depth(q′′j | r) < depth(q̂ |/ r) = depth(q |/ r) = depth(p) ,

and henceq′i | r ≺ p andq′′j | r ≺ p. By the induction hypothesis there are normal

forms q̂′i | r, q̂′′j | r such thatE ` q′i | r ≈ q̂′i | r, q′′j | r ≈ q̂′′j | r. SoE proves the
equation

p ≈
∑
i∈I

aiqi |/ (q̂′i | r) +
∑
j∈J

τ(q̂′′j | r) . (6)

Finally, using equation HM6, it is now a simple matter to add summands to the
right-hand side of the above equation in order to meet requirement 2 in Defini-
tion 3.1. In fact, leti ∈ I and

q̂′i | r =
∑
h∈H

(ahrh |/ r′h) +
∑
k∈K

τr′′k .

Using A4, we have that

q̂′i | r ≈
∑

h∈H,ah=āi

(ahrh |/ r′h) +
∑

h∈H,ah 6=āi

(ahrh |/ r′h) +
∑
k∈K

τr′′k

is provable fromE . Then, using HM6 and the induction hypothesis repeatedly, we
can prove the equation

aiqi |/ (q̂′i | r) ≈ aiqi |/ (q̂′i | r) +
∑

h∈H,ah=āi

τ ̂(qi | rh | r′h) .

Using this equation as a rewrite rule from left to right in (6) for eachi ∈ I produces
a term meeting requirement 2 in Definition 3.1 that is the desired normal form for
p = q |/ r. 2

The key to the proof of the promised completeness theorem is an important can-
cellation result that has its roots in one proven by Hennessy for his t-observational
equivalence in [11].

Theorem 3.2 Let p, p′, q, q′ be CCSH terms, and leta be a visible action. Assume
thataSp | p′ ↔2S aSq | q′. Thenp ↔2S q andp′ ↔2S q′.

10



For the moment, we postpone the proof of this result, and use it to establish the
following statement, to the effect that the axiom systemE is complete with respect
to ↔2S over CCSH .

Theorem 3.3 [Completeness] Letp, q be CCSH terms such thatp ↔2S q. Then
E ` p ≈ q.

Proof: By induction on the depth ofp andq. (Recall that, sincep ↔2S q, the
termsp andq have the same depth.) In light of Propositions 3.1 and 3.2, we may
assume without loss of generality thatp andq are contained in NF. Let

p =
∑
i∈I

(aipi |/ p′i) +
∑
j∈J

τp′′j and

q =
∑
h∈H

(bhqh |/ q′h) +
∑
k∈K

τq′′k .

We prove thatE ` p ≈ p + q, from which the statement of the theorem follows by
symmetry and transitivity. To this end, we argue that each summand ofq can be
absorbed byp using the equations inE , i.e., that

1. E ` p ≈ p + τq′′k for eachk ∈ K, and

2. E ` p ≈ p + (bhqh |/ q′h) for eachh ∈ H.

We prove these two statements in turn.

• PROOF OFSTATEMENT 1. Letk ∈ K. Thenq
τ−→ q′′k . Sincep↔2S q, there

is a termr such thatp
τ−→ r andr ↔2S q′′k . Sincep ∈ NF, condition 2 in

Definition 3.1 yields thatr = p′′j for somej ∈ J . The induction hypothesis
together with closure with respect toτ -prefixing now yields that

E ` τp′′j ≈ τq′′k .

Therefore, using A1–A3, we have that

E ` p ≈ p + τp′′j ≈ p + τq′′k ,

which was to be shown.

• PROOF OF STATEMENT 2. Let h ∈ H. Thenq
S(bh)−→ bhSqh | q′h. Since

p↔2S q, there is a states such thatp
S(bh)−→ s ands↔2S bhSqh | q′h. Because

of the form ofp, it follows that s = aiSpi | p′i for somei ∈ I such that
ai = bh. By Theorem 3.2, we have that

pi ↔2S qh andp′i ↔2S q′h .

11



Since the depth of all of these terms is smaller than that ofp, we may apply
the induction hypothesis twice to obtain that

E ` pi ≈ qh andE ` p′i ≈ q′h .

Therefore, using A1–A3 andai = bh, we have that

E ` p ≈ p + (aipi |/ p′i) ≈ p + (bhqh |/ q′h) ,

which was to be shown.

The proof of the theorem is now complete. 2

To finish the proof of the completeness theorem, and therefore of Theorem 3.1, we
are left to show Theorem 3.2. Our proof of that result relies on a unique decom-
position property with respect to parallel composition for states modulo↔2S . In
order to formulate this decomposition property, we shall make use of some notions
from [15, 16]. These we now proceed to introduce for the sake of completeness
and readability.

Definition 3.2 A state s is irreducible if s ↔2S s1 | s2 implies s1 ↔2S 0 or
s2 ↔2S 0, for all statess1, s2.

We say thats is primeif it is irreducible and is not split-2 bisimilar to0.

For example, each states of depth1 is prime because every state of the forms1 | s2,
wheres1 ands2 are not split-2 bisimilar to0, has depth at least2, and thus cannot
be split-2 bisimilar tos.

Fact 3.2 The stateaSp is prime, for each CCSH termp and actiona.

Proof: SinceaSp is not split-2 bisimilar to0, it suffices only to show that it is
irreducible. To this end, assume, towards a contradiction, thataSp↔2S s1 | s2 for
some statess1, s2 that are not split-2 bisimilar to0. Then, sinceaSp ↔2S s1 | s2,

we have thats1
F (a)−→ s′1 ands2

F (a)−→ s′2, for somes′1, s
′
2. But then it follows that

s1 | s2
F (a)−→ s′1 | s2

F (a)−→ s′1 | s′2 ,

whereas the termaSp cannot perform two subsequentF (a)-transitions. We may
therefore conclude that suchs1 ands2 cannot exist, and hence that the termaSp is
irreducible, which was to be shown. 2

The following result is the counterpart for the language CCSH of the unique de-
composition theorems presented for various languages in, e.g., [4, 13, 15, 16].
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Proposition 3.3 Each state is split-2 bisimilar to a parallel composition of primes,
uniquely determined up to split-2 bisimilarity and the order of the primes. (We
adopt the convention that0 denotes the empty parallel composition.)

Proof: We shall obtain this result as a consequence of a general unique decompo-
sition result, obtained by the fourth author in [13].

Let [S] denote the set of states modulo split-2 bisimilarity, and, for a state
s ∈ S, denote by[s] the equivalence class in[S] that containss. By Fact 2.1 we
can define on[S] a binary operation| by

[s] | [t] = [s | t] .

By Remark 3.1, the set[S] with the binary operation| and the distinguished element
[0] is a commutative monoid.

Next, we define on[S] a partial order4 by

[s′] 4 [s] iff there exists′′ ∈ S andσ ∈ E∗ such thats
σ−→ s′′ ↔2S s′.

Note that4 is indeed a partial order (to establish antisymmetry use that transitions
decrease depth, and that split-2 bisimilar states have the same depth).

For each states, there are a sequence of eventsσ and a states′ such that

s
σ−→ s′ ↔2S 0 .

So[0] is the least element of[S] with respect to4. Furthermore, if[s′] 4 [s], then
s

σ−→ s′′ ↔2S s′, for someσ ∈ E∗ and states′′. So, using the SOS rules forS and
Fact 2.1, it follows thats | t σ−→ s′′ | t↔2S s′ | t, and hence

[s′] | [t] = [s′ | t] 4 [s | t] = [s] | [t] .

Thereby, we have now established that[S] with |, [0] and4 is a positively ordered
commutative monoid in the sense of [13].

From the SOS rules forS it easily follows that this positively ordered commu-
tative monoid isprecompositional(see [13]), i.e., that

if [s] 4 [s1] | [s2], then there are[s′1] 4 [s1], [s′2] 4 [s2] s.t.[s] = [s′1] | [s′2].

Consider the mapping| | : [S] → N into the positively ordered monoid of natural
numbers with addition,0 and the standard less-than-or-equal relation, defined by

[s] 7→ depth(s) .

It is straightforward to verify that| | is astratification(see [13]), i.e., that
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(i) |[s] | [t]| = |[s]|+ |[t]|; and

(ii) if [s] ≺ [t], then|[s]| < |[t]|.
We conclude that[S] with |, [0] and4 is a stratified and precompositional pos-
itively ordered commutative monoid, and hence, by Theorem 13 in [13], it has
unique decomposition. This completes the proof of the proposition. 2

Using the above unique decomposition result, we are now in a position to complete
the proof of Theorem 3.2.

Proof of Theorem 3.2: Assume thataSp | p′↔2S aSq | q′. Using Proposition 3.3,
we have thatp′ andq′ can be expressed uniquely as parallel compositions of primes.
Say that

p′ ↔2S p1 | p2 | · · · | pm and

q′ ↔2S q1 | q2 | · · · | qn

for somem,n ≥ 0 and primespi (1 ≤ i ≤ m) andqj (1 ≤ j ≤ n) in the language
CCSH . SinceaSp andaSq are prime (Fact 3.2) and↔2S is a congruence (Fact 2.1),
the unique prime decompositions ofaSp | p′ andaSq | q′ given by Proposition 3.3
are

aSp | p ↔2S aSp | p1 | p2 | · · · | pm and

aSq | q′ ↔2S aSq | q1 | q2 | · · · | qn ,

respectively. In light of our assumption thataSp | p′ ↔2S aSq | q′, these two
prime decompositions coincide by Proposition 3.3. Hence, asaSp↔2S/ qj for each
1 ≤ j ≤ n, we have that

1. aSp ↔2S aSq,

2. m = n and, without loss of generality,

3. pi ↔2S qi for each1 ≤ i ≤ m.

It is now immediate to see thatp↔2S q andp′ ↔2S q′, which was to be shown.2
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