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Abstract

A grove theory is a Lawvere algebraic theory T for which each
hom-set T (n, p) is a commutative monoid; composition on the
right distrbutes over all finite sums: (

∑
i∈F fi) ·h =

∑
i∈F fi ·h. A

matrix theory is a grove theory in which composition on the left
and right distributes over finite sums. A matrix theory M is iso-
morphic to a theory of all matrices over the semiring S = M(1, 1).
Examples of grove theories are theories of (bisimulation equiva-
lence classes of) synchronization trees, and theories of formal tree
series over a semiring S. Our main theorem states that if T is a
grove theory which has a matrix subtheory M which is an iteration
theory, then, under certain conditions, the fixed point operation
on M can be extended in exactly one way to a fixedpoint opera-
tion on T such that T is an iteration theory. A second theorem
is a Kleene-type result. Assume that T is a iteration grove the-
ory and M is a sub iteration grove theory of T which is a matrix
theory. For a given collection Σ of scalar morphisms in T we de-
scribe the smallest sub iteration grove theory of T containing all
the morphisms in M ∪ Σ.

∗Partially supported by NSF grant 0119916.
†Partially supported by NSF grant 0119916 and BRICS.
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1 Introduction

In many areas of theoretical and applied computer science, one is inter-
ested in solving systems of fixed point equations:

x1 = t1(x1, . . . , xn, y1, . . . yp)
... (1)

xn = tn(x1, . . . , xn, y1, . . . yp).

where, for each i ∈ [n], ti is a function ti : An+p → A, for some structure
A. The structure may be a poset of some kind, and the functions may
be order-preserving or continuous. Of course, there are other possible
settings in which fixed points are of interest: one is when ti is a row matrix
with n+p entries in some semiring, S. One example from language theory
is when S is the idempotent semiring of all subsets of a free monoid Σ∗,
with union as sum and complex concatenation as product. Another, is
when ti is a pair (a, v), consisting of a 1 by n + p row matrix over a
semiring S, and an element v in an S-module. Continuing the language
example, with the same semiring, the power set of Σ∗, the module might
be the collection of all subsets of infinite words on Σ. Another setting is
when ti is a functor Dn+p → D, where D is some category.

Depending on the context, some questions about such systems are

• Does the system have any solution?

• Is there a canonical (least, initial, etc.) solution?

• Is there a unique solution?

• If there are solutions, what do all solutions look like?

• What are the properties of solutions?

We take as our framework for discussing fixed point equations the (one-
sorted) categories known as Lawvere algebraic theories [30], categories
whose objects are nonnegative integers, and n+p is the coproduct of n, p.
In the case that the ti denote order preserving functions An+p → An on
a poset A, a function Ap → An is a morphism n → p (note the reversal
of direction to translate from products to coproducts). In the matrix
example, an n×p matrix over S becomes a morphism n → p.
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Now, in an algebraic theory, we interpret the entire right side of the
system of fixed point equations (1) as a morphism t : n → n + p, since
each ti determines a morphism 1 → n + p and the coproduct property
produces a corresponding morphism t = 〈t1, . . . , tn〉 : n → n+p. Thus, a
solution of the system is itself a morphism ξ : n → p which satisfies the
“fixed point equation”

ξ = t · 〈ξ, 1p〉.
If we write a solution ξ as 〈ξ1, . . . , ξn〉, then, for a theory of functions on
powers of a set A, each ξi is a function An+p → A and

ξ1(y) = t1(ξ1(y), ξ2(y), . . . , ξn(y), y)
...

ξn(y) = tn(ξ1(y), ξ2(y), . . . , ξn(y), y),

where we write y for y1, . . . , yp.

Algebraic theories T in which every system of fixed point equations has
a canonical solution are modeled as theories enriched by a function † :
T (n, n + p) → T (n, p), for each n, p ≥ 0, such that, for each morphism
t : n → n + p,

t† = t · 〈t†, 1p〉.
Thus, the operation t 7→ t† produces a canonical solution to the system
determined by the morphism t.

There has been a good deal of effort by both mathematicians and com-
puter scientists devoted to the question of whether fixed points to certain
systems exist at all. The names Brouwer [13], Banach [1], Tarski [41],
Kleene [23], and Scott [37] come to mind. The properties of the fixed
point operation in theories which occur naturally in the theory of com-
putation have been studied, mainly in the setting of language theory
([23, 35, 36, 14, 26]). One example of an equational property (other
than the fixed point property itself) of the fixed point operation is the
“composition identity”:

(f · 〈g, 0n ⊕ 1p〉)† = f · 〈(g · 〈f, 0m ⊕ 1p〉)†, 1p〉,
all f : n → m + p, g : m → n + p. As a result of a long series of papers,
there seems to be agreement that there is essentially one equational the-
ory which captures all of the equations valid in every computationally
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interesting theory. These equations may be described in any of several
equivalent ways:

• all equations valid in theories of complete partially ordered sets and
continuous functions;

• all equations valid in theories of continuous functors on ω- complete
categories;

• all equations valid in theories of labelled trees;

• all models of a certain set of axioms.

The models for these equations are called iteration theories. The reason
for the qualification “essentially one” above is that certain iteration the-
ories, such as a theory of matrices over the semiring of binary relations
on some set, are special only in that they have a unique morphism 1 → 0.
Thus, in addition to the axioms mentioned, they also satisfy x = y, all
x, y : 1 → 0.

The best set of axioms known for iteration theories is due to Esik, [22].
His axioms are divided into two parts: the “Conway identities”, which
contain only two axiom schemes, the parameter and double dagger iden-
tities, in addition to the composition identity above, and an identity for
each finite (simple) group. Each of the axioms is readily seen to hold in
any particular setting. However, the completeness of these axioms is not
at all obvious.

The parameter identity is

(f · (1n ⊕ g))† = f † · g,

for all f : n → n + p, g : p → q. The double dagger identity is

f †† = (f · (〈1n, 1n〉 ⊕ 1p))
†,

all f : n → n+n+p. (A brief account of theories and the axiomatization
iteration theories is given in the appendix.)

There is a class of iteration theories in which the “nontrivial” systems
of fixed point equations have unique solutions: these theories were in-
troduced by Elgot in [19] under the term “(ideal) iterative theories”. In
such a theory, a morphism 1 → n either is one of the coproduct injections
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in : 1 → n, i ∈ [n], or is ideal ; if f : 1 → n is ideal, so is f · g, for any
g : n → p. A morphism f : n → p is ideal if each component in · f is.
For each ideal morphism f : n → n + p in an iterative theory, there is a
unique ξ = f † such that

ξ = f · 〈ξ, 1p〉. (2)

One class of examples of ideal iterative theories are the “contraction
theories”. If A is a complete metric space, the least theory containing all
proper contractions An → A is an iterative theory.

One might legitimately consider fixed point equations for ideal mor-
phisms as equations in which the variables to solve for occur only in
“guarded positions”. Thus, iterative theories might be described roughly
as theories in which systems of guarded equations have unique fixed
points. In iterative theories, the nonideal morphisms are somehow trivial,
and can be dealt with as in [5, 6]. Models in which “guarded statements”
of the required form have unique fixed points have been featured in many
places, for example in the metric semantics of de Bakker and his collab-
orators, see, e.g., [16, 17, 18], in the work of Milner, e.g., [32], and in the
classical paper axiomatizing the regular sets, by Salomaa, [35].

What about morphisms n → n + p in iterative theories which are not
ideal? For example, consider the case n = 1, p = 0 and f = 11, the
identity morphism. The corresponding fixed point equation is the trivial
equation in the variable ξ : 1 → 0,

ξ = 11 · ξ,
which has all morphisms 1 → 0 as solutions. In [5, 6] it is shown that
for each choice of a solution to this one fixed point equation, there is a
unique extension of the fixed point operation to all morphisms such that
the resulting theory is an iteration theory.

The theme of extending the fixed point operation from subtheories in
which the solution is unique to the entire theory - while preserving its
properties - was continued in several settings: for matrix theories in
[8], and for matricial theories in [9]. A matrix theory is one in which
a morphism n → p is an n×p matrix over a fixed semiring. As an
application of the matrix extension theorem in [8], it was shown that if
the theory of matrices over the semiring S is a Conway or an iteration
theory, then so is the theory of matrices over the semiring of all formal
power series over S. In Section 3 we review that result.
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In the current paper, we continue playing the same tune, but in a dif-
ferent setting. We consider what we have called “grove theories” in [7],
motivated by an analogous use of the term in [3]. The detailed statement
of our main theorem will be given in Section 5 below.

An example of a grove theory involves a different kind of tree: the
synchronization trees. In Section 6, we use the extension theorem to
show that the theory of synchronization trees is an iteration theory. It
then follows that synchronization trees modulo bisimulation equivalence
and other behavioral equivalences form iteration theories. This result is
known, but our original argument made use of 2-categories and continuity
arguments, see [7].

In Section 7, we discuss a new example in more detail, the theory of
formal tree series [4, 29] over a semiring. We first formulate this theory
and then use the grove extension theorem to show that if the semiring
S is a Conway or iteration semiring, then for each signature Σ, so is the
theory of formal Σ-trees over S.

2 Preliminaries

We denote the set {1, 2. . . . , n} by [n]. The composite of morphisms
f : A → B and g : B → C is written in diagrammatic order:

f · g = A
f

// B
g

// C.

We give a review of Lawvere algebraic theories and various tree theories
in the Appendix. In particular, the axioms for Conway and iteration
theories are presented there.

3 The Matrix Extension Theorem

A matrix theory T is a pointed theory, i.e., a theory with a distin-
guished morphism 01,0 : 1 → 0, such that each hom-set T (n, p) is a

commutative monoid, with neutral element 0n,p =

n︷ ︸︸ ︷
〈01,0, . . . , 01,0〉 ·0p such
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that

(f + g) · h = f · h + g · h
k · (f + g) = k · f + k · g,

0r,n · f = 0r,p

f · 0p,q = 0n,q

for all f, g : n → p, h : p → q and k : r → n in T . A morphism
T → T ′ of matrix theories is a theory morphism which preserves the
monoid structure on each hom-set.

In [20] it is shown that if T is a matrix theory, then T is isomorphic to a
theory of matrices MatS over the semiring S = T (1, 1). A morphism n →
p in MatS is an n×p matrix over S. Composition of morphisms is matrix
multiplication, and the additive structure is defined in the expected way.

In matrix theories which are preiteration theories, one may define a “star”
operation on the square matrices by

a∗ := [a, 1n]†,

where a is n → n. Using this operation, the Conway identities take the
form of familiar identities for regular expressions, which is the reason for
the terminology. The double dagger identity becomes the “star sum”
identity:

(a + b)∗ = (a∗b)∗a∗, (3)

where a, b : n → n, and the composition identity becomes the “product
star” identity:

(ab)∗ = 1n + a(ba)∗b, (4)

where a : n → m and b : m → n. The parameter identity holds automat-
ically. See [14] and [8]. Also, in any Conway matrix theory, the dagger
operation is related to the star operation by:

[a, b]† = a∗b,

when a : n → n and b : n → p. A Conway, respectively iteration ma-
trix theory is a matrix theory which is a Conway theory, respectively,
an iteration theory. A morphism of Conway (or iteration) matrix theo-
ries is both a matrix theory morphism and a Conway theory morphism.
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If S is a semiring such that MatS is a Conway or iteration theory, then
we call S a Conway, or an iteration semiring. The collection of all
Conway (or iteration) semirings forms a variety of algebras whose sig-
nature is that of semirings enriched with a unary star operation. See
[7].

In [8], the following “extension theorem” was proved. Suppose that S is
a subsemiring of the semiring R. Suppose further that there is an ideal
I of R such that R is the direct sum of S and I, in that any element x
of R can be written uniquely as x = s + a, where s ∈ S and a ∈ I.

Theorem 3.1 (Matrix Extension Theorem) If MatS is an Con-
way (resp. iteration) theory, and if for each a ∈ I, b ∈ R there is a unique
ξ ∈ R such that ξ = aξ + b in R, then, there is a unique extension of the
dagger operation on MatS to MatR so that MatR becomes a Conway
(resp. iteration) theory.

It follows from this result that if the theory of matrices over the semiring
S is a Conway or iteration theory, then so is the theory of matrices over
the semiring of formal power series over S with variables in the set X.

Indeed, a formal power series r over the semiring S with variables in X
is a function r : X∗ → S. In this case, the semiring S is isomorphic
to the collection of functions r : X∗ → S such that r(u) = 0 for all
nonempty words u ∈ X∗, and the ideal I is the collection of all functions
a : X∗ → S with a(λ) = 0, where λ is the word of length zero.

4 Grove theories

A grove theory T is a pointed theory such that each hom-set T (n, p) =
(T (n, p), +, 0n,p) is a commutative monoid with neutral element 0n,p such
that

(f + g) · h = f · h + g · h
0r,n · f = 0r,p

in · (f + g) = in · f + in · g, i ∈ [n]

in · 0n,p = 01,p, i ∈ [n],
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for all f, g : n → p, h : p → q in T . (The last two equations say
that sums of vector morphisms are defined componentwise, as are the
neutral elements.) If T, T ′ are grove theories, a morphism ϕ : T → T ′

is a theory morphism that is a monoid morphism T (n, p) → T ′(n, p), for
each n, p ≥ 0. T is a sub grove theory of T ′ if T is a subtheory of T ′,
and the monoid T (n, p) is a submonoid of T ′(n, p), for each n, p ≥ 0.

Each matrix theory is a grove theory, but not conversely.

In any grove theory, for a nonnegative integer n, define the morphism
n : 1 → 1 as

n :=

n︷ ︸︸ ︷
11 + . . . + 11 .

The following fact is easy to prove by induction.

Proposition 4.1 In any grove theory T , and any nonnegative integer
n,

n · (f + g) = n · f + n · g
n · 01,p = 01,p,

all f, g : 1 → p in T .

Suppose that T is a grove theory and T0 is a subtheory of T . We say
that T0 is additively closed if T0(n, p) is a submonoid of T (n, p), for each
n, p ≥ 0.

Corollary 4.2 The matrix theory MatN of matrices over the semiring
of nonnegative integers is initial in the class of grove theories and matrix
theories.

A Conway or iteration grove theory is a grove theory which is also
a Conway or iteration theory. Thus, any Conway or iteration matrix
theory is a Conway or iteration grove theory. A morphism of Conway
or iteration grove theories is a grove theory morphism which is also a
Conway or iteration theory morphism.

We let N∞ denote the semiring consisting of the nonnegative integers
with an “infinite” element adjoined; the addition and multiplication are
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defined in the expected way. This semiring is a Conway and iteration
semiring when the star operation is defined by

x∗ :=

{
1 x = 0

∞ otherwise.

The corresponding matrix theory is a Conway and iteration theory. In
MatN∞ , the equation 1∗ = 2∗ holds; in the dagger version,

(12 + 22)
† = (2 · 12 + 22)

†. (5)

Proposition 4.3 The matrix theory MatN∞ is initial in the class of
Conway and iteration grove theories satisfying (5) It is also initial in the
class of Conway and grove matrix theories satisfying this equation.

We now turn to the statement of the main result.

5 The grove extension theorem

The hypotheses take a while to state, but they are similar to those needed
for the matrix extension theorem. First we need a definition.

Definition 5.1 Suppose that T is a grove theory and M is a sub grove
theory of T which is a matrix theory. A collection T0 of morphisms of T
is an M-ideal if T0

• contains all zero morphisms 0n,p;

• is closed under addition, i.e., if f, g : n → p ∈ T0, then f + g ∈ T0;

• is closed under right composition with any T -morphism, i.e., if f :
n → p is T0 and g : p → q is any morphism, then f · g : n → q is
in T0;

• is closed under left-composition with any M-morphism.
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5.1 The hypotheses

Assume that T is a grove theory and M is a sub grove theory of T that
is a matrix theory. Further, we assume that

H1. T0 is an M-ideal of T .

H2. Every f : n → p in T can be written uniquely as

f = a + f0

for some a ∈ M, f0 ∈ T0. We say: T is the direct sum of M and
T0.

H3. If a ∈ M and f, g ∈ T have appropriate sources and targets, then

a · (f + g) = a · f + a · g.

H4. M is a Conway theory, so that there is a ∗-operation on the square
matrices satisfying

(ab)∗ = 1n + a(ba)∗b, a : n → m, b : m → n

(a + b)∗ = (a∗b)∗a∗, a, b : n → n.

In particular, S = M(1, 1) is a Conway semiring.

H5. For every f0 : n → n+p in T0 and b : n → p in M , there is a unique
solution to the equation

ξ = ((0n ⊕ b) + f0) · 〈ξ, 1p〉,
and the solution is written

((0n ⊕ b) + f0)
∇.

Theorem 5.2 (The grove extension theorem) Under the above hy-
potheses, there is a unique way to define a dagger operation

† : T (n, n + p) // T (n, p),

on each hom-set T (n, n + p) extending that on M such that T becomes a
Conway theory. Further, if M satisfies the weak functorial implication,
so does T ; if M is an iteration theory, so is T .
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The proof of this theorem is in Section 8. The “weak functorial implica-
tion” is defined in the Appendix.

We can revise the assumptions needed for the grove extension theorem
to apply only to “scalar morphisms”, i.e., those with source 1.

Proposition 5.3 Suppose that T is a grove theory and S ⊆ T (1, 1) is
a Conway semiring. Then M = MatS is a sub grove theory of T which
is a Conway theory. Suppose that I0 is a collection of scalar morphisms
of T with the following properties:

1. s ∈ S, f : 1 → p ∈ I0, g : p → q ∈ T =⇒ s · f · g ∈ I0.

2. f, g : 1 → p ∈ I0 =⇒ f + g ∈ I0.

3. 01,p ∈ I0, all p ≥ 0.

4. For any g : 1 → p in T there is a unique a : 1 → p ∈ M and
f : 1 → p ∈ I0 such that g = f + a.

5. For any f, g : 1 → p ∈ T and any s ∈ S, s · (f + g) = s · f + s · g.
6. For any b : 1 → p ∈ M and any f : 1 → 1 + p in I0, there is a

unique ξ : 1 → p ∈ T such that

ξ = ((01 ⊕ b) + f) · 〈ξ, 1p〉.

Then there is a unique way to define a dagger operation

† : T (n, n + p) // T (n, p),

on each hom-set T (n, n + p) extending that on M such that T becomes a
Conway theory. Further, if M satisfies the weak functorial implication,
so does T ; if M is an iteration theory, so is T .

Proof. We define T0(n, p) as the collection of all morphisms f =
〈f1, . . . , fn〉 such that fi ∈ I0, for each i ∈ [n]. Then, the only point
which may not be clear is that for b : n → p in MatS, and f : n → n + p
in T0, there is a unique solution to the Elgot fixed point equation for
(0n ⊕ b) + f . But this fact follows from the inductive argument in [11],
which shows that “scalar iterative theories” are also iterative theories.
This shows that the hypotheses of the grove extension theorem hold.

2

We now discuss two applications of the theorem.
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6 The theory of synchronization trees

Let A be a nonempty set. The theory ST (A) of synchronization trees
over A has been studied in [7]. We recall that a morphism 1 → p in this
theory is a tree t = (V, v0, E, `), where

1. V is a finite or countable set;

2. (V, v0, E) is a rooted tree - i.e., E ⊆ V ×V , v0 ∈ V and, for each
v ∈ V there is a unique path v0, v1, . . . , vk = v from v0 to v.

3. ` : E → A ∪ [p] is a “labeling function”.

4. if `(u, v) ∈ [p], then v is a leaf, and (u, v) is an “exit edge”.

A morphism s : p → q is a p-tuple of trees 1 → q. If t : 1 → p and
s = (s1, . . . , sp) are synchronization trees, the composite t · s is the tree
obtained from t by deleting any exit edge (u, v) labeled i ∈ [p] and making
u the root of a copy of the tree si; if t, s : 1 → p are synchronization trees,
t+s : 1 → p is the tree obtained from the disjoint union of the two sets of
vertices and edges by identifying the roots of s, t and otherwise making
no further identifications. Composition and sum is extended to n-tuples
of trees pointwise. (See [7] for all details.)

The tree 01,p : 1 → p is the unique tree with only one vertex, the root,
and no edges. The morphism 0n,p is the n-tuple of the trees 01,p.

In [7], it was shown that ST (A) is a grove theory.

Proposition 6.1 Each collection of trees n → p in ST (A) is a complete
metric space, where the distance between two trees n → p is the maximum
of the distances between their components in·t, in·t′. For trees t, t′ : 1 → p,
define the distance d(t, t′) to be 0 if t = t′, or 1/2n, where n is the
minimum depth for which the trees t|n and t′|n are distinct. The tree t|n
is t “cut off” at level n; prune all vertices and edges at distance more
than n from the root.

Let Ex be the subtheory of ST (A) determined by the trees 1 → p all of
whose edges are exit edges; thus, for each i in [p], there are either finitely
many exit edges labeled i or countably many such edges. Let N∞ denote
the semiring of the nonnegative integers with a point at infinity adjoined.
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For any synchronization tree t : 1 → p in Ex, let mi denote the number
of edges in the tree labeled i whose source is the root, for i ∈ [p]. We may
thus identify such a tree t with the 1×p matrix m(t) = [m1, . . . , mp] over
N∞. This identification respects both the theory sum and composition
operations, as is easy to show. Thus, Ex is isomorphic to the theory of
all matrices over the semiring N∞, MatN∞.

Now let T0 be the collection of all morphisms f = 〈f1, . . . , fn〉 : n → p in
ST (A) such that each component fi is a tree with the following property.
No edge whose source is the root is labeled by an integer in [p]. These
trees have been called “guarded” in [7].

It is straightforward to check that the hypotheses listed in Proposition
5.3 hold. In particular, if f : n → n + p is in T0 and b : n → p is in Ex,
then there is a unique tree which is a solution of the iteration equation
for (0n ⊕ b) + f : n → n + p, namely the equation

ξ = ((0n ⊕ b) + f) · 〈ξ, 1p〉.

Indeed, the tree 0n ⊕ b + f induces a proper contraction map C on the
set of trees t : n → p in ST (A), where

C(t) := ((0n ⊕ b) + f) · 〈t, 1p〉.

The distance between C(t) and C(t′) is at most 1/2 the distance between
t and t′. Thus, by the Banach fixed point theorem [1], C has a unique
fixed point.

Thus, as a corollary to the grove extension theorem, we obtain

Theorem 6.2 There is a unique way to define † on ST (A) extending
the corresponding operation on Ex, so that ST (A) is a Conway theory.
And since Ex is in fact an iteration theory, so is ST (A). Moreover, the
weak functorial implication holds in ST (A).

The fact that ST (A) is an iteration theory was proved in a totally dif-
ferent way in [7], using 2-categorical notions, initiality and continuity
arguments.
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7 Theories of formal tree series

Recall that TΣ(Xn) denotes the set of finite Σ-trees whose leaves are
labeled by letters in Xn ∪Σ0 and whose interior nodes with k successors
are labeled by letters in Σk. The height, ht(t), of a tree t in TΣ(Xn) is
defined as usual.

Assume S is a commutative semiring.

Definition 7.1 A formal Σ-tree series s : 1 → p over S is a
function

s : TΣ(Xp) // S.

We let S〈〈 Σp 〉〉 denote the set of all formal Σ-tree series 1 → p over S.
We write the value of s ∈ S〈〈 Σp 〉〉 on the tree t as (s, t). The support
of s is {t ∈ TΣ(Xp) : (s, t) 6= 0}.

The following fact is well-known.

Proposition 7.2 The set S〈〈 Σp 〉〉 is a complete metric space, where
for s, s′ ∈ S〈〈 Σp 〉〉, the distance function is defined as follows.

d(s, s′) :=

{
0 s = s′

1/2n n = min{ht(t) : (s, t) 6= (s′, t)}.

Each set S〈〈 Σp 〉〉 may be enriched with a commutative addition opera-
tion, defined by:

(s1 + s2, t) := (s1, t) + (s2, t), t ∈ TΣ(Xp).

Proposition 7.3 (S〈〈 Σp 〉〉, +, 0p) is a commutative monoid, where 0p

is the constant function with value 0 ∈ S. 2

Definition 7.4 For any tree t ∈ TΣ(Xp), let η(t) ∈ S〈〈 Σp 〉〉 be the
series defined by:

(η(t), u) :=

{
1 u = t

0 otherwise.
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We will need the following construction below.

Definition 7.5 Suppose that t ∈ TΣ(Xn) has exactly k leaves labeled
by variables in Xn. (There may be other leaves labeled by letters in Σ0.)
Say these leaves are labeled, from left to right, by xi1 , . . . , xik . Let t′ in
TΣ(Xk) be the tree obtained from t by relabeling these leaves x1, . . . , xk,
respectively, and let f denote both the function f : [k] → [n] which maps
j ∈ [k] to ij ∈ [n], (and the corresponding base morphism k → n). Then

t = 1
t′ // k

f
// n.

When k = 0, t′ is the same tree as t, and f = 0n.

Definition 7.6 For any tree u ∈ TΣ(Xp), let Dn(u) denote the set of
all trees t ∈ TΣ(Xn) such that

u = t′ · 〈u1, . . . , uk〉
for some trees u1, . . . , uk ∈ TΣ(Xp), where t′ is constructed from t as in
Definition 7.5.

We note that Dn(u) is a finite set, which is nonempty when n > 0. In
particular, for i ∈ [p],

Dn(xi) = {x1, . . . , xn}, (6)

since if xi = t′ · 〈u1, . . . , uk〉, we have k = 1, t′ = x1 and u1 = xi. Thus,
if t = xj , f(1) = j. Further, for a fixed u ∈ TΣ(Xp) and t ∈ Dn(u), there
is a unique set of trees u1, . . . , uk such that u = t′ · 〈u1, . . . , uk〉.
We define next the theory S〈〈 Σ 〉〉 of formal Σ-tree series over S.

Definition 7.7 A morphism 1 → p in S〈〈 Σ 〉〉 is a function in S〈〈 Σp 〉〉;
a morphism n → p is an n-tuple 〈s1, . . . , sn〉 of morphisms 1 → p. For
s ∈ S〈〈 Σn 〉〉, si ∈ S〈〈 Σp 〉〉, i ∈ [n], and u ∈ TΣ(Xp), we define

(s · 〈s1, . . . , sn〉, u) :=
∑

t∈Dn(u)

(s, t) · (sf(1), u1) · · · (sf(k), uk), (7)

where t = t′ · f , as in Definition 7.5, and Dn(u) is defined in Definition
7.6, and u, t′, u1, . . . , uk are related as in that Definition. The composite
of 〈s1, . . . , sn〉 with r : n → q is defined by:

〈s1, . . . , sn〉 · r := 〈s1 · r, . . . , sn · r〉.
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For i ∈ [n], the coproduct injection in : 1 → n is the series η(xi) in
S〈〈 Σn 〉〉.

When the semiring is the Boolean semiring, this composition is known
as the “OI” substitution, [21].

In order to make S〈〈 Σ 〉〉 into a grove theory, we extend the addition op-
eration to all hom-sets pointwise: for morphisms s, r : n → p in S〈〈 Σ 〉〉,
with s = 〈s1, . . . , sn〉 and r = 〈r1, . . . , rn〉, we define

s + r := 〈s1 + r1, . . . , sn + rn〉
0n,p := 〈0p, . . . ,0p〉.

We omit the proof that S〈〈 Σ 〉〉 is a theory, and note only

Proposition 7.8 S〈〈 Σ 〉〉 is a grove theory.

Indeed, since the sum of two n-tuples of morphisms 1 → p is defined
pointwise, we need only check that S〈〈 Σp 〉〉 is a commutative monoid,
and composition on the right distributes over sum. Both facts are easy
to verify. 2

We will use the next fact several times.

Lemma 7.9 Suppose s : 1 → n, si : 1 → p, in S〈〈 Σ 〉〉, for each i ∈ [n].
Then, for each variable xj ∈ Xp,

(s · 〈s1, . . . , sn〉, xj) =
∑
i∈[n]

(s, xi) · (si, xj).

Proof. Indeed, by (7),

(s · 〈s1, . . . , sn〉, xj) =
∑

t∈Dn(xj)

(s, t) · (sf(1), u1) · · · (sf(k), uk),

where f, k are related to t by Definition 7.5. But then t ∈ Xn, by (7.6),
so that k = 1, t′ = x1, and u1 = xj . If t = xi, f(1) = i and

(s · 〈s1, . . . , sn〉, xj) =
∑
i∈[n]

(s, xi) · (si, xj). 2
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For any g = 〈s1, . . . , sn〉 : n → p in S〈〈 Σ 〉〉, let µ(g) denote the n×p
matrix in MatS, such that

µ(g)i,j := (si, xj).

Proposition 7.10 For f : n → p and g : p → q in S〈〈 Σ 〉〉,

µ(f · g) = µ(f) · µ(g).

If f, g : n → p in S〈〈 Σ 〉〉,

µ(f + g) = µ(f) + µ(g).

Proof. It is enough to prove both statements for the case n = 1.
The result for composition follows from Lemma 7.9, and for addition by
definition of f + g. 2

Now let M(n, p) consist of all morphisms 〈s1, . . . , sn〉 : n → p in S〈〈 Σ 〉〉
such that, for each i ∈ [n], the support of si is a subset of Xp.

Proposition 7.11 M is a sub grove theory of S〈〈 Σ 〉〉, i.e., 0n,p ∈
M(n, p); if g1, g2 ∈ M(n, p), then g1 + g2 ∈ M(n, p), and if h ∈ M(p, q),
g1 · h ∈ M(n, q), for each n, p, q ≥ 0. Also, η(xi) ∈ M(1, p), for each
i ∈ [p].

Proof. It is enough to prove these facts when n = 1. Now if t /∈
Xp, (g1 + g2, t) = (g1, t) + (g2, t) = 0, so that M(1, p) is closed under
addition. To show that M is closed under composition , write g1 = s,
h = 〈s1, . . . , sp〉. Then, for any u ∈ TΣ(Xq),

(s · h, u) =
∑

t∈Dn(u)

(s, t) · (sf(1), u1) · · · (sf(k), uk),

as usual. But unless t ∈ Xn, the value (s, t) is 0. Thus, for t = xi ∈ Xn,
t′ = x1, k = 1, f(1) = i and u = u1, so that (s · h, u) =

∑
i∈[n](s, xi) ·

(si, u). But unless u ∈ Xq, we have (si, u) = 0. Thus, the support of s ·h
is a subset of Xq. 2

Corollary 7.12 M is isomorphic to the matrix theory MatS.
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Proof. This follows from Proposition 7.10 and from the fact that the
restriction of µ to M is a bijection M → MatS. 2

Proposition 7.13 If a : n → p in M and s, s′ : p → q in S〈〈 Σ 〉〉, then

a · (s + s′) = a · s + a · s′.

Proof. We assume n = 1. Since the support of a is a subset of Xp, for
any u ∈ TΣ(Xq), and any r = 〈r1, . . . , rp〉 : p → q, by (7),

(a · r, u) =
∑
i∈[p]

(a, xi) · (ri, u).

The result follows immediately. 2

Let T0(1, p) denote the set of morphisms f0 : 1 → p in S〈〈 Σ 〉〉 such that

i ∈ [p] =⇒ (s, xi) = 0.

Let T0(n, p) be those morphisms n → p such that each component is in
T0(1, p).

We note the following obvious fact.

Proposition 7.14 Any f : n → p in S〈〈 Σ 〉〉 can be written uniquely
as f = a + g, where a : n → p in M and g : n → p in T0. 2

Proposition 7.15 Suppose that f, g ∈ T0(n, p). Then f + g ∈ T0(n, p).
If a ∈ M(k, n), then a · f ∈ T0(k, p). If h : p → q in S〈〈 Σ 〉〉, then
f · h ∈ T0(n, q). The constant function in S〈〈 Σp 〉〉 with value 0 belongs
to T0(1, p).

Proof. We prove closure of T0 under left composition with morphisms
in M . It is enough to assume k = 1, so let s : 1 → n in M and
g = 〈s1, . . . , sn〉 in T0(n, p). By Lemma 7.9, for each xj ∈ Xq,

(s · g, xj) =
∑
i∈[n]

(s, xi) · (si, xj).

But, for each i ∈ [n], si ∈ T0(1, q), so that (si, xj) = 0. Hence (s·g, xj) =
0.

The fact that T0 is closed under right composition with any morphism is
proved in the same way, using Lemma 7.9 again. 2
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Proposition 7.16 If g ∈ T0(1, 1+ p) and b : 1 → p in M , then there is
a unique ξ : 1 → p ∈ S〈〈 Σ 〉〉 such that

ξ = ((01 ⊕ b) + g) · 〈ξ, 1p〉.

Proof. Recall that S〈〈 Σp 〉〉 is a complete metric space. We claim that
the function C : S〈〈 Σp 〉〉 → S〈〈 Σp 〉〉 defined by

C(s) := ((01 ⊕ b) + g) · 〈s, 1p〉
is a proper contraction on the complete metric space S〈〈 Σp 〉〉. It then
follows from the Banach fixed point theorem that C has a unique fixed
point, which is the statement of the proposition.

Let r ∈ S〈〈 Σ1+p 〉〉 be defined as

r = (01 ⊕ b) + g.

Note that M(01 ⊕ b) is the matrix

[0, (b, x1), . . . , (b, xp)].

We compute the value of r on each xj ∈ X1+p.

(r, xj) =

{
(g, x1) = 0 j = 1

(b, xj−1) + (g, xj) = (b, xj−1) j > 1

since g ∈ T0(1, 1 + p).

Now C(s) = r · 〈s, s2, . . . , s1+p〉, where, for j ∈ [p], s1+j = η(xj). Thus,
by Lemma 7.9, for j ∈ [p],

(C(s), xj) = (r, x1) · (s, xj) +
∑
i∈[p]

(b, xi) · (η(xi), xj)

=
∑
i∈[p]

(b, xi) · (η(xi), xj)

= (b, xj).

since (r, x1) = 0. For an atomic tree σ0 · 0p, with σ0 ∈ Σ0, (C(s), u) =
(g, σ0 · 01+p). Thus, for any s1, s2 in S〈〈 Σp 〉〉, C(s1) and C(s2) agree on
all trees in TΣ(Xp) of depth 0. For a tree u ∈ TΣ(Xp) of depth at least 1,

(C(s), u) =
∑

t∈D1+p(u)

(r, t) · (sf(1), u1) · · · (sf(k), uk),
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where u = t′ · 〈u1, . . . , uk〉, t = t′ · f , as always. Let A be the collection
of all trees in D1+p(u) that have at least one leaf labeled x1, and let
B = D1+p(u) − A. Then let

CA(s, u) =
∑
t∈A

Ct(s, u)

CB(s, u) =
∑
t∈B

Ct(s, u),

where, for t ∈ D1+p(u),

Ct(s, u) := (r, t) · (sf(1), u1) · · · (sf(k), uk).

Then (C(s), u) = CA(s, u)+CB(s, u). Note that for any s, s′ in S〈〈 Σp 〉〉
and any t ∈ B,

Ct(s, u) = Ct(s
′, u),

since for trees t ∈ B, f(i) > 1, for all i ∈ [k], so that the functions sf(i)

are in the set {η(x1), . . . , η(xp)}. Let β be this common value CB(s, u).
So, (C(s), u) = β + CA(s, u). If C(s, u) 6= C(s′, u), there must be at
least one tree t in A with Ct(s, u) 6= Ct(s

′, u). Assume that t is one such
tree. We know ht(t) > 0. Assume further, for ease of notation, that
f−1(1) = {1, 2, . . . , j}, for some j, 1 ≤ j ≤ k. Then

Ct(s, u) = (r, t) · (s, u1) · · · (s, uj)(sf(j+1), uj+1) · · · (sf(k), uk)

Ct(s
′, u) = (r, t) · (s′, u1) · · · (s′, uj)(sf(j+1), uj+1) · · · (sf(k), uk)

Hence, (s, ui) 6= (s′, ui), for at least one i ∈ [j]. Since

u = t′ · 〈u1, . . . , uk〉
and ht(t′) = ht(t) > 0,

d(C(s), C(s′)) ≤ 1

2
d(s, s′). 2

Since we have verified the hypotheses of the Proposition 5.3, by the grove
extension theorem, we get the following result.

Corollary 7.17 If S is a Conway or iteration semiring, there is a
unique extension of the fixed point operation on M to all of S〈〈 Σ 〉〉 so
that S〈〈 Σ 〉〉 is a Conway or iteration theory.
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The proof of the grove extension theorem gives some more information
as to the value of s†, for s : 1 → 1 + p in S〈〈 Σ 〉〉.
Indeed, suppose we write s = [a, b] + g, where [a, b] : 1 → 1 + p in MatS

and g ∈ T0. Then we know, from this proof, that s† = (a∗ · (01 ⊕ b+ g))†.
But

a∗ · (01 ⊕ b + g) = 01 ⊕ (a∗b) + (a∗ · g),

and a∗ · g is in T0. Thus, by the Banach fixed point theorem, s† is the
metric limit limn sn, where

s0 := 0p

sn+1 := (01 ⊕ (a∗b) + (a∗g)) · 〈sn, 1p〉
= a∗b + (a∗g) · 〈sn, 1p〉

We could have chosen any element in S〈〈 Σp 〉〉 as s0. In the case that S
is a continuous, naturally ordered semiring, 0p is the least in S〈〈 Σp 〉〉,
so that, with s0 = 0p, s† = supn sn, as well. 2

8 Proof of the main theorem

We repeat here the hypotheses of the grove extension theorem.

We assume T is a grove theory, M is a sub grove theory of T which is a
matrix theory, and

H1. T0 is an M-ideal in T .

H2. Every f : n → p in T can be written uniquely as

f = a + f0, a ∈ M, f0 ∈ T0

H3. If a ∈ M and f, g ∈ T have appropriate sources and targets, then

a · (f + g) = a · f + a · g.

H4. M is a Conway theory, so that there is a ∗-operation on the square
matrices satisfying

(ab)∗ = 1n + a(ba)∗b, a : n → m, b : m → n

(a + b)∗ = (a∗b)∗a∗, a, b : n → n.
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In particular, S = M(1, 1) is a Conway semiring. Of course, M has
a † operation derived from ∗ as usual: if a is an n×n matrix and b
is n×p, then

[a b]† = a∗b : n // p.

H5. For every f0 : n → n+p in T0 and b : n → p in M , there is a unique
solution to the equation

ξ = ((0n ⊕ b) + f0) · 〈ξ, 1p〉,
and we denote the solution by

ξ = ((0n ⊕ b) + f0)
∇.

Theorem 8.1 (Grove extension theorem) Under the above hypothe-
ses, there is a unique way to define a dagger operation † on T extending
that on M and the operation ∇ such that T becomes a Conway theory.
Further, if M satisfies the weak functorial identity, so does T ; if M is
an iteration theory, so is T .

Proof.

Uniqueness. First, we show that there is at most one such extension.

Suppose that T has such a dagger operation making it a Conway theory.
Then if g = ((0n ⊕ b) + f0), for f0 : n → n + p in T0 and b : n → p in M ,
by the fixed point identity,

g† = ((0n ⊕ b) + f0) · 〈g†, 1p〉.
Thus

((0n ⊕ b) + f0)
† = ((0n ⊕ b) + f0)

∇.

So any fixed point operation † must extend ∇.

We prove a proposition that will be used elsewhere.

Proposition 8.2 Assume that T is a Conway grove theory with a Con-
way matrix subtheory M . Then, for any f0 : n → n + p in T and
[a, b] : n → n + p in M ,

(f0 + [a, b])† = (a∗ · ((0n ⊕ b) + f0))
†.
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Lemma 8.3 With the same assumptions on T, M , if a : n → n in M
and g : n → n + p in T ,

(a ⊕ 0n+p + 0n ⊕ g)† = a∗g : n // n + p

Proof. Since † extends the dagger operation on M ,

(a ⊕ 0n+p + 0n ⊕ 1n ⊕ 0p)
† = [a, 1n, 0n,p]

†

= [a∗, 0n,p]

= a∗ ⊕ 0p.

Then, since

(a ⊕ 0n+p + 0n ⊕ g) = (a ⊕ 0n+p + 0n ⊕ 1n ⊕ 0p) · (1n ⊕ 〈g, 0n ⊕ 1p〉),

we have, using the parameter identity,

(a ⊕ 0n+p + 0n ⊕ g)† = ((a ⊕ 0n+p + 0n ⊕ 1n ⊕ 0p)
† · 〈g, 0n ⊕ 1p〉

= (a∗ ⊕ 0p) · 〈g, 0n ⊕ 1p〉
= a∗ · g. 2

We now complete the proof of Proposition 8.2. Suppose that f = ([a, b]+
f0) : n → n + p in T , f0 ∈ T , and [a, b] : n → n + p in M . Then

f = (a ⊕ 0p) + ((0n ⊕ b) + f0).

If g = ((0n ⊕ b) + f0), then,

f † = ((a ⊕ 0p) + g)†

= (((a ⊕ 0n+p) + (0n ⊕ g)) · 〈1n, 1n〉 ⊕ 1p))
†

= ((a ⊕ 0n+p) + (0n ⊕ g))††,

using the double dagger identity,

= (a∗ · g)†,

by Lemma 8. This fact proves Proposition 8.2.

Now if f0 ∈ T0, by Proposition 8.2,

(a∗ · g)† = (a∗ · g)∇.
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Indeed, since T0 is an M-ideal, a∗ · f0 ∈ T0. Also,

a∗ · g = a∗ · ((0n ⊕ b) + f0)

= (0n ⊕ a∗b) + (a∗ · f0),

by H3. Thus, (a∗ · g)† = (a∗ · g)∇, showing that † is determined by ∗ and
∇. 2

Existence.

We use the formula derived above to define †. So, given f = ([a, b]+f0) :
n → n + p, with [a, b] ∈ M and f0 ∈ T0, we define

f † := (a∗ · g)∇,

where

g := (0n ⊕ b) + f0 : n // n + p.

Since f can be written as [a, b] + f0 in exactly one way, f 7→ f † is well
defined.

Lemma 8.4 The dagger operation extends the dagger operation on M .

Proof. Choose f0 = 0n,n+p ∈ T0. Then, by definition, if f = [a, b]+f0 =
[a, b] : n → n + p, then

g = (0n ⊕ b) + f0 = 0n ⊕ b,

so that

a∗ · g = 0n ⊕ a∗b, and

f † = (0n ⊕ a∗b)∇

= a∗b,

which is the dagger operation in M . 2

Lemma 8.5 The dagger operation extends ∇.

Suppose that f = 0p ⊕ b + f0, so that a = 0n,n. Then, since 0∗n,n = 1n,

f † = (0∗n,n · f)∇

= f∇. 2
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¿From now on, we drop the use of ∇, so that

((a ⊕ 0p) + f)† = (a∗ · f)†,

whenever a : n → p ∈ M and f = (0n ⊕ b) + f0 : n → n + p, with
b : n → p in M and f0 ∈ T0.

To save space, we write f ∈ T̂0 if f = (0n ⊕ b)+ f0 : n → n+ p, as above.

Lemma 8.6 For a : n → n in M and f : n → n + p ∈ T̂0,

(a∗ · f)† = a∗ · (f · (a∗ ⊕ 1p))
†.

Thus,

((a ⊕ 0p) + f)† = a∗ · (f · (a∗ ⊕ 1p))
†.

Proof. By hypotheses H1 and H3, a∗ · f ∈ T̂0. Thus, it is enough to
show that a∗ · (f · (a∗ ⊕ 1p))

† is a solution of the fixed point equation for
a∗ · f .

a∗ · f · 〈a∗ · (f · (a∗ ⊕ 1p))
†, 1p〉 = a∗ · f · (a∗ ⊕ 1p) · 〈(f · (a∗ ⊕ 1p))

†, 1p〉
= a∗ · (f · (a∗ ⊕ 1p))

†,

since the fixed point identity holds for morphisms in T0.

In order to show that, equipped with this dagger operation T is a Conway
theory, we will show that it satisfies the parameter, composition and
double dagger identities (see [7], Chapter 6.2). For use in the argument,
we show first that it satisfies the fixed point identity.

Proposition 8.7 The operation † satisfies the fixed point identity.

Proof. Suppose that a : n → n in M and f : n → n + p in T̂0. We want
to show

((a ⊕ 0p) + f)† = ((a ⊕ 0p) + f) · 〈((a ⊕ 0p) + f)†, 1p〉,

in other words, that

([a, 0] + f) · 〈(a∗ · f)†, 1p〉 = (a∗ · f)†.
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But,

([a, 0] + f) · 〈(a∗ · f)†, 1p〉 = a(a∗ · f)† + f · 〈(a∗ · f)†, 1p〉,

since composition on the right distributes over sums,

= a(a∗ · f)† + f · 〈a∗ · (f · (a∗ ⊕ 1p))
†, 1p〉

by Lemma 8.6,

= a(a∗ · f)† + f · (a∗ ⊕ 1p) · 〈(f · (a∗ ⊕ 1p))
†, 1p〉

= a(a∗ · f)† + (f · (a∗ ⊕ 1p))
†

= aa∗ · (f · (a∗ ⊕ 1p))
† + (f · (a∗ ⊕ 1p))

†

= (aa∗ + 1n) · (f · (a∗ ⊕ 1p))
†

= a∗ · (f · (a∗ ⊕ 1p))
†

= (a∗ · f)†,

again, by Lemma 8.6. Note that the morphism f · (a∗ ⊕ 1p) belongs to

T̂0. We used the fact that by assumptions H5 and H4, the fixed point
identity holds for morphisms in M and T̂0.

Proposition 8.8 The composition identity holds.

Proof. For notational simplicity, we prove this in the parameter-free
case. We will show that

((a + f) · (b + g))† = (a + f) · ((b + g) · (a + f))†, (8)

where a : n → m, b : m → n in M and f : n → m, g : m → n in T̂0.
The left hand side of (8) is

((ab)∗(f · (b + g) + ag))†

and since the morphism (ab)∗(f · (b + g) + ag) is in T̂0, it is enough to
show that the right hand side of (8) is a solution of the iteration equation
for this morphism.

Let h abbreviate the morphism ((b + g)(a + f))†, so that

h = ((ba)∗(g · (a + f) + bf))†.
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Then,

(ab)∗(f · (b + g) + ag)(a + f) · h = (ab)∗f · (b + g)(a + f) · h
+(ab)∗ag(a + f) · h

= (ab)∗f · h + (ab)∗ag(a + f) · h
= a(ba)∗bf · h + f · h + a(ba)∗g(a + f) · h
= a(ba)∗(bf + g(a + f))((ba)∗(bf + g(a + f))†

+f · h
= a((ba)∗(bf + g(a + f))† + f · h
= a · h + f · h
= (a + f)((b + g)(a + f))†. 2

Proposition 8.9 The parameter identity holds.

First, we need the following fact.

Lemma 8.10 If f : n → n+p is in T̂0, so is f ·(1n⊕g), for any g : p → q.

Proof. Indeed, if f = (0n ⊕ b) + f0, as always, then f0 · (1n ⊕ g) is in T0,
since T0 is closed under right composition with any morphism. Also,

f · (1n ⊕ g) = ((0n ⊕ b) + f0) · (1n ⊕ g)

= (0n ⊕ (bg)) + (f0 · (1n ⊕ g)).

Now, writing g = (a + g0), where a : p → q in M and g0 : p → q in T0,
we have

bg = b · (a + g0)

= b · a + b · g0,

by H3. Now b · a ∈ M and b · g0 ∈ T0. Thus, we have

f · (1n ⊕ g) = (0n ⊕ b′) + f ′
0, where

b′ = b · a
f ′

0 = b · g0 + f0 · (1n ⊕ g),

completing the proof. 2
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Now suppose that a : n → n in M , f : n → n + p in T̂0 and g : p → q in
T . We want to show that

(([a, 0] + f) · (1n ⊕ g))† = (([a, 0] + f)† · g.

But

(([a, 0] + f) · (1n ⊕ g))† = ([a, 0] + f · (1n ⊕ g))†

= (a∗ · f · (1n ⊕ g))†.

Now, since the parameter identity holds for unique fixed points, ([7],
Chapter 5) and since the morphism a∗ · f · (1n ⊕ g) is in T̂0,

(a∗f · (1n ⊕ g))† = (a∗f)† · g
= (([a, 0] + f)† · g,

as was to be shown. 2

We now turn to the double dagger identity.

Proposition 8.11 The double dagger identity holds.

Proof. We consider only the parameterless case. Let g = [a, b] + f :
n → n + n, where [a, b] ∈ M and f ∈ T0. Let ρ = 〈1n, 1n〉. We want to
show that

(g · ρ)† = g††. (9)

But,

(g · ρ)† = (([a, b] + f) · ρ)†

= (a + b + (f · ρ))†

= ((a + b)∗ · (f · ρ))†.

Suppose that we can prove

((a + b)∗ · f · ρ) · g†† = g††, (10)

then, since (a + b)∗ · (f · ρ) ∈ T0, we have

((a + b)∗ · f · ρ)† = g††,



8 Proof of the main theorem 30

showing that (9) holds.

So we now prove (10).

g† = ([a, b] + f)†

= ([a, 0] + ([0, b] + f))†

= (a∗([0, b] + f))†

= ([0, a∗b] + a∗ · f)†.

But, by the fixed point identity proved above,

([0, a∗b] + a∗ · f)† = ([0, a∗b] + a∗ · f) · 〈([0, a∗b] + a∗ · f)†, 1n〉
= ([0, a∗b] + a∗ · f) · 〈g†, 1n〉
= a∗b + a∗ · f · 〈g†, 1n〉.

Thus,

g†† = ((a∗b)∗a∗ · f · 〈g†, 1n〉)†
= ((a + b)∗ · f · 〈g†, 1n〉)†. (11)

We now complete the proof of (10).

(a + b)∗ · f · ρ · g†† = (a + b)∗ · f · 〈g††, g††〉
= (a + b)∗ · f · 〈g†, 1n〉 · g††,

by the fixed point identity for g†,

= (a + b)∗ · f · 〈g†, 1n〉 · ((a + b)∗ · f · 〈g†, 1n〉)†
= ((a + b)∗ · f · 〈g†, 1n〉)†
= g††,

by two applications of (11). 2

This completes the proof that with the extension, T is a Conway theory.

Proposition 8.12 Suppose that the weak functorial implication holds
in M . Then it also holds in T .

Proof. Suppose that the diagram below commutes, where ρ : n → 1 is
the unique base morphism, a : n → n, b : 1 → 1 in M , and f, g are in
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T̂0.

1 1 + p
(b⊕0p)+g

//

n

1

ρ

��

n n + p
(a⊕0p)+f // n + p

1 + p

ρ⊕1p

��

Since T is the direct sum of M and T0, we have

a · ρ = ρ · b
f · (ρ ⊕ 1p) = ρ · g.

Since the weak functorial implication holds in M ,

a∗ · ρ = ρ · b∗.
Since the weak functorial implication holds for unique fixed points,

f † = ρ · g†.

In fact,

a∗ · f · (ρ ⊕ 1p) = a∗ · ρ · g
= ρ · b∗ · g,

so that

(a∗ · f)† = ρ · (b∗ · g)†,

completing the proof. 2

Last, we show that if M is an iteration theory, so is T .

Proposition 8.13 If M satisfies the group equation associated with the
finite group G, then so does T .

Proof. Let h : 1 → n+p be any morphism and suppose that G is a group
of order n (whose underlying set is [n]). Let hG denote the morphism
n → n + p:

〈h · (ρG
1 ⊕ 1p), . . . , h · (ρG

n ⊕ 1p)〉
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where the morphisms ρG
i : n → n are the base morphisms determined by

the group operation i, j 7→ i • j of G:

ρG
i (j) := i • j.

We use the same notation for morphisms in M : If a = [a1, . . . , an] : 1 → n
in M ,

aG =


 aρG

1 (1) . . . aρG
1 (n)

. . .
aρG

n (1) . . . aρG
n (n)




It is known from [26] that

(aG)∗ = bG,

for some b = [b1, . . . , bn] in M .

So assume that a : 1 → n in M and f : 1 → n + p in T̂0. Let a denote
the sum of the entries in a, so that a = a · ρ, where ρ : n → 1 is base.
Let f = f · (ρ ⊕ 1p).

We want to show that

((aG ⊕ 0p) + fG)† = ρ · ((a ⊕ 0p) + f)†. (12)

The left hand side is

((aG)∗fG)† = (bG · fG)†.

But bG · f ∈ T̂0, and

bG · fG · ρ = bG · ρ · f
= ρ · b · f,

where b is the sum of the entries of bG. Since the weak functorial impli-
cation holds for unique fixed points ([7], Chapter 5), we have

(bG · fG)† = ρ · (b · f)†,

i.e.,

((aG)∗fG)† = ρ · (b · f)†.

But since the group identity holds in M , b is just a∗. Thus,

((aG)∗fG)† = ρ(a∗f)†

= ρ · ((a ⊕ 0p) + f)†,

proving (12). 2

The proof of the grove extension theorem is complete.
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9 A Kleene Theorem

Assume that T is a Conway grove theory and M is a sub Conway grove
theory of T which is a matrix theory. For a given collection Σ of scalar
morphisms in T we will describe the smallest sub Conway grove theory
of T containing all the morphisms in M ∪ Σ.

In more detail, we are assuming that

1. T is a Conway grove theory and M is a sub Conway theory of T that
is a matrix theory. Thus, M has a ∗-operation on the p×p matrices,
for each p ≥ 1, satisfying the star sum and product identities (3)
and (4) in Section 3 above. The hom-set M(1, 1) is a Conway
semiring, which we denote by S.

2. If a ∈ M and f, g ∈ T have appropriate sources and targets, then

a · (f + g) = a · f + a · g.

Let Σ be a collection of scalar morphisms in T .

Definition 9.1 A morphism f : 1 → n + p is primitive of weight n if
f is a finite sum of morphisms of the sort

s · σ · ρ (type 1)

0n ⊕ (s · τ) (type 2),

where s ∈ S, σ : 1 → k ∈ Σ, ρ : k → n + p and τ : 1 → p are base.
A morphism f = 〈f1, . . . , fq〉 : q → p is primitive of weight n if each
component is primitive of weight n.

Note that any 1×p matrix in M is primitive of type 2, (when n = 0), so,
in effect, all morphisms in M are primitive (of type 2).

We list some easy consequences of these definitions.

Proposition 9.2 1. If f : r → n + p is primitive of weight n, so is
γ · f : m → n + p, for any base morphism γ : m → r.

2. If f : 1 → n + p is primitive of weight n of type 1, then f · γ : 1 →
n + q is primitive of type 1, for any base γ : n + p → n + q.
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3. If f : 1 → n + p is primitive of of weight n of type 2, then f · (1n ⊕
0m ⊕ γ) : 1 → n + m + q is primitive of weight n + m of type 2, for
any base γ : p → q.

4. If g : m → n + p is primitive of weight n, and b : m → m is in M ,
then b · g is primitive of weight n. Indeed, if m = 1, b = [s], say,
and g = g1 + . . . + gr, then b · g = s · g1 + . . . + s · gr, since left
composition with M-morphisms distributes over sums. And if gi is
primitive of any type, so is s · gi.

5. If f : m → n + p is primitive of weight n, then 0q ⊕ f is primitive
of weight q + n.

6. If 0q ⊕ f : m → q + n + p is primitive of weight q + n, then f is
primitive of weight n.

Definition 9.3 A normal description k → p of weight n is a pair

D = (α, f),

where f : n → n + p is primitive of weight n, and α : k → n is base. The
behavior of the normal description D : k → p is the morphism

|D| := α · f †.

Below, we will often write a primitive morphism f of weight n as

f = f + (0n ⊕ a),

where f is of type 1 and a : n → p ∈ M .

A normal description D = (α, f) : k → p of weight n might be viewed as
an “automaton” with n internal states, and p exit states; the values of α
pick out the k start states among the internal states, and the behavior
of D is the morphism in T determined by this automaton.

The rest of this section contains a proof of the following “Kleene” type
theorem.

Theorem 9.4 The smallest sub Conway grove theory of T containing
M and Σ consists of the behaviors of normal descriptions.
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Proof. Let D denote the collection of all morphisms of the form |D|, for
a normal description D.

First, it is clear that any sub Conway grove theory of T that contains
S ∪ Σ will contain each morphism in D. Thus, we need show only that
this collection of morphisms is itself a sub Conway grove theory of T .

D is closed under composition.

Suppose that D = (α, f) : k → p has weight n and E = (β, g) : p → q
has weight m. Write

f = f + (0n ⊕ a)

g = g + (0m ⊕ b),

where a : n → p and b : m → q in M . Then, define the normal description
D · E as

D · E := (α ⊕ 0m, h),

where h : n + m → n + m + q is defined as follows:

h := 〈h1, h2〉, where

h1 = f · (1n ⊕ β ⊕ 0q) + (0n ⊕ (a · β · g))

h2 = 0n ⊕ g.

Note that a · β · g is primitive, by Proposition 9.2. Thus, by Proposition
9.2, D · E : k → q is a primitive normal description, of weight n + m.
Claim:

|D · E| = |D| · |E|.

Proof. First, note that for any morphisms F : n → n + m + q and
G : m → m + q in a Conway theory,

〈F, 0n ⊕ G〉† = 〈F † · 〈G†, 1q〉, G†〉

by the pairing identity,

= 〈(F · (1n ⊕ 〈G†, 1q〉)†, G†〉,



9 A Kleene Theorem 36

by the parameter identity. Thus, when F = h1 : n → n + m + q and
G = g : m → m + q, so h2 = 0n ⊕ g,

(1n ⊕ 0m) · h† = ((f · (1n ⊕ β ⊕ 0q) + 0n ⊕ a · β · g) · (1n ⊕ 〈g†, 1q〉))†
= (f · (1n ⊕ β · g† + 0n ⊕ a · β · g†)†

= ((f + 0n ⊕ a) · (1n ⊕ β · g†))†

= (f + 0n ⊕ a)† · β · g†

= f † · β · g†.

Thus,

|D · E| = (α ⊕ 0m) · h†

= α · (1n ⊕ 0m) · h†

= α · f † · β · g†

= |D| · |E|.

D is closed under †.

Suppose that D = (α, f) : k → k + p has weight n, so that α : k → n is
base and f = f + 0n ⊕ [a, b] : n → n + k + p, where a : n → k, b : n → p
in M .

Define |D†| as (α, g), where

g = (a · α)∗ · (f · (〈1n, α〉 ⊕ 1p) + (0n ⊕ b))

= ((a · α)∗ · f · (〈1n, α〉 ⊕ 1p)) + (0n ⊕ (a · α)∗ · b).
We have used the fact that M has a ∗ operation, and composition on the
left with M-morphisms distributes over sums.

We claim

|D†| = |D|†.
Indeed,

|D|† = (α · (f + (0n ⊕ [a, b]))†)†

= α · ((f + (0n ⊕ [a, b]))† · (α ⊕ 1p))
†,

by the composition identity,

= α · ((f + (0n ⊕ [a, b])) · (1n ⊕ α ⊕ 1p))
††,
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by the parameter identity,

= α((f + 0n ⊕ [a, b]) · (1n ⊕ α ⊕ 1p) · (〈1n, 1n〉 ⊕ 1p))
†,

by the double dagger identity,

= (α · (f + (0n ⊕ [a, b])) · (〈1n, α〉 ⊕ 1p))
†

= α · ((f · (〈1n, α〉 ⊕ 1p) + [a · α, b])†

= α · ((a · α)∗ · (f · (〈1n, α〉 ⊕ 1p) + (0n ⊕ b))†

= α · g†

= |D†|. 2

D is closed under +.

Suppose that D = (α, f) and E = (β, g) are normal descriptions n → p of
weights w, s respectively. Define the normal description D +E = (γ, h) :
n → p of weight w + s + n as follows:

h := 〈h1, h2, h3〉, where

h1 := f · (1w ⊕ 0s ⊕ 0n ⊕ 1p)

h2 := g · (0w ⊕ 1s ⊕ 0n ⊕ 1p)

h3 := α · h1 + β · h2

γ := 0w ⊕ 0s ⊕ 1n.

Then, by two uses of the pairing identity,

h† = 〈f †, g†, α · f · 〈f †, 1p〉, β · g · 〈g†, 1p〉〉
= 〈f †, g†, α · f † + β · g†〉,

so that |D + E| = γ · h† = |D| + |E|. 2

D is closed under pairing.

Suppose that D = (α, f) and E = (β, g) are normal descriptions n → p of
weights w, s respectively. Define the normal description 〈D, E〉 = (γ, h) :
n → p of weight w + s as follows:

h := 〈h1, h2〉, where

h1 := f · (1w ⊕ 0s ⊕ 1p)

h2 := g · (0w ⊕ 1s ⊕ 1p)

γ := 〈α · (1w ⊕ 0s), β · (0w ⊕ 1s)〉
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Then, by the pairing identity,

h† = 〈f †, g†〉,
so that

|〈D, E〉| = γ · h†

= 〈α · f †, β · g†〉
= 〈|D|, |E|〉. 2

D contains all morphisms in M .

For [a, b] : n → p in M , let D be the description (α, f), where

α = 1n

f = 0n ⊕ [a, b].

Then, by the left zero identity,

|D| = α · (0n ⊕ [a, b])†

= [a, b].

It follows that all base morphisms are in D.

D contains all morphisms in Σ.

For σ : 1 → k, let D be the description (α, f), where

α = 11

f = σ · (01 ⊕ 1k)

= 01 ⊕ σ.

Then, by the left zero identity, σ = |D|. 2

We have shown that the behaviors form a subtheory of T containing
M ∪ Σ, closed under +,†. Since Conway grove theories are defined by
equations, any subtheory of a Conway grove theory closed under sum and
† will also be a Conway grove theory. This completes the proof. 2
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[22] Z. Ésik, Group axioms for iteration. Information and Computation,
148(1999), 131–180.

[23] S.C. Kleene, Representation of events in nerve nets and finite automata.
In C.E. Shannon and J. McCarthy, editors, Automata Studies, Princeton
U. Press, Princeton, NJ, 1956. 3–41.

[24] P. Freyd, Algebraically complete categories, in: Category Theory, Como
1990, LNM vol. 1488, Springer–Verlag, 1991, 95–104.

[25] P. Freyd, Remarks on algebraically compact categories, in: Applications
of Categories in Computer Science, London Math. Society Lecture Notes
Series, vol. 77, Cambridge University Press, 1992, 95–106.

[26] D. Krob, Complete systems of B-rational identities, Theoretical Com-
puter Science, 89(1991), 207–343.

[27] A. Bonnier-Rigny and D. Krob. A complete system of identities for one-
letter rational expressions with multiplicities in the tropical semiring.
Theoret. Comput. Sci. 134 (1994), no. 1, 27–50.

[28] W. Kuich. Automata and languages generalized to ω-continuous semir-
ings, Theoret. Comp. Sci., 79(1991), 137–150.



References 41

[29] W. Kuich. Formal power series over trees. In Proc. 3rd International
Conf. Developments in Language Theory (S. Bozapalidis, ed), Aristotle
University of Thessaloniki, 1998, 61–101.

[30] F.W. Lawvere. Functorial semantics of algebraic theories. In: Proceed-
ings of the National Academy of Sciences USA, 50(1963), 869–873.

[31] D.J. Lehmann and M.B. Smyth. Algebraic specification of data types:
a synthetic approach. Math. Systems Theory, 14 (1981), no. 2, 97–139.

[32] R. Milner. A complete inference system for a class of regular behaviors.
J. Comp. System Sci., 28 (1984), 439–466.

[33] D. Niwinski, On fixed-point clones, in: Proc. ICALP ’86, LNCS 226,
Springer–Verlag, 1986, 464–473.

[34] G.D. Plotkin, Domains, Lecture Notes, Department of Computer Sci-
ence, University of Edinburgh, 1983.

[35] A. Salomaa, Two complete axioms systems for the algebra of regular
events, J. of the ACM, 13(1966), 158–169.

[36] A. Salomaa, On regular expressions and regular canonical systems,
Math. Syst. Theory, 2(1968), 341–355.

[37] D.S. Scott. Data types as lattices. SIAM J. Computing, 5(3), 522–587
(1976).

[38] A.K. Simpson, A characterisation of the least fixed point operator by
dinaturality, Theoretical Computer Science, 118(1993), 301–314.

[39] M.B. Smyth and G.D. Plotkin, The category theoretic solution of recur-
sive domain equations, SIAM Journal of Computing, 11(1982), 761–783.

[40] A. Simpson and G. Plotkin. Complete Axioms for Categorical Fixed-
point operations. In: Proceedings of the 15th Annual IEEE Logic in
Computer Science Colloq., 30-41, (2000).

[41] A. Tarski, A lattice-theoretical fixed point theorem and its applications.
Pacific J. Math., 5(1955), 285–309.



11 Appendix: Theories and Trees 42

11 Appendix: Theories and Trees

This section is intended as a quick review of the basic notions. We have
lifted a great deal from our tutorial paper [10].

A Lawvere algebraic theory T , or just theory for short, is a category
whose objects are the nonnegative integers in which the object n is the
copower of the object 1 with itself n-times. (Sometimes Lawvere theories
are defined dually with n being the nth power of the object 1.) See [30].

We may elaborate the definition somewhat by specifying the copower
injections in : 1 → n, for i ∈ [n]. Thus, the official definition of theory is
the following.

Definition 11.1 A theory T is a category whose objects are the non-
negative integers, which has, for each n ≥ 0, n “distinguished mor-
phisms” in : 1 → n, i ∈ [n], with the property that for any p ≥ 0 and
any family of morphisms gi : 1 → p, i ∈ [n], there is a unique morphism
g : n → p such that

in · g = gi, i ∈ [n].

The uniquely determined morphism g is denoted 〈g1, . . . , gn〉, and is
called the “tupling” of the gi. Note that tupling determines a bijection

n︷ ︸︸ ︷
T (1, p)× . . .×T (1, p) → T (n, p),

so that one may specify a morphism f : n → p by giving its components
in · f : 1 → p, i ∈ [n]. We assume that when i = n = 1, the distinguished
morphism in is the identity morphism 1 → 1, so that 〈g〉 = g, for any
g : 1 → p. In any theory we write the identity morphism p → p as
1p : p → p. Note that 1p = 〈1p, . . . , pp〉, the tupling of the p distinguished
morphisms 1 → p.

The coproduct property implies that the object 0 is an initial object:
there is a unique morphism 0 → n, for each n ≥ 0. We denote this
morphism by

0n : 0 // n.

In any theory, a morphism with source 1 is called a scalar morphism.
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If T and T ′ are theories, a theory morphism T → T ′ is a functor which
preserves the objects and distinguished morphisms. It follows that any
theory morphism preserves tupling. (Morphisms n → p in some theory T
might also legitimately be called “theory morphisms”, but we call them
T -morphisms, or just “morphisms”.)

There is an “initial theory” Tot, the theory of all total functions [n] →
[p], n, p ≥ 0. If T is any theory, there is a unique theory morphism
Tot → T under which the function f : [n] → [p] is mapped to the
T -morphism

f := 〈f(1)p, . . . , f(n)p〉 : n // p.

The morphisms f determined by functions are called base morphisms.

A theory is trivial if each hom-set T (n, p) has at most one morphism. If
T is not trivial, the unique theory morphism from Tot is injective and
we usually assume without comment that Tot is a subtheory of every
theory.

It is useful to introduce the names

κ : n // n + p

λ : p // n + p

for the base morphisms which correspond to the inclusion function [n] →
[n + p] and translated inclusion function [p] → [n + p]. Using these base
morphisms, we introduce two derived operations on theories: pairing,
which is a function

T (n, p)×T (m, p) // T (n + m, p)

f, g 7→ 〈f, g〉
for all n, m, p ≥ 0, and separated sum, which is an operation

T (n, p)×T (m, q) // T (n + m, p + q)

f, g 7→ f ⊕ g.

The definition of pairing is the following. For f : n → p, g : m → p in
T , i ∈ [n + m],

in+m · 〈f, g〉 :=

{
in · f if i ∈ [n]
jm · g if i = n + j, j ∈ [m].
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The definition of separated sum makes use of κ : p → p+q, λ : q → p+q,
when f : n → p, g : m → q.

in+m · (f ⊕ g) :=

{
in · f · κ if i ∈ [n]
jm · g · λ if i = n + j, j ∈ [m].

There is an interesting calculus of theory terms built from the operations
of pairing and separated sum. For example, the following equations are
valid in all theories, when sources and targets are appropriate:

κ · 〈f, g〉 = f

λ · 〈f, g〉 = g

〈κ · f, λ · f〉 = f

〈f, 〈g, h〉〉 = 〈〈f, g〉, h〉
〈f, g〉 · h = 〈f · h, g · h〉 (13)

f ⊕ (g ⊕ h) = (f ⊕ g) ⊕ h

(f ⊕ g) · 〈h, k〉 = 〈f · h, g · k〉
(f ⊕ g) · (h ⊕ k) = (f · h) ⊕ (g · k)

Node Labeled Trees. Suppose that Σ = Σn, n ≥ 0, is a ranked set, and
X = {x1, . . . , xn, . . .} is a countably infinite set of “variables” disjoint
from each set Σn. We write Xp for the set {x1, . . . , xp}.
A (possibly infinite) Σ-tree t : 1 → p is a rooted, finitely branching tree
whose leaves are labeled by letters in Xp ∪ Σ0, and whose interior nodes
of outdegree n ≥ 1 are labeled by letters in Σn. Any such tree may be
modeled as a partial function t : [ω]∗ → ∪n≥0Σn ∪Xp, where [ω] denotes
the positive integers, subject to the following conditions:

• The domain of t is a nonempty, prefix closed subset of [ω]∗.

• If t(u) ∈ Σn, for some u ∈ [ω]∗ and n ≥ 0, then for any i ∈ [ω],
t(ui) is defined iff i ∈ [n].

• If t(u) ∈ Xp, then t(ui) is not defined for any i ∈ [ω].

Let ΣTR(1, p) denote the set of all such trees. The subset of trees in
ΣTR(1, p) with a finite domain is denoted TΣ(Xp). The tree 1 → p
whose root is a leaf labeled xi, i ∈ [p] is denoted ip.
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One may compose a tree t in ΣTR(1, p) with a p-tuple of trees (g1, . . . , gp)
in ΣTR(1, n) obtaining the tree denoted

t · 〈g1, . . . , gp〉
in ΣTR(1, n) by attaching a copy of the tree gi to each leaf of t labeled
xi, i ∈ [p]. Note that

t · 〈1p, . . . , pp〉 = t

ip · 〈g1, . . . , gp〉 = gi, i ∈ [p].

We let ΣTR(n, p) denote the collection of n-tuples of trees in ΣTR(1, p).

The Σ-trees form a theory ΣTR, with n-tuples of Σ-trees in Σ TR(1, p) as
morphisms n → p. A letter σ ∈ Σn is identified with the “atomic tree”

η(σ) : 1 // n

whose root is labeled σ; the n-successors of the root are leaves, labeled
in order x1, . . . , xn.

For i ∈ [p], the letter xi is identified with the tree η(xi), consisting only
of a root labeled xi.

The theory operation of tupling 〈g1, . . . , gn〉 when applied to the n-tuple
(g1, . . . , gn) in ΣTR(1, p) produces the n-tuple (g1, . . . , gn), now consid-
ered a morphism g : n → p. The composite of 〈t1, . . . , tk〉 : k → n with
this g is forced by (13) above to be defined as

〈t1, . . . , tk〉 · g = 〈t1 · g, . . . , tk · g〉, ti : 1 // n, g : n // p.

Note that if t and the gi have finite domains, so does t·〈g1, . . . , gp〉. Thus,
the finite trees form a subtheory of ΣTR, denoted TΣ.

If t : [ω∗] → (
⋃

n Σn) ∪ Xp is a tree and u ∈ [ω∗], we write tu for the tree

tu(v) := t(uv), v ∈ [ω∗].

A tree t is regular if the set {tu : u ∈ [ω∗]} is finite. The collection of
regular trees determines another subtheory of ΣTR, denote Σ tr.

Recall that when Σ is ranked set, a Σ-algebra B is a set equipped with
a function

σB : Bn // B
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for each σ ∈ Σn. If B, C are Σ-algebras, a Σ-algebra morphism h :
B → C is a function such that for all n ≥ 0 and all σ ∈ Σn,

h(σB(b1, . . . , bn) = σC(h(b1), . . . , h(bn)),

bi ∈ B.

For each set p ≥ 0, the sets ΣTR(1, p) and TΣ(1, p) are Σ-algebras, where
for σ ∈ Σn, ti ∈ ΣTR(1, p),

σ(t1, . . . , tn) := σ · 〈t1, . . . , tn〉.

We take it that the following facts are well-known.

Theorem 11.2 (Free theories) The theory TΣ is the algebraic the-
ory freely generated by Σ, i.e., for any algebraic theory T and any func-
tion h mapping Σn → B(1, n), for each n ≥ 0, there is a unique theory
morphism h# : TΣ → T such that

h#(η(σ)) = h(σ),

for all σ ∈ Σn, n ≥ 0.

12 Conway and Iteration Theories

Definition 12.1 A preiteration theory is a theory equipped with a
dagger operation

T (n, n + p) // T (n, p)

f 7→ f †

for each n, p ≥ 0. This operation need not satisfy any particular proper-
ties. A morphism ϕ : T → T ′ of preiteration theories is a theory
morphism which preserves the dagger operation, i.e.,

ϕ(f †) = nϕ(f)†, f : n // n + p.

Notation. In any preiteration theory, we let ⊥n,p : n → p abbreviate
(1n ⊕ 0p)

†, and when p = 0, we write just ⊥n, and when n = 1, just ⊥.
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Definition 12.2 A Conway theory is a preiteration theory satisfying
the following equational axioms:

1. Parameter identity

(f · (1n ⊕ g))† = f † · g,

all f : n → n + p, g : p → q. When n = 1, this equation is called
the scalar parameter identity.

2. Composition identity

(f · 〈g, 0n ⊕ 1p〉)† = f · 〈(g · 〈f, 0m ⊕ 1p〉)†, 1p〉,

all f : n → m + p, g : m → n + p. When m = n = 1, this equation
is the scalar composition identity.

3. Double dagger identity

f †† = (f · (〈1n, 1n〉 ⊕ 1p))
†,

all f : n → n+n+p. When n = 1, this equation is called the scalar
double dagger identity.

A morphism of Conway theories is a preiteration theory morphism.

Since we have defined Conway theories by equations, they form a variety
of preiteration theories. We give several more non-trivial equations that
hold in Conway theories.

Proposition 12.3 Each Conway theory T satisfies the following iden-
tities.

1. (Elgot) Fixed point identity

f † = f · 〈f †, 1p〉,

all f : n → n + p. When n = 1, this identity is called the scalar
fixed point identity.
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2. Left zero identity

(0n ⊕ f)† = f,

all f : n → p. When n = 1, this identity is called the scalar left
zero identity.

3. Right zero identity

(f ⊕ 0q)
† = f † ⊕ 0q,

all f : n → n + p. When n = 1, this identity is called the scalar
right zero identity.

4. Pairing identity

〈f, g〉† = 〈f † · 〈h†, 1p〉, h†〉,

all f : n → n + m + p, g : m → n + m + p, where

h = g · 〈f †, 1m+p〉 : m // m + p.

5. Permutation identity

(π · f · (π−1 ⊕ 1p))
† = π · f †,

for all f : n → n+p and for all base permutations π : n → n. Here
π−1 denotes the inverse of π.

(There are several other axiomatizations of Conway theories, see [7].)

13 Iteration Theories

Suppose that G = (G, ◦) is a finite group on the set [n]. In each theory
T , we associate with G the base morphisms ρG

i : n → n, i ∈ [n], defined
by:

jn · ρG
i := (i ◦ j)n, all j ∈ [n], i.e.,

ρG
i := 〈(i ◦ 1)n, (i ◦ 2)n, . . . , (i ◦ n)n〉.
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¿From now on, we write just ij instead of i ◦ j. The morphism (ij)n is
the corresponding base morphism 1 → n. The morphisms ρG

i , denoted
sometimes just ρi, are called the base morphisms associated with
the group G.

We define a morphism gG : n → n + p for each scalar g : 1 → n + p.

gG := 〈g · (ρG
1 ⊕ 1p), . . . , g · (ρG

n ⊕ 1p)〉 : n // n + p,

where τn : n → 1 is the unique base morphism.

Definition 13.1 The group-identity associated with G is the equa-
tion

g†
G = τn · (g · (τn ⊕ 1p))

†, g : 1 // n + p. (14)

Example 13.2 Suppose that G is the group of order 3. Then the identity associated
with G is the equation

〈f, f · (〈23, 33, 13〉 ⊕ 1p), f · (〈33, 13, 23〉 ⊕ 1p)〉† = τ3 · (f · (τ3 ⊕ 1p))†,

where f : 1 → 3 + p.

Definition 13.3 An iteration theory is a Conway theory which sat-
isfies all identities associated with finite (simple) groups. A morphism of
iteration theories is a preiteration theory morphism.

Free iteration theories are also tree theories.

Let Σ be a signature, and let ⊥ be a letter not in any set Σn. Σ⊥ is
the signature obtained from Σ by adding the letter ⊥ to Σ0. In the tree
theory Σ⊥ tr, 11

† = ⊥.

Theorem 13.4 [7] For any signature Σ, the theory Σ⊥ tr of regular Σ⊥-
trees is the iteration theory freely generated by Σ; for any iteration theory
T and any function h : Σ → T which maps σ ∈ Σn to a morphism
h(σ) : 1 → n in T , all n ≥ 0, there is a unique iteration theory morphism
h# : Σ⊥ tr → T such that

h(σ) = h#(η(σ)),

for all σ ∈ Σn, n ≥ 0.
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Example 13.5 Let L = (L,≤) be a complete (or just ω-complete) poset. Let TL

denote the theory whose morphisms 1 → n are the continuous (i.e., sup preserving)
functions Ln → L; the composite of f : 1 → n with 〈g1, . . . , gn〉 : n → p is the function

Lp
〈g1,...,gn〉

// Ln
f

// L.

For each continuous f : Ln+p → Ln and each a ∈ Lp there is a least b ∈ Ln such that
b = f(b, a). This b is denoted µb. b = f(b, a). It was shown in several places that TL

is an iteration theory, where, for f : n → n + p, (i.e., f : Ln+p → Ln)

f †(a) = µb. b = f(b, a).

There is a number of classes of theories whose identities are captured by
the axioms of iteration theories.

Theorem 13.6 [7] An identity holds in all iteration theories iff it holds
in all theories TL, for ω-complete posets L.

Other representative classes are theories in which the fixed point opera-
tion is a “unique fixed point”, or alternatively, an “initial fixed point”.
See [10] for a thorough account.

A sufficient condition that a Conway theory satisfies the group identities
is that it satisfies the implication we have called the weak functorial
implication. (Actually, there is one such implication for each n ≥ 1.) A
preiteration theory satisfies the weak functorial implication if, whenever
the square

1 1 + pg
//

n

1

τn

��

n n + p
f // n + p

1 + p

τn⊕1p

��

commutes, then so does

n p
f†

//n

1

τn

��

p

1

77

g

oooooooooooooooooooooooo
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Here, τn : n → 1 is the unique base morphism.

For example, when L is an ω-complete poset, TL satisfies the weak func-
torial implication, since

f † = sup
k

f (k),

where the powers of f are defined by:

f (1) = f · (⊥n ⊕ 1p)

f (k+1) = f · 〈f (k), 1p〉.

Similarly, g† = sup g(k). But, for each k > 0,

f (k) = τn · g(k).



Recent BRICS Report Series Publications

RS-02-19 Stephen L. Bloom and Zolt́an Ésik. An Extension Theorem with
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