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Abstract

This paper gives axiomatizations of strong and weak simulation over

regular CCS expressions. The proof of completeness of the axiomatiza-

tion of strong simulation is inspired by Milner's proof of completeness of

his axiomatization for strong equivalence over regular CCS expressions.

Soundness and completeness of the axiomatization for weak simulation

is easily deduced from the corresponding result for the axiomatization

of strong simulation over regular CCS expressions.

1 Introduction

The main purpose of this paper is to give a sound and complete axiom-

atization of the notion of strong simulation over regular CCS expressions,

i.e. agent descriptions in the regular fragment of Milner's CCS[6] that may

contain free variables. The axiomatization we give is an extension of the

axiomatization of strong equivalence over regular CCS expressions presented

by Milner in [4]. Soundness and completeness of our axiomatization of the

notion of strong simulation is proved using techniques similar to those de-

veloped by Milner in [5] and [4]. The key axiom in the axiomatization we

propose is the rule E v E + F that intuitively states that any expression

E can be simulated by one that can exhibit at least the behavior of E. We

also study the notion of weak simulation, i.e. a version of simulation that

∗Basic Research in Computer Science (www.brics.dk), funded by the Danish National

Research Foundation
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abstracts from internal steps in computations, over the regular fragment of

CCS. We show that unlike observational equivalence[6], weak simulation is

a precongruence for regular CCS. Finally, we present a sound and complete

axiomatization of weak simulation over regular CCS expressions. The key

axiom is one allowing for the elimination of τ -pre�xes from expressions, i.e.

E = τ.E. The proof of soundness and completeness of this axiomatization

is easily deduced from soundness and completeness of the axiomatization

of strong simulation over regular CCS expressions. Of related work can be

mentioned [1], [2], [3], and [8].

The paper is organized as follows. The �rst two subsections of section 2

are devoted to preliminaries and background material on regular CCS and

strong bisimulation. In the last subsection of section 2 the notion of strong

simulation is de�ned and some properties of strong simulation are stated.

In the �rst subsection of section 3, we present an axiomatization of strong

simulation over regular CCS expressions. In the last subsection of section

3 soundness of this axiomatization is proven. Completeness is established

in section 4. Section 5 contains the de�nition of weak simulation, some of

its properties, and an axiomatization of weak simulation over regular CCS

expressions.

For an introduction to regular CCS and bisimulation we refer to [6] and

[4].

2 Preliminaries

In this section we present the strong simulation relation. First we give pre-

liminaries on CCS and strong bisimulation as the notion of strong simulation

is closely related to the notion of strong bisimulation.

2.1 Syntax and Semantics of Regular CCS

The syntactic categories for the subset of CCS we are working with are: the

set of expressions, P, a countably in�nite set of actions, Act, and a countably

in�nite set of variables, Var. We will denote elements of P by E, F , G, P ,

Q, and R, elements of Act by α, β, a, and b, and elements of Var by X, Y ,

and Z.

The set of expressions in P is given by the following grammar.

P ::= 0 | X | α.P | P + P | µX.P

A variable X in an expression E is bound if µX.F occurs in E for some

F . We identify expressions that only di�er in the names of their bound

variables.

For a list of distinct variables X1, . . . ,Xn we use the shorthand notation

X̃, and similarly for a list of expressions E1, . . . , En we write Ẽ. We write
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E{F1/X1, . . . , Fn/Xn} or E{F̃ /X̃} for the result of simultaneously substi-

tuting Fi for each free occurrence of Xi in E, renaming bound variables as

necessary. The set of free variables of an expression E is denoted V ars(E).
The operational semantics for CCS is given by the labelled transition

system (P, Act, −→), where −→ is the smallest relation closed under the

rules in table 1.

[Act]
α.P

α−→ P

[Sum] Pi
α−→ P ′

P1 + P2
α−→ P ′

i ∈ {1, 2}

[Rec] P{µX.P/X} α−→ P ′

µX.P
α−→ P ′

Table 1: The operational semantics for CCS.

Now, we de�ne a relation . ⊆ P × Var. Intuitively, E . X will hold if the

initial transitions of E{P/X} depend on those of P , i.e. X occurs unguarded

in E.

De�nition 1 (Unguardedness) The relation . ⊆ P × Var is the smallest

relation that satis�es

(i) X . X for every X ∈ Var.

(ii) if E . X then E + F . X and F + E . X.

(iii) if E{µY.E/Y } . X then µY.E . X.

�

The variable X is guarded in E if E 7 X.

The following lemma describes the interaction between . and the transi-

tion relation. The proof of the lemma can be found in [3].

Lemma 1 Let E,P ∈ P. Then
(i) if E{P/X} a−→ Q then
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(a) E . X and P
a−→ Q, or

(b) E
a−→ E′ and Q ≡ E′{P/X} for some E′ ∈ P.

(ii) if E . X and P
a−→ Q then E{P/X} a−→ Q.

(iii) if E
a−→ E′ then E{Q/X} a−→ E′{Q/X} for every Q ∈ P.

�

We now proceed to de�ne the notion of strong bisimulation and strong sim-

ulation and present some basic properties of these notions.

2.2 De�nition and Properties of Strong Bisimulation

The notion of strong simulation, which we will introduce in the next subsec-

tion, is closely related to the notion of strong bisimulation de�ned by Park in

[7]. For this reason, and for future reference, we now present the de�nition

of strong bisimulation extended naturally to CCS.

De�nition 2 (Strong Bisimulation) A relation R ⊆ P×P is a strong bisim-

ulation if (P,Q) ∈ R implies,

(i) if P
α−→ P ′, where α ∈ Act, then for some Q′ ∈ P, Q

α−→ Q′ and
(P ′, Q′) ∈ R.

(ii) if Q
α−→ Q′, where α ∈ Act, then for some P ′ ∈ P, P

α−→ P ′ and
(P ′, Q′) ∈ R.

(iii) P B X ⇔ Q B X for all X ∈ Var.

�

From the de�nition of strong bisimulation the notion of strong equivalence

is de�ned.

De�nition 3 (Strong Equivalence) P and Q are strongly equivalent or strongly

bisimilar, written P ∼ Q, if (P,Q) ∈ R for some strong bisimulation R. �

Strong equivalence is re�exive, symmetric, and transitive[4]. Furthermore, it

has been shown that strong equivalence is a congruence with respect to the

operators of CCS[4].

2.3 De�nition and Properties of Strong Simulation

We now proceed to de�ne the notion of strong simulation over expressions.

De�nition 4 (Strong Simulation) A relation R ⊆ P × P is a strong simu-

lation if (E,F ) ∈ R implies,
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(i) if E
α−→ E′, where α ∈ Act, then there exists F ′ ∈ P such that

F
α−→ F ′ and (E′, F ′) ∈ R.

(ii) E . X ⇒ F . X for all X ∈ Var.

�

From the de�nition of strong simulation we de�ne the notion of strong sim-

ulator.

De�nition 5 (Strong Simulator) Q is a strong simulator for P , written

P v Q, if (P,Q) ∈ R for some strong simulation R. �

We now de�ne a useful generalization of the notion of strong simulation,

called strong simulation up to v. In the de�nition of strong simulation up

to v we use the notation P vS v Q, where S is a binary relation over

expressions. This means that there exist P ′ and Q′ such that P v P ′ S
Q′ v Q.

De�nition 6 (Strong Simulation Up To v) A relation S ⊆ P×P is a strong

simulation up to v if (P,Q) ∈ S implies,

(i) if P
α−→ P ′, where α ∈ Act, then there exists Q′ ∈ P such that

Q
α−→ Q′ and P ′ vSv Q′.

(ii) P . X ⇒ Q . X for all X ∈ Var.

�

The next theorem, which we will not prove, shows that to establish P v Q
it is enough to prove that (P,Q) belongs to a strong simulation up to v,
and this is sometimes easier than �nding a strong simulation which contains

(P,Q).

Theorem 1 If S is a strong simulation up to v then vS v is a strong

simulation and S ⊆ v. �

The following theorem shows that v is a precongruence. That is v is pre-

served by all the operators of CCS.

Theorem 2 Let P,Q ∈ P. Assume P v Q then

(i) α.P v α.Q.

(ii) P + R v Q + R.

(iii) µY.P v µX.Q.

Proof: This is easily proven using transition induction. �

In section 3 we will present an axiomatization of v and in section 4 we prove

completeness of this axiomatization.
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3 Axiomatization and Soundness

In this section we will present an axiomatization, A, which is sound and

complete forv over P. The axiom systemA is an extension of Milner's axiom

system, AM , for strong equivalence over regular CCS expressions presented

in [4].

3.1 Axiomatization

Our axiom system A for strong simulation is de�ned by the following rules.

S1. E + F = F + E
S2. E + (F + G) = (E + F ) + G
S3. E + E = E
S4. E + 0 = E
L. E v E + F
R1. µX.E = E{µX.E/X}
RL1. If X is guarded in F and E v F{E/X} then E v µX.F
RL2. If F{E/X} v E then µX.F v E

We write E = F when E v F and F v E. As mentioned, A is an extension

of Milner's axiom systemAM . The axiom systemAM is de�ned asA without

the rules L, RL1, and RL2 and with the rules R2 and R3 given by

R2. µX.(E + X) = µX.E
R3. If X is guarded in F and E = F{E/X} then E = µX.F

In the following we will write A′ ` E = F when E = F may be proved from

the axioms of A′ (A′ ∈ {AM ,A}) together with the rules for re�exivity,

symmetry, transitivity, and substitutivity of equality. Furthermore, we will

write A ` E v F when E v F may be proved from the set of axioms

A together with the rules for re�exivity, transitivity, and substitutivity of

equality and inequality.

3.2 Soundness of A
Since ∼ is contained in v and since AM is sound with respect to ∼, to show

soundness of A we only have to prove soundness of the rules RL1 and RL2
(soundness of L is easily seen).

The next theorem will be used to prove soundness of the axiom RL1
in A. The theorem states that if we have an equation, a solution for the

equation up to ∼, and a post�x point for the equation up to v then the

solution can simulate the post�x point.

Theorem 3 Let the variable X be guarded in the expression F ,

P ∼ F{P/X}, and Q v F{Q/X}. Then Q v P .

6



Proof: Let the relation S be de�ned as

S = {(E{Q/X}, E{P/X}) | E ∈ P}∪ v

By letting E ≡ X it is seen that (Q,P ) ∈ S. So by theorem 1 it will be

enough to show that S is a strong simulation up to v. To do this we must

�rst prove that if E{Q/X} S E{P/X} and E{Q/X} α−→ Q′ then there

exists P ′ such that E{P/X} α−→ P ′ and Q′ vSv P ′. The proof will be by

induction transition induction.

Basis:

Case E ≡ X.

In this case we have E{Q/X} ≡ Q
α−→ Q′. Since Q v F{Q/X}

there exists Q′′ such that F{Q/X} α−→ Q′′ and Q′ v Q′′. By

lemma 1, we know that Q′′ ≡ F ′{Q/X} and F{P/X} α−→ F ′{P/X}.
Since P ∼ F{P/X} there exists P ′ such that E{P/X} ≡ P

α−→ P ′

and P ′ ∼ F ′{P/X}. Hence Q′ v F ′{Q/X} S F ′{P/X} v P ′.

Case E ≡ α.E1.

Then E{Q/X} ≡ α.E1{Q/X} α−→ E1{Q/X} and

E{P/X} ≡ α.E1{P/X} α−→ E1{P/X}.
Since (E1{Q/X}, E1{P/X}) ∈ S we also have E1{Q/X} vSv
E1{P/X} by the re�exivity of v.

Case E ≡ µX.G.

This case is trivial since (µX.G){Q/X} ≡ (µX.G){P/X} ≡ µX.G
and v ⊆ S.

Step:

Case E ≡ E1 + E2.

Then we have E{Q/X} ≡ E1{Q/X}+ E2{Q/X}. Assume with-

out loss of generality that E1{Q/X} α−→ Q′. Then by induction

there must exist P ′ such that E1{P/X} α−→ P ′ and

Q′ vSv P ′. Moreover, since E{P/X} ≡ E1{P/X} + E2{P/X},
it follows that E{P/X} α−→ P ′.

Case E ≡ µY.G.

In this case we have E{Q/X} ≡ µY.(G{Q/X}). Now,
µY.(G{Q/X}) α−→ Q′ if G{Q/X}{µY.(G{Q/X})/Y } α−→ Q′.
Since Y /∈ V ars(Q + P ) we have
G{Q/X}{µY.(G{Q/X})/Y } ≡ G{µY.G/Y }{Q/X}. By induc-

tion there must exist P ′ such that G{P/X}{µY.(G{P/X})/Y } ≡
G{µY.G/Y }{P/X} α−→ P ′ and Q′ v S v P ′. This implies

E{P/X} ≡ µY.(G{P/X}) α−→ P ′.
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Furthermore, we must prove that E{Q/X}.Y implies E{P/X}.Y for every

Y . If E . Y and Y 6= X we have E{P/X} . Y .

If E . X and Q . Y we have F{Q/X} . Y since Q v F{Q/X}. X is

guarded in F which implies F . Y . This means we also have F{P/X} . Y .

Since P ∼ F{P/X} it follows that P . Y . Finally we conclude E{P/X} . Y
from E . X and P . Y . �

We are now ready to prove the soundness of the rule RL1. This is easily

done using the previous theorem.

Corollary 1 If X is guarded in F and E v F{E/X} then E v µX.F .

Proof: Assume X is guarded in F and E v F{E/X}. We know

µX.F ∼ F{µX.F/X} from theorem 3 we can conclude that E v µX.F .

�

Soundness of RL2 is stated in the following theorem.

Theorem 4 Let F{E/X} v E. Then µX.E v E.

Proof: Let the relation S be de�ned as

S = {(G{µX.F/X}, G{E/X}) | G ∈ P}∪ v

We will show that S is a simulation up to v. Assume G{µX.F/X} α−→ P .

We have to show that G{E/X} α−→ Q such that P v S v Q. We will prove

this by transition induction.

Basis:

Case G ≡ α.G1.

Then G{µX.F/X} ≡ α.G1{µX.F/X} α−→ G1{µX.F/X} and

G{E/X} ≡ α.G1{E/X} α−→ G1{E/X}.
Since (G1{µX.F/X}, G1{E/X}) ∈ S we also have

G1{µX.F/X} vSv G1{E/X} by the re�exivity of v.
Case G ≡ µX.G1.

This case is trivial since (µX.G1){µX.F/X} ≡ (µX.G1){E/X} ≡
µX.G1 and v ⊆ S.

Step:

Case G ≡ X.

In this case G{µX.F/X} ≡ µX.F
α−→ P , and by a shorter in-

ference we get F{µX.F/X} α−→ P . By induction there exists Q′

such that F{E/X} α−→ Q′ and P v S v Q′. Since F{E/X} v E
there exists Q such that G{E/X} ≡ E

α−→ Q and Q′ v Q.
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Case G ≡ G1 + G2.

Then we have G{µX.F/X} ≡ G1{µX.F/X}+G2{µx.F/X}. As-
sume without loss of generality that G1{µX.F/X} α−→ P ′. Then
by induction there must exist Q′ such that G1{E/X} α−→ Q′ and
P ′ vSv Q′. Moreover, since G{E/X} ≡ G1{E/X} + G2{E/X},
it follows that G{E/X} α−→ Q′.

Case G ≡ µY.G1.

In this case we have G{µX.F/X} ≡ µY.(G1{µX.F/X}). Now,

µY.(G1{µX.F/X}) α−→ P ′ if
G1{µX.F/X}{µY.(G1{µX.F/X})/Y } α−→ P ′.
Since Y /∈ V ars(µX.F + E) we have
G1{µX.F/X}{µY.(G1{µX.F/X})/Y } ≡ G1{µY.G1/Y }{µX.F/X}.
By induction there must exist Q′ such that

G1{E/X}{µY.(G1{E/X})/Y } ≡ G1{µY.G1/Y }{E/X} α−→ Q′

and P ′ vSv Q′. This implies G{E/X} ≡ µY.(G1{E/X}) α−→ Q′.

Furthermore, we must prove that G{µX.F/X} . Y implies G{E/X} . Y for

every Y . If G.Y and Y 6= X we have G{E/X} .Y . If G.X and µX.F .Y
we have F . Y . Since F{E/X} v E we have that E . Y . We also have that

G{E/X} . Y .

Finally we note that (µX.F,E) ∈ S. �

We state soundness of A with respect to v in the following corollary.

Corollary 2 (Soundness of A) For all expressions E,F ∈ P, A ` E v F ⇒
E v F . �

The next section is devoted to proving completeness of A with respect to v.

4 Completeness

In this section we will show completeness of the set of axioms A for strong

simulation over regular CCS expressions. The structure of the proof of com-

pleteness will be similar to that of the proof of completeness of the axioma-

tization for strong equivalence over regular CCS expressions given by Milner

in [4]. The idea in the proof of completeness of A is as follows. When we

have two expressions where one can be simulated by the other with respect

to v, i.e. E v E′, we will use the fact that E provably satis�es a list of

equations X̃ = F̃ and E′ provably satis�es a list of equations Ỹ = F̃ ′. From
these two lists of equations we construct a new list of equations which E
provably satis�es and which E′ is provably a pre�x point for. Finally we use

the fact that when we have a list of equations and two expressions where

the �rst expression E provably satis�es this list of equations and the second

expression E′ is provably a pre�x point for the list of equations then it is

provable that E can be simulated by E′.
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De�nition 7 A list of equations L over variables X̃ = (X1, . . . ,Xn) is a list

X1 = F1

X2 = F2

...
...

Xn = Fn

where F̃ = (F1, . . . , Fn) are expressions. The variable X1 will be referred to

as the leading variable.

An expression E A-provably satis�es L if there exist expressions E1, . . . , En

(E ≡ E1) such that

A ` Ei = Fi{E1/X1, . . . , En/Xn} (i ≤ n)

An expression G is A-provably a pre�x point for L if there exist expressions

G1, . . . , Gn (G ≡ G1) such that

A ` Fi{G1/X1, . . . , Gn/Xn} v Gi (i ≤ n)

�

Before we show the �nal part of the idea for the proof of completeness of

A, which we call the `Least Solution of Equations' theorem, we will present

some classic results from [4]. These results will be used in the proof of `Least

Solution of Equations' theorem and in the proof of completeness theorem for

A.

The �rst result we present is a lemma about syntactic substitution in

expressions.

Lemma 2 (Syntactic Substitution in Expressions)

(i) If no variable from X̃ is free in E then

AM ` E{F̃ /X̃} = E

(ii) If X̃ and Ỹ are disjoint sets of variables then

AM ` E{F̃ /X̃}{G̃/Ỹ } = E{F̃{G̃/Ỹ }/X̃, G̃/Ỹ }

�

The last result from [4] we present shows that every expression is provably

equal to an expression in a special form. The result means that to prove

completeness of A we only have to look at expressions in this special form.
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Theorem 5 (Equational Characterization) For any expression E, with free

variables in Ỹ , there exist expressions E1, . . . , Ep (p > 0) with free variables

in Ỹ such that

AM ` Ei =
m(i)∑
j=1

aij .Ef(i,j) +
n(i)∑
j=1

Yg(i,j) (i ≤ p)

and AM ` E = E1. �

The following theorem states that the rules R2 and R3 from AM can be

derived from A.

Theorem 6 (AM ⊂ A)

(i) If X is guarded in F and A ` E = F{E/X} then A ` E = µX.F

(ii) A ` µX.(E + X) = µX.E

Proof: Case (i) follows directly from the rules RL1 and RL2. For case (ii)
we show that A ` µX.E v µX.(E + X) and A ` µX.(E + X) v µX.E.

The former case is proven by a simple application of the rule L. The latter
case is proven as follows. By the rules S3 and R1 we get A ` µX.E =
µX.E + µX.E = E{µX.E/X} + µX.E = (E + X){µX.E/X}. By the rule

RL2 we have A ` µX.(E + X) v µX.E. �

Since AM is a subset of A the results from lemma 2 and theorem 5 also hold

if AM is substituted with A.

We are now ready to prove the `Least Solution of Equations' theorem.

The theorem will play an important role in the proof of completeness of A.

Theorem 7 (Least Solutions of Equations) Let X̃ = (X1, . . . ,Xm) and Ỹ =
(Y1, . . . , Yn) be distinct variables and F̃ = (F1, . . . , Fm) expressions with

free variables in X̃ and Ỹ in which each Xi is guarded. If Ẽ = (E1, . . . , Em)
and Ẽ′ = (E′

1, . . . , E
′
m) are expressions with free variables in Ỹ such that

A `Ei = Fi{Ẽ/X̃}, i ≤ m and

A `Fi{Ẽ′/X̃} v E′
i, i ≤ m

then

A `Ei v E′
i, i ≤ m

Proof: The proof will be by induction on m.
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Basis: m = 1. We have

A `E1 = F1{E1/X1} and (1)

A `F1{E′
1/X1} v E′

1 (2)

By R3 and (1) we get

A `µX1.F1 = E1

and by (2) and RL2 we deduce

A `µX1.F1 v E′
1

This gives us

A ` E1 v E′
1

Step: Assume the theorem holds for m. Let F̃ = {F1, . . . , Fm} and Fm+1

be expressions with free variables in (X̃,Xm+1, Ỹ ) in which each Xi is

guarded (i ≤ m + 1), such that

A `Ei = Fi{Ẽ/X̃,Em+1/Xm+1}, i ≤ m + 1 and (3)

A `Fi{Ẽ′/X̃,E′
m+1/Xm+1} v E′

i, i ≤ m + 1 (4)

As shown in the proof of theorem 5.7 in [4] we have

AM ` Ei = Gi{Ẽ/X̃}, i ≤ m + 1

where the Gi's are de�ned as

Gi ≡ Fi{Gm+1/Xm+1}, i ≤ m and (5)

Gm+1 ≡ µXm+1.Fm+1 (6)

Using lemma 2 with equation m + 1 in (4) we get

A ` Fm+1{Ẽ′/X̃}{E′
m+1/Xm+1} v E′

m+1

Since Xm+1 is guarded in Fm+1{Ẽ′/X̃} we have from RL2 that

A ` µXm+1.(Fm+1{Ẽ′/X̃}) v E′
m+1

Since µXm+1.(Fm+1{Ẽ′/X̃}) ≡ (µXm+1.Fm+1){Ẽ′/X̃}, by (6) we have
A ` Gm+1{Ẽ′/X̃} v E′

m+1 (7)

By (4) and (7) we obtain

A ` Fi{Ẽ′/X̃,Gm+1{Ẽ′/X̃}/Xm+1} v E′
i, i ≤ m

12



From lemma 2 we get

A ` Fi{Gm+1/Xm+1}{Ẽ′/X̃} v E′
i, i ≤ m

By (5) we deduce

A ` Gi{Ẽ′/X̃} v E′
i, i ≤ m

Since

A ` Gi{Ẽ/X̃} = Ei, i ≤ m

and V ars(G1) ∪ · · · ∪ V ars(Gm) ⊆ (X̃, Ỹ ) and each Xj (j ≤ m) is

guarded in each Gi (i ≤ m) we have by induction

A ` Ei v E′
i, i ≤ m (8)

Using A ` Em+1 = Gm+1{Ẽ/X̃} and (8) we get

A ` Em+1 = Gm+1{Ẽ/X̃} v Gm+1{Ẽ′/X̃}

By (7) we deduce

A ` Em+1 v E′
m+1

completing the proof.

�

Finally we are ready to put the things together in the proof of completeness

of A.

Theorem 8 For all expressions E,E′ ∈ P, E v E′ ⇒ A ` E v E′

Proof: Let Ỹ = V ars(E) ∪ V ars(E′). By theorem 5 there exist

Ẽ = (E1, . . . , Ep) and Ẽ′ = (E′
1, . . . , E

′
p′) such that

AM ` Ei =
m(i)∑
j=1

aij .Ef(i,j) +
n(i)∑
j=1

Yg(i,j), (i ≤ p) (9)

AM ` E′
i =

m′(i)∑
j=1

a′ij.E
′
f ′(i,j) +

n′(i)∑
j=1

Yg′(i,j), (i ≤ p′) (10)

where AM ` E = E1 and AM ` E′ = E′
1.

Now let I = {(i, i′) | Ei v E′
i′}. We observe that since E v E′,

A ` E = E1 and A ` E′ = E′
1 we must have E1 v E′

1 and therefore

(1, 1) ∈ I. For each (i, i′) ∈ I the following must hold
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1. For each summand aij .Ef(i,j) of the right-hand side of equation i in

(9) there must exist a summand a′i′j′ .E
′
f ′(i′,j′) in the right-hand side of

equation i′ in (10) such that aij = a′i′j′ and Ef(i,j) v E′
f ′(i′,j′).

2. Each summand Yg(i,j) of the right-hand side of equation i in (9) must

also be a summand in the right-hand side of equation i′ in (10). That

is A ` ∑n(i)
j=1 Yg(i,j) v

∑n′(i′)
j=1 Yg′(i′,j).

Point 1 above implies that the relation Jii′ de�ned by

Jii′ = {(j, j′) | aij = a′i′j′ ∧ (f(i, j), f ′(i′, j′)) ∈ I}

is total between {1, . . . ,m(i)} and {1, . . . ,m′(i′)} if (i, i′) ∈ I. We will use

these relations to construct a list of equations which E1 provably satis�es

and E′
1 is provably a pre�x point for. The list of equations is de�ned by

Xii′ =
∑

(j,j′)∈Jii′

aij.Xf(i,j)f ′(i′,j′) +
n(i)∑
j=1

Yg(i,j), ((i, i′) ∈ I) (11)

where the Xii′ 's are free variables not in Ỹ . We take X11 to be the leading

variable in the equation list.

To see that the list of equations (11) is provably satis�ed by E1 we �rst

instantiate each Xii′ to Ei. The equations then become

Ei =
∑

(j,j′)∈Jii′

aij .Ef(i,j) +
n(i)∑
j=1

Yg(i,j), ((i, i′) ∈ I) (12)

This is provable using S1, S2 and S3 since the totality of Jii′ implies that

the right-hand side of (12) only di�ers from the right-hand side of (9) by

repeated, reordered and regrouped summands.

To show that E′
1 is provably a pre�x point for the equation list (11) we

will show that

∑
(j,j′)∈Jii′

aij .E
′
f ′(i′,j′) +

n(i)∑
j=1

Yg(i,j) v E′
i′ , ((i, i′) ∈ I) (13)

is provable. The left-hand side of (13) is obtained by replacing each Xii′

with E′
i′ in the right-hand side of (11). Equation (13) is provable using S1,

S2, S3, and L since each summand of the right-hand side of (13) is also a

summand of the right-hand side of equation i′ in (10).

From theorem 7 it follows that A ` Ei v E′
i′ for each (i, i′) ∈ I. Since

(1, 1) ∈ I, A ` E1 = E, and A ` E′
1 = E′, we conclude A ` E v E′. �
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5 Weak Simulation

At this point we proceed by looking at a weaker notion of simulation which

allows for the abstraction from silent transitions (τ -transitions). This weaker
notion of simulation is called weak simulation.

5.1 De�nition and Properties of Weak Simulation

Let Actτ = Act ∪ {τ}. If α 6= τ then E
α̂=⇒ E′ is a shorthand notation for

E
τ−→*

α−→ τ−→*E′ otherwise it is a shorthand notation for E
τ−→*E′. We

also write E
a=⇒ E′ if E

τ−→*
a−→ τ−→*E′ and E

ε=⇒ E′ if E
τ−→*E′.

De�nition 8 (Weak Simulation) A relation R ⊆ P×P is a weak simulation

if (P,Q) ∈ R implies,

(i) if P
α−→ P ′, where α ∈ Actτ , then for some Q′ ∈ P, Q

α̂=⇒ Q′ and
(P ′, Q′) ∈ R and

(ii) if P . X then there exists Q′ such that Q
ε=⇒ Q′ and Q′ . X.

�

From the de�nition of weak simulation we de�ne weak simulator.

De�nition 9 (Weak Simulator) Q is a weak simulator for P , written P / Q,

if (P,Q) ∈ R for some weak simulation R. �

Note that / is re�exive and transitive.

For an expression E we let E−τ denote the expression obtained by re-

moving the τ -pre�xes from E.

De�nition 10 The function (·)−τ : P 7→ P is de�ned by

0−τ = 0

X−τ = X

(α.E)−τ =
{

α.E−τ if α 6= τ
E−τ otherwise

(E1 + E2)−τ = E−τ
1 + E−τ

2

(µX.E)−τ = µX.E−τ

�

In the following we will prove that E and E−τ can simulate each other. To

do this we need the following de�nition and lemma.

De�nition 11 =AC is the least congruence over regular CCS expressions

satisfying the equations S1, S2, S4, and R1. �
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Lemma 3

(i) If E
a−→ F then E−τ a−→ F−τ .

(ii) If E
τ−→ F then E−τ =AC F−τ + G for some τ -free expression G.

(iii) If E−τ a−→ E′ then E
a=⇒ F for some F such that F−τ ≡ E′.

�

Theorem 9 Let E ∈ P. Then E / E−τ and E−τ / E.

Proof: We will show that the relation R de�ned as

R def
= {(E,F ) | E ∈ P ∧ ∃G ∈ P.F =AC E−τ + G−τ} ∪ {(E−τ , E) | E ∈ P}

is a weak simulation. We consider each of the kinds of pairs in this relation

in turn, and show that the de�ning clauses of weak simulation are met.

Case ERF , where F =AC E−τ + G−τ .

Assume E
α−→ E′ and α 6= τ .

By lemma 3 E−τ α−→ E′−τ and clearly (E′, E′−τ + 0) ∈ R.

Assume E
τ−→ E′.

By lemma 3 E−τ =AC E′−τ + G′ for some G′. Since G′ contain
no τs it follows that (E′, E′−τ + (G′ + G−τ )) ∈ R.

Case E−τRE.

Assume E−τ a−→ E′. By lemma 3 E
a=⇒ F for some F such that

F−τ ≡ E′ and clearly (E′, F ) ∈ R.

Finally, we note that E B X implies F =AC E−τ +G−τ B X, and E−τ B X
implies E

ε=⇒ E′ B X for some E′.
Since ERE−τ and E−τRE both hold and R is a weak simulation, we

may conclude that E / E−τ and E−τ / E. �

Unlike Milner's observation equivalence, the weak simulation / is preserved

by all the operators of CCS. The following corollary states that / is a pre-

congruence. The proof uses the above theorem to lift the precongruence

result from v to /.

Corollary 3 If P / Q then

(i) α.P / α.Q

(ii) P + R / Q + R , for all R ∈ P
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(iii) µX.P / µX.Q

Proof: We will only prove that (ii) holds, since the other cases are shown in

a similarly way. By theorem 9 and the transitivity of / we get P−τ / Q−τ .

This implies P−τ v Q−τ . As v is a precongruence we have P−τ + R−τ v
Q−τ + R−τ . Since v ⊆ / we deduce P−τ + R−τ / Q−τ + R−τ . Now, by

theorem 9 and the transitivity of / we get P + R / Q + R. �

5.2 Axiomatization

An axiomatization, AW , of weak simulation for regular CCS expressions is

presented below.

S1. E + F = F + E
S2. E + (F + G) = (E + F ) + G
S3. E + E = E
S4. E + 0 = E
T. E = τ.E
L. E / E + F
R1. µX.E = E{µX.E/X}
RL1. If X is guarded in F and E / F{E/X} then E / µX.F
RL2. If F{E/X} / E then µX.F / E

Soundness and completeness ofAW is easily proven using the rule T , theorem
9, and soundness and completeness of A for v over regular CCS expressions.

Theorem 10 (Soundness and Completeness of AW ) For all expressions

E,F ∈ P, AW ` E / F ⇔ E / F . �

6 Conclusion

In this paper we have presented a sound and complete axiomatization of

strong simulation over regular CCS expressions. The proof of completeness of

the proposed axiomatization uses an adaptation of Milner's classic arguments

in [4]. We have also presented a sound and complete axiomatization of

weak simulation over regular CCS expressions. The proof of soundness and

completeness of this was easily deduced from soundness and completeness

of the axiomatization of strong simulation over regular CCS expressions and

the fact that τ -pre�xes can be removed from and inserted into an expression

without changing its observable behavior.
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