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Complexity of
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Alexander E� Andreev�
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Moscow State University� Moscow� ������� Russia
E�mail� andreev	matis�math�msu�su

Abstract

The complexity of a nondeterministic function is the minimum possi�

ble complexity of its determinisation� The entropy of a nondeterministic
function� F � is minus the logarithm of the ratio between the number of
determinisations of F and the number of all deterministic functions�

We obtain an upper bound on the complexity of a nondeterministic
function with restricted entropy for the worst case�

These bounds have strong applications in the problem of algorithm de�
randomization� A lot of randomized algorithms can be converted to deter�

ministic ones if we have an e�ective hitting set with certain parameters �a
set is hitting for a set system if it has a nonempty intersection with any set
from the system��

Linial� Luby� Saks and Zuckerman ��		
� constructed the best e�ective

hitting set for the system of k�value� n�dimensional rectangles� The set size
is polynomial in k�log n����

Our bounds of nondeterministic functions complexity o�er a possibility
to construct an e�ective hitting set for this system with almost linear size

in k�log n����
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by Grant N ������� of the Russian Ministry of Science and Education�
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� Introduction

��� Computation and complexity of nondeterminis�

tic functions

Let A and B be �nite sets� By Hom�A�B we denote the system of all
functions �mappings from the set A into the set B� By B� we denote the
system of all nonempty subsets of the set B� We suppose� that there is
no di�erence between element b of the set B and element fbg of the set
B�� In that way B � B�� We de�ne

HOM�A�B � Hom�A�B� �

We say that functions from the set HOM�A�B are nondeterministic func�
tions from A into B� It is easy to see� that

Hom�A�B � HOM�A�B �

Now we de�ne some relations between the functions from HOM�A�B�
For

f � Hom�A�B � F � HOM�A�B �
we let

f � F �� �a � A � f �a � F�a �

For
F�G � HOM�A�B �

we let
F � G �� �a � A � F�a � G�a �

For any function F fromHOM�A�B we introduce the following notations�
� P�F � the relative volume�

P�F �
Y
a�A

j F�a j
j B j �

� H�F � the entropy of F�

H�F � � logP�F �

�



� M�F � the domain of F�

M�F � fa j a � A � F�a 	� Bg �

It is easy to see� that

H�F �
X
a�A

log
j B j
j F�a j �

X
a�M�F�

log
j B j
j F�a j �

If � is some bijection from Hom�A��A�� then we can de�ne the map�
ping � such that

� � HOM�A��B �
 HOM�A��B �
��F � � � F � where �a � A� � �� � F�a � F���a �

It is easy to check� that for any F� G from HOM�A��B we have

P���F � P�F � H���F � H�F �

��M���F � M�F �

�f � Hom�A��B � f � F �� ��f  � ��F �

F � G �� ��F � ��G �

We will investigate the complexity of nondeterministic functions from
HOM�A�B� We suppose� that in this case some coding algorithm for the
sets A and B is �xed� We can suppose that

A � f
� �gr � r � dlog j A je �
B � f
� �gk � k � dlog j B je �

Let S�x�� x�� ���� xr be a circuit with k outputs� By S�a we denote
the output sequence from f
� �gk on the input sequence a from f
� �gr�

The circuit S compute nondeterministic function F from HOM�A�B�
if

�a � A � S�a � F�a �
The complexity of the nondeterministic function F is minimal possible
complexity of the circuits computing it� We denote the complexity of the
function F by L�F�

In this paper we consider circuits built from elements with two inputs�
We use circuit size as the complexity of circuits�

�



If R is a subsystem of HOM�A�B� then we de�ne the Shannon func�
tion of R by�

L�R � max
F�R

L�F �

We will try to obtain bounds for the values

L�HOM��A�B and L�HOMm�A�B �
where

HOM��A�B � fF j F � HOM�A�B � P�F � �g and

HOMm�A�B � fF j F � HOM�A�B � H�F  mg �
It is easy to see� that for � � ��m we have

HOMm�A�B � HOM��A�B �

��� Previous and new results

This work is a natural development of the line of almost optimal circuit
design� Shannon ����� has put the problem and has obtained the �rst
results in this direction� He de�ned the function L�n� the worst case
complexity of n�variable boolean function� and has proved that

c�
�n

n
 L�n  c�

�n

n
�

for some positive constants c� and c��
Lupanov����� has obtained that the asymptotic behavior of Shannon

function is

L�n � �n

n
�

The research that followed has concentrated on the analysis of di�er�
ent classes of boolean functions� for example monotone function� Jablon�
sky����	� Ugolnikov���	�� Pippenger���	�� Andreev����� has obtained
interesting results in this area� Lupanov����� has developed local cod�
ing principle for this problem� Andreev����� has created stronger and
more general method�

Nechiporuk����� has considered partial boolean functions� This is
degenerate case of nondeterministic functions� i�e� the systemHOM�f
� �gn� f
� �g�
He has obtained the asymptotic for the Shannon function

L�HOMm�f
� �gn� f
� �g � m

logm
�

�



in the case where the entropy m and the number �n are not very much
di�erent� Sholomov����� had proved this asymptotic behavior for more
general case�

Pippenger���		 has considered the classes of partial functions with
�xed part of units in case of Nechiporuk����� restrictions for the domain
size�

Andreev����� has proved the best result� namely

L �HOMm�f
� �gn� f
� �g � m

logm
� O�n �

�no restrictions for domain size�
In this paper we consider the problem for the general case of nonde�

terministic functions� We prove that

L �HOMm�A�U � m

logm
� O�n �

for the su�ciently general case� when

log j U j � o�logm �

This result has very strong applications in the area of algorithms deran�
domization� We discuss this connection in the next subsection�

��� Derandomization problem and nondeterminis�

tic functions complexity

One of the main problems of complexity theory is the derandomization
problem� i�e� e�ective conversion of randomized algorithms to determin�
istic�

For this problem there are two main approaches� The �rst is e�ective
computation of the number of units of boolean circuits� Luby and Veli�
covic ������ Karpinsky and Luby ����� have developed this approach�

The second way is e�ective construction of pseudorandom generators�
Nisan����
� Even� Goldreich and Luby ����� have constructed some
restricted pseudorandom generators�

Sipser ������ Chor and Goldreich ������ Linial� Luby� Saks and
Zuckerman ����� have investigated the problem of hitting sets� i�e� weak
variant of pseudorandom generator�

�



A lot of randomized algorithms can be converted to deterministic
ones� if we have an e�ective hitting set with certain parameters� This
fact makes actual the problem of its construction�

The set Q is hitting set for the set system R if Q�Z 	� � for any set
Z from R�

Up to now there is no nontrivial results for general cases of all deran�
domization approaches� The hitting set problem has strong connection
with complexity bounds for nondeterministic functions and below we dis�
cuss only this derandomization approach�

The main goal of this problematic is to construct e�ective hitting
set for the system of sets with restricted complexity of its characteristic
functions� As we have said earlier� there are no nontrivial results about
such hitting set� This fact explains actuality of considerations of simpler
set systems�

By E� we denote the set f
� �� � � � � �� �g� For the sequence
A � �A��A�� ����An from �E��n we de�ne the corresponding rectangle

NA � A� �A� � ����An �

By P�NA we denote the rectangle volume�

P�NA �
nY
i��

j Ai j
j E� j �

nY
i��

j Ai j
�

�

Let
I��n� � � fNA j A � �E��n � P�NA � �g �

Nechiporuk ����� has obtained the �rst result about hitting sets for
the system I��n� �� in connection with his research of partial boolean
functions complexity� He had proposed deterministic algorithm with the
working time �O�n�� This algorithm constructs for the system I��n� �
hitting set with cardinality O�n���

Sipser����� has proposed for this problem an algorithm which uses
O�n random bits� Chor and Goldreich����� have created an algorithm
which uses �n random bits�

The best result for the considered problem is obtained by Linial� Luby�
Saks and Zuckerman ������ They have proposed deterministic algorithm
of a hitting set construction for the system I��n� �� The set cardinality
and the algorithm working time are polynomial in ��logn���

	



Let j A j� n and � is bijection from Hom�A � f�� �� ���� ng�We de�ne
the following mappings

� � �E�n �
 Hom�A� E� �
�� � I��n �
 HOM�A� E� �

by the conditions

d � �d�� d�� ���� dn � � �d �x � d��x� � x � A �

D � �D��D�� ����Dn � �� �ND �x � D��x� � x � A �

It is not di�cult to check the following facts�

� � and �� are bijections�

� d � ND �� ��d � ���ND �
� ND � NC �� ���ND � ���NC �
� P�ND � P����ND �
In that way the mapping pair ����� is a natural isomorphism be�

tween the systems

��E�n� I��n�����P and �Hom�A� E��HOM�A� E������P �

It is easy to check� that

HOM��A� E� � �� �I��n� � �

In new terms the de�nition of the hitting set is the following�
a set Q � Hom�A�B is hitting for the system R � HOM�A�B� if

�F � R �f � Q � f � F �

By ��R we denote the minimal possible element number in the hitting
sets for the system R�

By Homcompl
l �A�U we denote the set of all functions from Hom�A�U

with the complexity at most l� If

l � L�HOM��A� E� �
then the set Homcompl

l �A� E� is the hitting set for the systemHOM��A� E��
�



For boolean case this fact was remarked independently in Krichevsky�����
and Andreev������

The size of the set Homcompl
l �A�U is at most the number of circuits

with complexity l� Consequently the upper bound for Shannon function
L�HOM��A� E� follows the bound of the hitting set size�

The construction of this hitting set includes consideration of all cir�
cuits with complexity l with conversion on each step of a circuit to the
sequence of its values�

Our bounds of nondeterministic functions complexity o�er a possibil�
ity to construct the small hitting set for the system I�n� �� Its size is
almost linear of �logn�� in the case

log� � o
�
log log

�

�

�
�

We must remark� that trivial lower bound for the hitting set size is ����
In that way we obtain in signi�cant case more strong result then

Linial� Luby� Saks and Zuckerman ������

� Complexity bounds for the worst case

��� Lower and preliminary upper bounds

Lemma � If
j A j� � � j U j� � �

then
L �HOMm�A�U  � m j U j log j U j �

and for any function F from HOM�A�U it is true

L�F  O�� j M�F j log j U j �

Proof� We suppose� that

A � f
� �gr � r � dlog j A je �

Let F be some function from HOMm�A�U� We will prove by j M�F j�
induction that

M�F 	� � �� L�F  �� j M�F j �� �log j U j �� �

�



If j M�F j� �� then evidently there exist constant function c from
Hom�A�U such that c � F� consequently

L�F  L�c  dlog j U je  �log j U j �� �

We suppose that x�� x�� ���� xr is the sequence of input variables� Let

Ai�� � f
� �gi�� � f�g � f
� �gr�i �

Suppose that j M�F j� �� then there exist variable xi such that

M�F �Ai�� 	� � � M�F �Ai�� 	� � �

We de�ne functions F� and F� from HOM�A�U by the following way

F��b �

��
� F�b if b � Ai��

U otherwise
� � � f
� �g �

It is easy to see� that

M�F � M�F� �M�F � H�F � H�F� �H�F� �

Let w be the selector function from Hom�f
� �g � U � U �U� i�e�

w�a� u�� u� �

��
� u� if a � �
u� if a � 


�

It is easy to see� that

L�w  �dlog j U je  ��log j U j �� �

If f� � F� and f� � F�� then

w�xi� f�� f� � F �

Consequently
L�F  L�F� � L�F� � L�w �

For F� and F� the induction hypothesis is true� and we have

L�F  ��� j M�F� j ���log j U j �� �

� ��� j M�F� j ���log j U j �� � ��log j U j �� �

�




� �� j M�F j ���log j U j �� �

If � 	� V � U and V 	� U then

log
j U j
j V j � log

j U j
j U j �� � �

j U j �

Consequently

H�F � X
a�M�F�

log
j U j
j F�a j �

X
a�M�F�

�

j U j � j M�F j �

j U j �

and we have
j M�F j  j U j H�F �

L�F  �� j U jH�F � ��log j U j ��  � j U j H�F�log j U j �

�

��� Nonconstructive upper bound for hitting set size

By ��x we denote any nonnegative function such that

x
� �� ��x � o�� �

By HOM����A�U we denote the following set

fF j F � HOM��A�U � �a � A � F�a j�j U j ���ag �

and by Hom��l�A� Ek the following

f� j � � Hom�A� Ek �
X
a�A

��a  lg �

Lemma � If
j A j� � � j U j� � �

then

log j HOM��A�U j  �log j A j � log j U j �� j U j log �
�
�

Proof� We let
j A j� n � j U j� k �

� � Hom�A� Ek � F � HOM����A�U �
��



We have

�  P�F �
Y
a�A

j F�a j
k

�
Y
a�A

�
��� ��a

k

	
A 

 Y
a�A

exp

�
����a

k

	
A � exp

�
���

k

X
a�A

��a

	
A �

Consequently
�

�
� exp

�
��
k

X
a�A

��a

	
A �

X
a�A

��a  k ln
�

�
�

In that way we have

� � Hom��l�A� Ek � where l �


k ln

�

�

�
�

and then

HOM��A�U � �
� � Hom��l�A� Ek

HOM����A�U � ��

It is easy to check� that

log j HOM����A�U j � log

�
� Y
a�A

�
� k
��a

	
A
	
A 

 log

�
� Y
a�A

k��a�
	
A � �log k

X
a�A

��a 

 �log kl � log

kl
�
�

By �� for l � � we have

j HOM��A�U j  kl j Hom��l�A� Ek j 

 kl
�
� n� l

n

	
A � kl

�
� n � l

l

	
A 

 kl
�
���n� l

l

	
Al

 kl��nl �

In the case l � 
 this bound is true also�
�

��



Lemma � If
j A j� � � j U j� � �

then

� �HOM��A�U 
�
�

�

���	�����
j U j��	�jUj� log j A j �

Proof� For any function F from HOM��A�U we have

j ff j f � Hom�A�U � f � Fg j
j Hom�A�U j � P�F � � �

Consequently� by the Nechiporuk ����� way� we can construct by r steps
the set Qr such that

Qr � Hom�A�U � j Qr j� r �

j fF j F � HOM��A�U � NF �Qr � �g j 
��� �r j HOM��A�U j  e�� r j HOM��A�U j �

where
NF � ff j f � Hom�A�U � f � Fg �

We let

r �
�
�

�
ln j HOM��A�U j

�
�

and obtain

j fF j F � HOM��A�U � NF �Qr � �g j 	 � �

Consequently for any function F from HOM��A�U we have

NF �Qr 	� � �

By Lemma � we obtain

r  �

�
ln j HOM��A�U j �� 

 �

�
�ln j A j � ln j U j �� j U j ln

�

�
� � 


�
�

�

���	�����
j U j��	�jUj� log j A j �

�

��



��� Main decomposition methods

Let
C � f
� �gr � A � f
� �gp � B � f
� �gs �

r � p� s � p � � � s � � � ��

Let � be some bijection from Hom�A� B� C and ��� is inverse mapping
from Hom�C�A� B� Let


� � Hom�C�A � 
� � Hom�C�B �
and for all c from C

����c � �
��c� 
��c � ��

If
F � HOM�C�U � D � HOM�C� f
� �g �

G � HOM�A� B�U � Q � HOM�A� f
� �g �
then by F jQ�� we denote function from HOM�A� B�U such that

G jQ���a� b �

��
� G�a� b if Q�a � �

U otherwise
�

and by F jD�� we denote function from HOM�C�U such that

F jD���c �

��
� F�c if D�c � �

U otherwise
�

Let w be the selector function from Hom�f
� �g � U � U �U i�e�

w�a� u�� u� �

��
� u� if a � �
u� if a � 


�

Lemma � If for functions

F � HOM�C�U � Q � HOM�A� f
� �g �
it is true� that

Q�a � f
� �g �� �b � B � �� � F�a� b � U �

then we have� that L�F is at most

L

�� � F jQ��

�
� L

�
F j����Q���

�
� L�Q � L���� � L�w �

��



Proof� Let g� be some function from Hom�A� B�U and f� some func�
tion from Hom�C�U� such that

g� � �� � F jQ�� � f� � F j����Q���
� ��

and q function from Hom�A� f
� �g such that q � Q� We will check�
that for any c from C the following condition is true

w

q�
��c� g���

���c� f��c
� � F�c � ��

Let
a � 
��c � b � 
��c �

If Q�a � 
 then we have

�
� �Q�c � Q�
��c � Q�a � 
 �

consequently

F j����Q���
�c � F�c and f��c � F�c �

In this case we have

w

q�
��c� g���

���c� f��c
�

�

� w


� g���

���c� f��c
�

� f��c � F�c �
Consequently �� is true�

Our condition is equivalent to the following

w �q�a� g��a� b� f��c � �� � F�a� b � ��

because

F�c �

��� � � � F� �c � �� � F ����c� � �� � F�a� b �

If Q�a � f
� �g� then �� � F�a� b � U and �� is true in any case� If
Q�a � �� then

�� � F jQ���a� b � �� � F�a� b
and consequently� by ��� we have

g��a� b � �� � F�a� b �
��



In this case we have also� that

w �q�a� g��a� b� f��c � w ��� g��a� b� f��c � g��a� b �

consequently �� is true�
In that way we can compute the function F by the circuits from the

�gure �� This fact implies necessary bounds for the complexity of the
function F�

�

For G from HOM�A� B�U we let

Ga � HOM�A�U � �b � B � Ga�b � G�a� b �

We de�ne also two other functions�

QF���A � HOM�A� f
� �g � CF���A � HOM�A�U �

by the following way

QF���A�a �

�����
����
f
� �g if M��� � Fa � �
� if j M��� � Fa j� �

 if j M��� � Fa j� �

�

CF���A�a �
�
b�B

�� � F jQ���a� b � where Q � QF���A �

We must check� that de�nition of the function CF���A is correct� i�e�
for any a from A we have

�
b�B

�� � F jQ���a� b 	� � �

If Q�a 	� �� then we have

�b � B � �� � F jQ���a� b � U �

and consequently �
b�B

�� � F jQ���a� b � U �

If Q�a � �� then

j M��� � Fa j� � and �b � B � �� � F jQ���a� b � ���F�a� b �

��



Consequently in this case there exist element ba from B such that

�� � F�a� ba 	� U � �b � B � b 	� ba � �� � F�a� b � U �

and we have �
b�B

�� � F jQ���a� b � G�a� ba �

Lemma � It is true� that L�F at most

L �CF���A � L
�
F j���QF���A��

�
� L �QF���A � L�
� � L�w �

Proof� Let c be a function from Hom�A�U� such that c � CF���A� then
for any a from A and for any b from B we have

c�a � �� � F jQ���a� b � �	

�we suppose� that Q � QF���A because

c�a � CF���A�a �
�
q�B

�� � F jQ���a� q � �� � F jQ���a� b �

Let
f� � F j���Q��

g� � �� � F jQ�� � q � Q �

then function F may be to compute by the circuit on Figure �� In the
correspondence with �	 we can suppose that

�a � A �b � B � g��a� b � c�a �

In this case our circuit transforms into the circuit on the Figure � and
we have necessary bound for the complexity of F�

�

��� Complexity of the functions with uniform en�

tropy

By HOMA���A� B�U we denote the set of all functions F fromHOM�A� B�U
such that

�a � A � Fa � HOM��B�U �
In this subsection we suppose� that

A � f
� �gt � t � � � B � f
� �gs � s � � � j U j� � � k � dlog j U je �

�	



Lemma � If ���  �� then L �HOMA���A� B�U at most

j A j
log j A j

�
� � �

�
�

�

�
� ��j A j

� ��
log

�

�

�
� � log j U j �� log log j B j

�
�

� j B j j U j��	�jUj�
�
�

�

���	�����
�

Proof� Let Q be some hitting set for the system HOM��B�U� and F

some function from HOMA���A� B�U� In this case

�a � A �q � Q � q � Fa �

because for any a from A we have

Fa � HOM��B�U �
Consequently there exists the function � from Hom�A�Q such that

�a � A � ��a � Fa �

Let
p � dlog j Q je � P � f
� �gp �

In this case there exist functions �� and �� such that

�� � Hom�A�P � �� � Hom�P�Q � � � �� ��� �

We de�ne a function � from Hom�P � B�U by the following

�� � P �b � B � ���� b � ����� �b �

����� is function from Hom�B�U� In this case we have

�����a� b � �������a �b � ���� ����a �b �

� ���a�b � Fa�b � F�a� b �

Consequently

�a � A � �b � B � �����a� b � F�a� b �

and we can compute the function F by the circuit on Figure �� It is easy�
that

L�F  L��� � L�� �

��



Because
�� � Hom�A�P � Hom

f
� �gt� f
� �gp� �

� � Hom�P � B�U � Hom
�
f
� �gp�s� f
� �gk

�
�

then by Lupanov ����� bounds we have

L���  �t

t
�� � ��tp  �t

t
�� � ��t

��
log

�

�

��
� � �

�
�

�

��
� �log j U j�� � ��j U j � log log j B j

�


j A j
log j A j

�
� � �

�
�

�

�
� ��j A j

� �
log

�

�
� � log j U j �� log log j B j

�
�

��
because� by Lemma ��

p � log j P j 
�
� � �

�
�

�

��
log

�

�
� �����j U j j U j � log log j B j �

By analogical way we have

L��  �p�s

p� s
�� � ��p � sk  O�� j B j log j U j

log j B j � log j Q j j Q j 

 O�� j B j log j U j
log j B j � log j Q j

�
�

�

���	�����
j U j��	�jUj� log j B j 

 j B j
�
�

�

���	�����
j U j��	�jUj� � ��

The sum of �� and �� is the necessary bound�
�

��� Uniform mapping classes

Let
j A j � j B j � H � Hom�A�B �

The set H of mappings is uniform class� if any mapping from H is a
bijection and for any di�erent a�� a� from A and for any di�erent b�� b�
from B we have

j fJ j J � H � J�a� � b� � J�a� � b�g j � j H j
j A j �j A j �� �

��



Such classes of mappings has been considered in Markovsky� Carter
and Wegman ���	� and in Carter and Wegman ���	�� In this subsection
we obtain some new results about such function classes�

By R� we denote the set of all nonnegative real numbers� If J is some
function from Hom�A�R� and S � A then we let

�SJ �
X
a�S

J�a �

�
���
S J �

X
a� b � S
a 	� b

J�a J�b �

Lemma 	 If H is an uniform class� and

H � Hom�A� B� C � j A j� � � j B j� � � ��


then for any function J from Hom�C�R� there exists mapping 
 from
H such that X

a�A

�
���
fag�B 
 � J  �

j A j �
���
C J �

Proof� If
a � A � b�� b� � B � b� 	� b� �

then� because H is uniform class� we have

X
��H

�� � J�a� b� � �� � J�a� b� �
X
��H

J���a� b� � J���a� b� �

X
c�� c� � C
c� 	� c�

j f� j � � H � ��a� b� � c� � ��a� b� � c�g j J�c� J�c� �

�
X

c�� c� � C
c� 	� c�

j H j
j C j �j C j J�c� J�c� �

j H j
j C j �j C j �� �

���
C J �

Consequently X
��H

X
a�A

�
���
fag�B � � J �

�
X
a�A

X
b�� b� � B
b� 	� b�

X
��H

�� � J�a� b� � �� � J�a� b� �

�




�
X
a�A

X
b�� b� � B
b� 	� b�

j H j
j C j �j C j �� �

���
C J �

� j A j �j B j �j B j �� j H j
j A jj B j �j A jj B j �� �

���
C J �

�
j H j �j B j ��
j A jj B j �� �

���
C J  j H j

j A j �
���
C J �

In that way we have

�

j H j
X
��H

�
�X
a�A

�
���
fag�B � � J

	
A  �

j A j �
���
C J �

Our Lemma follow from this bound�
�

Lemma 
 If H is uniform class and ����� then for any function J from
Hom�A�R� there exists mapping 
 from H such� that

X
a�A

�
��fag�B 
 � J � �

j A j �C J

	
A�  �C J

� �

X
a�A�t�

�fag�B 
 � J 
�
� �

t�
�

j A j �C J �
�

t

	
A �C J

� �

where

A�t � fa j a � A � �fag�B 
 � J � �

j A j�C J � tg �

Proof� We will consider the mapping 
� wich exists by previous Lemma�
In this case we have

X
a�A

�
��fag�B 
 � J � �

j A j �C J

	
A� �

X
a�A

�
��fag�B �
 � J� � �

���
fag�B 
 � J �

�

j A j� ��C J ��

� �

�fag�B 
 � J� �

j A j �C J

	
A �

��



� �A�B �
 � J� �
X
a�A

�
���
fag�B 
 � J �

�

j A j��C J � �

� � ��A�B 
 � J �

j A j �C J �

� �C J
� �

X
a�A

����
fag�B 
 � J � �

j A j ��C J
� 

 �C J
� �

�

j A j �
���
C J � �

j A j ��C J
� �

�

�
�� � �

j A j
	
A�C J

�  �C J
� �

In the following we have also the sequence of transformations�
X

a�A�t�

�fag�B 
 � J �

�
X

a�A�t�

�

j A j�C J �
X

a�A�t�

�
��fag�B 
 � J � �

j A j�C J

	
A 

 X
a�A�t�

�
�fag�B 
 � J � �

jAj�C J
��

t�
�

j A j �C J �

�
X

a�A�t�

�
�fag�B 
 � J � �

jAj�C J
��

t
�

�

�
� �

t�
�

j A j�C J �
�

t

	
A X

a�A�t�

�
��fag�B 
 � J � �

j A j�C J

	
A� 

�

�
� �

t�
�

j A j�C J �
�

t

	
A X

a�A

�
��fag�B 
 � J � �

j A j�C J

	
A� 

�

�
� �

t�
�

j A j�C J �
�

t

	
A �C J

� �

�

Lemma � If H is uniform class and ����� then for any function J from
Hom�A� f
� �g there exists mapping 
 from H such� that

X
a�D

�fag�B 
 � J  �

j A j ��C J
� �

where
D �

n
a j a � A � �fag�B 
 � J � �

o
�

��



Proof� We have

�
���
fag�B 
 � J �

�
� �fag�B 
 � J

�

	
A �

�
���
C J �

�
� �C J

�

	
A  �

�
��C J

��

because the function J from Hom�A� f
� �g� If a � D we have

�fag�B 
 � J  � �
���
fag�B 
 � J �

Below we suppose� that 
 is a function from Lemma 	� Then we have

X
a�D

�fag�B 
 � J  X
a�D

� �
���
fag�B 
 � J 

 X
a�A

� �
���
fag�B 
 � J  �

�

j A j �
���
C J  �

j A j ��C J
��

�

Let A and B are copies of the Galua Field GF�q� By HL�A�B we
denote the set of all � from Hom�A�B such that for some x 	� 
 and y
from GF�q this mapping is possible to represent in the following way

��a � x � a � y �

It is easy to see� that

j Hom�A�B j � j A j �j A j �� �
and� how it was proved in Carter and Wegman ���	�� this class is uni�
form� It is true� because for any di�erent a�� a� from A and for any
di�erent b�� b� from B the system

��
� x � a� � y � b�
x � a� � y � b�

has only one solution�

��� Complexity of the functions with big entropy

We suppose� that conditions �� and �� are satis�ed� Let

F � HOM�C�U � G � � � F �

��



and t is a real number at least �� By A�F� �� t we denote the set of all a
from A such that

H�Ga � H�F

j A j � t �

Let dF���t be the characteristic function of the set A�F� �� t� i�e�

dF���t � Hom�A� f
� �g � dF���t�a �

��
� � if a � A�F� �� t

 otherwise

Lemma �� If the following conditions are true

H�F  m � j C j��
  m j C j log j U j �

�
m

logm
 j A j  �

m

logm
�

log j U j
log j C j  � �

t � �logm
�� �log j U j��� � ���

then we have

L
�
�� � F jdF���t��

�
 j U jO��� j C j
���	�jCj� �

�
m

logm

�
B�� � ��j C j � O��

�
�log j U j

logm

	
A���

	
CA �

Proof� Let

� � exp�

�
�� m

j A j � t

	
A � G� � �� � F jdF���t��

�

In this case
G� � HOMA���A� B�U �

Consequently we can obtain a bound for its complexity by applying
Lemma �� We have that L�G� is at most

j A j
log j A j

�
� � �

�
�

�

�
� ��j A j

� �
log

�

�
� � log j U j �� log log j B j

�
�

� j B j j U j��	�jUj�
�
�

�

���	�����
� ���

By the applying ���� we obtain

 m

j A j � t �
m

j A j
�
�� � t

j A j
m

	
A 

��



m

j A j
�
� � logm
�� log j U j���

�
�

m

logm

�
�

m

�
�

�
m

j A j

�
B�� � �

�
�log j U j

logm

	
A���

	
CA �

In that way we have

log
�

�
 m

j A j

�
B�� � �

�
� log j U j

logm

	
A���

	
CA �

and then
�

�
 exp�

�
B�logm

�
B��
�

� �

�
�log j U j

logm

	
A���

	
CA
	
CA ���

because j A j � �m� logm� Also by ��� we have

j B j � j C j
j A j  j C j��
�	�jCj� �

log log j B j  log log j C j  �� � ��m log logm �

Also it is true
logm  �� � ��m log j A j �

Combining this bounds with ��� we have that L�G� is at most

j A j
logm

�� � ��m�

�
�
B� m

j A j

�
B�� � �

�
� log j U j

logm

	
A���

	
CA � � log j U j �� log logm

	
CA �

� j B j j U j��	�jUj��

� exp�
�
B��logm

�
B��
�

� �

�
�log j U j

logm

	
A���

	
CA �� � ��m

	
CA ���

By using of the bound
m

j A j �
�

�
logm �

we obtain�
B� m

j A j

�
B�� � �

�
�log j U j

logm

	
A���

	
CA � � log j U j �� log logm

	
CA 

��



 m

j A j

�
B�� � O��

�
�log j U j

logm

	
A��� ���m

	
CA ���

If
log j U j
logm


�
�

��

��
�

then� by ���� we have

�

�
 exp�

�
B��logm

�
B��
�

� �

�
�log j U j

logm

	
A���

	
CA �� � ��m

	
CA 

 m����	�m� �

But if
log j U j
logm

�
�
�

��

��
�

then �
�log j U j

logm

	
A���  O��

�
�log j U j

logm

	
A �

and we obtain� that

�

�
 exp�

�
B��logm

�
B��
�

� �

�
�log j U j

logm

	
A���

	
CA �� � ��m

	
CA 

 m����	�m� j U jO��� �
Consequently in any case we have

j B j j U j��	�jUj� exp�

�
B��logm

�
B��
�
� �

�
�log j U j

logm

	
A���

	
CA �� � ��m

	
CA 

 j C j
j A j m

����	�m� j U jO��� 

 j C j
j A j j A j����	�jAj� j U jO��� 

 j C j��	�jCj�
j A j��� j U jO���  j C j��	�jCj�

�j C j��
���
j U jO��� 

 j C j
���	�jCj� j U jO��� �
By using bounds ��� and ���� we obtain the necessary bound�

�

��



Lemma �� If the conditions ���� are true� then there exists a mapping
� from HL�A� B� C such that

H
�
�� � F jdF���t��

�
 m

�
��
�

vuutlog j U j
logm

	
A �

Proof� Let J be the function from Hom�C�R� such that

J�a � log
j U j
j F�a j �

Then we have
�C J � H�F  m �

�C J
�  �C �J log j U j  m log j U j �

By Lemma � there exists a mapping � from HL�A� B� C such that

X
a�S�t�

�fag�B �� � J 
�
� �

t�
m

j A j �
�

t

	
Am log j U j � ���

where

S�t �

��
�a j a � A � �fag�B�� � J � m

j A j � t

��
� �

In the following we suppose� that

G � � � F � G� � G jdF���t��
�

We have� that

H�Ga �
X
b�B

log
j U j

jGa�b j �
X
b�B

log
j U j

jG�a� b j �

�
X
b�B

log
j U j

j F���a� b j �
X
b�B

J���a� b � �fag�B �� � J �

Consequently the sets A�F� �� t and S�t are equal and from ��� we
have X

a�A�F���t�

�fag�B �� � J 
�
� �

t�
m

j A j �
�

t

	
Am log j U j �

It is easy that
H�G� �

X
a�A

H��G�a �

�	



�
X

a�A�F���t�

H��G�a �
X

a�AnA�F���t�

H��G�a �

�
X

a�A�F���t�

H�Ga �

because

�G�a �

��
� Ga if a � A�F� �� t
� U if a � A n A�F� �� t

�

and the entropy of the function � U is equal to 
� Consequently

H�G� 
�
� �

t�
m

j A j �
�

t

	
Am log j U j �

By ���� we have

H�G� 
��

�logm�
���log j U j����
�
����� logm �

� �logm�
���log j U j����
�
m log j U j �

�
B��
�

�
�log j U j

logm

	
A��� �

�
�log j U j

logm

	
A
��

	
CA m  �

�

�
�log j U j

logm

	
A��� m �

�

Lemma �� If

C � f
� �gn � j C j� � � j U j� � �
log j U j
log j C j 

�

�
�

l �
�

�

�
�log j U j

logm

	
A��� m �

then

L�HOMm�C�U  m

logm

�
B�� � ��j C j �O��

�
�log j U j
log j C j

	
A���

	
CA �

� O��j C j
���	�jCj� j U jO��� � L�HOMl�C�U �
Proof� If m  j C j
��� then our Lemma is true evidently� And in the

following we suppose� that m 	 j C j
���
Let F be some function from HOMm�C�U� We apply Lemma � to

this function� We suppose� that d � dF���t and conditions ��� are true�

��



By Lemma � and Lupanov ����� bounds we have

L�F  L ��� � F jd�� � L ��� � F jd�� �

�
j A j

log j A j�� � ��j A j � O�� log� j C j � O�� log j U j 

 L ��� � F jd�� � L ��� � F jd�� �

� ��m
m

logm
� ��j C jj C j
�� � ��j U j j U j � ��	

By Lemma �� we have

H ��� � F jd��  �

�
m

�
� log j U j

logm

	
A �

consequently

 L ��� � F jd��  L�HOMl�C�U �

By combining this bound with ��	 and with Lemma �
 bound for L ��� � F jd��
we obtain necessary result�

�

Lemma �� If

A � f
� �gn � j A j� � � j U j� � �
log j U j
log j A j 

�

�
�

then

L�HOMm�A�U  m

logm

�
B�� � ��j A j � O��

�
� log j U j
log j A j

	
A���

	
CA �

� O��j A j
���	�jAj� j U jO��� �
Proof� Let

m�k �

�
��
�

�
� log j U j
log j A j

	
A
	
Ak

m �

By Lemma �� we have

L�HOMm�k��A�U  m�k

logm�k

�
B�� � ��j A j � O��

�
� log j U j
log j A j

	
A���

	
CA �

��



� O��j A j
���	�jAj� j U jO��� � L�HOMm�k����A�U � ���

By the iteration of this bound we obtain

L�HOMm�A�U 


�
� kX
i��

m�k

logm�k

	
A
�
B�� � ��j A j �O��

�
� log j U j
log j A j

	
A���

	
CA �

� k O��j A j
���	�jAj� j U jO��� � L�HOMm�k����A�U �
We suppose that m j A j log j U j� because

max
F�HOM�A�U�

H�F � j A j log j U j �

We change minimal k such that m�k � �  j A j
�� � In our conditions
we have

�

�

�
� log j U j
log j A j

	
A���  �

�

�
�

�

����
�

�

�
	 � �

consequently

k  O�� log
j A j log j U j
j A j
��  O�� log j A j �

kX
i��

m�k

logm�k
 m

logm

�
B�� � ��j A j � O��

�
� log j U j
log j A j

	
A���

	
CA �

By combining this bound with ��� we obtain the necessary result�
�

��	 General case

We suppose� that conditions �� and �� are true�

Lemma �� If the following conditions are true

H�F  m � �  m j C j log j U j �

�  j A j
m j U j� log�m  � �

log j U j
log j C j  � �

then there exists a mapping � from HL�A� B� C such that

L
�
F j���QF���A��

�
� L �QF���A  ��m

m

logm
�

�




Proof� We de�ne the function J from Hom�C� f
� �g by the following

J�c �

��
� � if F�c 	� U

 otherwise

�

We suppose� that
F� � F j���QF���A��

�

D �
n
a j a � A � �fag�B � � J � �

o
�

Earlier we have de�ned the function QF���A such that

QF���A�c � 
 �� c � D �

consequently
j M�F� j � X

a�D

�fag�B � � J �

We suppose� that for the function � assumption of Lemma � is true� In
this case we have

j M�F� j  �

j A j��C J
� �

�

j A j�j M�F j�

We has noticed in Lemma � that

j M�F j  H�F j U j �

Consequently

j M�F� j  �

j A jm
�j U j�  m�j U j�

m j U j� log�m �
m

j U j� log�m �

In that way we have� that

H�F�  j M�F� j log j U j  m log j U j
j U j� log�m �

We apply Lemma � for the function F� and obtain the following bound
for its complexity

L�F�  � H�F� j U j log j U j 

 m log� j U j
j U j log�m  �m

log�m
� ��m

m

logm
� ���

��



It is easy to see� that for the complexity of any boolean function f

from Hom�A� f
� �g the following bound is true

L�f   O�� j fa j a � A � f �a � 
g j log j A j �

By the construction we have

j fa j a � A � QF���A�a � 
g j  j M�F� j  m

j U j� log�m
Consequently

L�QF���A  m log j A j
j U j� log�m  O��

m

log
m
� ��m

m

logm
�

We combine this bound with the bound ��� and obtain the necessary
result�

�

Theorem � If j C j� � � j U j� � � then

L�HOMm�C�U � m

logm
��� ��m � O�� log j C j �

L�HOMm�C�U  m

logm

�
B�� � ��m � O��

�
�log j U j

logm

	
A���

	
CA �

� O�� log�j C j � j U jO��� �
Proof� The lower bound can be obtained analogical by to Sholomov
������

At the �rst step we suppose� that C � f
� �gr and r � �� We can
suppose without loss of generality that

m � � �
log j U j
logm

 �

�
�

because in other case our theorem follow from Lemma �� Let F be some
function from HOM�C�U� We have� that

H�F  j C j log j U j �
Consequently we can suppose also� that

m  j C j log j U j �

��



We choosee the sets A and B such that

A � f
� �gp � B � f
� �gs � p � � � s � � � p� s � r �

�  j A j
m j U j� log�m  � � ��


It is impossible only in the case when

m j U j� log�m � �

�
j C j �

In this case our theorem follow immediately from Lemma �� and we
suppose� that ��
 is true�

We compute our function F according to Lemma �� We have that
L�F is at most

L �CF���A � L
�
F j���QF���A��

�
� L �QF���A � L�
� � L�w �

It is easy to see� that

L�w  O�� log j U j � ���

The function 
� is some boolean linear �r� p�operator� Consequently
according to Lupanov ����� bounds for matrix complexity we have

L�
�  rp

log r
�O�r �

log j C j log j A j
log log j C j � O�� log j C j �

��m
m

logm
�O�� log j C j � ���

From Lemma �� we have that there exists a mapping � fromHL�A� B� C
such that

L
�
F j���QF���A��

�
� L �QF���A  ��m

m

logm
� ���

It is easy to see� that

CF���A � HOMm�A�U �
consequently by applying Lemma �� to this function we have

L�CF���A  m

logm

�
B�� � ��j A j � O��

�
� log j U j
log j A j

	
A���

	
CA �

��



� O��j A j
���	�jAj� j U jO��� 

 m

logm

�
B�� � ��m � O��

�
�log j U j

logm

	
A���

	
CA � j U jO��� � ���

The sum of ���� ���� ���� ��� is the necessary bound�
In the following we do not suppose that C � f
� �gr� Let

C � D � f
� �gr � �r�� 	j C j �r �

Let F be some function from HOMm�A�U� We de�ne a function G from
HOM�D�U such that

G�c �

��
� F�c if c � C

U otherwise �

It is easy to see� that

H�G � H�F � G � HOMm�D�U �

Also it is easy� that some circuit S compute the function G if and only if
this circuit compute the function F� Consequently L�G � L�F � and
we have� that

L�HOMm�C�U  L�HOMm�D�U �

It is not di�cult to check� that necessary bounds are true� because

j C j  j D j  � j C j �

�

� Hitting set construction

��� The case of not too small entropy

By N we denote the set of all natural numbers�

Lemma �� There exists a function l�n� k� p� q from Hom�N ��N  com�
putable in the time polynomial of

log n� log k � log p� log q �

��



such that
L�HOMp�q�A�U  l�j A j� j U j� p� q �

and l�n� k� p� q at most

log�q�p

log log�q�p

�
B�� � �

�
q

p

�
� O��

�
� log k

log log�q�p

	
A���

	
CA � O�� logn� kO��� �

Proof� This fact follow from the proof of Theorem ��
�

By Homhit
p�q�A�U we denote the set of all functions f from Hom�A�U

such that
L�f   l�j A j� j U j� p� q �

Lemma �� The set Homhit
p�q�A�U is a hitting set for the system HOMp�q�A�U�

If

��j A j log
q

p
� log j A j log log j A j �

log j U j  ��j A j log log�q�p � ���

then

j Homhit
p�q�A�U j 

�
q

p

���	�jAj�
�

Proof� It is easy to see� that Homhit
p�q�A�U is a hitting set� Let

j A j� n � j U j� k � l � l�n� k� p� q �

It easy to see� that our bound is at most NS�dlogne� dlogke� l� i�e� the
number of circuits with dlogne inputs� dlog ke outputs and with com�
plexity at most l� Lupanov ����� has proved that this number is at
most

�O���logn� ll�log k�O��� �

From this bound and conditions ��� we obtain� that

logNS�dlogne� dlogke� l  �� � ��n log
q

p
�

Consequently the necessary bound is true�
�

��



��� Hash classes of functions

In this section we are constructing the classes of the special hash map�
pings� Let A and B �nite sets� Let S be a subset of A�

We say that mapping � from Hom�A�B is hash function for S� if

a�� a� � S � a� 	� a� �� ��a� 	� ��a� �

Let F be a mapping set� F � Hom�A�B� The set F is hash class for
the set S� if in F there exists some hush function for S�

The set F is �hash class� if it is hash class for any �elements subset
of A�

Such function classes has been considered in Poljak� Pultr and Rodl
����� and in Krichevsky ������ In this subsection we construct special
�hash class for our goals�

Let
F� � F� � f�� � �� j �� � F� � �� � F�g

for
F� � Hom�A�B � F� � Hom�B� C �

By GF�q we denote the q�elements Galua �eld� For a natural � � �
and g �GF�q we let

�	�g � Hom�GF�q	�GF�q �

�	�g�a�� a�� ���� a	 � a� � a�g � a
g
� � ���� a	g

	�� �

LF	�G � f�	�g j g � Gg � G � GF�q �

The following Lemma �	 and Lemma �� has been proved by Krichevsky
������

Lemma �	 If

j G j �
�
� 
�

	
A �� � � � � � � � � �

then LF	�G is �hash class�

Lemma �
 If

F� � Hom�A�B � F� � Hom�B� C �

��



are �hash classes� then

F� � F� � Hom�A� C
is �hash class also�

Lemma �� For any 	nite sets A� B and natural numbers � �� such that

j A j� j B j� �� � � � � �  � � �

there exists �hash class Homhash

�	 �A�B such that

Homhash

�	 �A�B � Hom�A�B �

j Homhash

�	 �A�B j  ��

�
� log j A j
blog j B jc

	
A��� log
� log	 �

There exist an algorithm for this class construction with working time at
most

j Homhash

�	 �A�B j j A j��o��� �

Proof� We have

�

�
�
�
� 
�

	
A �� � � � �

	
A� � �

� �� � � � �� � � � �  ��  j B j �

Consequently� if we let d � blog j B jc then
�
� 
�

	
A �� � � � �  �d  j B j � ���

Let s minimal nonnegative integer number such that

j A j  exp��d �s � where exp��x � �x � ��	

Let
Ci � GF�exp��d �i � i � 
� �� ���� s �

In this case we may suppose that

Ci�� � �Ci	 � i � 
� �� ���� s� � �

By ��� there exist sets Gi� such that

Gi � Ci � j Gi j �
�
� 
�

	
A �� � � � � � ���

�	



i � 
� �� ���� s� � �

According to Lemma �	 the function sets

LF 	�Gi � Hom�Ci��� Ci � i � 
� �� ���� s� � �

are �hash classes� Let

Homhash

�	 �Cs� C� � LF	�Gs�� � LF	�Gs�� � ��� � LF	�G� �

By Lemma �� we have� that this function set is �hash class� By ��� we
have the following upper bound for the class size

j Homhash

�	 �Cs� C� j 

s��Y
i��

j Gi j  ���s � ���

By ��	 we have that

s �

�
����
log logjAj

d

log �

�
����  log logjAj

blogjBjc

log �
� � �

���s  �� exp

�
��� log� log �

log �
log

log j A j
blog j B jc

	
A �

� ��

�
� log j A j
blog j B jc

	
A��� log
� log	 �

Consequently� by ����

Homhash

�	 �Cs� C�  ��

�
� log j A j
blog j B jc

	
A��� log
� log 	 �

We let

Homhash

�	 �A�B � f�g �Homhash


�	 �Cs� C� � f
g �

where � some injection from Hom�A� Cs and 
 some injection from
Hom�C��B�

The upper bound for algorithm working time is trivial�
�

��



��� The case of small entropy

Lemma �� If Q � Hom�B�U is a hitting set for the system HOM��B�U
and F � Hom�A�B is jj U j log �

�

k
�hash function class� then the set F�Q

is hitting for the set system HOM��A�U�
Proof� Let F be some function from HOM��A�U� We know� that

j M�F j  �� � where �� �


j U j log �

�

�
�

Let a mapping � from F be hash function for M�F� There exists
such hash function� because the set F is ���hash class� By � and F we
de�ne new function G such that

G � HOM�B�U � G�b �
�

a�����b�

F�a �

This de�nition is correct because � is hash function for the setM�F and
consequently in this case for any x from B it is true

j M�F � ����b j  � � ��


We have� that

j M�G j � j M�F j � H�G � H�F �

consequently
G � HOM��B�U �

Because Q is hitting set for the system HOM��B�U � there exist some
function g from Q such that g � G� We consider

f � � � g � F � Q �

and will be checking that f � F� It means� that

�a � A � f �a � F�a � ���

Let a � A� b � ��a� If F�a � U � then ��� is true for any value
of f �a� Suppose� that F�a 	� U � Then� in the correspondence with
function G de�nition� and ��
 we have

�x � ����b n fag � F�x � U �

��



Consequently
G�b �

�
x�����b�

F�x � F�a �

and we have

f �a � �� � g�a � g���a � g�b � G�b � F�a �

f �a � F�a �

�

In the following we suppose

n �j A j � k �j U j �  �


k log

q

p

�
�

� � log log log logn � � � dlog���e �

Homhit�
p�q �A�U �

�����������
����������

Homhit
p�q�A�U if � � p

logn

Homhash

�	 �A� f
� �g� �Homhit

p�q�f
� �g��U

if � 	
p
logn

Theorem � The set Homhit�
p�q �A�U is a hitting set for the system

HOMp�q�A�U� If

log j U j  ��j A j log log�q�p � ���

then

j Homhit�
p�q �A�U j 

�
q

p
log j A j

���	�jAj�
�

There exists a algorithm for this set construction with the working time
at most

j A j��o���
�
�log j A j

p�q

	
A��o���

Proof� Suppose that � � p
logn� In this case we have

�  � log� log �  �� � o�� log  log log log logn �

�




consequently

log � ��� o��

p
log n

log log log logn
� �logn��� �

By ��� we have

�logn���  log  ��� ��n log log
q

p
�

��n log
q

p
� logn log log n �

and necessary result follows from Lemma ���
Consider the second case� � 	

p
log n� The set Homhit�

p�q �A�U is
hitting by Lemma �� and Lemma �
�

We will be considering two subcases�

 � log log logn and   log log logn �

In the �rst subcase

log � log log �  �� � ��n ��log � � � log � 
 �� � ��n log� �  �� � ��n �log log log log n log � 
 �� � ��n �log log log�  ��n � ��n log

q

p
�

Consequently by the Lemma �� we have

j Homhit
p�q�f
� �g��U j 

�
q

p

���	�n��
� ���

By the bounds of the Lemma �� we have

j Homhash

�	 �A� f
� �g� j  �� �logn����log
�� log 	 

 ��log log log logn�log n��	�n�  ��log
�logn��	�n� 


�
q

p

�	�n�
�log n��	�n� � ���

By multiplication ��� and ��� we have necessary bound�
In the second subcase also by Lemma �� we have the following bounds

j Homhash

�	 �A� f
� �g� j  �� �logn��� log k� logm 

��



 �log log logn��log log log logn�logn��	�n�  �logn��	�n� � ���

It is easy to see� that in this subcase

j Homhash

�	 �A� f
� �g� j  j Hom�A� f
� �g� j 

 k��
��  �� �
�� � �logn	�n� � ���

By multiplication ��� and ��� we have necessary bound�
�
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