
B
R

IC
S

R
S-94-10

Jensen
et

al.:
M

onadic
Second-order

L
ogic

for
P

aram
eterized

V
erification

BRICS
Basic Research in Computer Science

Monadic Second-order Logic for
Parameterized Verification

Jakob Jensen
Michael Jørgensen
Nils Klarlund

BRICS Report Series RS-94-10

ISSN 0909-0878 May 1994

Copyright c� 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@daimi.aau.dk

MONADIC SECOND�ORDER LOGIC

FOR PARAMETERIZED VERIFICATION

JAKOB JENSEN� MICHAEL J�RGENSEN� AND NILS KLARLUND
DEPARTMENT OF COMPUTER SCIENCE

BRICS�� UNIVERSITY OF AARHUS
NY MUNKEGADE

DK����� AARHUS C�

Abstract� Much work in automatic veri	cation considers families of simi�
lar 	nite�state systems� But an often overlooked property is that sometimes
a single 	nite�state system can be used to describe a parameterized� in	nite
family of systems� Thus veri	cation of unbounded state spaces can take
place by reduction to 	nite ones�

The purpose of this article is to introduce Monadic Second�order Logic
as a practical means of carrying out such reductions� The logic is a highly
succinct alternative to the use of regular expressions� We have built a tool
that acts as a decision procedure and translator to DFAs�

The potential applications are numerous� We discuss text processing�
Boolean circuits� and distributed systems� Our main example is an auto�
matic proof of properties for the
Dining Philosophers with Encyclopedia�
example by Kurshan and MacMillan� We establish these properties for the
parameterized case without the use of induction�

�� Introduction�

In computer science� regularity amounts to the concept that a class of structures
is recognized by a �nite�state device� Often phenomena are so complicated that
their regularity either

� may be overlooked as in the case of parameterized veri�cation of distributed
�nite�state systems with a regular communication topology� or

� may not be exploited as in the case when a search pattern in a text editor
is known to be regular� but in practice inexpressible as a regular expression�

In this paper we argue that the Monadic Second�Order Logic or M�L can help
in practice to identify and to use regularity� In M�L one can directly mention

The corresponding author is Nils Klarlund� E�mail� klarlunddaimi�aau�dk�
� Basic Research in Computer Science� Centre of the Danish National Research Foundation�

�

positions and subset of positions in the input string� This feature distinguishes
the logic from regular expressions or automata� Together with quanti�cation and
Boolean connectives� an extraordinary succinct formalism arises�
Although it has been known for thirty��ve years that M�L de�nes regular lan�

guages �see 	
��� the translator from formulas to automata that we describe in this
article appears to be one of the �rst implementations�
The reason such projects have not been pursued may be the staggering theoretical

lower�bound any decision procedure is bound to sometimes require as much time
as a stack of exponentials that has height proportional to the length of the input�
It is often believed that the lower the computational complexity of a formalism

is� the more useful it may be in practice� We want to counter such beliefs in this
article � at least for logics on �nite strings�

Why use logic� Some simple �nite�state languages easily described in English
call for convoluted regular expressions� For example� the language L�a�b of all
strings over � � fa� b� cg containing at least two occurrences of a and at least two
occurrences of b seems to require a voluminous expression� such as

��a��a��b��b��

� ��a��b��a��b��

� ��a��b��b��a��

� ��b��b��a��a��

� ��b��a��b��a��

� ��b��a��a��b���

If we added � to the operators for forming regular expressions� then the language
L�a�b could be expressed more concisely as ��

�a��a�������b��b���� Even with this
extended set of operators� it is often more convenient to express regular languages
in terms of positions and corresponding letters� For example� to express the set
Laafterb of strings in which every b is followed by an a� we would like a formal
language allowing us to write something like

�for every position p� if there is a b in p then for some position q
after p� there is an a in q��

The extended regular languages do not seem to allow an expression that very closely
re�ects this description � although upon some re�ection a small regular expression
can be found� But in M�L we can express Laafterb by a formula

�p �b��p� � �q p � q � �a��q�

�Here the predicate �b��p� means �there is a b in position p��� In general� we believe
that many errors can be avoided if logic is used when the description in English does
not lend itself to a direct translation into regular expressions or automata� However�
the logic can easily be combined with other methods of specifying regularity since
almost any such formalism can be translated with only a linear blow�up into M�L�
Often regularity is identi�ed by means of projections� For example� if Ltrans is

regular on a cross�product alphabet ��� �e�g� describing a parameterized transition

�

relation� see Section �� and Lstart is a regular language on � describing a set of start
strings� then the set of strings that can be reached by a transition from a start string
is ���Ltrans � ���� �Lstart��� where �� and �� are the projections from �� � ��

� to
the �rst and second component� Such language theoretic operations can be very
elegantly expressed in M�L�

Our results� In this article� we present a translator fromM�L to DFAs� We discuss
potential applications to text processesing and to the description of parameterized
Boolean circuits�
Our principal application is a new proof technique for establishing properties

about parameterized� distributed �nite state systems with regular communication
topology� We illustrate our method by establishing safety and liveness properties
for a non�trivial version of the Dining Philosophers� problem as proposed in 	�� by
Kurshan and MacMillan�

Comparisons to other work� Parameterized circuits are described using BDDs
in 	��� This method relies on formulating inductive steps as �nite�state devices and
does not provide a single speci�cation language� The work in 	�� is closer in spirit
to our method in that languages of �nite strings are used although not as part of a
logical framework� In 	��� another approach is given based on iterating abstractions�
The parameterized Dining Philosopher�s problem is solved in 	�� by a �nite�state
induction principle�
A tool for M�L on �nite� binary trees has been developed at the University of

Kiel 	��� Apparently� this tool has not been used for veri�cation purposes�
In 	��� a programming language for �nite domains based on a �xed point logic is

described and used for veri�cation of non�parameterized �nite systems�

Contents� In Section �� we explain the syntax and semantics of M�L on strings�
We recall the correspondence to automata theory in Section �� We give several
applications of M�L and the tool in Section � text patterns� parameterized cir�
cuits� and equivalence testing� Our main example of parameterized veri�cation is
discussed in Section �� We give an overview of our implementation in Section ��
Finally� we discuss future work in Section
�

�� The Monadic Second�order Logic on Strings�

The syntax and semantics of the logic are de�ned as follows� Let � be the
input alphabet� We assume that the input string w	�� has length n and is w �
a�a����an��� The positions in w are then ������n
 ��
A position term t is either

� the constant � �which denotes the position ���
� the constant � �which denotes the last position� i�e� n
 ���
� a position variable p �which denotes a position i��
� of the form t � i �which denotes the position j � i mod n� where j is the
interpretation of t�� or

�

� of the form t � i �which denotes the position j
 i mod n� where j is the
interpretation of t��

�Position terms are only interpreted for non�empty input strings��

A position set term T is either

� the constant �which denotes the empty set��
� the constant all �which denotes the set f�� ���� n
 �g��
� a position set variable P �which denotes a subset of positions��
� of the form T� � T�� T� � T�� or �T� �which are interpreted in the natural
way��

� of the form T � i �which denotes the set of positions in T shifted right by
an amount of i�� or

� of the form T
 i �which denotes the set of positions in T shifted left by an
amount of i��

A formula � is either of the form

� �a��t� �which is interpreted as ai � a� where i is the interpretation of t��
� �a��T � �which is interpreted as ai � a� where i is the interpretation of T ��
� t� � t�� t� � t� or t� � t� �which are interpreted in the natural way��
� T� � T�� T� � T�� or t	T �which are interpreted in the natural way��
� ���� �� � ��� �� � ��� �� � ��� or �� � �� �where �� and �� are formulas�
and which are interpreted in the natural way��

� �p � �which is true� if there is a position i such that � holds when i is
substituted for p��

� �p � �which is true� if for all positions i� � holds when i is substituted for
p��

� �P � �which is true� if there is a subset of positions I such that � holds
when I is substituted for P �� or

� �P � �which is true� if for all subsets of positions I � � holds when I is
substituted for P ��

A closed formula � denotes a language L��� of the input strings that make � true�

�� From M�L to Automata�

In this section� we recall the method for translating a formula in M�L to an
equivalent �nite�state automaton �see 	
� for more details�� Note that any formula
� can be interpreted given an input string w and a value assignment I that �xes
values of the free variables� If � then holds� we write w� I j� �� The key idea is
now that a value assigment and the input string may be described as a word in
an alphabet extended with extra tracks that describe the value assignment� By
structural induction� we then de�ne for each formula an automaton that exactly
recognizes the words in the extended alphabet corresponding to pairs consisting of
an input string and an assignment that satisfy the formula�

�

Example� Assume that the free variables are P � fP�� P�g and that � � fa� bg� Let
us consider input string w � abaa and value assigment

I � 	P� �� f�� �g� P� �� ��

The set I�P�� � f�� �g can be represented by the bit pattern ����� since the num�
bered sequence

�
�
�
�
�
�
�
�

de�nes that � is in the set �the bit in position � is ��� � is not in the set �the bit in
position � is ��� etc� Similarly� the bit pattern ���� describes I�P�� � �
If these patterns are laid down as extra �tracks� along w� we obtain an extended

word � which may be depicted as

a b a a
� � � �
� � � �

Technically� we de�ne the extended word as �a� �� ���b� �� ���a� �� ���a� �� �� over
the alphabet � � B � B of extended letters � where B � f�� �g is the set of truth
values�
This correspondence can be generalized to any w and any value assigment for a

set of variables P �which can all be assumed to be second�order��
By structural induction on formulas� we construct automata A��P on alphabet

��B
k�where P � fP�� � � � � Pkg is any set of variables containing the free variables

in ��satisfying the fundamental correspondence

w� I j� � i� �w� I�	L�A��P�

Thus A��P accepts exactly the pairs �w� I� that make � true�

Example� Let � be the formula Pi � Pj � �� Thus when � holds� Pi is represented
by the same bit pattern as that of Pj but shifted right by one position� This can
be expressed by the automaton A��P

�i � � and �j � �

�i � � and �j � � �i � � and �j � �

�i � � and �j � �

�� Applications�

���� Text patterns� The language L�a�b of strings containing at least two occur�
rences of a and two occurrences of b can be described in M�L by the formula

��p�� p�
�a��p�� �

�a��p�� � p� �� p�� �
��p�� p�

�b��p�� �
�b��p�� � p� �� p��

Our translator yields the minimal automaton� which contains nine states� in ��
seconds� �The machine used is an HP
�� work station� The intermediate automaton

�

with the largest number of states has �� states and the size of its transition relation�
that is� the number of memory cells needed for its representation� is �����

The language Laafterb given by the formula

�p �b��p� � �q p � q � �a��q�

is translated to the minimal automaton� which has two states� in �� seconds�

A far more complicated language to express is L��apart consisting of every string
over fa� bg such that for any pre�x the number of a�s and b�s are at most one apart�
When using regular expressions or M�L� one needs to struggle a bit� but in M�L
there is a strategy for describing the functioning of the �nite�state machine that
comes to mind�

We observe that a position p may be used to designate a pre�x� for example� �
denotes the pre�x consisting of the �rst letter and � �the last position� denotes the
whole input string� We may now recognize a string in L��apart by identifying three
sets of positions the set P� corresponding to pre�xes with an equal number of a�s
and b�s� the set P�� corresponding to pre�xes where the number of a�s is one greater
than the number of b�s� and the set P�� corresponding to pre�xes where the number
of a�s is one less than the number of b�s

�P�� P��� P�� P� � P�� � P�� � all

� � �	 P�

� �	P�� �
�a����

� �	P�� �
�b����

� �p �p � � �
p	P� � ��a��p� � p� �	P���

� ��b��p� � p� �	P���
� p	P�� � �a��p� � p� �	P�

� p	P�� � �b��p� � p� �	P��

The resulting four�state automaton is calculated in �� seconds� The largest in�
termediate automaton has ��� states and a transition relation of size �
k� This
example exhibits the worst computation time of the small� natural text pattern
problems that we have looked at�

���� Parameterized circuits� Assume that we are given a drawing as in Figure �
denoting a parameterized Boolean function�

How do we describe the language Lex � B
� of input bit patterns that make the

output true� From the drawing� no immediate description as a regular expression or
�nite�state automaton is apparent� In M�L� however� it is easy to model the outputs
of the n or�gates as a second�order variable Q and thereby precisely to describe the
language by interpreting the drawing� Note that the or�gate at position p � � is
true if either there is a � at p
� or p� or in other words p 	 Q� ����p���� ����p��
Since the output is � if and only if all or�gates are �� i�e� if Q � all� the language
Lex is given by the formula

�

	

�
�
n��
n��
�

Figure �� A parameterized circuit�

�Q ��p �p � �� p 	 Q� ����p�� �
�p � �� �p 	 Q� ����p� ��� ����p���� Q � all�

The resulting automaton has three states and is produced in ��� seconds� It accepts
the language �� � ����� which is the regular expression that one would obtain by
reasoning about the circuit�

���� Equivalence testing� A closed formula � is a tautology if L��� � L����� i�e�
if all strings over � satisfy �� The equivalence of formulas � and � then amounts
to whether �� � is a tautology�
Example That a set P contains exactly the even positions in a non�empty input
string may be expressed in M�L by the following two rather di�erent approaches
either by the formula even� �P � �

�	P � �p ��p	P � p � �� p� � �	 P �
� �p �	 P � p � �� p� �	P ���

or as a formula even� �P � �

P � �P � �� � all � P � �P � �� � � P ��

To show the equivalence of the two formulas� we check the truth value of the
bi�implication

�P even��P �� even��P �

The translation of this formula on our M�L tool does indeed produce an automaton
accepting �� in ��� seconds� and thus veri�es our claim� �The largest intermediate
automaton has �� states and size �����

�� Dining Philosophers with Encyclopedia�

A distributed system is parameterized when the number n of processes is not
�xed a priori� For such systems the state space is unbounded� and thus traditional

�

�nite�state veri�cation methods cannot be used� Instead� one often �xes n to be�
say two or three� This yields a �nite state space amenable to state exploration
methods� However� the validity of a property for n � ��� does not necessarily imply
that the property holds for all n�
A central problem in veri�cation is automatically to validate parameterized sys�

tems� One way to attack the problem is to formulate induction principles such
that the base case and the inductive steps can be formulated as �nite�state prob�
lems� Kurshan and MacMillan 	�� used such a method to verify safety and liveness
properties of a non�trivial version of the Dining Philosophers example�

Selection hungry read eat

State’

EAT

THINK READ EAT

State THINK READ

Figure �� Dining Philosophers with Encyclopedia

In this system� symmetry is broken by a encyclopedia that circulates among the
philosophers� Thus each philosopher is in one of three states EAT� THINK� or
READ� The global state can be described as a string State of length n over the
alphabet �State � fEAT�THINK�READg� see Figure ��
The system makes a transition according to external events that constitute a

selection� Each process is presented with an event in the alphabet �Selection �
feat� think� read� hungryg� Thus the selection can be viewed as a string Selection

over �Selection� see Figure �� As shown� all processes make a synchronous transition to
a new global State� on a selection according to a transition relation trans�State� State��
Selection�� which is shown in Figure � together with an auxiliary predicate
blocking�Selection� used in its de�nition� Thus the new state of each process is de�
pendent on its old state and the selection events presented to itself and its neighbors�
The transition relation is so complicated that it is hard to grasp the functioning of
the system�
Fortunately� the parameterized transition relation can be translated into basic

M�L on strings� For example� we encode State using two second�order variables P
and Q with the convention that

EATp�State� � p	P � p	Q
READp�State� � p �	 P � p	Q
THINKp�State� � p �	 P � p �	 Q

Similarly� State � and Selection can also each be encoded using two second�order
variables� Thus� the predicate trans�State� State�� Selection� becomes a formula with
six free second�order variables �in practice� we use the UNIX macro tool m� to write
down the formulas��

�

For this distributed system there are two important properties to verify

� Safety Property The encyclopedia is neither lost nor replicated� Thus there
is always exactly one process in state READ�

� Liveness Property If no process remains in state EAT forever� then the
encyclopedia is passed around over and over�

In 	�� both properties are proved in terms of a complicated induction hypothesis�
This hypothesis is itself a distributed system� where each process has four states�
�The Liveness Property in 	�� is technically di�erent since it is modeled in terms of
selections��

Our strategy is fundamentally di�erent� We cannot directly verify liveness prop�
erties� But we can easily verify properties about the transition relation in the
parameterized case and without induction as follows�

Let � be an M�L formula about the global state� For example� we might consider
the property that if a philosopher eats� then his neighbors do not

�mutex�State� � �p EATp�State�� �EATp���State� � �EATp���State�

A property given as a formula � can be veri�ed using the invariance principle

�State � State�� Selection ��State� � trans�State� State�� Selection�� ��State���

which is also a formula in M�L� In this way� we have veri�ed for the parameterized
case that both �mutex and the Safety Property that exactly one philosopher reads�
i�e�

��p READp�State��

are invariant� The veri�cation of each formula takes two and a half minutes� �The
largest intermediate automaton has about ��� states and size about ��k��

Note that this method does not rely on a state space exploration �which is im�
possible since the state space is unbounded�� Instead� it is based on the Invariance
Principle to show that a property holds for all reachable states� it is su cient to
show that it holds for the initial state and is preserved under any transition�

Establishing the Liveness Property� The Liveness Property can be expressed
in Temporal Logic as

� �READp�� � �READp�����

that is� it always holds that if philosopher p� � reads� then eventually philosopher
p reads� We must prove this property under the assumption that no philosopher
eats forever

� �EATp � ��EATp�����

So assume that READp�� holds� We must prove that �READp holds� There are
two cases as follows�

�

blocking�Selection� �
eatp���Selection� � hungryp���Selection�
� eatp���Selection�

trans�State � State�� Selection� �
�p �

�THINK� THINK �
�THINKp�State� � THINKp�State

���
thinkp�Selection� � ��readp���Selection��
�

hungryp�Selection� � blocking�Selection��

�

�THINK� EAT �
�THINKp�State� � EATp�State

���
hungryp�Selection� � ��blocking�Selection���

�

�THINK� READ �
�THINKp�State� � READp�State

���
thinkp�Selection� � readp���Selection��

�

�EAT� THINK �
�EATp�State� � THINKp�State

���
thinkp�Selection� � ��readp���Selection���

�

�EAT� EAT �
�EATp�State� � EATp�State

���
eatp�Selection��

�

�EAT� READ �
�EATp�State� � READp�State

���
thinkp�Selection� � readp���Selection��

�

�READ� THINK �
�READp�State� � READp�State

���
readp�Selection� � thinkp���Selection��

�

�READ� EAT �
�READp�State� � EATp�State

���
false�

�

�READ� READ �
�READp�State� � READp�State

���
readp�Selection� � ��thinkp���Selection���

Figure �� The transition relation

� Case EATp holds� By asssumption ���� there is an instant when EATp �
� � EATp holds� Thus if

READp�� � EATp � � � EATp � �READp���

is a valid property of the transition system� �EATp holds� In fact� we veri�ed
using our tool that ��� indeed holds�

� Case �EATp holds� If EATp becomes true� then use the previous case�
Otherwise� �EATp continues to hold� Now� by the assumption ��� at some
point �EATp�� will hold� We then use the property

READp�� � �EATp � � �EATp�� � �READp � �EATp����

which we have also veri�ed using our tool� to show that eventually READp

holds �or eventually EATp holds� which contradicts the assumption that
�EATp continues to hold��

��

�� Implementation�

Our implementation is written in C� We chose explicit garbage collection� which
substantially complicated the programming�

We discuss next how formulas without the input predicates �a��p� and �a��P � are
translated to automata� Thus the alphabets considered are of the form B

k � where
k is the number of free variables� Each b	 B

k is called an extension�

The most obvious choice for representing the transition relation would be by list
structures that for each pair of states �s� s�� detail the set of extended letters b such
that �s� b� s�� is a transition� Unfortunately� this representation has an exponential
blow�up in the number of free variables of ��

Our solution to this problem is to give a compact representation of a set of
extensions E � B

k � without necessarily mentioning every extension explicitly� This
can be done the following way two extensions �� and �� can be expressed as an
extension expression �x� where x is read as � or �� On the other hand� �� and ��
cannot be compressed this way� Using this technique� we can express an extension
set E as a list of extension expressions

E � �e�� � � � � en�� where ei is of the form u� � � �uk� uj 	 f�� �� xg

If moreover ei � ej � � i �� j� the set of expressions is said to be in exclusive

normal form� We use this form to simplify the computations involved in Boolean
operations on extension expression lists� Speci�cally� we use the identity Ene �
E � e � �e�ne� � � � � enne��

We represent a transition relation as a set of transitions of the form �s�� E� s���
where E is an extension expression list in exclusive normal form� In Figure �� the
automaton for the formula p � q and the transition relation of the corresponding
automaton are shown�

With this representation� all transitions from state s to state s� are readily found
once s and s� have been located� Our algorithms work by processing pairs �s� s�� in
the order they appear in the list structures�

Note that our extension representation has a potentially exponential blow�up�
that is� there are extension sets on k variables that require approximately �k exten�
sion expressions for their representation� Fortunately� our experiments have given
evidence that this often does not happen in practice�

Automata operations� To keep Boolean operations on automata simple� we have
chosen to use deterministic automata� All Boolean operations can be implemented
using only two basic operations complement and cross product� In addition�
we need a projection operation to handle existential quanti�cation and the subset
construction�

Complementation� Since all automata are deterministic� the complement automa�
ton A � �A� is found simply by switching �nal and non��nal states�

��

extensions
from 1
to 2

extension extension

val 0

val 1

val 1

val x

val x

Automaton

p < q

Transition

relation

p < q

10

xx

x0

11

01
00

0x

extensions extensions

state 1

extensions

state 2

1

2

0

state 0
transitions transitions transitions

from 0
to 0

extension
from 1
to 1

extension
from 2
to 2

extension

val x

val 0

extensions
from 0
to 2

extension

extensions
from 0
to 1

extension

val 0

val 1

val 1

val 1

val 0

val 0

val x

Figure �� Representation of transition relation�

Cross product� The transition relation of the cross�product automaton A � A��A�

is calculated as follows� Given two states s � �s�� s�� and s
� � �s��� s

�
�� we �nd the

set of extensions E leading from s to s� in A as E � E��E�� where �s�� E�� s
�
��	 ��

and �s�� E�� s
�
��	 ��� If E � � of course we do not represent the transition� Since

we only want to �nd states reachable from the the start state s� � �s��� s
�
��� we

calculate all transitions recursively from the start state� The set of �nal states are
easily found� using the de�nition SF � SF

� � SF
� �

Determinization and projection� We use the subset construction to determinize�
Only reachable subset states are constructed� In practice� the blow�ups appear to
be mostly benign� Determinization is needed only in connection with quanti�ers�
which e�ect the removal of the track corresponding to the free variable�

In the example in Figure �� the result of removing the second track is a non�
deterministic automaton� because there are two di�erent transitions on input ��
The transitions originating in the subset state fs�� s�g are calculated as follows� If
�s�� E�� s�� and �s�� E�� s�� are transitions belonging to the determinized transition
relation� then �fs�� s�g� E� fs�� s�g� is a transition� if E � E� � E� �� � Thus�
by Boolean operations on extension expression sets� we are able to compute the
transition relation of the subset automaton�

��

s3x0

11
Second track removed

1

x 0

determinized
Transitions 1

s1

s2

s3

s1

s2

s3

s1

s2s3

Figure �� Determinisation�

Minimization� Unfortunately the result of Boolean operations on automata is not
always a minimal automaton�
Minimizing an automaton is done by �collapsing� classes of equivalent states into

single states� Intuitively� two states s� and s� are equivalent� and we write s� � s��
if the set of strings accepted from s� is exactly the set of strings accepted from s��
To �nd classes of equivalent states� we initialize an equivalence relation consisting of
two classes� �nal states and non��nal states� and we subsequently re�ne the relation
until no more classes are found� This is done according to the requirement s� � s�
implies for all b	B

k � ��s�� b� � ��s�� b�� where � is the transition relation represented
as a function� In our representation� this condition becomes

s� � s� �
for all transitions �s�� E�� s

�
�� and �s�� E�� s

�
��

E� � E� �� � s�� � s��

Our algorithm is an adaptation of the straightforward n� text book method�
When a pair of states s� and s� have been declared inequivalent� our algorithm
checks all other pairs s�� and s�� that are still considered equivalent to see whether
they now are inequivalent with respect to s� and s�� that is if E � F �� � where
�s��� E� s�� and �s

�
�� F� s�� are transitions� Thus the total running time becomes

m� � n�� where m bounds the size of the extension expression list and n is the size
of the state space� Note� however� that when m stays close to n our algorithm
is exponentially faster than any convential algorithm that is based on an explicit
representation of the alphabet� Also� for sparse transition systems �which are the
most common�� the running time is only m� � n��

Handling of �rst�order variables� As in 	��� we treat �rst�order variables as if they
were second�order variables� except when they are eliminated together with their
quanti�er� Then we impose the condition that the second�order variables contain
exactly one element�

Compression of extensions� In general� it is an NP�complete problem to minimize
the representation of an extension expression list� We have implemented an algo�
rithm� that reduces extension expression lists so that no two extension expressions
ei and ej exist that can be compressed into one� This does not produce a mini�
mal extension expression list� but reduces extension expression lists by � to ��! in
practice�

��

� Discussion

We have shown that for a non�trivial distributed system� our invariant method for
boiling down an unbounded state space to a �nite one is a promising alternative to
the use of induction� These results were obtained on a preliminary implementation
of a M�L to DFA translator that can be substantially improved in many ways

� The size of the transition relation could be reduced by an order of magnitude
if extension expressions are packed into machine words� Running time would
also be an order of magnitude faster�

� BDDs can be used to represent the transition function so as to obtain an
m� � n� minimization routine�

� In order to avoid unnessary combinatorial explosions� heuristics for trans�
forming the formula should be introduced�

� A library of common predicates and their corresponding DFAs would im�
prove e ciency�

� There are evident ways of parallelizing our tool by sending separate subfor�
mulas to di�erent machines�

Work is in progress to implement some of these ideas�

Acknowledgements� We are thankful to Andreas Pottho� for his advice based
on the M�L implementation at the University of Kiel�

References

�� F� Balarin and A�L� Sangiovanni�Vincentelli� An iterative approach to language contain�
ment� In Computer Aided Veri�cation� CAV ���� LNCS ���� pages ������ �����

�� M�M Corsini and A� Rauzy� Symbolic model checking and constraint logic programming�
a cross�fertilisation� In 	th
 Europ
 Symp
 on Programming� LNCS ���� pages ��������
�����

�� A� Gupta and A�L� Fisher� Parametric circuit representation using inductive boolean
functions� In Computer Aided Veri�cation� CAV ���� LNCS ���� pages ������ �����

�� B� Kurshan and K� MacMillan� A structural induction theorem for processes� In Proc

Eigth Symp
 Princ
 of Distributed Computing� pages �������� �����
�� J�K� Rho and F� Somenzi� Automatic generation of network invariants for the veri	cation

of iterative sequential systems� In Computer Aided Veri�cation� CAV ���� LNCS ����
pages �������� �����

�� M� Steinmann� �Ubersetzung von logischen Ausdr�ucken in Baumautomaten� Entwicklung
eines Verfahrens und seine Implementierung� Unpublished� �����

�� W� Thomas� Automata on in	nite objects� In J� van Leeuwen� editor� Handbook of The�

oretical Computer Science� volume B� pages �������� MIT Press�Elsevier� �����

��

Recent Publications in the BRICS Report Series

RS-94-1 Glynn Winskel. Semantics, Algorithmics and Logic: Basic
Research in Computer Science. BRICS Inaugural Talk.
February 1994, 8 pp.

RS-94-2 Alexander E. Andreev. Complexity of Nondeterministic
Functions. February 1994, 47 pp.

RS-94-3 Uffe H. Engberg and Glynn Winskel. Linear Logic on
Petri Nets. February 1994, 54 pp. Appear in: Proceedings
of REX ’93 (eds. J. W. de Bakker et al.), LNCS 803, 1994.

RS-94-4 Nils Klarlund and Michael I. Schwartzbach. Graphs
and Decidable Transductions based on Edge Constraints.
February 1994, 19 pp. Appears in: Trees in Algebra and
Programming CAAP ’94 (ed. S. Tison), LNCS 787, 1994.

RS-94-5 Peter D. Mosses. Unified Algebras and Abstract Syntax.
March 1994, 21 pp. To appear in: Recent Trends in Data
Type Specification (ed. F. Orejas), LNCS 785, 1994.

RS-94-6 Mogens Nielsen and Christian Clausen. Bisimulations,
Games and Logic. April 1994, 37 pp. Full version of
paper appearing in: New Results and Trends in Computer
Science, pages 289–305, LNCS 812, 1994.

RS-94-7 André Joyal, Mogens Nielsen, and Glynn Winskel.
Bisimulation from Open Maps. May 1994, 42 pp. Jour-
nal version of LICS ’93 paper.

RS-94-8 Javier Esparza and Mogens Nielsen. Decidability Issues
for Petri Nets. May 1994, 23 pp. Appears in EATCS
Bulletin 52, pages 245–262, 1994.

RS-94-9 Gordon Plotkin and Glynn Winskel. Bistructures, Bido-
mains and Linear Logic. May 1994, 16 pp. To appear in
the proceedings of ICALP ’94, LNCS, 1994.

RS-94-10 Jakob Jensen, Michael Jørgensen, and Nils Klarlund.
Monadic Second-order Logic for Parameterized Verifica-
tion. May 1994, 14 pp.

RS-94-11 Nils Klarlund. A Homomorphism Concept for �-Regu-
larity. May 1994, 16 pp.

