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Functions by �� Colours

S�ren Riis �
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June ����

Abstract

I construct a concrete colouring of the � element subsets of N�

It has the property that each homogeneous set fs�� s�� s���� srg� r �

s� � � has its elements spread so much apart that F��si� � si�� for

i � �� �� ����� r� �� It uses only 	
 colours� This is more economical

than the approximately ������ colours used in ���

� Introduction and preliminaries

In the famous paper ��� L�Harrington and J�Paris showed that a certain

�nitary version PH of Ramseys Theorem is true� but unprovable in the

celebrated system of Peanos Arithmetic� This is an example of G�odels in	

completeness theorem� However� unlike G�odels consistency statement PH

has generally been accepted to be a natural statement from Arithmetic� In

�This work was initiated at Oxford University England
yBasic Research in Computer Science� Centre of the Danish National Research

Foundation�






�
� Ketonen and Solovay gave a careful analysis of the underlying growth	rate

of PH� As a �rst step in this analysis it was shown that for each increasing

primitive recursive function f there exists n and a colouring of the � element

subsets of fn� n�
� n��� ����� fn�g such that there are no homogeneous sets

fs�� s�� s�� ���� srg with r � s��
� The real point is that the number of colours

can always be chosen to be less than a number �xed in advance� Ketonen

and Solovay de�ned various algebras and took a series of products� in order

to obtain the required colouring� An examination of their proof shows that

they used approximately 
����� colours� However they clearly did not try

to be economical� Actually in the work of Ketonen and Solovay the impor	

tant point is that the number is �nite� In this paper I construct a concrete

colouring which uses only �� colours�

Recall that the �rst functions in the Wainer hierarchy ��� are de�ned by

F�n� �� n � 
� F �
k n� �� Fkn�� Fm��

k x� �� Fm
k Fkn��� Fk��n� ��

F n
k n�� F�n� �� Fnn�� The function F� is the �rst function in this hi	

erarchy which growth faster than each primitive recursive function�

Let S �k� denote the collection of k element subsets of S� We use the

convention that the elements in displayed in sets S � fs�� s�� ���� srg � N are

listed after size i�e� s� � s� � ����sr�� Let g � N�k� � C� We say that S � N

is homogeneous for g� if u � k�
 and g takes a constant value on S�k�� The

elements in C are called colours� If g� � N�k� � C�� g� � N�k� � C�� ���� gu �

N
�k� � Cu we de�ne the product colouring g �� g��g������gr as the product

map g � N�k� � C��C�� ����Cu� Notice that S is homogeneous for g if and

only if S is homogeneous for all the maps g�� ���� gu�

� De�nition of the colouring

Let jx� y� be the smallest j such that y � Fjx�� Consider the following �

open propositions�

��fx�� x�g� �� x� � F�x��

�



��fx�� x�g� �� jx�� x�� � x�

��fx�� x�g� �� jx�� x�� � bx�
�
c

��fx�� x�� x�g� �� jx�� x�� �� jx�� x��

�	fx�� x�g� �� x� � F x���
j�� x�� where j �� jx�� x���

�
fx�� x�� x�g� �� jx�� x�� � jx�� x��

��fx�� x�g� �� jx�� x�� � ��

Now we de�ne � auxiliary colourings h�� h�� ���� h� as follows� The colouring

hi � N
��� � f�� 
g� i � 
� �� �� �� � takes the value 
 exactly when �i holds�

The colouring hj � N��� � f�� 
g� j � �� � takes the value 
 exactly when �j

holds�

Lemma� Suppose that S � fs�� s�� ���� srg � N contains at least s� elements�

s� � � and S is homogeneous for the colourings h�� h�� ���� h�� Then F�si� �

si�� for i � 
� �� ���� r� 
�

Proof�


� If h� 	 � on S��� then F�si� � si�� for i � �� 
� �� ����� r � 
� This is

what we want to show�

�� So assume that h� 	 
 on S���� According to the de�nition F�x� ��

Fxx�� So si�� � F�si� � Fsisi�� i � �� 
� �� ���� r� 
�

�� For i � � this gives s� � Fs�s���

�� According to the de�nition js�� s�� � s��

�� This shows that h� 	 � on S����

In particular js�� s��� js�� s��� ���� js�� sr� � s��

�� Now whether h� 	 � or h� 	 
 on S��� by �� we know that

js�� s��� js�� s��� ���� js�� sr� takes at most b s�
�
c� 
 di�erent values�

�� Now h� 	 � on S ���� because otherwise js�� s��� js�� s��� ����� js�� sr�

would all take di�erent values� This is impossible because r � s��
 � b s�� c�


and s� � ��

�� But if h� 	 � on S���� then js�� s�� � js�� s�� � ���� � js�� sr�� Let j�

denote this value�

�



�� The value j� cannot be �� because then according to the de�nition of

js�� sr� we would have s� � � � sr � F�s�� � s� � 
�


�� According to �� j� � �� By the de�nition of j� we have Fj���s�� �

si � Fj�s�� when i � �� 
� ��� r�



� Now h
 cannot take the value 
 on S���� To see this suppose that

h
 	 
 on S���� Then s� � js�� s�� � js�� s�� � ���� � jsr��� sr� and

especially js�� s�� � �� Then by the de�nition of h� this would have

the consequence that jsr��� sr� � �� But this is a contradiction because�

js�� s�� � jsr��� sr� � r � 
� so js�� s�� � r � 
 � s� � js�� s���


�� So h
 	 � on S���� In particular j� � js�� s�� � js�� s�� � ��� �

jsr��� sr��


�� According to 
�� Fj���si� � Fj�si�si��si�� The de�nition of the

function j shows that Fj�si�si����si� � si���

Combining this shows that Fj���si� � si���


�� According to 
�� sr � Fj���sr��� � Fj���Fj���sr���� � ��� �

F
�r
j���s���


�� Now r � s� � 
 so by 
�� sr � F
�s���
j��� s�� so h	fs�� srg� � ��


�� So h	 	 � on S���� and then si�� � F
�si��
j�si�si��

si�� i � �� 
� �� ���� r � 
�


�� Now si�� � s� � 
 so according to 
�� jsi� si��� � j�� and thus

F
�si��
j�si�si����si� � F

�s���
j��� si��


�� This shows that sr � F s���
j��� sr��� � ��� � F

�r��s���
j��� s���


�� Now r 
 s� � 
� � s� � 
 s� � �� so sr � F
�s���
j��� s�� � Fj�s��� This

shows that js�� sr� � j� which violates �� js�� sr� � j��

��� The contradiction in 
�� shows that the assumption in �� is impos	

sible� Thus h� 	 � and we are back to 
�� �

Lemma� There is a colouring U � N��� � f
� �� ���� ��g using �� di�erent

colours such that if S is homogeneous for h then S is simultaneously homo�

geneous for the maps h�� h�� ���� h�

Proof� Now 
 � � 
 � � 

 so by �
� there exists a colouring U� � N��� �

f
� �� ���� 

g such that if S is homogeneous for U� then S is simultaneously

�



homogeneous for h�� h�� h�� h	 and h�� Now let U � N��� � f
� �� ���� 

g �

f�� 
g � f�� 
g be the product of U�� h� and h
� It uses �� colours� �

Theorem� There is a colouring W � N��� � f
� �� ���� ��g such that if S ��

fs�� ���� sug is homogeneous for W then F�si� � si���

Proof� De�ne W as U except that W fs�� s�� s�g� gets colour �� if s� � �

and s� � � or s�� s�� s� � � and s� � �� and colour �� if s�� s� � � and s� � ��

and colour �� if s�� s�� s� � � and s� �� �� It is straightforward to show that

any set S �� fs�� s�� s�� s�g which is homogeneous for W must have s� � ��

� Final remarks and open questions

There is no reason to believe that �� is a natural constant� Actually by a

slight change in the problem I can show that 
� colours su�ce� This suggests

that the following question might be critical�

Problem �� Is it possible to use only 
� colours�

One can also ask for the asymptotic answer� Here I think the critical

question could be whether�

Problem �� Is it possible to use only � colours�

To my knowledge the �� colours used in this paper provides the best

known lower bound to both of these questions�
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