
B
R

IC
S

R
S

-01-8
F

rendrup
&

Jensen:
C

hecking
for

O
pen

B
isim

ilarity
in

the
π

-C
alculus

BRICS
Basic Research in Computer Science

Checking for Open Bisimilarity in
the π-Calculus

Ulrik Frendrup
Jesper Nyholm Jensen

BRICS Report Series RS-01-8

ISSN 0909-0878 February 2001

Copyright c© 2001, Ulrik Frendrup & Jesper Nyholm Jensen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/8/

Checking for Open Bisimilarity in the π-Calculus

BRICS1

Ulrik Frendrup & Jesper Nyholm Jensen
Aalborg University, Department of Computer Science

Fredrik Bajers Vej 7E
9220 Aalborg Ø, Denmark

Email: ulrikf@cs.auc.dk, nyholm@gaztricjuice.dk

Abstract

This paper deals with algorithmic checking of open bisimilarity in the π-calculus. Most
bisimulation checking algorithms are based on the partition re�nement approach. Unfortu-
nately the de�nition of open bisimulation does not permit us to use a partition re�nement
approach for open bisimulation checking directly, but in the paper A Partition Re�nement

Algorithm for the π-Calculus Marco Pistore and Davide Sangiogi present an iterative method
that makes it possible to check for open bisimilarity using partition re�nement. We have
implemented the algorithm presented by Marco Pistore and Davide Sangiorgi. Further-
more, we have optimized this algorithm and implemented this optimized algorithm. The
time-complexity of this algorithm is the same as the time-complexity for the �rst algorithm,
but performance tests have shown that in many cases the running time of the optimized
algorithm is shorter than the running time of the �rst algorithm.

Our implementation of the optimized open bisimulation checker algorithm and a user inter-
face have been integrated in a system called the OBC Workbench.The source code and a
manual for it is available from http://www.cs.auc.dk/research/FS/ny/PR-pi/.

1Basic Research in Computer Science (www.brics.dk), funded by the Danish National Research Founda-

tion

1

Contents

1 Introduction 4

2 Checking for Bisimilarity Using Partition Re�nement 5

2.1 The Generalized Partition Re�nement Problem 5

2.2 Bisimulation Checking . 6

3 The π-Calculus 8

3.1 Syntax . 8

3.2 Semantics . 10

3.3 Bisimulation . 10

4 Algorithm for Checking Open Bisimilarity in the π-Calculus 13

4.1 Syntax . 13

4.2 Semantics . 14

4.3 Open Bisimulation . 16

4.4 Constrained Processes . 17

4.5 Non-Redundant Transitions . 19

4.6 Active Names . 20

4.7 The Iterative Method . 22

4.8 The Algorithm . 23

4.9 Examples . 25

5 Implementation of Open Bisimulation Checker 30

5.1 Data Types . 30

5.2 Finding Transitions . 33

2

5.3 Partition Re�nement . 35

5.4 Step 1 - Construction of the State Graphs . 36

5.5 Step 2 - Initializing Partition W . 38

5.6 Step 3 - Stabilizing Partition W . 39

5.7 Step 4 - Result . 44

5.8 Main Function . 44

6 Optimization 45

6.1 Reducing the Sizes of the State Graphs . 45

6.2 Optimizing the Computation of Non-Redundant Transitions 48

6.3 Optimizing the Computation of Active Names 48

6.4 Optimizing the Computation of the Normalized Transitions 49

6.5 A Faster Partition Re�nement Algorithm . 50

6.6 Heuristics . 51

6.7 Remarks on the Optimized Algorithm . 51

7 Conclusion 52

A The Optimized Algorithm 55

B Performance Tests 60

B.1 π-Processes Used in Performance Tests . 60

B.2 Results of Performance Tests . 61

3

Chapter 1

Introduction

This paper deals with algorithmic checking of open bisimilarity in the π-calculus. We have
implemented an algorithm for open bisimulation checking in the π-calculus. Most algorithms
for bisimulation checking are based on partition re�nement, but the de�nition of open bisim-
ulation makes it di�cult to use this strategy for an open bisimulation checking algorithm
directly since the state spaces of the processes being checked for open bisimilarity cannot
be constructed separately. We have implemented the open bisimulation checking algorithm
presented in [10]. This algorithm was developed by introducing the notion of constrained
processes, de�ning active names bisimulation on constrained processes, showing that there is
a useful connection between open bisimilarity and active names bisimilarity, and developing
an iterative method for checking active names bisimilarity.

We have optimized the algorithm for open bisimulation checking, implemented this al-
gorithm, and carried out some performance tests of the �rst and the optimized version of
the implementation. Finally, the implementation of the optimized algorithm and a user
interface have been integrated in a system called the OBC Workbench.

This paper contains seven chapters and two appendices and is organized as follows. Chap-
ter 2 describes the generalized partition re�nement problem and shows how an algorithm
for solving this problem can be used for checking bisimilarity. In chapter 3 we present the
syntax and semantics of a subset of the π-calculus and de�ne some traditional bisimilarities
between π-processes. In chapter 4 we present another notion of bisimilarity called open
bisimilarity de�ned by [10]. Chapter 4 also contains some results from [10] that shows that
open bisimilarity can be checked algorithmically. Chapter 5 contains a description of our
�rst implementation of the open bisimulation checking algorithm and chapter 6 describes
how the algorithm is optimized with respect to running time. We conclude on the imple-
mentation in chapter 7. Pseudo code for the optimized implementation can be found in
appendix A. Results of performance tests of the �rst and the optimized implementation and
a comparison of these can be found in appendix B.

4

Chapter 2

Checking for Bisimilarity Using

Partition Re�nement

The algorithm for open bisimulation checking in the π-calculus developed by [10] is as many
other bisimulation equivalence checking algorithms based on partition re�nement. In this
chapter we describe the generalized problem of partition re�nement. Furthermore, we show
how this can be used for bisimulation checking.

2.1 The Generalized Partition Re�nement Problem

Before we can present the generalized partition re�nement problem we need to de�ne
the notions of partitions and blocks .

De�nition 1 (Partitions and blocks)
Let U be a set. A partition W of U is a �nite set of pairwise disjoint subsets B1, . . . Bn of
U where

⋃
i∈{1,...,n}Bi = U . The sets Bi of W are called blocks. �

De�nition 2 (Generalized Partition Re�nement Problem)
Given a set U , a partition W = {B1, . . . Bn} of U , and k functions fl : U → P(U), 1 ≤ l ≤ k,
we want to re�ne W into a new partition W ′ of U , where W ′ = {C1, . . . , Cm} is the coarsest
set (the set with fewest blocks) satisfying

(i) for each i ∈ {1, . . . ,m} there exists a j ∈ {1, . . . , n} such that Ci ⊆ Bj and

(ii) for any a, b ∈ Ci, any block Cj , 1 ≤ i, j ≤ m, and any function fl, 1 ≤ l ≤ k it holds
that fl(a) ∩ Cj 6= ∅ if and only if fl(b) ∩ Cj 6= ∅.

�

5

The new partition W ′ always exists[3] and is the unique greatest �xed point of the function
ψW that maps partitions of U to partitions of U and is de�ned by

C ∈ ψW(W ′) if and only if

(i) ∃B ∈ W .(C ⊆ B) and

(ii) for any a, b ∈ C, any block C′ ∈ W ′, and any function fl, 1 ≤ l ≤ k it holds that
fl(a) ∩ C′ 6= ∅ if and only if fl(b) ∩ C′ 6= ∅.

The partition W ′ induces an equivalence W ′∼ de�ned by W ′∼
def
= {(a, b) | ∃B ∈ W .(a, b ∈

B)}. So the generalized partition re�nement problem consists of computing the equivalence
classes of U for an equivalence de�ned as a greatest �xed point.

In section 5.3 we will present an algorithm to solve the partition re�nement problem for
a �nite set U and k = 1. This can be used to solve the generalized partition re�nement
problem in an iterative process where the re�nement algorithm is applied once for each
function in each iteration until the partition stabilizes.

In the following section we show how a partition re�nement algorithm can be used for
bisimulation checking.

2.2 Bisimulation Checking

Let P be a set of states and Act a set of labels. We let P and Q range over P and α over
Act. For a given labeled transition system (P , Act, −→) we de�ne bisimulation as follows.

De�nition 3 (Bisimulation)
A relation R ⊆ P × P is a bisimulation if (P,Q) ∈ R implies,

(i) if P
α−→ P ′ then for some Q′ ∈ P , Q α−→ Q′ and (P ′, Q′) ∈ R, and

(ii) if Q
α−→ Q′ then for some P ′ ∈ P , P α−→ P ′ and (P ′, Q′) ∈ R.

�

We will let ∼ denote the greatest bisimulation and say that P and Q are equivalent or

bisimilar if P ∼ Q. We will use the shorthand notation P
s−→ P ′ if s

def
= a1a2 · · ·an,

ai ∈ Act and there exists a sequence of states P1, P2, . . . , Pn ∈ P such that P
a1−→ P1

a2−→
· · · an−→ Pn and P ′ = Pn. Furthermore, we de�ne the labels contained in a state as n(P) =
{α ∈ Act | ∃s1, s2 ∈ Act∗.(∃P ′ ∈ P .P s1αs2−→ P ′)}.

Now we show how a partition re�nement algorithm can be used for bisimulation checking.
If re�ne(U,W , f1, . . . , fk) is a function which returns a solution of the generalized partition
re�nement problem for the instance U,W , f1, . . . , fk then it can be used for checking for

6

bisimilarity between the states P and Q as follows. Let SP denote the state space of P , i.e.
SP = {P ′ | ∃s ∈ Act∗.P s−→ P ′}. Let U be the set SP ∪ SQ and W the parti-
tion of U containing only one block which is the set U . Furthermore, let the functions
fα : U → P(U), α ∈ n(P) ∪ n(Q) be de�ned as fα(R) = {R′ ∈ U | R α−→ R′}. P and Q
are bisimilar if and only if they are in the same block of the re�ned partition W ′ returned
from re�ne(U,W , {fα}(α∈ n(P)∪ n(Q))). This is true since ∼ gives rise to a partition W ′′ of
U where the blocks are the equivalence classes of ∼ ∩(U × U). W ′′ is clearly a �xed point
of ψW . If W ′′ is not the same as W ′, i.e. the greatest �xed point of ψW , there exists a
bisimulation ∼ ∪W ′

∼ larger than ∼, which is a contradiction.

7

Chapter 3

The π-Calculus

In this chapter we present the notion of late and early bisimulation for a subset of the π-
calculus and describe some of the problems associated with algorithmic checking for late
and early bisimilarity. First, we give the syntax and semantics of a subset of the π-calculus.

3.1 Syntax

We begin by giving the syntax for a subset of the π-calculus. The syntactic categories for the
π-calculus are: an in�nite set of names , N , a set of actions , Act, an in�nite set of process
identi�ers , K, and a set of π-processes , Pr. We will denote elements of N by a, b, c,
d, e, v, x, and y, elements of Act by α and β, elements of K by K, and elements of Pr
by P and Q. The set of processes can be constructed with the constructors for inaction ,
pre�x , matching , nondeterministic choice , parallel composition , restriction , and
recursion , and an action can be a silent action , input , free output , or bound output .
The grammar for Act and Pr is presented below.

α ::= τ | a(b) | āb | ā(b)
P ::= 0 | α.P | [a = b]P | P + P | P |P | (ν a)P | K〈ã〉

Each process identi�er K has an associated arity and a de�nition of the form K
def
= (b̃)P ,

where b̃ are the free names of P (see de�nition 4). For the process K〈ã〉 the tuple ã must
have the same length as b̃. The free , bound , extruded , object , and subject names of an
action α, written fn(α), bn(α), en(α), ob(α), and sub(α), respectively, are de�ned as follows.

α fn(α) bn(α) en(α) ob(α) sub(α)
τ ∅ ∅ ∅ ∅ ∅
a(b) {a} {b} ∅ {a} {b}
āb {a, b} ∅ ∅ {a} {b}
ā(b) {a} {b} {b} {a} {b}

8

The names of an action α are the free names and the bound names of α, i.e. n(α) =
fn(α) ∪ bn(α). The free and bound names of a process are de�ned as follows.

De�nition 4 (Free Names)
A name a is free in the process P , written a ∈ fn(P), if it belongs to the set free(P), where
the function free: Pr → P(N) is de�ned by the following.

free(0) = ∅
free(α.P) = fn(α) ∪ (free(P) \ bn(α))
free([a = b]P) = {a, b} ∪ free(P)
free(P1|P2) = free(P1) ∪ free(P2)
free(P1 + P2) = free(P1) ∪ free(P2)
free((ν a)P) = free(P) \ {a}
free(K〈(a1, a2, . . . , an)〉) = {a1, a2, . . . , an}

�

De�nition 5 (Bound Names)
A name a is bound in the process P , written a ∈ bn(P), if it belongs to the set bound(P),
where the function bound: Pr → P(N) is the least function that satis�es the following.

bound(0) = ∅
bound(α.P) = bn(α) ∪ bound(P)
bound([a = b]P) = bound(P)
bound(P1|P2) = bound(P1) ∪ bound(P2)
bound(P1 + P2) = bound(P1) ∪ bound(P2)
bound((ν a)P) = {a} ∪ bound(P)

bound(K〈(ã)〉) = bound(P) where K
def
= (b̃)P

�

The names of a process P , written n(P), consists of the free names and the bound names
of P , i.e. n(P) = fn(P)∪bn(P). We sometimes write fn(P1, P2, . . . , Pn) for fn(P1)∪ fn(P2)∪
· · · ∪ fn(Pn), and similarly for bound names and names.

We identify processes up to renaming of bound names. Renaming of a bound name in a
process is called α-conversion . If the processes P and Q can be identi�ed up to renaming
of bound names then P and Q are α-convertible , written P ≡α Q.

De�nition 6 (α-conversion)
α-conversion of a name a to a name b in a π-process P , where b /∈ n(P), is the result of
renaming all bound occurrences of a in P to b. �

9

Substitutions are denoted by σ and are functions that map names to names, e.g.

σ
def
= {y1/x1 y2/x2 · · · yn/xn} denotes the simultaneous substitution that maps every

free occurrence of the name xi to the name yi for all i ∈ {1, 2, . . . , n}. A name a is neutral
for a substitution σ if for all b ∈ N , σ(b) = a if and only if b = a. A set of names, V ,
is neutral for a substitution σ if all the names of V are neutral for σ. Application of a
substitution σ to a process P is written Pσ. If there exists some bound name a in P such
that the substitution σ maps some name to a then a is α-converted to some b that is neutral
for σ.

3.2 Semantics

The operational semantics for the subset of the π-calculus is given by the labeled transition
system (Pr, Act, →) where→ is the smallest relation closed under the rules in table 3.1. The
symmetric versions of the rules Sum, Par, Com, and Close have been omitted. Transitions
have the form P

α−→ P ′.

[Alpha]
P ′ α−→ P ′′

P
α−→ P ′′ P ≡α P

′ [Pre] α.P
α−→ P

[Con] P{ã/b̃} α−→ P ′

K〈ã〉 α−→ P ′ K
def
= (b̃)P [Sum]

P
α−→ P ′

P +Q
α−→ P ′

[Par] P
α−→ P ′

P |Q α−→ P ′|Q bn(α) ∩ fn(Q) = ∅ [Com] P
āy−→ P ′ Q

a(x)−→ Q′

P |Q τ−→ P ′|Q′{y/x}

[Close] P
ā(x)−→ P ′ Q

a(x)−→ Q′

P |Q τ−→ (ν x)(P ′|Q′)
[Match]

P
α−→ P ′

[a = a]P α−→ P ′

[Res]
P

α−→ P ′

(ν b)P α−→ (ν b)P ′ b /∈ n(α) [Open]
P

āb−→ P ′

(ν b)P
ā(b)−→ P ′

b 6= a

Table 3.1: Operational semantics for the π-calculus.

3.3 Bisimulation

In this section we de�ne the notion of late bisimulation and early bisimulation �rst
introduced by [5].

10

De�nition 7 (Late Bisimulation)

A symmetric binary relation R on processes is a late bisimulation if P R Q and P
α−→ P ′

where bn(α) ∩ (fn(P) ∪ fn(Q)) = ∅ implies

(i) if α = a(x) then ∃Q′.(Q
a(x)−→ Q′ ∧ ∀y.(P ′{y/x} R Q′{y/x})), and

(ii) if α 6= a(x) then ∃Q′.(Q α−→ Q′ ∧ P ′ R Q′).

�

From the de�nition of late bisimulation the notion of late bisimilarity is de�ned.

De�nition 8 (Late Bisimilarity)
The processes P and Q are late bisimilar, written P ∼̇ Q, if there exists a late bisimulation
R such that P R Q. �

As an example of two late bisimilar processes consider a(x).0 | b̄y.0 and a(x).b̄y.0+b̄y.a(x).0.
It is easily seen that a(x).0 | b̄y.0 ∼̇ a(x).b̄y.0 + b̄y.a(x).0.

It turns out that with the operational semantics de�ned it is hard to give an e�cient
algorithm for checking late bisimilarity between processes. Suppose we need to check whether

the processes P and Q are late bisimilar. If P has the transition P
a(x)−→ P ′, that is P can

receive something on the channel a and become P ′, we can only explore transitions from P ′

by examining all the possible substitutions of x in P ′ and there are in�nitely many of these.

Similar problems arise for early bisimilarity based on the late semantics given by the
labeled transition system of table 3.1. Early bisimulation is de�ned as follows.

De�nition 9 (Early Bisimulation)

A symmetric binary relation R on processes is an early bisimulation if P R Q and P
α−→ P ′

where bn(α) ∩ (fn(P) ∪ fn(Q)) = ∅ implies

(i) if α = a(x) then ∀y.(∃Q′.(Q
a(x)−→ Q′ ∧ P ′{y/x} R Q′{y/x})), and

(ii) if α 6= a(x) then ∃Q′.(Q α−→ Q′ ∧ P ′ R Q′).

�

From the de�nition of early bisimulation the notion of early bisimilarity is de�ned.

De�nition 10 (Early Bisimilarity)
The processes P and Q are early bisimilar, written P ∼̇E Q, if there exists an early bisim-
ulation R such that P R Q. �

11

Neither late nor early bisimulation are congruences since they are not closed under the
constructor input pre�x.

In the next section an alternative operational semantics and the de�nition of open bisimi-
larity is given. These make it possible to develop a more e�cient bisimulation checking algo-
rithm. The main reasons for using the de�nition of open bisimilarity in our implementation
of a bisimulation checker is that open bisimilarity is a congruence and that a bisimulation
checking algorithm for late or early bisimulation can be extracted from the open bisimula-
tion checking algorithm [10]. Furthermore, the de�nition of open bisimilarity was also used
in the Mobility Workbench and we hope [7] may bene�t from our implementation.

12

Chapter 4

Algorithm for Checking Open

Bisimilarity in the π-Calculus

In this chapter we present the notion of open bisimulation for the π-calculus and describe
some of the problems associated with algorithmic checking for open bisimilarity. Finally,
we present some results from [10] that make algorithmic checking for open bisimilarity
possible. First, we present some basic notions needed for the semantics specialized for open
bisimulation and the de�nition of open bisimulation. All lemmas, theorems, and corollaries
presented in this chapter are proven in [10].

4.1 Syntax

We assume the same syntax as in the previous chapter except for the fact that we impose
a strict ordering, <, on the set of names, N , and that there exists a smallest name with
respect to <. Furthermore, we introduce the notions of conditions and distinctions.

We let M denote the set of all conditions . Conditions are ranged over by L, M , and
N and are �nite conjunctions of matching, e.g. [a = b][c = d] is the condition that equates
a with b and c with d. The names of a condition M , written n(M), are the names that
appear in M . Composition of two conditions M and N is written MN . If every match of
a condition, N , is implied by another condition, M , we write M B N . If it is also the case
that not every match of the condition M is implied by N we write M 6B N . The trivially
true condition is denoted by ∅. The substitution σM induced by a condition M maps each
element of each equivalence class of M to the smallest element of that equivalence class, i.e.
σM (a) = min{b | M B [a = b]}. To facilitate the evaluation of the expression M B N , for
some conditions M and N , conditions are transformed to a canonical form .

13

De�nition 11 (Canonical Form)
The canonical form of a condition M is the condition Mc = [a1 = b1][a2 = b2] · · · [an = bn]
where

(i) for all a ∈ n(M) with a 6= σM (a) it holds that [a = σM (a)] ∈Mc,

(ii) ai 6= bi and either bi < bi+1 or bi = bi+1 and ai < ai+1, and

(iii) M .Mc.

�

The canonical form is de�ned in such a way that if M and N are conditions such that
M CB N then Mc is syntactically equal to Nc, where Mc and Nc are the canonical forms
of M and N .

We let Dis denote the set of all distinctions . Distinctions are �nite binary symmetric
irre�exive relations on names N and are ranged over by D and E. If (a, b) ∈ D for some
distinction D then the two names a and b must be distinct, i.e. a 6= b. The names of D,
written n(D), are the names that appear in D. A substitution σ respects D if σ(a) 6= σ(b)
for all (a, b) ∈ D. Likewise, a condition M respects the distinction D if the substitution,
σM , induced by M respects D. Let F ⊆ N then D−F denotes the distinction {(a, b) ∈ D |
a, b /∈ F} and D ∩ F denotes the distinction {(a, b) ∈ D | a, b ∈ F}. In the de�nition of a

distinction we will not always give all symmetric pairs, e.g. in D
def
= {(a, b)} the pair (b, a)

has been left out.

4.2 Semantics

In this section we give a symbolic semantics specialized for open bisimulation for the subset
of the π-calculus. A symbolic semantics is used to avoid the in�nite branching that could
occur with a traditional semantics when exploring the transitions of processes containing
input pre�xes. To see why an in�nite branching can occur consider the process a(x).P

with the transition a(x).P
a(x)−→ P . To explore the further transitions of P we have to

explore the behavior of P{y/x} for in�nitely many ys. The notion of symbolic semantics for
the π-calculus was �rst introduced by [1]. The operational semantics specialized for open
bisimulation is given by the symbolic labeled transition system (Pr, M×Act,), where
 is the smallest relation closed under the rules in table 4.1. The symmetric versions of the

rules Sum, Par, Com, and Close have been omitted. Transitions have the form P
(M,α) P ′,

where M represents the minimal condition required for P to perform the action α. We let
µ range over M×Act.

14

[Alpha]
P ′ µ P ′′

P
µ P ′′

P ≡α P
′

[Pre]
α.P

(∅,α) P
[Con]

P{ã/b̃} µ P ′

K〈ã〉 µ P ′
K

def
= (b̃)P

[Sum]
P

µ P ′

P +Q
µ P ′ [Par] P

µ P ′

P |Q µ P ′|Q
bn(µ) ∩ fn(Q) = ∅

[Com]
P

(M,āy) P ′ Q
(N,b(x)) Q′

P |Q (L,τ) P ′|Q′{y/x}
where L

def
= MN [a = b]

[Close]
P

(M,ā(x)) P ′ Q
(N,b(x)) Q′

P |Q (L,τ) (ν x)(P ′|Q′)
where L

def
= MN [a = b]

[Match]
P

(M,α) P ′

[a = b]P
(N,α) P ′

where N
def
= M [a = b]

[Res] P
µ P ′

(ν b)P
µ (ν b)P ′

b /∈ n(µ)

[Open]
P

(M,āb) P ′

(ν b)P
(M,ā(b)) P ′

b /∈ n(M) ∪ {a}

Table 4.1: The specialized operational semantics for the π-calculus.

From the transition system given by the rules in table 4.1 we de�ne another transition

system, (Pr,M × Act,−→), such that the condition M of a transition P
(M,α)−→ P ′ is in

canonical form and α and P ′ are closed under the substitution σM , i.e. α = ασM and

15

P ′ = P ′σM . The relation −→ is the smallest relation closed under the following rule.

[Canon] P
(N,α) P ′

P
(M,ασM)−→ P ′σM

bn(α) ∩ fn(P) = ∅ and
M is the canonical form of N

4.3 Open Bisimulation

In this section we give the de�nition of open bisimulation . First we need to de�ne the
notion of distinction-indexed relation .

De�nition 12 (Distinction-Indexed Relation)
A distinction-indexed relation R is a set {RD}D of relations RD over π-processes, where D
ranges over all distinctions in Dis. �

De�nition 13 (Open Bisimulation)
A distinction-indexed relation R is an open bisimulation if P RD Q implies

(i) for all M , α, and P ′ such that P
(M,α)−→ P ′, with bn(α)∩ fn(Q,D) = ∅ and M respects

D, there exist some N , β, and Q′ such that Q
(N,β)−→ Q′ and

� M B N ,

� α = βσM , and

� P ′ RD′ Q′σM for D′ def
= (D ∪ (en(α) × fn(P,Q)))σM , and

(ii) the converse, with the role of P and Q exchanged.

�

From the de�nition of open bisimulation we de�ne the notion of open bisimilarity .

De�nition 14 (Open bisimilarity)
The processes P and Q are open bisimilar with respect to distinction D, written P ∼D Q,
if P RD Q for some open bisimulation R. �

As it is seen in de�nition 13 the distinction D′ is D updated with the fact that the extruded
names of the action α must be di�erent from all free names in the processes P and Q and
afterwards updated by applying σM to it. Since this kind of updating of distinctions will
often be used in the following, we will use a shorter notation de�ned as follows.

16

De�nition 15 (Distinction Update)
Let D be a distinction, P1, . . . , Pn processes, M a condition, and α an action. Then we
de�ne DM

(P1,...,Pn),α as

DM
(P1,...,Pn),α

def
= (D ∪ (en(α) × fn(P1, . . . , Pn)))σM

�

With this de�nition D′ in de�nition 13 could be written as DM
(P,Q),α.

To use the method described in chapter 2 to check whether P ∼D Q it is necessary to
generate the state spaces of P and Q separately. This cannot be done since the following
dependencies between P and Q a�ect the transitions and the derivatives.

Dependency 1 The name emitted by P may not occur free in Q.

Dependency 2 The substitution σM determined by the condition M in a transition of P
must be applied to the derivative of Q.

Dependency 3 There is a global distinction, which is updated using the free names from
both processes.

To see a discussion of the problems the di�erent dependencies introduce we refer to the
introduction of [10].

In the following three sections alternative characterizations of ∼, proposed by [10], are
given, which avoid the mentioned dependencies and make it possible to use a partition
re�nement strategy to check for open bisimilarity.

4.4 Constrained Processes

To make the indexing distinctions of open bisimulation local to processes, and thereby
avoiding dependency 3 described in the previous section, [10] introduced the notion of con-
strained processes , de�ned a bisimilarity on these, and showed that there is a useful
connection between constrained process bisimilarity and π-process open bisimilarity.

De�nition 16 (Constrained Process)
A constrained process is a pair 〈P,D〉, where P is a π-process and D is a distinction such
that n(D) ⊆ fn(P). �

We let CP denote the set of all constrained processes. CP is ranged over by A and B.

De�nition 17 (Free and Bound Names of Constrained Processes)

Let A
def
= 〈P,D〉 ∈ CP . Then the free names of A, written fn(A), are de�ned as

fn(A) = fn(P) and the bound names of A, written bn(A), are de�ned as bn(A) = bn(P).

�

17

Application of a substitution σ to a constrained process A
def
= 〈P,D〉 is written Aσ and

abbreviates 〈Pσ,Dσ〉.
The transitions of a constrained process 〈P,D〉 are de�ned from those of the π-process

P as

P
(M,α)−→ P ′

〈P,D〉 (M,α)−→ 〈P ′, DM
P,α ∩ fn(P ′)〉

M respects D

As it is seen 〈P,D〉 can make the �same� transitions as P except those where the condition
M of the transition con�icts with the distinction D.

For two constrained processes to be bisimilar they must ful�ll two requirements. The
�rst one is that they are compatible , e.i. their distinctions must agree on the common
names.

De�nition 18 (Compatibility)
The constrained processes 〈P,D〉 and 〈Q,E〉 are compatible, written 〈P,D〉 ⇓ 〈Q,E〉, if
D ∩ fn(Q) = E ∩ fn(P). A relation E on constrained processes is compatible if A ⇓ B for
each pair (A,B) ∈ E . �

The second requirement for two constrained processes A and B to be bisimilar is that (A,B)
is contained in a _-bisimulation .

De�nition 19 (_-bisimulation)
A relation E on constrained processes is a _-bisimulation if 〈P,D〉 E 〈Q,E〉 implies

(i) for all M , α, and 〈P ′, D′〉 such that 〈P,D〉 (M,α)−→ 〈P ′, D′〉, with bn(α)∩ fn(Q) = ∅,
there exist some N , β, and 〈Q′, E′〉 such that 〈Q,E〉 (N,β)−→ 〈Q′, E′〉 and
� M . N ,

� α = βσM , and

� 〈P ′, D′〉E〈Q′σM , (D ∪ E)M
(P,Q),α ∩ fn(Q′σM)〉, and

(ii) the converse, with the role of 〈P,D〉 and 〈Q,E〉 exchanged.

�

From the de�nition of constrained bisimulation we de�ne the notion of constrained bisim-

ilarity .

De�nition 20 (Constrained Bisimilarity)
The constrained processes A and B are constrained bisimilar, written A _ B, if A ⇓ B and
there exists a _-bisimulation E such that A E B. �

18

The following theorem shows the connection between π-process open bisimilarity, ∼, and
constrained bisimilarity, _.

Theorem 1 (Characterization of ∼ in terms of _)
P ∼D Q if and only if 〈P,D ∩ fn(P)〉_ 〈Q,D ∩ fn(Q)〉 �

4.5 Non-Redundant Transitions

As it is seen from the de�nition of_-bisimulation, it su�ers from some of the same problems
as the de�nition of open bisimulation with respect to constructing an algorithm based on
partition re�nement. A name emitted by 〈P,D〉 may not occur free in 〈Q,E〉 and the
substitution σM determined by the condition M in a transition of 〈P,D〉 must be applied
to the derivative of 〈Q,E〉. To remove the latter of these problems, dependency 2 described
in section 4.3, [10] introduced the notion of non-redundant transitions of a constrained
process.

Intuitively a transition A
(M,α)−→ A′ is non-redundant if there does not exist another

transition A
(N,β)−→ A′′ where M implies N , α = βσM , and A′ and A′′ are bisimilar.

De�nition 21 (Non-Redundant Transitions)

Let D be a relation on constrained processes. A transition 〈P,D〉 (M,α)−→ 〈P ′, D′〉 is redundant
for D if there exists a transition 〈P,D〉 (N,β)−→ 〈P ′′, D′′〉 such that

(i) M 6B N ,

(ii) α = βσM , and

(iii) 〈P ′, D′〉 D 〈P ′′σM , DM
P,α ∩ fn(P ′′σM)〉.

A transition A
(M,α)−→ A′ is non-redundant for D, written A

(M,α)−→ A′ ∈ nr(D), if it is not
redundant for D. �

Computing the non-redundant transitions of a process is as di�cult as checking for
bisimilarity[10].

The following lemma shows that when we have two bisimilar constrained processes A
and B then, if A has a non-redundant transition, B can match it with a non-redundant
transition with the same condition and action.

Lemma 1

If A _ B and A
(M,α)−→ A′ ∈ nr(_) with bn(α)∩ fn(B) = ∅ then there exists a B′ such that

B
(M,α)−→ B′ ∈ nr(_) and A′ _ B′. �

19

A non-redundant transition for a relation is also non-redundant for a subset of that relation.
This is stated in the following lemma.

Lemma 2

If D ⊆ E then nr(E) ⊆ nr(D). �

4.6 Active Names

To avoid dependency 1 described in section 4.3, the choice of bound names of the actions
of matching transitions for bisimilar constrained processes should be made local to the
processes. Since the free names of two bisimilar constrained processes are not necessarily
the same, the choice cannot be based on these. [10] has shown that the choice can be based
on active names since these are the same for bisimilar constrained processes. Intuitively
the active names of a constrained process are the subset of the free names which in�uence
the behavior of the process.

De�nition 22 (Active Names)
Let D be a relation on constrained processes and let anD be the least �xed point of the
function ψ : (CP → P(N)) → (CP → P(N)) de�ned as

ψ(f)(A) =
⋃

{M,α,A′|A(M,α)−→ A′∈nr(D)}

fn(M,α) ∪ (f(A′) \ bn(α))

The name n is active in A with respect to D if n ∈ anD(A) and otherwise n is inactive in A
with respect to D. �

Computing the active names of a process is as di�cult as checking for bisimilarity[10].

An active name in a constrained process with respect to a relation is also active with
respect to a subset of this relation. This is stated in the following lemma.

Lemma 3

If D ⊆ E then anE ⊆ anD. �

The following lemma shows that two bisimilar constrained processes have the same set of
active names with respect to _.

Lemma 4

If A _ B then an_(A) = an_(B). �

This lemma implies that if for each transition A
(M,α)−→ A′ the possibly bound name in α is

converted to the least not active name of A then the actions on matching transitions are
equal.

Non-redundant transitions with their actions converted as described are called normal-

ized transitions .

20

De�nition 23 (Normalized Transitions)

The normalized transitions for a relation D have the form A
(M,α)7−→ D A′ and are de�ned from

the rules Norm1 and Norm2 given by

[Norm1] A
(M,α)−→ A′ ∈ nr(D)

A
(M,α)7−→ D A′

bn(α) = ∅

[Norm2]
A

(M,α)−→ A′ ∈ nr(D)

A
(M,β)7−→ D A′{v/y y/v}

α = a(y) or α = ā(y) and

β
def
=

{
a(v) if α = a(y)
ā(v) if α = ā(y)

where y
def
= min{N \ fn(A)} and v

def
= min{N \ anD(A)} �

Note that the substitution applied to A′ in the rule Norm2 is necessary since the �rst inactive
name may also occur free.

The normalized transitions are used to form a new kind of bisimulation relation on
constrained processes called active names bisimulation .

De�nition 24 (Active Names Bisimulation)
A relation D is an _an-bisimulation if A D B implies that

(i) if A
(M,α)7−→ D A′ then there exists some B′ such that B

(M,α)7−→ D B′ and A′ D B′ and

(ii) the converse, with the rule of A and B exchanged.

�

Finally active names bisimilarity between constrained processes is de�ned from active
names bisimulation.

De�nition 25 (Active Names Bisimilarity)
The processes A and B are active names bisimilar, written A _an B, if A ⇓ B and there
exists an _an-bisimulation E such that A E B. �

The following theorem states that _ and _an coincide.

Theorem 2 (Characterization of _ in terms of _an)
A _ B if and only if A _an B �

21

4.7 The Iterative Method

As it is seen from the previous sections, open bisimilarity can be characterized by _an

which avoids the three dependencies described in section 4.3. Using this characterization
[10] de�ned an iterative method that computes open bisimilarity through a sequence of
approximations that progressively re�ne a partition of the set of all constrained processes.
The method makes use of the functions ΨD and Φ de�ned as follows.

De�nition 26 (The Functions ΨD and Φ)
LetD be a relation on constrained processes. The function ΨD : P(CP×CP) → P(CP×CP)
is de�ned as

(A,B) ∈ ΨD(E) if and only if

(i) A D B,

(ii) for all M , α, and A′ where A
(M,α)7−→ D A′ there exists B′ such that B

(M,α)7−→ D B′ and
A′ E B′, and

(iii) the converse with the role of A and B exchanged.

The function Φ : P(CP×CP) → P(CP×CP) is de�ned as Φ(D) = greatest �xed point of ΨD.

�

Function Φ is well-de�ned since, for each relation D, the function ΨD is monotone. From
the de�nition of Φ and _an-bisimulation it can be seen that

Theorem 3

D is a �xed point of Φ if and only if D is an _an-bisimulation. �

Even though Φ appears suited for a partition re�nement algorithm it can not be used directly
because it is not monotone. Since Φ is not monotone it is not known whether it has a greatest
�xed point and even though a greatest �xed point does exist Tarski's theorem[12] cannot
be used to compute it[10]. Because of this [10] de�ned a chain {Φi}i and showed that the
maximum compatible subset of the limit of this chain coincides with _.

De�nition 27 (The Relation Φi)

Φ0 def
= CP × CP

Φi+1 def
= Φ(Φi)

Φi def
=

⋂
j < i

Φj if i is a limit ordinal.

�

22

De�nition 28 (The Relation ')
The relation ' on constrained processes is de�ned by

'def
= lim

i
Φi

�

The relation ' is well-de�ned since by de�nition of Φ the chain {Φi}i is non-increasing.

Theorem 4 (Characterization of _ in terms of ')
A _ B if and only if (A,B) ∈ (' ∩ ⇓) �

From theorem 1 it follows that open bisimilarity of two π-processes with respect to a dis-
tinction can be proven using the iterative method, that is by computing the limit of the
chain {Φi}i.

Corollary 1

P ∼D Q if and only if 〈P,D ∩ fn(P)〉 ' 〈Q,D ∩ fn(Q)〉 �

The following lemma shows that two bisimilar constrained processes have the same set of
active names with respect to Φi.

Lemma 5

If A _ B then anΦi(A) = anΦi(B) for all i. �

The next section describes the algorithm given by [10] for checking open bisimilarity.

4.8 The Algorithm

In this section we present the algorithm proposed by [10] for checking for open bisimilarity
between two processes P and Q with respect to the distinction D. The algorithm can be
seen in �gure 4.1.

23

1. Generate the saturated state graphs (SP , TP) and (SQ, TQ) for the con-
strained processes 〈P,D ∩ fn(P)〉 and 〈Q,D ∩ fn(Q)〉.

2. Initialize W to be the partition consisting of one block containing all the
constrained processes SP ∪ SQ.

3. Repeat the following steps until the partition W becomes stable.

3-1. Set Nonred to be the subset of transitions in TP ∪ TQ that are non-
redundant for W∼.

3-2. Compute the active names with respect to W∼ for each process in
SP ∪ SQ.

3-3. If necessary re�ne the partition W so that all processes in a block
of W have the same set of active names.

3-4. Set Normtrans to be the normalized transitions for W∼ generated
by the transitions in Nonred.

3-5. Apply a partition re�nement algorithm to the partition W using the
transitions in Normtrans. Set W to be the resulting partition.

4. Check if 〈P,D ∩ fn(P)〉 and 〈Q,D ∩ fn(Q)〉 are in the same block of
the partition W .

Figure 4.1: Algorithm for checking P ∼D Q.

The algorithm terminates if the saturated state graphs generated in step 1 are �nite[10].
This is the case for the set of �nite control processes , Prfc, i.e. processes generated by
the following grammar[2].

Pfc ::= R | Pfc|Pfc | (νa)Pfc

R ::= 0 | α.R | [a = b]R | R+R | K〈ã〉 | (νa)R

where a process identi�er K has the form K
def
= (b̃)R.

To see that algorithm does not always terminate consider the process P
def
= K〈a〉, where

K
def
= (a)(āa | K〈a〉). Since P (∅,āa)−→ 0 | āa | · · · | āa︸ ︷︷ ︸

k

| K〈a〉 for all k ≥ 0 the saturated state

graph for P is in�nite.

Some comments, noted by [10], on some of the steps of the algorithm in �gure 4.1 are
given below.

Step 1. The saturated state graph of a process A0 is the pair (S, T), where S is the minimal
set of constrained processes and T is the minimal set of transitions between processes

24

in S where A0 ∈ S, and S and T are closed under the operations Sat-trans, Sat-
nonred, and Sat-bunch de�ned as follows.

Sat-trans. If A ∈ S and A
(M,α)−→ A′ with bn(α) ⊆ {min{N \ fn(A)}} then A′ ∈ S and

A
(M,α)−→ A′ ∈ T .

Sat-nonred. If 〈P,D〉 (M,α)−→ 〈P ′, D′〉 ∈ T and 〈P,D〉 (N,β)−→ 〈P ′′, D′′〉 ∈ T with M 6B
N and α = βσM then 〈P ′′σM , DM

P,α ∩ fn(P ′′σM)〉 ∈ S.

Sat-bunch. If A
(M,α)−→ A′ ∈ T with bn(α) = {y} where y

def
= min{N \ fn(A)} then

A′{v/y y/v} ∈ S for all v < y.

Step 3. Each iteration corresponds to an application of the function Φ de�ned in the pre-
vious section.

Step 3-1. Following de�nition 21 compute the non-redundant transitions. This can be

done e�ciently if for each transition 〈P,D〉 (M,α)−→ 〈P ′, D′〉 a list of the processes

〈P ′′σM , DM
P,α ∩ fn(P ′′σM)〉 such that 〈P,D〉 (N,β)−→ 〈P ′′, D′′〉 ∈ T with M 6B N and

α = βσM has been constructed before step 3. A transition A
(M,α)−→ A′ is then non-

redundant for W∼ if and only if none of the processes in the list associated with it is
in the same block as A′.

Step 3-2. The active names can be e�ciently computed from the non-redundant transitions
computed in Step 3-1 using a transitive-closure algorithm.

Step 3-4. The normalized transitions are generated by applying the inference rules Norm1
or Norm2 to each transition in Nonred (when generating the saturated state graphs
the derivatives of normalized transitions are added to SP or SQ, so no new processes
need to be added).

4.9 Examples

In this section we present two examples showing how the open bisimulation checking algo-
rithm works.

Example 1:

The �rst example shows what happens when the algorithm is used for checking whether the

processes P
def
= a(x).0 | b̄y.0 and Q

def
= a(x).b̄y.0 + b̄y.a(x).0 + [a = b]τ.0 are open bisimilar

with respect to the empty distinction. Assume that the names in N are ordered such that
a < b < c < . . . < x < y < Then the algorithm runs as follows.

Step 1. The generated saturated state graphs for the constrained processes A
def
= 〈P, ∅〉

and B
def
= 〈Q, ∅〉 are shown in �gure 4.2. All states and transitions are added using

25

the Sat-trans operation. We will denote the processes in the graphs by S1, . . . , S8

such that Si refers to the constrained process with i associated with it in the �gure.

〈a(x).0|b̄y.0, ∅〉

〈0|b̄y.0, ∅〉

a(c)

a(b)

〈a(x).0|0, ∅〉 〈b̄y.0, ∅〉

〈0, ∅〉

〈a(x).0, ∅〉

〈a(x).̄by.0 + b̄y.a(x).0 + [a = b]τ.0, ∅〉

b̄y

a(b)

3 6 7

a(c)

b̄y

b̄y

51

2

8

[a = b] τ
[a = b] τ

b̄y

〈0|0, ∅〉4

Figure 4.2: The saturated state graphs of the constrained processes A and B.

Step 2. The partition W is initialized. It consists of one block containing all
states/processes in the saturated state graphs, i.e. W := {{S1, . . . , S8}}.

Step 3. Two iterations of step 3 are needed to stabilize W .

Iteration 1.

Step 3-1. All transition in the graph are non-redundant with respect to W∼, so
Nonred contains all transitions in the graphs.

Step 3-2. The active names of the processes in the graphs are computed.
anW∼(S1) = anW∼(S5) = {a, b, y}, anW∼(S2) = anW∼(S6) = {b, y},
anW∼(S3) = anW∼(S7) = {a}, and anW∼(S4) = anW∼(S8) = ∅.

Step 3-3. W is re�ned using the sets of active names. So W is split into four
blocks, W := {{S1, S5}, {S2, S6}, {S3, S7}, {S4, S8}}.

Step 3-4. The normalized transitions are computed. These are the same as the
transitions in Nonred.

26

Step 3-5. The re�nement of W using the normalized transition do not result in
any new blocks in W .

Iteration 2. In the second iteration of step 3 nothing happens toW , soW has become
stable.

Step 4. A = S1 and B = S5 are in the same block of W , so P and Q are open bisimilar
with respect to the empty distinction as expected.

Example 2:

In the second example we check whether the processes P
def
= K1〈a, e〉 and Q def

= K2〈e〉 are
open bisimilar with respect to the empty distinction. The process identi�ers K1 and K2 are
de�ned as follows.

K1
def
= (a, e)(K2〈e〉 + [a = e]a(b).K1〈a, b〉)

K2
def
= (e)(e(b).K2〈b〉)

Assume that the names in N are ordered such that a < b < c < d < e < Then the
algorithm runs as follows.

Step 1. The generated saturated state graphs for the constrained processes A
def= 〈P, ∅〉 and

B
def
= 〈Q, ∅〉 are shown in �gure 4.3.

〈K1〈a, e〉, ∅〉

〈K1〈a, b〉, ∅〉

〈K1〈a, c〉, ∅〉

〈K2〈e〉, ∅〉

[a = c] a(b)

〈K2〈b〉, ∅〉

〈K2〈a〉, ∅〉

e(a)

a(b) b(a)〈K2〈c〉, ∅〉

b(c)

c(b)

[a = b] a(c)

[a = e] a(b) 〈K1〈a, a〉, ∅〉
a(b)

e(b)

a(b)

c(a)

1 2

7

5

3

4 6

8

Figure 4.3: The saturated state graphs of the constrained processes A and B.

All states and transitions, except S5, could have been added using the Sat-trans

operation. S5 is added using the Sat-bunch operation on the transition from S1 to

27

S3. Although there are transitions that ful�ll the requirements in the Sat-nonred
operation no states are are added using this operation since the states that need to be
added to the graphs are already included using the Sat-trans operation.

Step 2. The partition W is initialized. It consists of one block containing all
states/processes in the saturated state graphs, i.e. W := {{S1, . . . , S8}}.

Step 3. Two iterations of step 3 are needed to stabilize W .

Iteration 1.

Step 3-1. All transitions in the graphs except the three transitions S1
([a=e],a(b))−→

S3, S3
([a=b],a(c))−→ S4, and S4

([a=c],a(b))−→ S3 are non-redundant with respect to
W∼ .

Step 3-2. The active names of the processes in the graphs are computed using
the non-redundant transitions. anW∼(S1) = anW∼(S2) = {e}, anW∼(S3) =
anW∼(S6) = {b}, anW∼(S4) = anW∼(S8) = {c}, and anW∼(S5) =
anW∼(S7) = {a}.

Step 3-3. W is re�ned using the sets of active names. So W is split in to four
blocks, W := {{S1, S2}, {S3, S6}, {S4, S8}, {S5, S7}}.

Step 3-4. The normalized transitions are computed and are shown in �gure 4.4.

〈K2〈a〉, ∅〉

〈K1〈a, a〉, ∅〉
〈K1〈a, b〉, ∅〉

〈K2〈b〉, ∅〉

〈K1〈a, e〉, ∅〉

〈K2〈e〉, ∅〉

〈K2〈c〉, ∅〉 〈K1〈a, c〉, ∅〉

e(a)

e(a)

a(b)

b(a)

c(a)c(a)

5

3

1

2

48

7

6
b(a)

a(b)

a(b)

Figure 4.4: The state graphs with normalized transitions of the constrained processes A and
B.

Step 3-5. The re�nement of W using the normalized transition does not result
in any new blocks in W .

28

Iteration 2. In the second iteration of step 3 nothing happens toW , soW has become
stable.

Step 4. A = S1 and B = S2 are in the same block of W , so P and Q are open bisimilar
with respect to the empty distinction as expected.

29

Chapter 5

Implementation of Open

Bisimulation Checker

In this chapter we describe our �rst implementation of the open bisimulation checker algo-
rithm presented in section 4.8. The algorithm is implemented using Standard ML. In our
�rst implementation no attempts have been made to optimize the algorithm. It just follows
the original ideas presented in [10].

In the following we describe the implementation of each step in the algorithm. For each
of the steps we give a pseudo code algorithm instead of the actual SML-code. This is done
since these algorithms take up less space and are more readable than the actual code which
just follows the algorithms. In the pieces of pseudo code presented key words are converted
to uppercase and comments are enclosed in (* and *).

Furthermore, we give the time-complexity of the implementation of each step. Before
describing the steps of the algorithm we describe the data types for processes and the
saturated state graphs, simple functions, how to �nd the transitions needed in step 1 of the
algorithm, and the partition re�nement algorithm used in step 3-5.

5.1 Data Types

In this section data types for processes and the state graphs that are built when testing for
open bisimilarity are described.

5.1.1 Data Types for π-Processes

The SML data type de�nitions for π-processes are presented in �gure 5.1.

30

DATATYPE names = name OF STRING * INT

DATATYPE prefixes = tau

| inputPrefix OF names * names

| outputPrefix OF names * names

| boundOutputPrefix OF names * names

DATATYPE process = nil

| prefixProcess OF prefixes * process

| matchProcess OF names * names * process

| parallelProcess OF process * process

| newProcess OF names * process

| sumProcess OF process * process

| recursionProcess OF STRING * names LIST

DATATYPE processIdentifiers =

processIdentifier OF STRING * names LIST * process

DATATYPE transitions = transition OF condition * prefixes *

process

Figure 5.1: SML data type de�nitions for π-processes.

An element in the ordered set N of names is represented by a string and an integer. The
string represents the name itself and the integer ensures that the names can be ordered in any
possible way. There are four types of pre�xes; the silent pre�x is represented by tau and the
three pre�xes input, free output, and bound output are represented by a pair of names, the
�rst name being the object name and the second the subject name. π-processes can be built
using the constructors of section 3.1 and each type of process has a special representation.
The inactive process is represented by nil, a matching process as a three-tuple containing the
two names that have to match and the rest of the process, a pre�x process by a pre�x and
a process, both parallel processes and sum processes as a pair of processes, and a restricted
process by a name and a process. A recursive process is represented by a string and a list
of names where the string is the name of a process identi�er and the list of names is the
argument to the process identi�er. A process identi�er is represented by a string, a list of
names, and a π-process where the string is the name of the process identi�er and the list of
names consists of the free names of the π-process. A transition of a process is represented
by a three-tuple containing the condition, the pre�x, and the derivative of the process with
respect to that transition.

31

5.1.2 Substitutions, Distinctions, and Conditions

Substitutions are represented as lists of pairs of names where the �rst name of a pair of
names in the list is the name to be substituted by the second name (see �gure 5.2).

TYPE substitution = (names * names) LIST

Figure 5.2: SML data type de�nitions for substitutions.

Distinctions and conditions are represented as lists of pairs of names (see �gure 5.3). For a
distinction the list contains the pairs of names that must be be distinct, and for a condition
the list contains the pair of names (a, b) if [a = b] is a match of the condition.

TYPE distinction = (names * names) LIST

TYPE condition = (names * names) LIST

Figure 5.3: SML data type de�nitions for distinctions and conditions.

With these representations of substitutions and conditions it can be seen that a substitution
σM does not need to be constructed explicitly as it is the same as Mc.

Given a condition M we canonize it as follows.

The names of the pairs in M are grouped in equality classes. For each of these equality
classes a condition is formed by pairing the smallest name of the equality class with each
of the other names of the equality class, letting the smallest name be the second name of
these pairs. The pairs of these conditions are rearranged such that the pairs of names of
each condition are ordered in ascending order with respect to the �rst name of the pairs.
The conditions of the equality classes are connected and the pairs are rearranged in such a
way that all the pairs of names of this condition are ordered in ascending order with respect
to the second name of the pairs of names.

Functions to perform simple operations such as substitutions, canonization of conditions,
and testing whether two processes are α-convertible etc. have been implemented.

5.1.3 Data Types for Constrained Processes and the State Graphs

The SML data type de�nitions for constrained processes and the state graphs are presented
in �gure 5.4.

32

DATATYPE constrainedProcesses = cp OF process * distinction

DATATYPE cpTransitions = cpTransition OF condition * prefixes *

constrainedProcesses

DATATYPE states = state OF constrainedProcesses *

(transitions * int * int LIST) LIST

DATATYPE graphs = graph OF (int * states) LIST

Figure 5.4: SML data type de�nitions for constrained processes and the state graph.

The state graph is represented by a list of pairs of an integer and a state where the integer
indicates the state number. Each state is represented by a constrained process and a list
of three-tuples of a transition, an integer, and a list of integers. The integer indicates
which state is reached by taking the transition from the constrained process, and the list
of integers is used for computing the non-redundant transitions e�ciently. A constrained
process is represented by a π-process and a distinction.

5.2 Finding Transitions

In this section we describe how to �nd the transitions needed to generate the saturated state
graphs in step 1. Since each of the graphs must be closed under the Sat-trans operation we

need all transitions A
(M,α)−→ A′ with bn(α) ⊆ {min{N \ fn(A)}} for each constrained process

A in the graphs. Before we can �nd the transition of a constrained process A = 〈P,D〉 we
need the transitions of the π-process P .

5.2.1 Transitions for π-Processes

To �nd the transitions of a π-process P we use the transition system in table 4.1. Since
the transitions added to the saturated state graphs using the Sat-trans operation have the

form A
(M,α)−→ A′ with bn(α) ⊆ {min{N \ fn(A)}} it is only necessary to �nd the transitions

P
(M,α)−→ P ′ with bn(α) ⊆ {min{N \ fn(P)}}. The transitions needed are given by the

function [[·]]TR de�ned as

[[P]]TR ={P (M,α)−→ P ′ | P (M,α)−→ P ′ ∈ [[P]]T ∧ bn(α) = ∅}∪
{P (M,a(y))−→ P ′ | ∃P (M,a(w))−→ P ′′ ∈ [[P]]T .(y = min{N \ fn(P)} ∧ P ′ = P ′′{y/w})}∪
{P (M,a(y))−→ P ′ | ∃P (M,a(w))−→ P ′′ ∈ [[P]]T .(y = min{N \ fn(P)} ∧ P ′ = P ′′{y/w})}

33

where [[·]]T is de�ned as the least function satisfying the following.

[[0]]T = ∅
[[α.P]]T = {α.P (∅,α)−→ P}

[[P +Q]]T = [[P]]T ∪ [[Q]]T

[[P |Q]]T = {P |Q (M,α)−→ P ′|Q | P (M,α)−→ P ′ ∈ [[P]]T ∧ bn(α) = ∅}∪
{P |Q (M,α)−→ P ′|Q | ∃P (M,a(x))−→ P ′′ ∈ [[P]]T .(α = a(y) ∧ P ′ = P ′′{y/x}∧

y = min{N \ fn(P,Q)})}∪
{P |Q (M,α)−→ P ′|Q | ∃P (M,a(x))−→ P ′′ ∈ [[P]]T .(α = a(y) ∧ P ′ = P ′′{y/x}∧

y = min{N \ fn(P,Q)})}∪
{P |Q (MN [a=b],τ)−→ P ′|Q′{y/x} | P (M,ay)−→ P ′ ∈ [[P]]T ∧Q (N,b(x))−→ Q′ ∈ [[Q]]T }∪
{P |Q (MN [a=b],τ)−→ (ν z)(P ′|Q′) | ∃P (M,a(x))−→ P ′′ ∈ [[P]]T , Q

(N,b(y))−→ Q′′ ∈ [[Q]]T .
(Q′ = Q′′{z/y} ∧ P ′ = P ′′{z/x} ∧ z = min{N \ n(P,Q)})}∪

{P |Q (M,α)−→ P |Q′ | Q|P (M,α)−→ Q′|P ∈ [[Q|P]]T }
[[(ν b)P]]T = {(ν b)P (M,α)−→ (ν b)P ′ | P (M,α)−→ P ′ ∈ [[P]]T ∧ b /∈ n(M,α)}∪

{(ν b)P (M,α)−→ (ν b)P ′ | ∃P (M,a(b))−→ P ′′ ∈ [[P]]T .(α = a(y) ∧ P ′ = P ′′{y/b}∧
y = min{N \ (fn(P) ∪ {b})} ∧ b /∈ n(M) ∪ {a})}∪

{(ν b)P (M,α)−→ (ν b)P ′ | ∃P (M,a(b))−→ P ′′ ∈ [[P]]T .(α = a(y) ∧ P ′ = P ′′{y/b}∧
y = min{N \ (fn(P) ∪ {b})} ∧ b /∈ n(M) ∪ {a})}∪

{(ν b)P (M,a(b))−→ P ′ | P (M,ab)−→ P ′ ∈ [[P]]T ∧ b /∈ n(M) ∪ {a}}
[[[a = b]P]]T = {[a = b]P

(M [a=b],α)−→ P ′ | P (M,α)−→ P ′ ∈ [[P]]T }
[[K〈ã〉]]T = {K〈ã〉 (M,α)−→ P ′ | K def

= (b̃)P ∧ P{ã/b̃} (M,α)−→ P ′ ∈ [[P{ã/b̃}]]T }

When the transitions of a recursive π-process are computed special care must be taken.

Consider the process P
def
= K〈a, b〉 where (a, b)K

def
= K〈a, b〉 + ab.0, in this case [[P]]T =

[[P]]T ∪ {P (∅,ab)−→ 0}. Since [[·]]T is de�ned as a least �xed point we can conclude [[P]]T =

{P (∅,ab)−→ 0}. To make the computation of transitions of a π-process P automatic we need
to keep track of which process identi�ers and instantiations of these we have already seen in
the computation and if an identi�er and an instantiation of it has been seen it should not
contribute to the set of transitions of P .

34

5.2.2 Canonized Transitions for π-Processes

To make comparisons between transitions easier we convert each transition of a process to
a canonical form as described in section 4.1. The canonical transitions for a π-process are
given by

[[P]]CTR = {P (M,α)−→ P ′ | ∃P (N,β)−→ P ′′ ∈ [[P]]TR.(M = canonize(N)∧α = βσM∧P ′ = P ′′σM)}

5.2.3 Transitions for Constrained Processes

Finally, we �nd the transitions for a constrained process A = 〈P,D〉 by

[[〈P,D〉]]CPTR = {〈P,D〉 (M,α)−→ 〈P ′, DM
P,α〉 | P

(M,α)−→ P ′ ∈ [[P]]CTR ∧M respects D}

5.3 Partition Re�nement

In this section our implementation of the simple partition re�nement algorithm of [8] is
described. First some de�nitions are necessary.

De�nition 29 (E(S) and E−1(S))
Let E be a binary relation over the set U . For any subset S ⊆ U , E(S) = {y | ∃x ∈
S.(x, y) ∈ E} and E−1(S) = {x | ∃y ∈ S.(x, y) ∈ E}. �

De�nition 30 (Stable Partition)
If B ⊆ U and S ⊆ U then B is stable with respect to S if B ⊆ E−1(S) or B ∩ E−1(S) = ∅.
A partition W of U is stable with respect to S if all the blocks of W are stable with respect
to S. W is stable if it is stable with respect to each of its blocks. �

The partition re�nement algorithm uses a function, split(S,W , E), that given S ⊆ U re�nes
each block B of partition W to the two blocks B′ = B ∩ E−1(S) and B′′ = B \ E−1(S) if
B ∩ E−1(S) 6= ∅ and B \ E−1(S) 6= ∅. The set S ⊆ U , is a splitter for a partition W
and a relation E if split(S,W , E) 6= W . The partition re�nement algorithm also uses a
function, �ndSplitter(W , E). If there exists a block B ∈ W such that split(B,W , E) 6= W
the function �ndSplitter(W , E) returns one of these Bs, otherwise it returns the empty set.
The algorithm is presented in �gure 5.5, and it takes as input an initial partition W of some
set U and a relation E over U × U and returns the coarsest stable re�nement of W .

35

FUNCTION re�ne(W , E)
REPEAT

S:= �ndSplitter(W , E)
W := split(S,W , E)

UNTIL W is stable

RETURN W

Figure 5.5: Partition re�nement algorithm.

The time-complexity of this partition re�nement algorithm is O(n ·m) where n is the size
of U and m is the size of E[8].

In our implementation a partition is represented by a list of lists where each list in the
list of lists contains elements of U and represents a block of the partition. Relations are
represented by a list of pairs of elements of U .

The re�nement algorithm in �gure 5.5 only re�nes a partition with respect to one type of
relation/function. To solve an instance U,W , f1, . . . , fk of the generalized partition re�ne-
ment problem an iterative method is used where the function re�ne in �gure 5.5 is applied
once for each function fi in each iteration until the partition W stabilizes.

5.4 Step 1 - Construction of the State Graphs

In this section our implementation of step 1 of the algorithm in �gure 4.1 is described. In
step 1 the saturated state graph (S, T) for a process to be tested for open bisimilarity is
generated such that S and T are the minimal sets of constrained processes and transitions,
respectively, that are closed under the three operations Sat-trans, Sat-nonred, and Sat-
bunch described in section 4.8.

The saturated state graph for a constrained process is generated by maintaining two
lists, call them the process list and the state list, respectively. The process list contains
pairs of an integer and a constrained process and the state list contains pairs of an integer
and a state. The integers of both lists represent state numbers of processes in the �nal state
graph. Initially the process list contains the pair (i, 〈PIn, DIn〉), where PIn is one of the
processes to be checked for open bisimilarity with respect to the distinction DIn and i is
the next unused state number, and the state list is empty. Then for each process 〈P,D〉 of
the process list the following steps are used to create a state. The process 〈P,D〉 is then
removed from the process list and the created state is added to the state list.

Find transitions: The transitions of 〈P,D〉 are found using the function [[·]]CPTR described
in section 5.2.

36

Sat-trans: If one of the derivatives of 〈P,D〉 with respect to the transitions found in the
previous step is not already present in either the process list or the state list the next
unused state number is associated with it and it is added to the process list.

Sat-nonred: If there exist transitions 〈P,D〉 M,α−→ 〈P ′, D′〉 and 〈P,D〉 N,β−→ 〈P ′′, D′′〉 such
that M 6B N and α = βσM then the process CP ′′ def

= 〈P ′′σM , DM
P,α ∩ fn(P ′′σM)〉 is

given the next unused state number and is then added to the process list if it is not
already present in either the process list or the state list. The state number associ-
ated with the process CP ′′ is added to the integer list associated with the transition

〈P,D〉 M,α−→ 〈P ′, D′〉.
Sat-bunch: Processes are generated according to the operation Sat-bunch described in

section 4.8. If such a process is not already present in either the process list or the
state list the next unused state number is associated with it and it is added to the
process list.

These steps are performed until the process list is empty and the saturated state graph
(S, T) of 〈PIn, DIn〉 is represented by the �nal state list.

The algorithm for constructing the saturated state graph for a process PIn and a dis-
tinction DIn is given in �gure 5.6. The argument COUNTER is a number (≥ 0) that
will be associated with 〈PIn, DIn〉. The function anElementOf(PL) returns (and removes)
an element of PL, i.e. a pair of a state number and a constrained process. The function
�ndProcessNumberInGraph(A,PL,G) searches for the constrained process A in PL and G. If
A is present in either PL or G the number associated with the process is returned, otherwise
−1 is returned indicating A is not present in PL or G.

FUNCTION constructSaturatedStateGraph(PIn, DIn,COUNTER)
G := ∅
PL := {(COUNTER, 〈PIn, DIn〉)}
WHILE PL 6= ∅ DO{

(i,CP) := anElementOf(PL)
T := [[CP]]CPTR

(TR,TR′) := (∅, ∅)
FOR EACH transition (A

(M,α)−→ A′) ∈ T DO {
PNUM := �ndProcessNumberInGraph(A′,PL,G)
IF (PNUM = −1) THEN
COUNTER := COUNTER+ 1
PL := PL ∪ {(COUNTER, A′)}
TR := TR ∪ {(A (M,α)−→ A′,COUNTER}

ELSE TR := TR ∪ {(A (M,α)−→ A′,PNUM)}}(∗ END FOR ∗)

37

FOR EACH tuple (〈P,D〉 (M,α)−→ 〈P ′, D′〉, l) ∈ TR DO {
AIL := ∅
TRM := TR \ {(〈P,D〉 (M,α)−→ 〈P ′, D′〉, l)}
FOR EACH tuple (〈P,D〉 (N,β)−→ 〈P ′′, D′′〉,m) ∈ TRM DO {
IF (M 6B N AND α = βσM) THEN

PNUM := �ndProcessNumberInGraph(〈P ′′σM , DM
P,α ∩ fn(P ′′σM)〉,PL,G)

IF (PNUM = −1) THEN
COUNTER := COUNTER+ 1

PL := PL ∪ {(COUNTER, 〈P ′′σM , DM
P,α ∩ fn(P ′′σM)〉)}

AIL := AIL ∪ {COUNTER}
ELSE AIL := AIL ∪ {PNUM}}(∗ END FOR ∗)

TR′ := TR′ ∪ {(〈P,D〉 (M,α)−→ 〈P ′, D′〉, l,AIL)}}(∗ END FOR ∗)
y := min{N \ fn(CP)}
FOR EACH tuple (A

(M,α)−→ A′, j,AIL) ∈ TR′ DO
IF (bn(α) = {y}) THEN
FOR EACH name v < y DO

PNUM := �ndProcessNumberInGraph(A′{v/y y/v},PL,G)
IF (PNUM = −1) THEN
COUNTER := COUNTER+ 1
PL := PL ∪ {(COUNTER, A′{v/y y/v})}

G := {(i, (CP,TR′))}}(∗ END WHILE ∗)
RETURN G

Figure 5.6: Algorithm for constructing the saturated state graph of 〈PIn, DIn〉.

For �nite control processes the time-complexity of constructing a saturated state graph is
exponential with respect to the syntactic length of the process. This is due to the state
space explosion problem[11].

5.5 Step 2 - Initializing Partition W
In step 2 the initial partition W is constructed as a single block that consists of all the states
of the saturated state graphs of the two processes to be checked for open bisimilarity. A
partition is represented as a list of lists of integers. Therefore, W is a list containing one list

38

consisting of all the state numbers. The time-complexity of step 2 is linear with respect to
the sum of the sizes of the state graphs.

5.6 Step 3 - Stabilizing Partition W
In this section our implementation of the �ve sub steps of step 3 is described. Afterwards
the time-complexity of step 3 is analyzed.

5.6.1 Step 3-1 - Compute the Non-Redundant Transitions

In this subsection our implementation of step 3-1 of the algorithm in �gure 4.1 is described.
In this step the non-redundant transitions of the constrained processes in the state graphs

with respect to the partition W are computed. A transition 〈P,D〉 (M,α)−→ 〈P ′, D′〉 is non-
redundant if none of the numbers in the list of integers associated with this transition is
in the same block of the partition W as the number associated with the process 〈P ′, D′〉.
The algorithm for �nding the non-redundant transitions of the state graphs is presented in
�gure 5.7. G is the union of the state graphs of the two processes being checked for open
bisimilarity, AIL denotes a list of integers associated with a transition, NRTL denotes a
list of pairs of a non-redundant transition and an integer, and GNRT is a new state graph
containing only non-redundant transitions. The function inSameBlock(i, J,W) returns true
if the integer i and any integer j ∈ J are in the same block of the partition W and false
otherwise.

FUNCTION step3-1(G,W)
GNRT := ∅
FOR EACH state (i, (A,TL)) ∈ G DO{
NRTL := ∅
FOR EACH tuple (〈P,D〉 (M,α)−→ 〈P ′, D′〉, j,AIL) ∈ TL DO

IF (not(inSameBlock(j,AIL,W)))

THEN NRTL := NRTL ∪ {(〈P,D〉 (M,α)−→ 〈P ′, D′〉, j)}
GNRT := GNRT ∪ {(i, (A,NRTL))}}(∗ END FOR ∗)

RETURN GNRT

Figure 5.7: Algorithm for computing non-redundant transitions.

The time-complexity of the algorithm is O(n2 ·m2), where n is the number of states in G
and m is the maximum number of transitions of a constrained process in G.

39

5.6.2 Step 3-2 - Computation of Active Names

In this subsection we describe how we compute the active names for the constrained processes
in the saturated state graphs with respect to a partition W .

The active names with respect to W of the constrained processes in the saturated state
graphs are computed using the state graph, GNRT, constructed in step 3-1, in the transitive
closure algorithm in �gure 5.8. The array ANW will be used for holding the active names
of the processes.

FUNCTION step3-2(GNRT)
n := size(GNRT)
ANW [i] := ∅ FOR ALL i ∈ {0, 1, . . . , n− 1}
FOR dummyCounter := 1 TO n DO

FOR EACH state (i, (A,NRTL)) ∈ GNRT DO

FOR EACH transition (A
(M,α)−→ A′, l) ∈ NRTL DO

ANW [i] := ANW [i] ∪ fn(M,α) ∪ (ANW [l] \ bn(α))
RETURN ANW

Figure 5.8: Algorithm for computing active names.

After the algorithm has terminated ANW [i] is the active names with respect to W of the
constrained process with the number i associated with it. The time-complexity of the
algorithm is O(n2 ·m), where m is the maximum number of non-redundant transitions with
respect to W of a constrained process in one of the two state graphs. Alternatively we could
exchange the fourth line of the algorithm with �repeat the following until ANW [i] becomes
stable for all i�. This would reduce the number of iterations in the cases where the maximum
length of a cycle in the GNRT graph is less than the number of constrained processes in
the two state graphs. However, if the time saved on the fewer iterations is less than the
time needed to test for stability of the ANW [i]s nothing is won compared with the algorithm
above.

5.6.3 Step 3-3 - Active Names Partition Re�nement

The goal of step 3-3 is to re�ne the partition W using the active names of the constrained
processes. From lemma 5 we know that two constrained processes A and B have the same
active names with respect to a partition if A _ B. So, if this is not the case the processes
could be placed in di�erent blocks of the partition.

Let ANW be an array such that ANW [i] is the set of active names of the process with
the number i associated with it. The algorithm in �gure 5.9 re�nes W to a partition W ′

40

in which two constrained processes are in the same block if and only if they have the same
active names with respect to W .

FUNCTION step3-3(ANW ,W)
W ′ := ∅
FOR EACH block B = {j1, j2, . . . , jk} ∈ W DO{
WB := ∅
FOR i := 1 TO k DO

IF (∃X ∈ WB .(∃y ∈ X.ANW [y] = ANW [ji]))
THEN WB := (WB \ {X}) ∪ {X ∪ {ji}}
ELSE WB := WB ∪ {{ji}}

W ′ := W ′ ∪WB}(∗ END FOR ∗)
RETURN W ′

Figure 5.9: Algorithm for partition re�nement using active names.

The time-complexity of the algorithm is O(n2).

Step 3-3 of the algorithm is not really necessary as it is seen from the de�nition of Φ in
section 4.7. The reason it is in the algorithm is to reduce the running time.

5.6.4 3-4 - Computation of Normalized Transitions

In this step we use the non-redundant transitions from step 3-1 and the active names
computed in step 3-2 to generate the normalized transitions of each constrained process
in the two state graphs. The algorithm for computing normalized transitions is given
in �gure 5.10. It returns a state graph containing normalized transitions. The function
�ndProcNum(A,GNRT) searches for the constrained process A in G and returns the num-
ber associated with this process.

41

FUNCTION step3-4(GNRT,ANW)
GNT := ∅
FOR EACH (i, (A,NRTL)) ∈ GNRT DO{
NTL := ∅
FOR EACH transition (A

(M,α)−→ A′, j) ∈ NRTL DO

IF (α = τ OR α = āb FOR SOME a, b ∈ N)

THEN NTL := NTL ∪ {(A (M,α)7−→ A′, j)}
ELSE

y := min{N \ fn(A)}
v := min{N \ANW [i]}
A′′ := A′{v/y y/v}
NTL := NTL ∪ {(A (M,α)7−→ A′′, �ndProcNum(A′′,GNRT))}

GNT := GNT ∪ {(i, (A,NTL))}}(∗ END FOR ∗)
RETURN GNT

Figure 5.10: Algorithm for computing normalized transitions.

The time complexity of step 3-4 is O(n2 ·m), where n is the number of states in the saturated
state graphs and m is the maximum number of non-redundant transitions for a process in
the graphs.

5.6.5 Step 3-5 - Normalized Transition Partition Re�nement

In this step we make a re�nement of the partition W such that two constrained processes
are in the same block of W if and only if they can make the same normalized transitions
and reach constrained processes which again are in the same block of W . To make this

re�nement we build a relation for each type of transition
(M,α)7−→ . For each of these relations

we use the re�nement algorithm described in section 5.3 to re�ne partition W . This can be
done with the algorithm in �gure 5.11.

42

FUNCTION step3-5(GNT,W)
RS := ∅
FOR EACH (i, (A,NTL)) ∈ GNT DO

FOR EACH transition (A
(M,α)7−→ A′, j) ∈ NTL DO

IF (∃((M,α), R) ∈ RS)
THEN RS := (RS \ {((M,α), R)}) ∪ {((M,α), R ∪ {(i, j)})}
ELSE RS := RS ∪ {{((M,α), {(i, j)})}}

REPEAT

W ′ := W
FOR EACH ((M,α), E) ∈ RS DO

W := re�ne(W , E)
UNTIL W = W ′

RETURN W

Figure 5.11: Algorithm for partition re�nement using normalized transitions.

The time-complexity of the construction of the set of relations RS is O(n2 ·m2), where m
is the maximum number of transitions of a constrained process in the state graphs and the

time-complexity of the body of the repeat-until-loop is O(
∑|RS|

t=1 |Ei|n), where the Eis are
the second elements of the tuples in RS. Since at least one block is split in each iteration
and since a block containing one element cannot be split the repeat-until-loop is run at most

n times. Since O(
∑|RS|

t=1 |Ei|n) ≤ O(n2 ·m) the time-complexity of the re�nement of W is
O(n3 ·m). Note that this is also the time-complexity for the total time spent in the repeat-
until-loop for the whole bisimulation checking algorithm. The time-complexity of step 3-5
is O(n2 ·m2 + n3 ·m).

5.6.6 Time-Complexity of Step 3

Sub steps 3-1 to 3-5 are executed until the partition W stabilizes. Since at least one block
is split in each iteration and since a block containing one element cannot be split the time-
complexity of step 3 is n(

∑4
i=1 Ci) + O(n · n2 · m2 + n3 · m) = O(n3 · m2), where Ci is

the time-complexity of step 3-i, m is the maximum number of transitions of a constrained
process in the state graphs, and n is the number of states.

43

5.7 Step 4 - Result

In step 4 it is tested whether the two processes to be checked for open bisimilarity are in
the same block of W , which can be done in linear time with respect to the number of states
in the graphs.

5.8 Main Function

In this section we present the main function openBisimCheck(P,Q,D) and give the time-
complexity of it. The function openBisimCheck(P,Q,D), shown in �gure 5.12, takes as
input the two processes P and Q to be checked for open bisimilarity with respect to the
distinction D and returns true if they are bisimilar and false otherwise.

FUNCTION openBisimCheck(P,Q,D)
G′ := constructSaturatedStateGraph(P,D ∩ fn(P), 0)
G′′ := constructSaturatedStateGraph(Q,D ∩ fn(Q), size(G′))
G := G′ ∪G′′

W := {{0, . . . , size(G) − 1}}
REPEAT

W ′ := W
GNRT := step3-1(G,W)
AN := step3-2(GNRT)
W := step3-3(AN,W)
GNT := step3-4(GNRT,AN)
W := step3-5(GNT,W)

UNTIL W = W ′

RETURN (inSameBlock(0, {size(G) − 1},W))

Figure 5.12: Algorithm for checking for open bisimilarity.

The time-complexity of openBisimCheck(P,Q,D) for �nite control processes is exponential
with respect to the syntactic length of the processes P and Q.

44

Chapter 6

Optimization

In this section we describe how the algorithm and the implementation of the open bisimula-
tion checker can be optimized with respect to run time. As it is seen in the previous sections
the time-complexity of steps 2 and 3 are functions of the sizes of the saturated state graphs
generated in step 1. So, an obvious optimization would be to reduce the size of the graphs.
This can be done by analyzing the states added using the Sat-bunch and Sat-nonred

operations in step 1. Finally, we will describe how some of the sub steps of step 3 can be
optimized. Some of these steps can be optimized by using arrays instead of lists to represent
the state graphs. Therefore, in step 3-1 of the algorithm, we convert our graphs from lists
of states to one array containing the states of both state graphs. The states are placed such
that the state with number i associated with it is placed in the ith position of the array (the
pseudo code for the optimized version of step 3-1 can be seen in appendix A). This takes
time linear to the sum of the sizes of the graphs.

6.1 Reducing the Sizes of the State Graphs

The sizes of the state graphs can be reduced by changing the Sat-bunch and Sat-nonred
operations as described in the following subsections.

6.1.1 Optimizing the Sat-bunch Operation

In Sat-bunch states are added to the state graphs to make sure that all the processes
needed for the normalized transitions computed in step 3-4 are present in the state graphs.

For each transition A
(M,α)−→ A′ with bn(α) = {y}, where y = min{N \ fn(A)}, the state

A′{x/y y/x} is added to S for all x < y. Since min{N \ anW(A)} ≤ y for every W , this
ensures that for each partitionW the state A′{v/y y/v}, where v = min{N\anW(A)}, is in S
as needed for the normalization of A

(M,α)−→ A′ ∈ nr(W). To see why some of the constrained
processes added in the Sat-bunch operation are extraneous consider as an example the

45

π-process P
def
= a(g).c̄d.ēf.b̄g.0, where a < b < c < d < e < f < g. When P is checked

for open bisimilarity with another process with respect to the empty distinction, initially S
contains the constrained process A = 〈P, ∅〉 and by the Sat-trans operation the transition

t = A
(∅,a(g))−→ A′, where A′ = 〈c̄d.ēf.b̄g.0, ∅〉, is added to T . Since fn(A) = {a, b, c, d, e, f} and

min{N \ fn(A)} = g the states A′{a/g g/a}, . . . , A′{f/g g/f} are added to S due to the Sat-
bunch operation. It is easily seen that these states will never be used in the normalization
of t since all the free names of A are active for every partition W . We could therefore omit
these states in the generation of the state graph for A.

As seen from the example the number of states added by the Sat-bunch operation can

be reduced if some of the names of a processA with a transitionA
(M,α)−→ A′ with bn(α) = {y},

where
y = min{N \ fn(A)}, are known to be active with respect to all partitions and are smaller
than y. It is worth noting that by adding one state less to a saturated state graph the size
of the graph is, in most cases, reduced by more than one, since the state that would have
been added would have implied that more states would have been added to the graph which
would have implied that even more states would have been added to the graph and so on.

As mentioned in section 4.6 the computation of active names of a process is as di�cult as
checking for open bisimilarity, so in some cases it is not possible to leave out all unnecessary
states in the generation of a state graph. Therefore we �nd some of the states that can be
omitted by using approximations of the names of a process that are active with respect to
all partitions. We let the approximation of the active names of the process A = 〈P,D〉,
ApproxAN(A), be the set AN(P, ∅, ∅) where AN(P,N,B) is the least function that satis�es
the following. N is a set of new names and B is a set of bound but not new names.

AN(0, N,B) = ∅
AN(τ.P,N,B) = AN(P,N,B)

AN(a(b).P,N,B) =
{ ∅ if a ∈ N

({a} \B) ∪AN(P,N \ {b}, B ∪ {b}) otherwise

AN(āb.P,N,B) =
{ ∅ if a ∈ N

({a, b} \ (N ∪B)) ∪ AN(P,N \ {b}, B ∪ (N ∩ {b})) otherwise

AN(ā(b).P,N,B) =
{ ∅ if a ∈ N

({a} \B) ∪AN(P,N \ {b}, B ∪ {b}) otherwise

AN([a = b]P,N,B) = ∅
AN(P |Q,N,B) = AN(P,N,B) ∪ AN(Q,N,B)
AN(P +Q,N,B) = AN(P,N,B) ∪ AN(Q,N,B)
AN((ν a)P,N,B) = AN(P,N ∪ {a}, B \ {a})
AN(K〈ã〉, N,B) = AN(P{ã/b̃}, N,B) where K

def
= (b̃)P

The approximation ApproxAN(A) of active names in A can be computed e�ciently by
syntactic analysis of A. Since transitions with trivially true conditions are always non-
redundant it is easily seen that ApproxAN(A) ⊆ anW∼(A) for allW . Therefore, an optimized
version of the Sat-bunch operation can be de�ned as follows.

46

Sat-bunch-approx. If A
(M,α)−→ A′ ∈ T with bn(α) = {y}, where y def

= min{N \ fn(A)},
then A′{v/y y/v} ∈ S for all v < y such that v /∈ ApproxAN(A).

Using the Sat-bunch-approx operation can lead to cases with signi�cant reductions of the
sizes of the state graphs. Consider the following examples of applications of the algorithms.
We assume that a < b < c < d < e < f < g < h < i.

Applying the algorithm with the Sat-bunch operation to the following two, clearly not
bisimilar, processes

P1
def
= a(c).e(f).0 | a(b).c(d).0 | a(b).cb.0

P2
def
= a(g).c(f).0 | a(i).c(h).0 | a(c).e(f).0 | a(b).c(d).0

with the empty distinction, D = ∅, gives state graphs with 746 states total. Applying the
algorithm with the Sat-bunch-approx operation gives state graphs with 396 states total.
Thus, in this case, running the algorithm with the Sat-bunch-approx operation reduces
the sizes of the graphs by a factor 1.88.

In some cases only a small reduction of the sizes of the graphs can be achieved by
running the algorithm with the Sat-bunch-approx operation. Applying the algorithm
with the Sat-bunch operation to the following two processes

P3 = K2〈(c, e)〉 + [a = e]c(b).a(d).K1〈(a, b, d)〉
P4 = c(b).e(d).K2〈(b, d)〉

where

K1
def
= (a, c, e)P1 and K2

def
= (c, e)P2

with the empty distinction, D = ∅, gives state graphs with 44 states total. Applying
the algorithm with the Sat-bunch-approx operation gives state graphs with 42 states
total. Thus, in this case, running the algorithm with the Sat-bunch-approx operation
only reduces the sizes of the graphs by a factor 1.05. Through numerous test runs it has
become apparent that the time spent on approximating the active names is time well spent.

6.1.2 Optimizing the Sat-nonred Operation

As seen in the previous subsection the size of the state graph of a process can be reduced
by analyzing the states added using the Sat-bunch operation. In this subsection we will
describe how the sizes of the state graphs can be reduced further by analyzing the states
added using the Sat-nonred operation. The Sat-nonred operation says that for each pair

of transitions 〈P,D〉 (M,α)−→ 〈P ′, D′〉 and 〈P,D〉 (N,β)−→ 〈P ′′, D′′〉 with M 6B N and α = βσM

the process B
def
= 〈P ′′σM , DM

P,α ∩ fn(P ′′σM)〉 should be added to the state graphs. If it can
be proven that 〈P ′, D′〉 and B will be placed in di�erent blocks of the partition W after the
�rst iteration in step 3 it is not necessary to add B, since it would not have any in�uence on

47

the non-redundancy of the transition 〈P,D〉 (M,α)−→ 〈P ′, D′〉 with respect to the partition W
after the �rst iteration in step 3. Proving whether two processes will be placed in di�erent
blocks of the partition W after the �rst iteration in step 3 is not trivial without actually
performing the �rst iteration in step 3. So, as with the Sat-bunch operation we will only
�nd some of the states that can be omitted. One way to prove that two processes 〈P ′, D′〉
and B will be placed in di�erent blocks is to examine the initial transitions of 〈P ′, D′〉 and B.
B can be omitted if it does not have similar transitions to 〈P ′, D′〉. It should be noted that
the computation of the non-redundant transitions in step 3-1 should be changed for the �rst

iteration in step 3, since the transition 〈P,D〉 (M,α)−→ 〈P ′, D′〉 is non-redundant with respect

to the initial partition if and only if there does not exist a transition 〈P,D〉 (N,β)−→ 〈P ′′, D′′〉
such thatM 6B N , α = βσM , and 〈P ′, D′〉 and 〈P ′′σM , DM

P,α∩ fn(P ′′σM)〉 are in the same

block of the initial partition. The last condition, 〈P ′, D′〉 and 〈P ′′σM , DM
P,α ∩ fn(P ′′σM)〉

are in the same block of the initial partition, is trivially true with the current version of the
Sat-nonred operation, but not always if some of the states that should have been added
due to this operation are omitted.

6.2 Optimizing the Computation of Non-Redundant

Transitions

The running time of the computation of the non-redundant transitions can be reduced by
using lemma 2. This lemma states that if a transition is non-redundant for a relation then
it is also non-redundant for a subset of the relation. So, if a transition is computed as
being non-redundant in iteration i in step 3, it will also be non-redundant in iteration i+ 1.
Therefore, a simple optimization would be to mark a transition when it is �rst computed
as being non-redundant in step 3-1 and not checking whether the marked transitions are
non-redundant.

6.3 Optimizing the Computation of Active Names

As mentioned in subsection 5.6.2 the time-complexity of the algorithm for computing active
names is O(n2 · m), where m is the maximum number of non-redundant transitions with
respect to any partition of a constrained process in the state graphs. Experiments with the
implementation have shown that the total time spent in step 3-2 can be reduced tremen-
dously by using the result of lemma 3 and changing the outer for-loop with a repeat until
construction which stops when all the ANW [i]s become stable.

Since the partition W becomes �ner for each iteration of step 3 it follows from lemma 3
that the set of active names for a constrained process in iteration j is contained in the set of
active names for the same process in iteration j + 1. So, the active names computed in one
iteration could be reused as a starting point in the next iteration and thereby saving some
time, because the ANW [i]s stabilize more quickly. With these considerations in mind a new
algorithm for computing active names was developed and is presented in �gure 6.1.

48

FUNCTION optimizedStep3-2(GNRT, ANW)
REPEAT

stable := true

FOR i = 0 TO size(GNRT) − 1 DO

(A,NRTL) := GNRT[i]
AN := ∅
FOR EACH transition (A

(M,α)−→ A′, l) ∈ NRTL DO

AN := AN ∪ fn(M,α) ∪ (ANW [l] \ bn(α))
stable := stable ∧ (AN = ANW [i])
ANW [i] := AN

UNTIL stable = true

RETURN ANW

Figure 6.1: Optimized algorithm for computing active names.

The time-complexity for computing active names is not reduced with the new algorithm and
in the worst case it runs even slower than the old one because of the comparisons between
sets of active names. The computation of active names could also have been optimized
by �nding the sizes of the saturated state graphs for the processes being checked for open
bisimilarity and changing the outer for-loop of the �rst algorithm to loop as many times as
the maximum size.

6.4 Optimizing the Computation of the Normalized

Transitions

The running time of the computation of the normalized transitions can be reduced if the
data structures are changed such that a list of numbers is associated with each transition.
For a transition t this list should contain the state numbers for those states added to the
saturated state graph by the Sat-trans and the Sat-bunch operations due to t. When the

non-redundant transition t = A
(M,α)−→ A′ is normalized to A

(M,α′)7−→ A′′ the state number of
A′′ can be found quickly by examining the states in the array at the positions corresponding
to the numbers in the list of numbers associated with t. The pseudo code for the optimized
version of the algorithm for computing the normalized transitions can be found in appendix
A.

49

6.5 A Faster Partition Re�nement Algorithm

Our �rst implementation of the algorithm for open bisimulation checking included an im-
plementation of the partition re�nement algorithm described in section 5.3. This algorithm
is very easy to implement but unfortunately it has the time-complexity O(n ·m), where n is
the size of the set to be partitioned and m is the size of the relation on which the partition-
ing is based. Paige and Tarjan[8] have developed a more e�cient algorithm for solving the
generalized partition re�nement problem. The higher e�ciency of this algorithm is obtained
through a better strategy for �nding the sets used as splitters. The algorithm is presented
below. The function split works the same way as described in section 5.3.

FUNCTION optimizedRe�ne(W , E)

U :=
⋃

W
W ′ := ∅
FOR EACH block B ∈ W DO

B′ := B ∪ E−1(U)

B′′ := B \ E−1(U)
W ′ := W ′ ∪ {B′, B′′}

X := {U}
REPEAT

Find a block S ∈ X where S /∈ W ′

Find a block B ⊆ W ′ where |B| ≤ |S|
2

X := (X \ {S}) ∪ {B} ∪ {S \B}
W ′ := split(S \ {B}, split(B,W ′))

UNTIL X = W ′

RETURN W ′

Figure 6.2: Optimized partition re�nement algorithm.

The algorithm can be implemented such that the time complexity is O(m · log(n) + n). To
obtain this, several e�cient data structures are required. A description of these and an
outline of an implementation can be found in [8].

We have implemented the algorithm presented above and replaced the implementation
of the �rst partition re�nement algorithm with it. The time complexity of step 3-5 has not
changed but performance tests have shown that in many cases the running time is reduced
signi�cantly.

50

6.6 Heuristics

In this section we present some heuristics that may reduce the running time of the open
bisimilarity checking algorithm.

Since the partition W becomes �ner for each iteration of step 3 and the two processes
being checked are open bisimilar if and only if they are in the same block of the �nal
partition the algorithm can be changed such that it terminates and outputs false as soon as
the processes being checked are put in two di�erent blocks. Checking whether the processes
are in the same block could be done after sub step 3-3 or sub step 3-5 in step 3. If the data
structures are changed such that each element in a block points to the block containing it,
the checking can be done in constant time. If the algorithm is changed such that the checking
is performed it will terminate much faster in the cases where obviously non-open bisimilar
processes like ā(b).EvilP and 0 are checked, since the processes are put into di�erent blocks
after the �rst iteration in step 3. In the case where two open bisimilar processes are checked
nothing is won, but the time wasted on checking whether they are put in di�erent blocks is
negligible compared to the overall runtime.

As already seen the number of states in the graph depends heavily on the number of
states added by the Sat-bunch operation. In some cases the sizes of the saturated state
graphs can be reduced by reordering the names. Consider the following example. Let P be

the π-process de�ned by P
def
= a(g).c̄d.ēf.b̄g.0. If a, b, c, d, e, f , g, and h are the �rst eight

names in N , and a < b < c < d < e < f < g < h, then the size of the saturated state graph
for 〈P, ∅〉 is 23. By reordering the names such that h < a < b < c < d < e < f < g the
size of the saturated state graph is reduced to 5 states. So, by a clever reordering of the
names the size of the graph can be reduced signi�cantly. In the example given the perfect
reordering was easy to �nd, but this is not always the case.

6.7 Remarks on the Optimized Algorithm

The optimized algorithm is the same as the �rst algorithm where the steps are updated
according to some of the optimizations suggested in this chapter. The optimized algorithm
can be found in appendix A. It is worth noting that the time-complexity is not reduced in the
optimized version of the algorithm but performance tests have shown that the running time
is reduced signi�cantly in many cases. Results of performance tests of the implementation
of the �rst and the optimized algorithm and comparisons of these can be found in appendix
B.

51

Chapter 7

Conclusion

We have implemented the algorithm for open bisimulation checking in the π-calculus pro-
posed by [10]. Due to the state space explosion problem the time-complexity of the algorithm
is exponential with respect to the depth of the processes being checked for open bisimilarity.
This is only the case when the algorithm is applied to �nite control processes. For other
processes the algorithm may not even terminate. However, the algorithm terminates in a
reasonable amount of time for many interesting processes.

We have optimized the algorithm for open bisimulation checking. By approximating the
active names of processes we can identify processes that do not have to be present in the
state graphs and thereby, in many cases, reduce the size of the state graphs and the overall
running time of the algorithm. We have implemented this optimized algorithm and other
optimizations have been applied to this implementation to bring the running time further
down. The time-complexity of this implementation is not better than the implementation
of the �rst version of the algorithm. However, performance tests have shown that in many
cases a considerable reduction of the running time can be achieved.

52

Bibliography

[1] Boreale, Michele & De Nicola, Rocco. A Symbolic Semantics for the π-
Calculus. Journal of Information and Computation, 126(1):34-52, 1996.

[2] Dam, Mads. Model Checking Mobile Processes. Journal of Information
and Computation, 129(1):35-51, 1996.

[3] Kanellakis, Paris C. & Smolka, Scott A. CCS Expressions, Finite State

Processes, and Three Problems of Equivalence. Journal of Information
and Computation, 86:43-68, 1990.

[4] Milner, Robin. Communication and Concurrency. Prentice Hall Inter-
national, Englewood Cli�s, 1989. ISBN: 0-13-115007-3.

[5] Milner, Robin & Parrow, Joachim & Walker, David. A Calculus of

Mobile Processes, Part I/II. Journal of Information and Computation,
100:1-77, September 1992.

[6] Moller, Faron. Edinburgh Concurrency Workbench user manual (Ver-

sion 7.1). Updated since CWB v7.0 by Perdita Stevens. Laboratory for
Foundations of Computer Science, University of Edinburgh, July 1999.

[7] Moller, Faron & Victor, Björn. The Mobility Workbench � A Tool for

the π-Calculus. In proceedings of CAV'94 volume 818 of Lecture Notes
in Computer Science, pp. 428-440. Springer Verlag, 1994.

[8] Paige, Robert & Tarjan, Robert E. Three Partition Re�nement Algo-

rithms. SIAM Journal on Computing, 16(6):973-989, December 1987.

[9] Parrow, Joachim. An Introduction to the π-Calculus. Chapter of Hand-
book of Process Algebra, ed. Jan A. Bergstra, Alban Ponse, and Scott
A. Smolka.

[10] Pistore, Marco & Sangiorgi, Davide. A Partition Re�nement Algorithm

for the π-Calculus. In proceedings of CAV'96 volume 1102 of Lecture
Notes in Computer Science. Springer Verlag, 1996. Complete version
available from �le://ftp.di.unipi.it/pub/Papers/pistore/cav96long.ps.gz
.

53

[11] Rabinovich, Alexander. Checking Equivalences Between Concurrent Sys-
tems of Finite Agents. In proceedings of ICALP '92 volume 623 of Lec-
ture Notes in Computer Science, pp. 696 - 707, Springer Verlag, 1992.

[12] Tarski, Alfred. A Lattice-theoretical Fixpoint Theorem and Its Applica-

tions. Paci�c Journal of Mathematics, 5:285-309, 1955.

54

Appendiks A

The Optimized Algorithm

In this appendix we present the pseudo code for the optimized algorithm for checking for
open bisimilarity between two processes P and Q with the distinction D as the function
openBisimCheck(P,Q,D). The algorithm makes use of some functions for searching in the
state graph. The function �ndProcNumFast(CP,GNRT,IL) used in step 3-4 searches for the
constrained process CP in the array GNRT at the positions corresponding to the numbers
contained in the list of integers IL and returns the position of CP in the array GNRT.
The functions anElementOf(PL), �ndProcessNumberInGraph(A,PL,G), ApproxAN(CP),
inSameBlock(j,AIL,W), and optimizedRe�ne(W , E) are described in chapters 5 and 6.

FUNCTION constructStateGraph(PIn, DIn,COUNTER)
G := ∅
PL := {(COUNTER, 〈PIn, DIn〉)}
WHILE PL 6= ∅ DO{

(i,CP) := anElementOf(PL)
T := [[CP]]CPTR

(TR,TR′,TRAN) := (∅, ∅, ∅)
FOR EACH transition (A

(M,α)−→ A′) ∈ T DO {
PNUM := �ndProcessNumberInGraph(A′,PL,G)
IF (PNUM = −1) THEN
COUNTER := COUNTER+ 1
PL := PL ∪ {(COUNTER, A′)}
TR := TR ∪ {(A (M,α)−→ A′,COUNTER)}

ELSE TR := TR ∪ {(A (M,α)−→ A′,PNUM)}}(∗ END FOR ∗)

55

FOR EACH tuple (〈P,D〉 (M,α)−→ 〈P ′, D′〉, l) ∈ TR DO {
AIL := ∅
TRM := TR \ {(〈P,D〉 (M,α)−→ 〈P ′, D′〉, l)}
FOR EACH tuple (〈P,D〉 (N,β)−→ 〈P ′′, D′′〉,m) ∈ TRM DO {
IF (M 6B N AND α = βσM) THEN

PNUM := �ndProcessNumberInGraph(〈P ′′σM , DM
P,α ∩ fn(P ′′σM)〉,PL,G)

IF (PNUM = −1) THEN
COUNTER := COUNTER+ 1

PL := PL ∪ {(COUNTER, 〈P ′′σM , DM
P,α ∩ fn(P ′′σM)〉)}

AIL := AIL ∪ {COUNTER}
ELSE AIL := AIL ∪ {PNUM}}(∗ END FOR ∗)

TR′ := TR′ ∪ {(〈P,D〉 (M,α)−→ 〈P ′, D′〉, l,AIL)}}(∗ END FOR ∗)
AAN := ApproxAN(CP)
y := min{N \ fn(CP)}
FOR EACH tuple (A

(M,α)−→ A′, j,AIL) ∈ TR′ DO
IL := {j}
IF (bn(α) = {y}) THEN
FOR EACH name v < y DO

IF (v /∈ AAN) THEN
PNUM := �ndProcessNumberInGraph(A′{v/y y/v},PL,G)
IF (PNUM = −1) THEN
COUNTER := COUNTER+ 1
PL := PL ∪ {(COUNTER, A′{v/y y/v})}
IL := IL ∪ {COUNTER}

ELSE IL := IL ∪ {PNUM}
TRAN := TRAN ∪ {(A (M,α)−→ A′, j,APL, IL)}

G := {(i, (CP,TRAN))}}(∗ END WHILE ∗)
RETURN G

FUNCTION step2(G)
W := {{0, . . . , size(G) − 1}}
RETURN W

56

FUNCTION optimizedStep3-1(G,W)
GNRT[i] := unde�ned state FOR ALL i ∈ {0, . . . , size(G) − 1}
FOR EACH state (i, (A,TL)) ∈ G DO{
NRTL := ∅
FOR EACH tuple (〈P,D〉 (M,α)−→ 〈P ′, D′〉, j,AIL) ∈ TL DO{
IF (not(inSameBlock(j,AIL,W)))

THEN NRTL := NRTL ∪ {(〈P,D〉 (M,α)−→ 〈P ′, D′〉, j)}}(∗ END FOR ∗)
GNRT[i] := {(A,NRTL)}}(∗ END FOR ∗)

RETURN GNRT

FUNCTION optimizedStep3-2(GNRT, ANW)
REPEAT

stable := true

FOR i = 0 TO size(GNRT) − 1 DO

(A,NRTL) := GNRT[i]
AN := ∅
FOR EACH transition (A

(M,α)−→ A′, l) ∈ NRTL DO

AN := AN ∪ fn(M,α) ∪ (ANW [l] \ bn(α))
stable := stable ∧ (AN = ANW [i])
ANW [i] := AN

UNTIL stable = true

RETURN ANW

FUNCTION optimizedStep3-3(ANW ,W)
W ′ := ∅
FOR EACH block B = {j1, j2, . . . , jk} ∈ W DO{
WB := ∅
FOR i := 1 TO k DO

IF (∃X ∈ WB.(∃y ∈ X.ANW [y] = ANW [ji]))
THEN WB := (WB \ {X}) ∪ {X ∪ {ji}}
ELSE WB := WB ∪ {{ji}}

W ′ := W ′ ∪WB}(∗ END FOR ∗)
RETURN W ′

57

FUNCTION optimizedStep3-4(GNRT,ANW)
GNT[i] := unde�ned state FOR ALL i ∈ {0, . . . , size(GNRT) − 1}
FOR i = 0 TO size(GNRT) − 1 DO{

(A,NRTL) := GNRT[i]
NTL := ∅
FOR EACH transition (A

(M,α)−→ A′, j, IL) ∈ NRTL DO

IF (α = τ OR α = āb FOR SOME a, b ∈ N)

THEN NTL := NTL ∪ {(A (M,α)7−→ A′, j)}
ELSE

y := min{N \ fn(A)}
v := min{N \ANW [i]}
A′′ := A′{v/y y/v}
NTL := NTL ∪ {(A (M,α)7−→ A′′, �ndProcNumFast(A′′,GNRT, IL))}

GNT[i] := {(A,NTL)}}(∗ END FOR ∗)
RETURN GNT

FUNCTION optimizedStep3-5(GNT,W)
RS := ∅
FOR i = 0 TO size(GNT− 1) DO{

(A,NTL) := GNT[i]

FOR EACH transition (A
(M,α)7−→ A′, j) ∈ NTL DO

IF (∃((M,α), R) ∈ RS)
THEN RS := (RS \ {((M,α), R)}) ∪ {((M,α), R ∪ {(i, j)})}
ELSE RS := RS ∪ {{((M,α), {(i, j)})}}}(∗ END FOR ∗)

REPEAT

W ′ := W
FOR EACH ((M,α), E) ∈ RS DO

W := optimizedRe�ne(W , E)
UNTILW ′ = W
RETURN W

58

FUNCTION optimizedStep3And4(iP , iQ, G,W)
AN[i] := ∅ FOR ALL i ∈ {0, . . . , size(G) − 1}
REPEAT

W ′ := W
GNRT := optimizedStep3-1(G,W)
AN := optimizedStep3-2(GNRT,AN)
W := optimizedStep3-3(AN,W)
GNT := optimizedStep3-4(GNRT,AN)
W := optimizedStep3-5(GNT,W)
IF (not(inSameBlock(iP , {iQ},W))) THEN
RETURN false

UNTIL W = W ′

RETURN (inSameBlock(iP , {iQ},W))

FUNCTION openBisimCheck(P,Q,D)
G′ := constructStateGraph(P,D ∩ fn(P), 0)
G′′ := constructStateGraph(Q,D ∩ fn(Q), size(G′))
G := G′ ∪G′′

W := step2(G)
RETURN optimizedStep3And4(0, size(G′), G,W)

59

Appendiks B

Performance Tests

In this appendix we present some results of performance tests of the implementation of the
�rst version of the algorithm and the optimized version, and compare these results. The
performance tests are run on an AMD Athlon 700 MHz processor. Application of the �rst
algorithm and the optimized algorithm to two processes, P1 and P2, and a distinction, D,
is indicated by openBisimCheckFirst(P1, P2, D) and openBisimCheckOpt(P1, P2, D), respec-
tively. We assume a < b < c < d < e < f < g < h < i.

B.1 π-Processes Used in Performance Tests

The following π-processes and distinctions are used in the performance tests of the algo-
rithms.

Processes:

P1
def
= K2〈(c, e)〉 + [a = e]cb.a(d).K1〈(a, b, d)〉

P2
def
= c(b).e(d).K2〈(b, d)〉

P3
def
= (K2〈(c, e)〉 + [a = e]cb.a(d).K1〈(a, b, d)〉) | ab.cd.0

P4
def
= c(b).e(d).K2〈(b, d)〉 | ab.cd.0

P5
def
= a(c).e(f).0 | a(b).c(d).0 | a(b).cb.0

P6
def
= a(g).c(f).0 | a(i).c(h).0 | a(c).e(f).0 | a(b).c(d).0

P7
def
= a(g).c(f).0 | a(i).c(h).0 | a(c).e(f).0 | a(b).c(d).0 | a(b).cb.0

60

where

K1
def
= (a, c, e)P1

K2
def
= (c, e)P2

Distinctions:

D
def
= ∅

B.2 Results of Performance Tests

The results of the performance tests can be seen in table B.1.

Total Size of Graphs Run Time Result

openBisimCheckFirst(P1, P2, D) 44 states 0.05 secs True

openBisimCheckOpt(P1, P2, D) 42 states 0.03 secs True

openBisimCheckFirst(P3, P4, D) 35131 states > 5 hours ?

openBisimCheckOpt(P3, P4, D) 211 states 0.38 secs True

openBisimCheckFirst(P2, P4, D) 4105 states 2319.91 secs False

openBisimCheckOpt(P2, P4, D) 88 states 0.08 secs False

openBisimCheckFirst(P5, P5, D) 176 states 1.07 secs True

openBisimCheckOpt(P5, P5, D) 76 states 0.07 secs True

openBisimCheckFirst(P5, P6, D) 746 states 23.53 secs False

openBisimCheckOpt(P5, P6, D) 396 states 0.45 secs False

openBisimCheckFirst(P7, P7, D) 7834 states 10942.43 secs True

openBisimCheckOpt(P7, P7, D) 2738 states 38.96 secs True

Table B.1: Results of performance tests of the �rst and optimized algorithm.

It can be seen from table B.1 that the implementation of the optimized version of the
algorithm runs faster than the �rst version of the algorithm in the test cases. In the case
where the �rst algorithm was run on the processes P3 and P4 execution was deliberately
terminated prematurely, after �ve hours, and thus no result was returned from the algorithm,
explaining the question mark in the table.

61

Recent BRICS Report Series Publications

RS-01-8 Ulrik Frendrup and Jesper Nyholm Jensen.Checking for Open
Bisimilarity in the π-Calculus. February 2001. 61 pp.

RS-01-7 Gregory Gutin, Khee Meng Koh, Eng Guan Tay, and Anders
Yeo. On the Number of Quasi-Kernels in Digraphs. January
2001. 11 pp.

RS-01-6 Gregory Gutin, Anders Yeo, and Alexey Zverovich. Travel-
ing Salesman Should not be Greedy: Domination Analysis of
Greedy-Type Heuristics for the TSP. January 2001. 7 pp.

RS-01-5 Thomas S. Hune, Judi Romijn, Marïelle Stoelinga, and
Frits W. Vaandrager. Linear Parametric Model Checking of
Timed Automata. January 2001. 44 pp. To appear inTools
and Algorithms for The Construction and Analysis of Systems:
7th International Conference, TACAS ’01 Proceedings, LNCS,
2001.

RS-01-4 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, and Judi Romijn. Efficient Guiding
Towards Cost-Optimality inUPPAAL. January 2001. 21 pp.
To appear in Tools and Algorithms for The Construction and
Analysis of Systems: 7th International Conference, TACAS ’01
Proceedings, LNCS, 2001.

RS-01-3 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, Judi Romijn, and Frits W. Vaan-
drager. Minimum-Cost Reachability for Priced Timed Automata.
January 2001. 22 pp. To appear inHybrid Systems: Computa-
tion and Control, 2001.

RS-01-2 Rasmus Pagh and Jakob Pagter.Optimal Time-Space Trade-
Offs for Non-Comparison-Based Sorting. January 2001.
ii+20 pp.

RS-01-1 Gerth Stølting Brodal, AnnaÖstlin, and Christian N. S. Peder-
sen. The Complexity of Constructing Evolutionary Trees Using
Experiments. 2001.

